Crystal is a functional language in which programs resemble concise, formal mathematical defini-
tions, without explicit communication commands. The Crystal compiler transforms this very-high-
level description into an assemblage of concurrent programs, each coded in some target machine
language (e.g., any of the concurrent versions of C, FORTRAN, or LISP) with communication
commands that establish its interaction with programs on other processors of the machine. At the
center of these transformations are the concepts of granulization and clustering which automatically
break down a Crystal program into many pieces of independent tasks. Granulization is based on
two innovations in the language Crystal: (1) to treat all data as functions over some base domain
(or index set), giving the generality and flexibility needed in expressing any parallel operation over
any network and allowing the compiler to distribute automatically data structures as well as tasks
over the network, and (2) to assign a process to each element in the base domain and exploit
parallelism on the data level, as well as the expression level. Crystal provides powerful operators,
or parallel programming idioms (a la APL), that have guaranteed efficiency in their parallel imple-
mentations. The Crystal compiler is capable of generating efficient code for machines with different
granularities of parallelism. The Crystal run-time system [4] further ensures the performance of
target programs over a spectrum of machine granularity. Together they resolve the portability issue
in parallel programming. '

Very-high-level Paralle] Programming in Crystal

Marina C. Chen

Research Report YALEU/DCS/RR-506
December 1986

Work supported in part by the Office of Naval Research under Contract No. N00014-86-K-0296.
Approved for public release: distribution is unlimited.

Very-high-level Parallel Programming in Crystal

Marina C. Chen*

Abstract. Crystal is a functional language in which programs resemble concise, formal math-
ematical definitions, without explicit communication commands. The Crystal compiler transforms
this a very-high-level description into an assemblage of concurrent programs, each coded in some
target machine language (e.g., any of the concurrent versions of C, FORTRAN, or LISP) with
communication commands that establish its interaction with programs on other processors of the
machine. At the center of these transformations are the concepts of granulization and clustering
which automatically break down a Crystal program into many pieces of independent tasks. Gran-
ulization is based on two innovations in the language Crystal: (1) to treat all data as functions
over some base domain (or index set), giving the generality and flexibility needed in expressing
any parallel operation over any network of distributed data, and (2) to assign a process to each
element in the base domain and exploit parallelism on the data level, as well as the expression level.
Crystal provides powerful operators, or parallel programming idioms (a la APL), that have guar-
anteed efficiency in their parallel implementations. The Crystal compiler is capable of generating
efficient code for machines with different granularities of parallelism. The Crystal run-time system
[4] further ensures the performance of target programs over a spectrum of machine granularity.
Together they resolve the portability issue in parallel programming.

1 Introduction

One of the most critical problems in parallel processing today is that of programming parallel ma-
chines. The difficulty lies in task decomposition: how to partition a given task into pieces, one for
each processor, so that it can be accomplished by the cooperation of many processors in parallel.
There have been two main approaches: (1) programming in a conventional sequential language,
and relying on a parallelizing compiler to generate code for parallel machines (as in numerical
computing) or relying on a parallelizing interpreter and run-time support for dynamically spawn-
ing parallel processes (as in functional programming); and (2) devising a parallel programming
language and expressing parallelism explicitly in a program.

The first approach has the advantage that programs can be written in familiar languages
and existing programs can be transformed by parallelizing compilers for execution on the new

*Department of Computer Science, Yale University, New Haven, CT 06520. chen-marina@yale. Work supported
in part by the Office of Naval Research under Contract No. N00014-86-K-0296.

machines. However, the parallelism discovered this way is limited by the algorithm embodied
by the program. It is unlikely that the transformations provided by the parallelizing compiler
are sophisticated enough for the task of redesigning programs better suited for parallel processing.
Such redesigning is necessary for using parallel resources to their full potential. Take the problem of
sorting as an example. Consider parallelizing a quicksort program, which is a very good sequential
solution. This can be done by spawning a process for each of the two recursive calls to quicksort.
The time complexity is indeed improved from O(nlogn) in the sequential version to O(n) (since
O(n) comparisons are needed at the top level and the number of comparisons is halved at every
level thereafter) by using O(n) independent parallel processes. However, what can be achieved by
various parallel sorting networks (e.g., [17]) with O(n) processors is O(log? n), which is significantly
faster for large n. Numerous other good sequential algorithms have the same property that they
do not lend themselves to efficient parallel implementations, as exemplified by many of the newly
devised parallel algorithms [5] which are considerably different from their sequential counterparts.

