Parameterized Fartial Evaluation
Extended Version ’

Charles Consel and Siau Cheng Khoo
Research Report YALEU/DCS/RR-865
August 1991

This work is supported by the Darpa grant N00014-88-K-0573 and NSF
CCR-8809919

Parameterized Partial Evaluation *

Extended Version

Charles Consel Siau Cheng Khoo

Yale University
Department of Computer Science

New Haven, CT 06520
{consel, khoo}@cs.yale.edu

August 19, 1991

1 Introduction

Besides specializing programs with respect to concrete values, it is often necessary to specialize
programs with respect to abstract values, i.e., static properties such as signs, ranges, and types.
* Specializing programs with respect to static properties is a natural extension of partial evaluation
and significantly contributes towards adapting partial evaluation to larger varieties of applications.
This idea was first investigated by Haraldsson [12] and carried out in practice with a system called
Redfun in the late seventies. Although this work certainly started in the right direction, it has
some limitations: (1) the static properties cannot be defined by the user; they are fixed; (12) the
approach is not formally defined: no safety condition for the definition of symbolic values, no
finiteness criteria for fixpoint iteration, etc.; and (112) because Redfun is an online partial evaluator
— the treatment of the program is determined as it gets processed — and consists of numerous
symbolic values and program transformations, it is computationally expensive. As a by-product,
Redfun could not be self-applied as noticed in [9, 12], and thus, the partial evaluation process could
not be improved.

This paper introduces parameterized partial evaluation, a generic form of partial evaluation
parameterized with respect to user-defined static properties. We develop an algebraic framework
to enable modular definition of static properties. More specifically, from a concrete algebra, an
abstract algebra called a facet is defined; it is composed of an abstract domain — capturing the
properties of interest — and a set of abstract primitives that operate on this domain. Using abstract
interpretation [1, 15], this can be formally achieved by relating the two algebras with a suitable
abstraction function. However, unlike abstract interpretation, not only does a facet define primitive

*This research was supported in part by NSF and DARPA grants CCR-8809919 and N00014-88-K-0573, respec-
tively. The second author was also supported by a National University of Singapore Overseas Graduate Scholarship.

functions that compute static properties, but it also defines ones that use abstract values to trigger
computations at partial evaluation time. Furthermore, considering partial evaluation as an algebra
whose domain is syntactic terms and operations are primitive functions, it is possible to capture
the partial evaluation itself as a facet.

In “conventional” partial evaluation [3], efficiency is achieved by an offline strategy that consists
of splitting the partial evaluation process into two phases: binding time analysis that statically
determines the static and dynamic expressions of a program given a known/unknown division of its
inputs; and specialization which processes a program driven by the binding time information and the
concrete values. Thus, the binding time information of a program can be used for specialization as
long as the input values match the known/unknown pattern given for binding time analysis. Besides
improving the specialization phase, an offline partial evaluator enables realistic self-application [16].

Our framework is general enough to capture offline partial evaluation. Just as a binding time
analysis is used to compute the static/dynamic property, we introduce a facet analysis to statically
compute properties. A specializer can then use the result of facet analysis in the same way that
it used the result of binding time analysis previously to trigger computations. Because the facet
analysis is performed statically, the specialization phase is kept simple, as before, in contrast with
an online strategy that performs everything at once.

Our approach overcomes the limitations (2), (#2) and (222) mentioned above. Let us summarize
the new contributions of this paper.

¢ The notion of facet offers a formal framework for introducing user-defined static properties:
a facet is a safe abstraction of a concrete algebra.

¢ Partial evaluation can now be parameterized with feépect to any number of facets, each facet
encapsulating properties of interest for any given application.

o Facet analysis, another novel aspect, allows facet computation to be lifted from partial eval-
uation keeping the specialization phase simple (unlike conventional program transformation
systems). Indeed, not only does the facet analysis statically determine which properties
trigger computations, but it also selects the corresponding reduction operations prior to spe-
cialization. This makes it possible to achieve self-application and improve the specialization
process.

.

The paper is organized as follows. Section 2 briefly introduces conventional partial evaluation.
Section 3 describes the abstraction methodology used to define properties of interest. Section 4
presents online parameterized partial evaluation. In particular, Section 4.1 presents the notion
of facet together with examples and Section 4.4 describes the semantics of online parameterized
partial evaluation. Section 5 presents offline parameterized partial evaluation. We introduce the
notion of abstract facet in Section 5.1 and present facet analysis in Section 5.4. In Section 5.5, we
extend the facet analysis to handle higher order programs. Section 6 presents an example of online
and offline parameterized partial evaluation. Section 7 concludes and discusses future work. All
the proofs are given in Appendix A.

2 Preliminaries

In this section we examine conventional partial evaluation for strict functional programs. For
conciseness we only consider first order programs; although, as discussed in Section 5.5, extending
the framework to higher order programs is straightforward using existing techniques.

Let us first examine Figure 1 that displays the standard semantics for a first order functional
language. As is customary, we will omit summand projections and injections. Domain Values is
a sum of the basic semantic domains (we only consider the integer and boolean domains in this
paper). Function K maps a constant to its semantic value; function Kp defines the usual semantic
operations for primitive operators. Domain FunEnv maps function names to their meaning. The
result of a program is the value of f;. We assume all functions have the same arity.

