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Abstract

We present a k x d random projection matrix that is applicable to vectors = € R? in O(d) operations
if d > k2t Here, k is the minimal Johnson Lindenstrauss dimension and 4’ is arbitrarily small. The
projection succeeds, with probability 1 — 1/n, in preserving vector lengths, up to distortion ¢, for all
vectors such that ||z||_ < ||| ,k~/2d=? (for arbitrary small §). Sampling based approaches are either
not applicable in linear time or require a bound on ||z||_, that is strongly dependant on d. Our method

overcomes these shortcomings by rapidly applying dense tensor power matrices to incoming vectors.

1 Introduction

The application of various random matrices has become a common method for accelerating algorithms both
in theory and in practice. These procedures are commonly referred to as random projections. The critical
property of a k x d random projection matrix, ®, is that the mapping = — P®x not only reduces the dimension
from d to k, but also preserves lengths, up to distortion €, with probability at least 1—1/n for some small € and
large n. The name random projections was coined after the first construction of Johnson and Lindenstrauss
[1] in 1984, who showed that such mappings exist for & > O(log(n)/?). Other constructions of random
projection matrices have been discovered since [2, 3, 4, 5, 6]. Their properties make random projections a
key player in rank-k approximation algorithms [7, 8, 9, 10, 11, 12, 13, 14], other algorithms in numerical
linear algebra [15, 16, 17], compressed sensing [18], and various other applications, e.g, [19, 20].
Considering the usefulness of random projections it is natural to ask the following question: what should
be the structure of a random projection matrix, ®, such that mapping = — ®z would require the least
amount of computation? A naive construction of a k x d unstructured matrix ® would result in an O(dk)

application cost. This is prohibitive even for moderate values of k and d.
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In [21], Ailon and Chazelle proposed the first Fast Johnson Lindenstrauss Transform. Their matrix is
a composition of a sparse sampling matrix and a discrete Fourier matrix. This achieves a running time of
O(dlog(d) + k3). Recently, Ailon and Liberty [22] further improved this to O(dlog(k))! by composing a
deterministic code matrix and a randomized block diagonal matrix. The idea behind both fast constructions
is similar: they start with applying a randomized isometric d x d matrix ¥, which maps all vectors in R?
(w.h.p) into a set x C R%, and then use a k x d matrix A to project all vectors from x to R*. There seems
to be a tradeoff between the possible computational efficiency of applying A and the size of y: the smaller
X is, the faster A can be applied. This, however, might require a time costly preprocessing application of .

In the present work we examine the connection between A and x for any matrix A (Section 2). We
propose in Section 3 a new type of fast applicable matrices and in Section 4 explore their y. These matrices
are constructed using tensor products and can be applied to any vector in R? in linear time, i.e, in O(d).
Due to the similarity in their construction to Walsh-Hadamard matrices and their rectangular shape we term

them Lean Walsh Matrices?.

. Application .
The rectangular k£ x d matrix A xz € x if ||z]|, =1 and:
time

Johnson, Lindenstrauss [1] | k rows of a random unitary matrix | O(kd)

Various Authors [2, 4, 5, 6] | i.i.d random entries O(dk)

Ailon, Chazelle [21] Sparse Gaussian entrees O(k?) 2|, < O((d/k)~1/?)
Ailon, Liberty [22] 4-wise independent Code matrix O(dlogk) |||, < O(d=1/*)
This work Any deterministic matrix ? 2|, < O(k~1/?)
This work Lean Walsh Transform O(d) 2|, < O(k—1/2d79%)

Table 1: Types of k x d matrices and the subsets y of R? for which they constitute a random projection.

The norm || - || 4 is defined below.

Due to their construction the Lean Walsh matrices are of size d x d where d = d* for some 0 < o < 1.
In order to reduce the dimension to k < d, k = O(log(n)/e?)), we compose the lean Walsh matrix, A, with
a known Johnson Lindenstrauss matrix construction R. Applying R in O(d) requires some relation between

d, k and a as explained in subsection 4.1.