This point leads to the second approach — parallel programming, where parallelism is explicitly
expressed in a program. This is flexible enough to be applied to either class of parallel machines
(shared-memory machines or message-passing machines) as well as any kind of parallel algorithm.
However, parallel programming and debugging can be extremely difficult with thousands of inter-
acting processes. Most parallel languages, either proposed or in use, have explicit constructs for
parallelism. Programmers specify how tasks should be partitioned and which ones can be run in
parallel (e.g., futures in Multilisp [7,8], “in” and “out” in Linda [6]), or how processes are mapped to
processors (e.g., annotation in ParAlfl [10]); or they specify explicitly the communication between
processes (e.g., “?” and “!” in CSP [9]). But specifying communication is very tricky because it
requires the programmer to keep track of both the processor’s own state and its interactions with
other processes, and explicit task decomposition by the user will yield inefficient code for a large
class of problems for which an efficient decomposition cannot be known until run-time. In fact,
early experience with programming machines such as the Intel iPSC reveals that the burden of
specifying task decomposition and communication can be so great that it discourages extensive
experiments on load balancing via different task decompositions.

A critical research question raised here is: can a parallel program be written in a highly abstract
form such that the detailed interactions among processes in space and time are suppressed, and
yet it is still possible to generate efficient code for an assemblage of communicating processors?
The seemingly conflicting goals of ease of programming and efficient target code can be achieved.
In this paper we will give an illustration of programming in Crystal, its parallel interpretation that
yields automatic task decomposition, and the organization of the Crystal compiler. The Crystal
run-time system is described in another presentation [4] of this proceedings.

The rest of the paper is organized as follows. Section 2 contains some example program seg-
ments. Section 3 gives a more formal description of the syntax and semantics of the language.
Section 4 addresses the issue of parallelism and how to interpret a Crystal program as a collection
of parallel processes. Section 5 describes operators for programming abstraction and the properties
these operators must possess in order for them to be efficiently implemented on parallel machines.
Section 6 contains a brief description of the Crystal compiler.

2 Example Program Segments

2.1 Operations over a set of elements

In problem solving, one often likes to say “the value x associated with some element p is defined as
the minimum (or maximum, summation, union, etc.) of the set of all values y(q) for those elements
q in set S such that the predicate z(p,q) is true.” In Crystal, the above sentence translates to
an equation of the form

x(p) = \min { y(q) | q in 8, z(p,q)}

Below is an example excerpted from a Crystal program for computing the minimum spanning tree
of a graph with vertex set veet and edge set E, where i is an index for iterations.

minWeight (v, i) =
\ min { weight({v, u}) | u in vset, ({v, u} in E) and marked({v, u}, i)}

2.2 Sorting

Given an input tuple x, this program segment computes a tuple y of elements in sorted order.
This program is based on a mesh-of-trees parallel sorting algorithm given in [17], but the Crystal
version is portable to other architectures, such as the hypercube.

v(i, j) = << x[i] > x[j] -> 1,
else -> 0
>>
rank(i) = \+ {v(i, j) | j in O:n-1}
w(i, j) = << rank(i) = j -> x[i],
else -> 0
>>

y = [C\+ {w(i, j) | i in 0:n-1}) | j in 0:n-1]

For instance, if x = [2, 5, 0, 11, 6, -1], then the values of function v can be displayed as
an array (below left) with, say, row index i and column index j. The function rank has the values
2,8,1,5,4,0,fori=0,1,...,n — 1. The function w is displayed at right.

0 01 0 0 1 0 0 2 0 0 O

1 01 0 0 1 0 0 0 5 0 O

0 0 0 0 0 1 0O 0 0 0 0 O

1 11011 0O 0 0 0 0 11

1110 01 0 0 0 0 6 O

0 0 0 0 0 O -1 0 0 0 0 O
Finally, the tupley = [-1, 0, 2, 5, 6, 11].