1. Syntactic Domains
¢ € Const Constants

z € Var Variables
p € Po Primitive Operators
f € Fn Function Names
e € Exp Expressions
e u= clz|p(er, - ,en)| fe1, --,€n) | if €1 €2 €3
Prog := {fi(z1,--,2n) = ei} (f1 is the main function)

2. Semantics Domains
b € Values = (Int + Bool),
p € Env = Var — Values
©® € FunEnv = Fn — Values™ — Values

3. Valuation Functions
Eprog : Prog — Values
£ : Exp — Env — FunEnv — Values
K : Const — Values
Kp : Po — Values™ — Values

S.Prog [{ fi(zl,"',xn) ei}] =

O [f1] whererec © L[(A(b1y -+, bn) . € [es] (L[bx/zk]) ©)/fi]
£fdr0 K []
£fzlr0 r [z]

& [p(er, -,en)] p ©
Efiferezes] p©
Eff(er,---,en)] p ©

Kp [p) (£[e1] p©,---, £ [en] p ©)
(Eleal p©) = Efex] pO, E[es] p©
O [f1(€[ei] p©,---,€ [en] » O©)

Figure 1: Standard Semantics of a First Order Language

Figure 2 defines the semantics of a simple partial evaluator for programs written in our language.
It is based on existing approaches ([3, 20, 6], for example). The figure only highlights aspects of the
semantics relevant to later discussion. For example, we omit details about treatment of function
calls (unfolding and specialization). Because this treatment vastly differs from one partial evaluator
to another, it is abstracted from the semantics by function APP.

Domain Sf defines a cache that keeps the specialization patterns of each function and maps
these patterns to the representation of the corresponding specialized functions. Essentially, this

achieves instantiation and folding as in [5], and ensures uniqueness of specialized functions. To keep
track of each specialization, partial evaluation is single-threaded with respect to the cache. This
causes the evaluation order of the language to be explicit. Function MkProg constructs a residual
program from the specialized functions contained in the cache. ’

Because partial evaluation is a source-to-source program transformation, it operates on a syntac-
tic domain — denoted by Exp. Domain FnEnv recursively defines the meaning of each function.
Function K~! maps a value (e.g., integer and boolean) back to its textual representation.

1. Syntactic Domains
(defined in Figure 1)

2. Semantics Domains

p € Env = Var — Exp
w € FnEnv = Fn — Exp” —Sf — (Exp x Sf).
o € Sf = (Fn x Const®) — Exp

3. Valuation Functions
SPEprog : Prog — Input — Prog,
SPE : Exp — Env — FnEnv — Sf — (Exp x Sf).
SKp : Po — Exp" — Exp
MkProg : Sf — Prog (omitted)

SPEprog [{ fi(2z1,--+,2n) = &}] (1, ,in) =
MkProg (SPE [fi(z1,---,zn)] (L[ix/zs]) = L)]2
whererec @ = L[(A(¢1,--,6n) . Ao . SPE [e;] (L[dr/zx]) = o)/ fi]

SPE]pwo = ([, o)
SPE[z]lpw o = (pl[z], o)
SPE [p(eh"'ve")] pwo = (SKp [P] (6'1,'--,6:.,), On)

where (e}, 1) = SPEle]pwo

(e, on) = SPE [en] p w on1
(e} € Const) —
(Kei) — SPE [ex] p w o1, SPE [es] p w o3,
(f ¢ ¢ 4], o)
where (€3, 02) = SPE [ez] p w 01
(e3, 03) = SPE [es] p w 02
where (e, 1) = SPE[ei] pw o
APP[flei--- ehonw
where (e}, 1) = SPEle]pwo

SPE[ifereres]lpwo

]

SPE [f(e1, - en)lpwo

(€h, on) = SPE[ea]l p @ on

SKp [P](elv""e") = /\(ei € ConSt) - K (’CP[p] ((K 61),---,(’C e")))’ I[p(el""reﬂ)]l

=1

Figure 2: Simple Partial Evaluation Semantics

Partial evaluation subsumes standard evaluation. This is reflected, for instance, in the treat-
ment of the primitive functions: when a primitive is called with constant arguments, its standard
evaluation is performed. In general, an expression is completely evaluated when it solely depends

on available data. Lastly, notice that in partial evaluation the primitive operatérs compute new
values; in dealing with properties, we will want them to play a similar role.

With this preliminary material in hand, we are now ready to introduce parameterized partial
evaluation.

3 The Abstraction Methodology

This section presents a general methodology to introduce abstract values in the partial evaluation
process. Sections 4 and 5 describe how to instantiate this methodology for online and offline partial
evaluation.

In optimizing compilation, static properties are introduced to reason about a program prior to
its execution. Computation of static properties is then defined by abstract versions of primitive
functions. This structure (domain/operations) naturally prompted us to use an algebraic approach
to model static properties. In particular, a concrete algebra can be captured by the notion of
semantic algebra as defined in denotational semantics (e.g., [18]).

Definition 1 (Semantic Algebra) A semantic algebra, [D; O}, consists of a semantic domain D, and a
set of operations O on this domain.