2 Norm concentration and x(4,¢,n)

We compose an arbitrary deterministic d x d matrix A and random sign diagonal matrix D, and study

the behavior of such matrices as random projections. In order for AD; to exhibit the property of a random

LTheir method applies to cases for which k < d/2-9 for some arbitrary small §.
2The terms Lean Walsh Transform or simply Lean Walsh are also used interchangeably.



projection it is enough for it to preserve the length of any single unit vector x € R% with very high probability:
Pr[|[ADal; =112 ¢)] <1/n (1)

Here D; is a diagonal matrix such that Dg(i,4) are random signs (i.i.d +1 w.p 1/2 each) and n is chosen
according to a desired success probability, usually polynomial in the intended number of projected vectors.

Note that we can replace the term ADsx with AD,s where D, is a diagonal matrix holding on the
diagonal the values of z, i.e D,(i,i) = (i) and similarly s(i) = Dy(¢,7). Denoting M = AD,., we view the
term || Ms]|, as a function over the product space {1,—1}? from which the variable s is uniformly chosen.
This function is convex over [—1,1]¢ and Lipschitz bounded. In his book, Talagrand [23] describes a strong

concentration result for such functions.

Lemma 2.1 (Talagrand [23]). Given a matric M and a random vector s (s(i) are i.i.d £1 w.p 1/2) define
the random variable Y = || Ms||,. Denote by p the median of Y, and by o = ||M||,_,, the spectral norm of
M. Then

Pr[Y —p| > <de /89 (2)

Lemma 2.1 asserts that ||AD,s|| is distributed like a (sub) Gaussian around its median, with standard
deviation 2.
First, in order to have E[Y?] = 1 it is necessary and sufficient for the columns of A to be normalized to

1 (or normalized in expectancy). To estimate the median, p, we substitute t> — ¢’ and compute:

o0
BY —p)?) = / Pr(Y — )] > t)dt’
0
< / h 4ot /(87 gy — 3952
0

Furthermore, (E[Y])? < E[Y?] =1, and so E[(Y — p)?] = E[Y?] = 2uE[Y]+ pu? > 1 —2u + p? = (1 — p)%
Combining, |1 — | < V320, We set & =t + |1 — pul:

Prl[Y — 1] > ] <4e /327" for e > 2|1 — 4 (3)

If we set k = 33log(n)/e? (assuming log(n) is larger than some constant) the requirement of equation 1 is
met for o < k~1/2. Moreover £ > 2|1 — u|. We see that a condition on o = ||AD,||,_,, is sufficient for the

projection to succeed w.h.p. This naturally defines .

Definition 2.1. For o given matriz A we define the vector pseudonorm of x with respect to A as ||z|| 4, =

|ADg||5_ 5 where Dy is a diagonal matriz such that Dy (i,1) = x(i).

Definition 2.2. We define x(A,e,n) as the intersection of the Euclidian unit sphere and a ball of radius
k=2 in the norm || - || 4

(Ao = (o € B ol = 1, il < 472 @

for k = 33log(n)/e?.



Lemma 2.2. For any column normalized matriz, A, and an i.i.d random +1 diagonal matriz, Dy, the

following holds:

Vo € x(A,e,n) Pr|l|ADe]} ~1] > 2] < 1/n (5)
Proof. For any = € x, by definition 2.2, ||z|, = ||AD.|l, ., = 0 < k™2, The lemma follows from
substituting the value of ¢ into equation 3. O

It is convenient to think about x as the ”good” set of vectors for which ADy is length preserving with
high probability. En route to explore x(A,¢e,n) for lean Walsh matrices we first turn to formally defining
them.

3 Lean Walsh transforms

The Lean Walsh Transform, similar to the Walsh Transform, is a recursive tensor product matrix. It is
initialized by a constant seed matrix, A;, and constructed recursively by using Kronecker products Ay, =
Ay ® Ap—1. The main difference is that the Lean Walsh seeds have fewer rows than columns. We formally

define them as follows:

Definition 3.1. Ay is a Lean Walsh seed (or simply ’seed’) if i) A1 is a rectangular matriz A; € CT*°,

1/2

such that r < ¢; 4) Ay is absolute valued 1/\/r entree-wise, i.e, |A1(i,5)| = r=2; iii) the rows of A1 are

orthogonal; and v) all inner products between its different columns are equal in absolute value to a constant

p <1/y/(c—1). p is called the Coherence of A;.