2.3 Parallel prefix

The scan operator is a familiar one in APL. Let tuple u be defined as u = [1, 2, 3, 4, 5].
Then the tuple v defined as v = scan(u, +) has the value [1,3,6,10,15]. Since scan is used
extensively and has an efficient implementation, it is supported as a primitive operator in Crystal.
However, it can be defined in Crystal as follows:

scan=(v, f) = u
where u[i]l= w(i, floor(log(i)))
where w(i,j) =
<< j=0 -> v[il, '
j>0 -> << j < 2°(j-1) -> w(i,j-1),
j >= 2°(j-1) -> £ - 27°(j-1), j-1), w(i,j-1)) >> >>

The above program is just a description of the parallel prefix operator [11]. Note that n-ary
operations over a set of n elements (Section 2.1) can be done using the parallel prefix operation. The
value x(p) of Section 2.1 is just the last element of the tuple scan([y(q) | q in 8, z(p,q)],
min). However, it is more efficient (by a logarithmic factor) to implement these directly.

2.4 Solving linear systems

The following segment of code defines a scalar value scalar_a and a vector q which are computed
iteratively, where i is the index for iterations. Matrices A and B, vectors q0, r, and s are given as
inputs. Subroutines for computing inner product inner, vector addition vectoradd, matrix vector
multiplication mmult and forward solve fsolve are defined in the subprogram after the keyword
where, in which i and j are used for indexing matrix and vector elements. The Crystal compiler

will interprets i in the main program as a time index, and i and j in the subprogram as space
indices.

scalar.a(i)= num/den where (num = inner(r, q(i))
den = inner(q(i), q(i)))

q(i)= << i = 0 -> fsolve(B, mmult(A, q0)),
i > 0 -> vectoradd(s, q(i-1), scalar_a(i-1))
>>
where (

vectoradd(vecl, vec2, scalar) = [vec(i) | i in 1:n]
where vec(i) = veci[i] + scalar * vec2[i]
inner(veci, vec2) = \+ { veci[i] * vec2[i] | i in 1:n }
fsolve(B, y) = [x(i) | i in 1:n]

where x(i) = y[i] -

A+ { B[i,j] * x(j) | j in 1:i-1 })
mmult (A, p) = [ap(i) | i = 1:n]

where ap(i) = ({ A[i,jl*p[jl | j = 1:n }
)

2.5 Particle membership

Given a list of particles particleList, this program segment partitions the list into 4 sublists
of particles according to their locations. A particle k belongs to the list for box j if it is closest
to the center of box j. The partition is done by first computing the square of the distance from
the xy-coordinates of the particle particleList (k) .x and particleList(k).y, to those of the
center of the box box(j) .x and box(j).y. The function membership computes for each particle
k which box it belongs to. Conversely, a list of particles for each box is obtained by the function
particleInBox.

distSqParticleToBox(k,j) =
distSq(particleList (k) .x, particleList(k).y, box(j).x, box(j).y)
where distSq(x1, y1, x2, y2) = power((x1-x2),2.0) + power((yi-y2), 2.0)
membership(k) = \minarg{ [distSqParticleToBox(k,j), j 1 | j = 1:4}
particlesInBox(j) = inverse(membership, particlelList, union) (j)
where (inverse(f, D, mergeOp) = g
where g(y) = \mergeOp x | x in D, £(x) = y)

The binary associative operator minarg takes a set of pairs [value, arg] and returns the arg
which has the minimum value over the set. The operator inverse(f, D, mergeOp) computes the
inverse of a function £ with domain D. The binary associative operator mergeOp specifies how the
value of an inverse image should be computed when the function is not one-to-one. For instance,
given a function £(i,j) = i+j with domain D= {1: n} X {1: n}, its inverse function inverse(f,
D, union) will give a set of pairs {(i,j) | i+j = a} as the image of each element a in its domain.

For more examples of Crystal programs, such as dynamic programming, LU-decomposition,
matrix multiplication, and numerous toy examples, see [1,2,3].