Our approach consists of defining, from the semantic algebra, an abstract algebra composed of
an abstract domain — capturing the properties of interest — and the set of abstract primitives
opeérating on this domain. Using abstract interpretation [1, 15], this can be formally achieved by
relating the two algebras with an abstraction function. Because we aim at addressing both online
and offline partial evaluation, a given algebra may be defined at three different levels — listed in
increasing abstractness: standard semantics, online partial evaluation and offline partial evaluation.
These levels respectively define semantic algebras, facets and abstract facets.

The rest of this section describes a general methodology to relate these different levels. In
essence, this amounts to relating two algebras. To investigate this, we first discuss how to relate
the domains and their operations in Sections 3.1 and 3.2 respectively. Then, this is formalized
in Section 3.3 where the notion of relating two algebras is precisely defined together with safety
criteria.

Notationally, a symbol s is noted § if it is used in online partial evaluation and § in offline partial
evaluation. Symbols that refer to standard semantics are unannotated. Finally, for generality, any
symbol used in either online or offline partial evaluation is noted 3.

3.1 Relating Domains

Domains can be related using an abstraction function [8]. Such a function is strict and monotonic;
it maps an initial domain into an abstract domain.

As a simple example, say we wish to introduce some symbolic computations on signs abstracted
from the integer algebra [D; O]. To do so we first have to define an abstraction of the integer domain
that captures the sign properties. A natural abstract domain is D= {1, pos, zero, neg, T}.
Domains D and D are related by the following abstraction function.

&3 D - D

aﬁ d) = ‘LB ifd=1p
pos ifd>0
zero ifd=0
neg ifd<0

This example is further developed in Section 4.1.

3.2 Relating Operations

In abstracting one algebra from another, not only do we want to relate a domain to an abstract
domain but we also want to relate the operators to their abstract versions. More precisely, we want
to formulate the safety condition of an approximation to an operator.

Essentially, relating two operators consists of relating their graphs. To this end, we distinguish
two classes of operators. The first class is composed of operators closed under the carrier of the
algebra. That is, for an algebra [A; O], we say that p € O is closed if and only if p: A — A. Thus,
the abstract version of a closed operator will be passed abstract values to compute new ones; this
corresponds to an abstract primitive in abstract interpretation.

The second class of operators consists of those whose co-domain is different from the carrier;
they are referred to as open. Intuitively, abstract versions of open operators will use abstract
values to perform actual computations. Interestingly, we can relate this division to optimizing
compilation where, typically, a phase collects properties and another triggers optimizations using
these properties.

For convenience, given an algebra [A; O], O, and O, will denote the set of open and closed
operators, respectively.

This division suggests that since an abstraction function relates the carriers of two algebras,
it can also be used to relate an operator and its abstract version when this operator is closed
under the carrier. However, this does not apply to open operators since their domain differs from
their co-domain. Since an operator may be defined at three different levels (standard semantics,
online and offline partial evaluations), its corresponding co-domain will then have three different
definitions: in the standard semantics, an operator belongs to a semantic algebra; both open and
closed operators produce basic values (domain Values). In online partial evaluation, an operator
belongs to a facet; when it is open it produces a constant provided it is called with appropriate
values (see Section 4). In offline partial evaluation, an operator belongs to an abstract facet; when
the operator is open it mimics the facet operator and thereby produces a binding time value (i.e.,
Static or Dynamic) (see Section 5).

Thus, in order to relate an open operator to its abstract version, we have to relate their co-
domains. To do so let us define the abstraction functions relating the three levels of definition of
domain Values.

From standard semantics to online partial evaluation, we need to map basic values into their
textual representation; this mapping is defined as follows.

T . Values — Values

?(.‘t) = J‘Vﬁu\es 1f T = Lvalues

K-1z otherwise

Because Values is a sum of basic domains it is more convenient to define 7 as a family of
abstraction functions indexed by the basic domain. That is, for each basic domain D, there is an

abstraction function 7p : D — Values deﬁned To keep the notation simple, we omit the indexing
of function 7.

Note that to be consistent with our framework, domain Values used above denotes a separated
sum constructed by adding the elements L —~ and T =~ to the original domain of constants
Const; these elements are respectively weaker and stronger than all the elements of Const. For
convenience, we assume the functions defined on Const to be also defined on Values (e.g., function
K); this domain is further discussed in Section 4.

To investigate the relation between online partial evaluation and offline partial evaluation, recall
that conventional offline partial evaluation consists of a binding time analysis and a specializer. The
binding time domain, noted Values, is composed of the set {Static, Dynamic} lifted with a least
element Lyom,. ThlS domain forms a chain, with ordering Lygm, E Static C Dynamic, and
abstracts the online partial evaluation process in the following way

T . Values — Values
Fz) = L1,-— ifz=1

Values Valuea

Static if € Const
Dynamic otherwise

This reflects the fact that an expression is static if it partially evaluates to a constant.

3.3 Relating Algebras

Given this preliminary discussion we can now formalize the notion of algebra abstraction.

Let [A;0O] and [A’; O'] be two algebras, and a4 : A — A’ and 7 : B — Values be two
abstraction functions. Then, the algebra abstraction is noted a4 : [A; O] — [A'; O]

Definition 2 (Facet Mapping) a4/ : [A; 0] — [A’; O] is a facet mapping with respect to Values if and
only if

1. A’ is an algebraic lattice of finite height!.

2. Vpe O/, p is monotonic.

3. Ifp € O is a closed operator, then p' : A’ — A’ is ils corresponding absiract version.

4

. If p € O is an open operator with functionality A — B, where B is some domain different from A,
then p' : A’ — Values is ils corresponding abstract version.