Definition 3.2. A, is a Lean Walsh transform, of order ¢, if for all ' < { we have A, = A1 ® Ay _1, where
® stands for the Kronecker product and Ay is a seed according to definition 3.1.

The following are examples of seed matrices:

1 1 -1 -1

Al=L11 -1 1 -1 Al =L ! ! !
V3 , X X X V2| p2mi/3 ami/3 (6)
,r./ — 3’ Cl — 47 pl — 1/3 ,,,// — 2’ CI/ — 3’ p// — 1/2

These examples are a part of a large family of possible seeds. This family includes, amongst other construc-
tions, sub-Hadamard matrices (like A}) or sub-Fourier matrices (like AY). A simple construction is given for

possible larger seeds.

Fact 3.1. Let F be the ¢ X ¢ Discrete Fourier matriz such that F(i,j) = e>™V=1i/e - Define Ay to be the
matriz consisting of the first r = c—1 rows of F normalized by 1//r. A1 is a lean Walsh seed with coherence

1/r.



Proof. The facts that |A;(i,5)| = 1/+/r and that the rows of A; are orthogonal are trivial. Moreover, due to
the orthogonality of the columns of F', the inner product of two different columns of A; must equal p = 1/r
in absolute value.

<A(J1) A(Jz) ‘ Z ]2

1
f!— (e; 30 F (e, 52)] =~ (7)

here F(-,-) stands for the complex conjugate of F(,-). O

We use elementary properties of Kronecker products to characterize Ay in terms of the number of rows,

r, the number of columns, ¢, and the coherence, p, of A;. The following facts hold true for Ay:

Fact 3.2. i) Ay is of size® d® x d, where a = log(r)/log(c) < 1 is the skewness of Ay i) for all i and j,

A(i,j) € +d Y2 which means that Ay is column normalized; and i11) the rows of Ay are orthogonal.
Fact 3.3. The time complexity of applying A, to any vector z € R% is O(d).

Proof. Let z = [z1;...; z.] where z; are sections of length d/c of the vector z. Using the recursive decom-
position for A, we compute Ayz by first summing over the different z; according to the values of A; and
applying to each sum the matrix A,_;. Denoting by T(d) the time to apply A, to z € R? we get that
T(d) = rT(d/c) + rd. Due to the Master Theorem, and the fact that r < ¢ we have that T'(d) = O(d). More
precisely, T'(d) < dcr/(c —r). O

For clarity, we demonstrate Fact 3.3 for A} (equation 6):

z
! ) A (21+ZQ—Z3—Z4)
22
AZZ = A;g = ﬁ A ( — 29+ 23 — 24) (8)
z
3 A (2172’27234*24)
Z4

In what follows we characterize x (A, e, n) for a general Lean Walsh transform by the parameters of its seed,
r,c and p. The omitted notation, A, stands for Ay of the right size to be applied to z, i.e, £ = log(d)/ log(c).

Moreover, we freely use « to denote the skewness log(r)/log(c) of the seed at hand.

3The size of Ay is ¢ x ¢f. Since the running time is linear, we can always pad vectors to be of length ¢f without effecting

the asymptotic running time. From this point on we assume w.l.o.g d = ¢! for some integer ¢



4 An /, bound on |||,

After describing the lean Walsh transforms we turn our attention to exploring their ”good” sets x .We remind

the reader that ||z|| , < k~1/2 entails z € x:

2
Izl = I1AD:l5., = max |[ly"AD,|; (9)
yillyll=1
d
= max 22 (i) (yT AW)2 (10)

vyl =1 =

d 1/p d 1/q
(Z xgp(i)> ( max (yTA(i))Qq) (11)
i=1

y7HyH2=1 =1

IN

2 2
= llzll5 AT 12—, (12)

The transition from the second to the third line follows from Holder’s inequality for dual norms p and g,
satisfying 1/p 4 1/¢ = 1. We are now faced with the computing [|A"|,_,,, in order to obtain the constraint

on [z,

Theorem 4.1. [Riesz-Thorin] For an arbitrary matric B, assume || B|p,—r, < C1 and ||B|lpy—r, < Ca
for some norm indices py,71,p2, T2 such that p1 < r1 and py < ro. Let A be a real number in the interval
[0,1], and let p,r be such that 1/p = AN1/p1) + (1 — A)(1/p2) and 1/r = X(1/r1) + (1 — N)(1/r2). Then

1Bllp—r < CRC;™.