3 Syntax and Semantics of Crystal

Crystal is a functional language that uses set notation, similar to SASL [16]. Syntactically, it uses
infix operators to make programs as readable as familiar mathematical notation. Semantically, it
has the standard fixed-point semantics. '

(P11(F1 (7111(V)), F2(7'112(V)), F2(T113(V)), X114(V)) -

11(F1(r111(v)), Fa(r112(v)), Fo(m113(v)), X114(v
Fulv) = $11(F1(r111(v)), F2(r112(v)), F2(1113(v)) v)) 1)
P12(F1 (7'121(V)), F2(7122(V)), X123(V)) -

$12(F1(r121(V)), F2(r122(V)), X123(V))

[p21(F1(r211(V)), Fa(r212(V)), X213(V), X214(V)) —
o ¢21(F1 (7'211(V)), F; (7‘212(V)), X213(V), X214(V))
2(v) = (2)
p22(F1(7221(v))s Fi(r222(V)), Fa(r223(V)), X224(V)) —
$22(F1(1221(V)), Fi(r222(V)), Fa(7223(V)), X224(V))

Figure 1: The general form for a system of two recursion equations.

3.1 Functions

There are two ways a given function F' can be used in a Crystal program. The first is the conven-
tional one of using functions as a way of abstracting detailed operations, such as vectoradd, scan,
distSq, and inverse in the examples above. The second way is new, using functions as a way
for describing data structures. For example, the functions w and v in sorting, the functions q(i),
and scalar_a(i) for representing a vector and a scalar, and function particleList for a list of
particles. Treating all data as functions over some base domain (or index set) instead of defining
data structures separately gives the language the generality and flexibility needed in expressing
any parallel operation over any network of distributed data.

3.2 Constructors

Three constructors are used in Crystal: sets, ordered tuples, and records, as shown in the above
examples. These constructors are familiar either in conventional mathematical descriptions or in
data processing tasks. They are essential for concise, clear, and intuitive expressions.

3.3 Syntactic constructs: a more formal description

Crystal syntax is quite intuitive since it very much resembles conventional mathematical notation.
Formally, a Crystal program consists of a system of recursion equations. Figure 1 shows such a
system. In describing the syntactical parts of recursion equations, three indices ¢, 7, and k are
used: the first index ¢ is used for numbering the equations, the second index j for numbering the
conditional branches within a given equation, and the third index for the number of occurrences
of functions and/or constants within a given branch.

The system shown in Equations (1) and (2) defines two left-hand side functions F; where
1 = 1,2. Function F; can be a tuple of functions or a field of a record of functions. Similarly, set
notation may be used to express all arguments on the right hand side of each equation, as in the
example of Section 2.1. Each equation can be defined by several conditional branches, such as the
two cases satisfying boolean predicate py; for j = 1,2 in the first equation. Certainly, each case
can be defined by nested levels of conditionals. Any left hand side function value F;(v) of the ¢’th
equation may depend on some mutually recursive function values Fy:(7;;4(v)) on the right-hand
side as defined by functions ¢;; and ;5. It may also depend on some non-recursive function values
Xi;k(V), where any X;;i is a function that does not appear on the left-hand side of any equation
in the system. For example, there are 3 mutually recursive functional values (for k¥ = 1,2,3) and
a single non-recursive function value X114 in case 1 of Equation 1.

3.4 Semantics

The language Crystal is functional, and has fixed-point semantics [13]. Let V; and all other value
or functional domains over which functions and predicates ¢;;, Tijk, Pij, and X;;; are defined be
continuous and complete lattices. Furthermore, let these functions and predicates be continuous.
Then the solution of the system of recursion equations is its least fixed-point.

NP problems

EP /N

Scientific Computing

/

.GCD NC problems
N

el

DP

Figure 2: The distribution of problems with varying degree of DP and EP.

4 Parallelism

Parallelism in a Crystal program does not need to be specified explicitly by any particular syntactic
constructs. Rather, it is a result of assigning an operational interpretation to familiar mathematical
notation.

4.1 Dichotomy of operands/operations and interpretations

As described above, a Crystal function is used to describe a data structure (operands) or an
operation (an operator). These two different interpretations of functions correspond to different
sources of parallelism and both are supported in Crystal. An example illustrating the two types
of parallelism and discussion of their relative merits can be found in [2].

4.1.1 Expression level parallelism (EP)

The first source, called expression level parallelism (EP), or applicative parallelism in (2], is well
known in functional languages. This is the parallelism attainable by interpreting each function as a
process. As long as two functions are not constrained by a dependency relation, the two processes
can proceed in parallel. An analogous interpretation appears in logic programming languages,
such as interpreting Prolog’s conjuctive goals as a network of processes in Concurrent Prolog [14].
In the example of solving linear systems above, if we spawn two parallel processes that compute
the values of inner(r, q(i) and inner(q(i), q(i)) in the definition of scalar_a(i), then we
are exploiting EP. However, there is another kind of parallelism “inside of” the inner product
operation on two vectors. This is called data level parallelism.