1An algebraic lattice is defined as an algebraic CPO that is also a complete lattice. All lattices defined in this
paper are algebraic lattices. Notice that with a lattice of infinite height, a widening operator can be used to find
fixpoints in a finite number of steps (see [8]).

5. Vp € O and its corresponding abstract version p' € O’
agrop C ploas if pisa closed operator
Top C poay if p is an open operator with
functionality A — B

Notice that Conditions 1 and 2 ensure termination and monotonicity of abstract value compu-
tations. Also, for simplicity, we only consider a limited form of heterogeneous algebra (Conditions 3
and 4): only the co-domain of an operator can be different from the carrier of the algebra. Finally,
Condition 5 defines the safety criteria of an approximation to an operator.

Given a facet mapping, we can succinctly describe the relationship between the components of
two algebras by a logical relation [17, 15].

Definition 3 (Logical Relation C,,,) Let asr : [A;0] — [A’; O] be a facet mapping with respect to
Values. We define the binary relation Co,, as follows.

1. Va GA, VaeA’: a ;aA’ ad & aAI(a) [;Al a.

2. Letp € O and p' € O be closed operators. Then
P Ca, P &
Vac A, Va e A’ : a Cay, a’ = p(a) Ca, ?'(a)
3. Letp€ O and p' € O' be open operators and p : A — B for some domain B. Then
O
YVae A, Va' e A’ : a C,,, o = p(a) CF p(d)

where C5 is the logical relation defined for the facet mapping 7 : [B; Op] — [Values; O%]. Facet
mappings 7 and 7 are presented in Definitions 7 and 10 respectively.

Using this logical relation, we can re-formulate the safety criteria expressed by Condition 5 of
Definition 2 as follows.

Property 1 Let as : [A;0] — [A’; 0] be a facet mapping with respect to Values, V p € O and 1its
corresponding abstract versionp’ € O’, p Co,, P'.

4 Online Parameterized Partial Evaluation

This section presents online parameterized partial evaluation. We first define the notion of facet
by instantiating the abstraction methodology described in Section 3. Then, we describe online
parameterized partial evaluation.

4.1 Facets

A facet captures symbolic computations performed in online partial evaluation. As a result, while
a closed operator will compute new abstract values, an open operator will produce constants when
provided with appropriate abstract values. Formally,

Deﬁmtlon 4 (Facet) A facel for a semantzc algebra [D; O] is an algebra [] defined by a facet mapping
5 :[D; 0] — [D; O] with respect to Values.

We refer to D as the facet domain and O as the set of facet operators. The use of facet mapping
in the definition ensures the following property about the open operators of a facet.

Property 2 For any open operator p € O of arity n, vd; € D and Vd; € D such that d; T d; with i €
{1,...,n} ' °
#(dy,---,d,) € Const Ap(dy,--+,dn) # L = p(di, --,dn) =7 (p(dy,--,dn))

In essence, this property states that if an open operator of a facet yields a constant for some
abstract values, this constant is the same as that produced by the concrete operator called with
the corresponding concrete values. Notice that this equality only holds if the call to the concrete
operator terminates. The concrete values d; are those related to the abstract values (i,- under the
logical relation EAB'

However, for some values, an open operator of a facet may not yield a constant. Indeed, it may
be passed abstract values too coarse to be of any use. This is illustrated in the example below.

As an example of a facet, say we wish to define a Sign facet from an integer algebra. The set
of static properties would be {1, pos, zero,neg, T}. Assume that the operators of this algebra are
{+,<}. Then + would be a closed operator: it operates on two sign values to compute a new one.
However, < is an open operator: it uses the abstract value of its arguments to trigger computation
whenever possible (e.g., <(zero,pos) = [true]). '

Example 1 Sign information forms a facet for semantic algebra [D; 0] = [Int.; {+, <}].

1. D= {.L, pos, zero, neg, T} with
vd e D. 1 cdcCcT
2. The abstraction function is

33 : D—-D
agd) = Lz ifd=1p
pos ifd>0
zero ifd=0
neg tfd<0
3. 0=0, U O. where 0, = {<} and 0. = {+}
4. Facet operators

+:DxD-D

=2 d) (i=L)v(d=1)—> 1,
dl—zero—> dz,
dg-zero—-» d1,d1 u dz

~

x D — Values

() (d1 _L)V (dz = .L) — J'V
(d1 pos) A (dz € {neg, zero}) — [false],
(di = zero) A (d2 = pos) — [true],
(d1 = zero) A (d2 € {neg, zero}) — [false],
(di = neg) A (d € {pos, zero}) — [true], T

: D
A

AR

——
Values

We can now explain further our approach and examine how the notion of facet achieves the
parameterization of partial evaluation.

4.2 Product of Facets

Essentially, parameterized partial evaluation differs from the conventional partial evaluation in two
aspects: it collects facet information and propagates useful results of any facet computation to all
relevant facets. While the latter aspect is described explicitly in the new partial evaluation model
presented in Section 4.4, the former is captured by the notion of the product of facets defined in
this section.