In order to use the theorem, let us compute ||AT||, , and [[AT||, . From ||AT|, , = ||A4],_, and
the orthogonality of the rows of A we get that ||AT|, ., = \/(707/ = d(1=®/2 From the normalization of
the columns of A we get that ||A”|, .. = 1. Using the theorem for A = 1/q, for any ¢ > 1, we obtain
[ ATy pq < d*=%)/24. Tt is worth noting that [|A”|,_,,, might actually be significantly lower then the given
bound. For a specific seed, A1, one should calculate [ A{[|,_,, and use A7, ,, = ||A1T||§_,2q to achieve a

possibly lower value for ||AT]|, , ”
Lemma 4.1. For a lean Walsh transform, A, we have that for any p > 1 the following holds:
{z e R [|lefly = 1 ]lally, < k71/2d 7079} € x(A,e,m) (13)

where k = O(log(n)/e?), o = log(r)/log(c), r is the number of rows, and c is the number of columns in the
seed of A.

Proof. We combine the above and use the duality of p and g:

ey < el AT s, (14)

< el d = (15)

< allpd =0 (16)

The desired property, ||z|| , < k~1/2, is achieved if ]|, < k120~ 5% (=3) for any p > 1. O



4.1 Controlling o and choosing R

We see that increasing « is beneficial from the theoretical stand point since it weakens the constraint on
[l]| . However, the application oriented reader should keep in mind that this requires the use of a larger
seed, which subsequently increases the constant hiding in the big O notation of the running time.

Consider the seed constructions described in Fact 3.1 for which r = ¢ — 1. Their skewness a =
log(r)/log(c) approaches 1 as their size increases. Namely, for any positive constant ¢ there exists a constant

size seed such that 1 — 26 < a < 1.

Lemma 4.2. For any positive constant 6 > 0 there exists a Lean Walsh matriz, A, such that:
{weR[|lzlly =1, ||z, <k /2d7°} C x(4,&,n) (17)

Proof. Generate A from a seed such that its skewness oo = log(r)/log(c) > 1 — 26 and substitute p = oo into

the statement of Lemma 4.1. O

The constant « also determines the minimal dimension d (relative to k) for which the projection can be
completed in O(d) operations, the reason being that the vectors z = ADsx must be mapped from dimension
d (d = d*) to dimension k in O(d) operations. This is done using the Ailon and Liberty [22] construction
serving as the random projection matrix R. R is a k X d Johnson Lindenstrauss projection matrix which can
be applied in Jlog(k) operations if d = d* > k**%" for arbitrary small §”. For the same choice of a seed as
in lemma 4.2, the condition becomes d > k2+5”" 29 which can be achieved by d > E2+9 for arbitrary small ¢’
depending on ¢ and ¢”. Therefore for such values of d the matrix R exists and requires O(d® log(k)) = O(d)

operations to apply.

5 Conclusion and work in progress

We have shown that any k x d (column normalized) matrix, A, can be composed with a random diagonal
matrix to constitute a random projection matrix for some part of the Euclidian space, x. Moreover, we have
given sufficient conditions, on = € R?, for belonging to x depending on different ¢5 — £, operator norms of
AT and 1, norms of x. We have also seen that lean Walsh matrices exhibit both a "large” y and a linear
time computation scheme. These properties make them good building blocks for the purpose of random
projections.

However, as explained in the introduction, in order for the projection to be complete, one must design
a linear time preprocessing matrix ¥ which maps all vectors in R? into y (w.h.p). Achieving such ¥
would be extremely interesting from both the theoretical and practical stand point. Possible choices for ¥
may include random permutations, various wavelet/wavelet-like transforms, or any other sparse orthogonal
transformation.

The authors would like to thank Steven Zucker, Daniel Spielman, and Yair Bartal for their insightful

ideas and suggestions.
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