4.1.2 Data level parallelism (DP)

What’s new in Crystal is the idea of interpreting each element of the domain of a function as
a process, rather than the function itself as a process. The amount of parallelism that can be
extracted this way is only limited by the size of the domain and eventually the available parallel
resources. When the domain is very large, which is often the case with compute-intensive tasks,
the available parallelism is correspondingly large. Parallelizing Fortran compilers tap this to a very
limited extent, and one can do much better (in theory, anyway) by hand-coding everything. But
until now there has no systematic way of fully exploiting such massive parallelism.

Problems in various application domains (strictly speaking, efficient algorithms for these prob-
lems), can be broadly categorized by their inherent EP and DP as shown in Figure 2. For a given
amount of parallel resource, one needs to exploit as much parallelism as the problem allows. Some
algorithms, such as the Euclidean algorithm for computing GCD (greatest common devisor) seem
to be inherently sequential in the sense that they contain little EP or DP.

The significance of Crystal’s new interpretation of functions lies in its ability to exploit DP,
which is essential for virtually all fast parallel algorithms for problems in the class NC [5] (poly-
nomial number of processors and polylogarithmic time complexity).

Crystal supports both DP and EP for a spectrum of problems lying on the continuum: pre-
dominantly EP for the class of problems clustered in the upper left corner of the figure, EP on top
~ of DP for those along the middle part of the curve, and predominantly DP for those on the lower
right corner. For the current generation of parallel machines, except for the Connection Machine,
the potential of DP cannot be fully exploited due to the communication/computation ratio of the
processors. As parallel computer technology progresses and the communication latency between
processors becomes less, this will change.

4.2 Operational interpretation of DP

Since the idea of EP is well known only DP will be treated here. Consider a system of recursion
equations as shown in Figure 1. Each element v in the domain V; is interpreted as a process. Each
of the mutually recursive functions F; corresponds to the output of a process. A function ¢;;,
called a local processing function, describes a part of the functionality of element v that produces
output value F;(v). Function 7, called a communication function, describes which other element
u = 7i;5(Vv), element v should receive its input. Function X;j, called an input function, describes
the input data. Predicates p;;, called control predicates, describe the conditions under which a
given process executes some particular processing functions ¢;;, obtains data from other processes
defined by particular communication functions 7;;x, and receives some particular inputs described
by the input functions X; .

5 Programming Abstraction

One of the goals of Crystal is to provide a set of useful idioms for developing fast parallel algorithms.
To this end, Crystal borrows several operators from APL, many similar to those used in Connection
Machine Lisp [15]. In the context of parallel programming, in particular when different granularities
are considered, these operators have two properties of particular interest:

1. Granulizability. Each operator can be implemented on machines of logarithmic diameter
with near-linear speedup, independent of the machine granularity.

2. Completeness. There is a subset of Crystal operators which is complete in the sense that
algorithms for all problems in NC can be programmed using these operators. A minimum
such set consists of the scan operator, loop of polylogarithmic number of iterations, and
constant-time local computations .

The granulizability property ensures portability over a spectrum of machines. The completeness
property guarantees the power and generality of the language.

6 Organization of the Crystal Compiler

Figure 3 shows the organization of the Crystal compiler. The lexer and the parser are conventional.
The (static) mapping generator performs a transformation that maps each index appearing in the
source program to either time (a loop index) or space (logical process-id’s). For more sophisticated
mapping [1], a linear combination of indices in the source program is mapped to the time index in
the implementation.

The granulizer performs task decomposition according to DP and EP, regardless of the machine
granularity. It generates as many logical processes (represented as a parse tree) and inter-process

Crystal Source

Code C Code +
Generator Communications
Lexer
J Clusterer
P arser Router
Mapping Granulizer
Generator

Figure 3: The organization of the Crystal compiler.

commaunications as possible, which contains the maximum amount of parallelism possible in a given
program.