A product of facets captures the set of facets defined for a given semantic algebra. It consists
of the product of facet domains and the set of facet operators. In particular, for each operator p, a
product operator, noted wy, triggers each facet operator p; with the corresponding abstract values.
If p is a closed operator, the product operation yields a product of abstract values. Otherwise, it

produces either a constant, Lyam, o Ty depending on the abstract values available.
- alues Values

Definition 5 (Product of Facets) Let @; : [D; O] — [Di;0:] fori € {1,...,m} be the set of facet map-

pings defined for a semantic algebra [D; O). Iis product of facets, noted [5;9], consists of two components:

m
1. A domainD =]31 ® ---®D,, = Hﬁ. ; it is a smashed product ? of the facet domains;
i=1

2. A set of product operators Q such that Vp € O and its corresponding product operator &, € ﬁ,

(a) if p € O is a closed operator, then
p:D" — D, and
Wp:D* =D

‘:’p =2A (31)"‘)871) . Hﬁl(sia'yg:g)
i=1

(b) otherwise, p € O is an open operator
p:D* — D’ for some domain D', and
@p : D" — Values
Wp= Ab1,--+,6n) . 3 €{l,---,m} st & = J‘Vﬁu\e.‘) —’AJ'V:l?ca’

- (3je {1, ---,m} s.t. & € Const) — T,
where 3=Hﬁ;($§,---,5:;)

i=1

Notice that the i-th component of an element of the domain D is noted &% this domain is
partially ordered component-wise.

Although facets of a product are defined independently, the facet values with respect to which
a program is specialized must have some consistency.

2Given two lattices D and E, its smashed product, D ® E, is a lattice, the elements of which are defined by the
function, smashed, such that:

smashed : Dx E —- DQE
smashed(d,e) = (d,e) if (d# Lp)and(e# LE)
lpge otherwise

10

Definition 6 Let [ﬁ,ﬁ] be a product of facets of an algebra [D;O];5 € D is consistent if and only if

m
ﬂ{d eD | dCg, '} is neither the empty set nor {1}.
i=1

Each set of concrete values corresponds to a particular facet property; it is defined by the
logical relation Cy, . Notice that if domain D is lifted, by definition of the relation T, the above
intersection will at least yield the singleton {L}; therefore this set must not 1mply cons1stency
In essence, the above definition ensures that a product of abstract values represents an actual
subdomain of D.

We assume that a program is always specialized with respect to consistent products of facet
values. By definition of a facet the consistency property is preserved by the open and closed
operators. This property contributes to the correctness of the following lemma which states that if
there are more than one facet that produce concrete values, those values are equal.

Lemma 3 Let [5, ﬁ] be a product of facets and p € O be an open operator,

If 3j,ke€ {1 --,m} (j # k) and 61, b, € D such that both 51(3{,,3£) € Const and

~

ijk(g}w 6)GCODSt then pJ(él))57:’1)‘:1515(3\{::""37’:)
Lastly, we show below a property about the product operators.

Property 4 All product operators defined in the product of facets [ﬁ, ﬁ] are monotonic.

We have seen how properties of interest can be formally introduced via a facet and described
how facets could be combined to form a product of facets. Let us now explore the generality of
the approach. In particular, we want to examine how partial evaluation can itself be captured by
a facet.

4.3 Partial Evaluation Facet

So far, we have used the notion of facet to introduce symbolic computations drawn from a semantic
algebra defined in the standard semantics. Application of the same notion to partial evaluation
raises the following question: What can be captured by a 'partial evaluation facet?

Just as a facet defines symbolic behavior of primitives, the partial evaluation facet will capture
the partial evaluation behavior of primitives. More specifically, for a given semantic algebra, the
corresponding partial evaluation facet will define its standard semantics whenever it is passed
constant arguments. The partial evaluation facet is defined as follows.

Definition 7 (Partial Evaluation Facet) The partzal evaluation facet of a semantic algebra [D;O] is
defined by the facet mapping & : [D;0]— [Values 0]

Valuea

)

Values

D — Va/laes
?

R) Q)

)

Values

11

2. Vﬁeﬁ of arity n
— n | ee—
p: Values — Values
ij:A (dh"'adn)- 3i€{1,-~-,n} s.t. d,:_L
n

Values - J"Values’

/\(d: € Const) — (K, [p)(d1, -, dn)), Tyors

Values
i=1

where d; = (K d;) ie{1,---,n}

In fact, the abstraction function avaes is essentially the same as 7 given in Section 3.2: it

maps a value into its textual representation.

Property 5 The Partial evaluation facet (Definition 7) is a facet.

Notice that, just as any other facet operator, a partial evaluation facet operator produces value

Tz, When it is passed too coarse values (that is, non-constant values).

We can now define the semantics of parameterized partial evaluation.

4.4 Semantics of Online Parameterized Partial Evaluation

Since this semantics aims at defining partial evaluation, we shall assume that the partial evaluation
facet always exists. Thus, because a partial evaluation facet is defined for each semantic domain,
it will be assigned to the first component of every product of facets. A sum of these products of
facets is noted 51\?; each summand corresponds to a semantic algebra. We shall use é to denote
an element of domain SD. For readability, we do not index 6 with a given summand and assume
that it denotes an element of the appropriate summand. As before, &' denotes i-th facet value of a
product of facet values.

Figure 3 displays the parameterized partial evaluation semantics. For simplicity, we assume that
every product of facets contains m facets (including the partial evaluation facet). Also, we assume
that user-supplied facets are globally defined, that is, the corresponding abstraction functions and
product operators are globally defined.

For a product of facets ﬁ, & B, denotes the i-th abstraction function. Besides computing facet
values, the partial evaluator has to construct the residual program and collect the specialized
functions. This triple forms the co-domain of the partial evaluation function and is defined as
Exp x 8D x Sf. Closed and open operators are respectively noted p° and p°.

Notice that when an expression partially evaluates to a constant — because the expression is
either a constant or a primitive called with appropriate values — functions K and Kp propagate
this value to all facets in a product by invoking their corresponding abstraction functions.

The following theorem asserts that any constant produced by partial evaluating a primitive call
is always correct with respect to the standard semantics, modulo termination.

Theorem 1 Let [ﬁ,ﬁ] be a product of facets (including the partial evaluation facet) for an algebra [D; O],
3j€e{l1,---,m} such that,

12

1. Semantics Domains s

5 € = Zﬁ, where ﬁj = (ﬁ,‘; ®- "®ﬁjm) and 3 is the number of basic domains
Jj=1

e € Exp

p € Env = Var — (EXPXSD)J_

tww € FnEnv = Fn — (Exp x SD" x Sf) — (Exp x SD x Sf).

o € = (Fn x Exp" xSD)-—»Exp

2. Valuation Functions

PEprog Prog — Exp” - 8D" — Prog
PE Exp — Env — FnEnv — Sf — (Exp x 8D x Sf).
Kp Po—»Exp"—-»gbn—»Sfa(Exp x@xSf)L
PEprog [{fi(m1, - 2n) = ei}] (edsoren) (BryooeBa) =
(MkProg o) whererec (—,0) = PE [fi(z1,-- z,,)l(_l.[(e,‘,ﬁk)/zk]) wl
@ = L[A(el s en), (1,5 8n), 0) - PE [e] (e, 8)/24] @ o)/]
PEf]pwo = Ko
PE[zlpwo = (,6,0) where (¢/,8) = p [z]
PE [p(er, - en)l pwo = Kp [p] (eh, -+, eh) (1, 8n) on
where (ei,gl,al) = PElea]lopwe
(€h,bn,0n) = PE[en] p @ on
PE[iferezes] pwo = (e} € Const) — (Kej) — PE [ez] p w o1, PE [es] p w a3,
([if € ¢} 31,5, 03)
where (eh,82,02) = PE [ex] pw o
Sgé,&ida) = PE [es] pw o2
6§ = 6 U 83
where (ei,a, 1) = 'P8 fes] pwo
PE [f(er, -+,en)l pwo = APP[f] (e, ,e,,) (61! : 8") On @
where (e{,gl,al) = PElaa]pwo
(eﬁ,,g,,,an) = PE[en] p w on-1
E[C]a = ([c1.(35,(d), .85 _(d)),0) whered = (Kc)€ D
K:P [r] (61, . ’en) (61’ 6”) o= (6 A) - <lpc(el’ ’en)] 1 ’D’ o)
(8 € Const) » (&, @z, (d),--+, a5 (d),0),
([p°(e1,- -+, en)l, 6 ‘7)
where p° : D* — D
5 = apc(flz...,in)
R R . d =Ké§
B) hoont) (B o = = L) = (€ L
d € Const — (d, (a ,(d), . ,a,b\:n(d)),a)
(e (TDH M) Tﬁlm)’a)
where p° : D* — D"
d = Bpo(81,-++,8n)
d=Kd
e = [po(e;)""e;)]

Figure 3: Online Parameterized Partial Evaluation

13

(c € Const) A (E[p(zy,- oy za)]Lldi/zi]L) # L = c=T(E[p(z,- -+ zn)]L[di/zi] L)
where ¢ = (PE[p(z1, - - -, zn)|L[{[2:], &)/z:]LL)|1 and d; € {d€ D | d ;;A. 8}

Dj

Finally, let us point out that online partial evaluation as defined in Figure 3 provides a less com-
plete treatment of conditional expressions than the one described in Redfun [12]. Indeed, Redfun
is able to extract properties from the predicate of a conditional expression. Then, these properties
and their negation are propagated to the consequent and alternative branches respectively. This is
somewhat similar to constraints in logic programming. We are currently investigating this issue to
possibly incorporate the notion of constraints in our approach.

5 Offline Parameterized Partial Evaluation

As discussed earlier, in an online strategy all decisions about how to process an expression are made
at partial evaluation time. This makes it possible to determine precise treatment based, for example,
on concrete values. However, this is computationally expensive because the partial evaluator must
analyze the context of the computation — the available data — to select the appropriate program
transformation. This operation is repeatedly performed when processing recursive functions.

In conventional partial evaluation efficiency is achieved by an offline strategy which splits the
partial evaluation phase into binding time analysis and specialization. In particular, the binding
time analysis only computes the static/dynamic property. In offline parameterized partial evalua-
tion, we generalize the binding time analysis to facet analysis: a phase that statically computes facet
information. Consequently, the task of program specialization reduces to following the information
yielded by the facet analysis.

To present offline parameterized partial evaluation, we follow the approach used in defining
online parameterized partial evaluation: we introduce the concept of abstract facet in Section 5.1,
describe the product of abstract facets in Section 5.2, define the binding time facet in Section 5.3,
and lastly, describe facet analysis in Section 5.4.