The clusterer then combines many logical processes into a single nodal parse tree to fit the
particular granularity of the target machine. In the meantime, it eliminates those inter-process
communications that are inside the same node and package those that go outside of the node.
Furthermore, it determines efficient routing for these outgoing communications [12].

At this point, the original source code has been transformed to a collection nodal parse trees,
one for each processor, plus the communications. Compiling a nodal parse tree to target sequential
code on each processor requires no more than conventional code generation. Thus completes the
compilation process.

One extremely important and interesting issue is how the clusterer chooses the appropriate
collection of logical processes to combine into a single node. This is discussed in a companion
paper [4] in this proceedings.

7 Concluding Remarks

This paper demonstrates the viability of programming for parallelism without user-specified task
decomposition or explicit inter-process communications. The compiler is responsible for automat-
ically breaking down a Crystal program into many pieces of independent tasks and generating
efficient target code. At the center of these transformations are the concepts of granulization and
clustering. Crystal also provides a set of high-level operators which can be supported efficiently
on parallel machines and are powerful enough for expressing all fast parallel algorithms. Together
with conventional mathematical notation, these high-level operators help to bring programming,
debugging and testing to a new conceptual level. Before the advent of parallel machines, such op-
erators wouldn’t be supported in a sequential language (APL is an exception) because they are too
expensive to implement. But now they can be supported very efficiently — polylogarithmic time
complexity and always near-linear speedup — on parallel machines. As larger and larger machines
become available, languages that exploit only EP will soon reach their limit and languages with

explicit communication will become still more difficult to use, while Crystal will be able to exploit
parallelism to the limit of the available DP.

Acknowledgement. I would like to thank Alan Perlis for many inspiring discussions, and
Neil Immerman on the subject of the completeness of Crystal operators. My thanks also go to Joe
Rodrigue for his comments and suggestions on the manuscript.

References

[1] M. C. Chen. A design methodology for synthesizing parallel algorithms and architectures.
Journal of Parallel and Distributed Computing, December 1986.

[2] M. C. Chen. A parallel language and its compilation to multiprocessor machines. In The
Proceedings of the 13th Annual Symposium on POPL, January 1986.

[3] M. C. Chen. Placement and interconnection of systolic processing elements: a new LU de-
composition algorithm. In Proceedings of the IEEE International Conference on Computer
Design: VLSI in Computers, pages 275-281, October 1986.

[4] M. C. Chen and Joel Saltz. A multi-level parallel programming environment. In The Pro-
ceedings of the Hypercube Microprocessors Conf., Knozville, TN, September 1986.

[5] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Information and
Control, (64):2-22, 1985.

[6] David Gelerter. Linda and friends. IEEE Computer, August 1986.

[7] Jr. Halstead, Robert H. Multilisp: a language for concurrent symbolic computation. ACM
Transaction on Programming Language and Systems, October 1985.

[8] Jr. Halstead, Robert H. Parallel symbolic computing. IEEE Computer, August 1986.

[9] C.A.R. Hoare. Communicating sequential processes. Communication of ACM, 21(8):666-677,
1978.

[10] Paul Hudak. Para-functional programming. IEEE Computer, August 1986.
[11] R. E. Ladner and M. J. Fischer. Parallel prefix computation. JACM, (4), October 1980.

[12] Zhijung Mu and M. C. Chen. Communication efficient distributed data structures on hyper-
cube machines. In The Proceedings of the Hypercube Microprocessors Conf., Knogville, TN,
September 1986.

[13] D.S. Scott and C. Strachey. Toward a mathematical semantics for computer languages. In
J. Fox, editor, Proceedings of the Symposium on Computers and Automata, pages 19-46,
Polytechnic Institute of Brooklyn Press, New York, 1971.

[14] Ehud Shapiro. Concurrent prolog: a progress report. IEEE Computer, August 1986.

[15] Guy L. Steele Jr. and W. Daniel Hillis. Connection machine lisp: fine-grained parallel symbolic
processing. In Proceedings of the 1986 Symposium on Lisp and Functional Programming,
pages 279-297, 1986.

[16] D. A. Turner. Recursion Equations as a Programming Language, pages 1-28. Cambridge
University Press, 1982.

[17] Jeffrey D. Ullman. Computaic;;nal Aspects of VLSI. Computer Science Press, 1984.