5.1 Abstract Facets

To lift facet computation from partial evaluation, we need to define a suitable abstraction of this
process. In particular, we need to define an abstraction of a facet that enables facet computation
to be performed prior to specialization. The resulting facet is called an abstract facet and is defined
in this section.

Not surprisingly an abstract facet has the same structure as a facet. In particular it has two
classes of operators: open and closed. Similar to a facet, a closed operator of an abstract facet is
passed abstract values and computes new ones. As for an open operator, it mimics the corresponding
facet operator: it uses abstract values to produce binding time values. More precisely, instead of a
constant it produces the binding time value Static and instead of Ty, it produces Dynamic.

Just as a facet is defined from a semantic algebra, an abstract facet is defined from a facet.
Formally,

14

Deﬁmtlon 8 (Abstract Facet) An abstract facet [D O] of a facet [D O] ts defined by a facet mapping
[D O] — [D; O] with respect to Values.

This definition leads to the following property about open operators.

Property 6 For any open operator p € o of arity n, vd; € D and Vd; € D such that d; Cs. d; with
D
i€ {ly T n}

(3(dy, - -, dn) = Static) = p(dy,---,dn) Cyamm, © with.c € Const.

This property states that, when an open operator of an abstract facet maps some properties
into the value Static, the open operator of the corresponding facet will yield a constant value at
specialization time, modulo termination.

As an example of an abstract facet, say we wish to define a Sign abstract facet from the
Sign facet (Example 1). This will amount to determining, prior to specialization, whether sign
computation can produce constants. If so, the specialization phase will collect sign information and
trigger the open operators that produced the value Static at facet analysis time.

Example 2 The abstract facet for the Sign facet [D; O] is defined as follows.

=D (similar to Ezample 1)

N
bl Ul

1.
2. is simply the identity mapping between D and D.
3

o
i

{<, +} where + has the same functionality as + and < is defined as follows.
: D x D — Values

= Aad).a=1LVb=L1 > 1 —

pos A (b€ {neg, zero}) — Static,

zero A b=pos — Static,

zero A (b€ {neg, zero}) — Static,

neg A (b€ {pos, zero}) — Static, -Dynamic

At A
i~

| 8 8

5.2 Product of Abstract Facets

As in online parameterized partial evaluation, we now define the product of abstract facets.

Definition 9 (Product of Abstract Facets) Let &; : [D;;0;] — [Di; 0i] for i € {1,...,m} be the set
of Facet mappings defined for the facets of a semantic algebra [D; O]. Its product of abstract facets, noted

[D,), consists of two components:

m
1. A domain D = Hﬁ. is a smashed product of the abstract facet domains;
i=1

2. A set of product operators Q such that Vp € O and its corresponding product operator &, € %,

15

(a) if p is a closed operator, then
p:D” — D, and
@p:D* - D

(Dp =A (51,“-,5,,). Hﬁi(giyrg:‘l)
i=1

(b) otherwise, p € O is an open operator, and
p:D" — D' for some domain D', and
wp : D" — Values
@p = A(b1,--+,6n) . (37 €{L,---,m} st. 6 = J'V;?«Tes — J'V:f;ea’

(3j €{1,---,m} s.t. & = Static) — Static, Dynamic
m
where & = Hﬁ;(gi,---,gf,)

i=1

The domain D is partially ordered component-wise. Since all the product components are of
finite height by definition, the product domain is also of finite height.

Property 7 All product operators defined in the product of abstract facets [ﬁ,ﬁ] are monotonic.

5.3 Binding Time Facet

While the partial evaluation semantics of algebraic operators is captured by a facet, the computation
of their binding time values can similarly be captured by the notion of abstract facet. Such an
abstract facet is called a binding time facet.

Definition 10 (Binding Time Facet) The bmd:ng time facet of a partial evaluation facet [Values O]

defined by the facet mapping & — =, [Values 0] [Values O]

Values — Values

= 7T

t

<

alues

§

1. a
aValuea

~

2.Vo Oofarztyn
alues — Values _
-—/\(dl,'--, n)- Jje{1,...,n} st. dj-‘:J_
n

/\(J, = Static) — Static, Dynamic
i=1

Qa ca

Values - J'Values’

Property 8 The binding time facet (Definition 10) is an abstract facet.

Not surprisingly, Definition 10 captures the primitive functions of a conventional binding time
analysis. As a result, not only does the facet analysis compute user-defined abstract values but it
also computes binding time values, just as a binding time analysis.

16

5.4 Facet Analysis

We are now ready to examine the facet analysis. It is.essentially a conventional binding time
analysis, as described in [20] for example, extended to compute facet information. Analogous to
the definition of online parameterized partial evaluation, we assume the binding time facet to be
always defined. The main semantic domain used by the analysis is denoted by SD, which is a sum
of products of abstract facets — each summand corresponds to a semantic algebra. The binding
time facet is assigned to the first component of each product.

Facet analysis is displayed in Figure 4. The notational conventions about indices are similar to
Figure 3. The analysis aims at collecting abstract facet information for each function in a given
program; this forms the facet signature of the function. More precisely, a facet signature of a
function consists of a product of abstract facet values for the arguments and its corresponding
result; it is defined as 3’5”“. The result of the analysis (domain SigEnv) is a function mapping
each user-defined function in the program to its facet signature.

The valuation function £ maps each user-defined function into its abstract version. The resulting
abstract functions are then used by the valuation function A to compute the facet signatures. As
usual, computation is accomplished via fixpoint iteration. Functions K and Kp perform the abstract
computation on constants and primitive operators. This is similar to functions IC and Kp defined
in Figure 3. Finally, note that fixpoint iteration is performed over the domains SD and SigEnv.
Since these domains are of finite height and operations over these domains are monotonic, a fixpoint
will be reached in a finite number of steps.

5.5 Higher Order Offline Parameterized Partial Evaluation

The techniques for higher order online partial evaluation are now known (e.g., [19, 11]). However,
traditionally problems arise when dealing with the offline strategy. For this reason, this section
will concentrate on offline parameterized partial evaluation. In particular, we will present a higher
order facet analysis, the essential component of the offline strategy, just as binding time analysis
for conventional offline partial evaluation.

While the first order facet analysis extends conventional first order binding time analysis, the
higher order analysis makes use of recently developed technique in abstract interpretation for ana-
lyzing higher order programs (e.g., [13, 14, 4, 7]).

With the introduction of higher order functions, the abstract version of each user-defined func-
tion may now take higher order abstract functions as arguments. This means that the abstract facet
property should be captured by a domain consisting of both first-order and higher order properties:

¢ € Av=38D + (Av— Av)

Figures 5 and 6 displays the facet analysis for higher order programs. The language has been
extended to include higher order functions. Similar to the first-order facet analysis, function £
transforms a user-defined function into its abstract version, while function A uses the abstract

17

1. Syntactic Domains
(defined in Figure 1)

2. Semantics Domains

5 € SD = 25, where 5j = (ﬁj] ®--- ®ﬁjm) and s is the number of basic domains
=1
¢ € Env = Var — 8§D

~ n41

x € SigEnv = Fn — SD
¢ € FEnv = Fn — SD" — 8D

3. Valuation Functions

Ikzmgk

Program — SD - SigEnv
Exp — Env — Fenv — SD
Exp — Env — Fenv — SigEnv

M{fi(z1,-+,z0) = ei}] (1,0, 80) = (LG, -, 8, 8)/f1])

whererec h «

* U (A [e] (Bor f)s | Vf})

Evrxf L[(x f)lx /zx | Vzk € parameters of f]
3 = L[(A(b1,:-+,6n) - € [e] [6k/2x] <)/ £i]
5 = £ [ei] [6x/zx] fenv
Eldes = K4
Elzles = gfz] _ -
Elp(er, -,en)] es = Kplrl(Elea] ec) - (£ [en] 2¢)
Efiferezes] e = f}'—'l.?ﬁ""l".s_‘ﬁ’ 5 o o
81 = Static — 6, U 63, (Dynamic, 83 U63,---,65 U 65*)
where & = € [e] os fori = {1,2,3}
g[f(eh---,en)]l es = 3Jje{1,...,n} s.t.g} = Dynamic — (Dynamic,Tﬁg,...,Tsm),

- . sIf1 G, 8n)
where 6 = € el os forie{l,...,n}

Kl = (T1(d), -, Tm(d)) where T = a5 o @5 and d=(Kc)

D

Kp[p] 81 b, = Gpe(B1,-++,6,) where p° : D* — D

Kp[p°] 61+ 6n

d = ‘LValuea - -L:S-B’

where p° : D" —» D’
d = Gpo(b1,+,6n)

Aldes =1

Alz] es =L

Alper, el es = | |Aledes
=1
3

Aliferezes] s = I_J.Z[ei]lgc
i=1

Alf(er,-enles = (L ALed e) U LB, 80, 8)/7]

=1 - -
where § = g[e,-] os fori = {]’...’n}
§ = E[f(e1,...,en)] 0

Figure 4: Facet Analysis

18

e Syntactic Domains
e € Exp Expressions

f € Fn Functions

e n=clz|flifeiezes| A(z1, - ,%n) e]e (1, €n)
o Semantics Domains_
Av = SD + Av — Av
SigEnv = Fn — Av"™H!
Ans = SigEnv x ((Av" x Ans™) — Ans) x P(Fn)
]?_xl\! = Var — Av
Env = Var — (Av" x Ans") — Ans

AR R RS
M MmMMmMM

Figure 5: Facet Analysis for higher order Programs — Part 1

function to collect abstract facet information for each user-defined function. Given two functions
f1 and f,, we define their l.u.b. as follows:

Hiufa= (i=Tc) V (a=Te) = Tg,
(arity(f1) = arity(f2)) = e, -+, 0n) - filpr, - en) U fa(p1,- -, n),
Serr
where T¢ denotes an operator which always returns the appropriate strongest element in the
domain Av; Serr denotes the error function.

F4 performs fixpoint computation over the domain Av to produce the abstract version of the
user-defined functions. The semantics is self-explanatory, except for the treatment of conditional
expression: when a conditional expression returns a higher order function, the l.u.b. of the func-
tions obtained from the two branches is returned. However, when the test expression is dynamic,
the “unknown” operator T¢ is returned to indicate that the possible operators returned by the
conditional expression cannot be determined statically, and therefore will not be applied at spe-
cialization time. Functionally, T¢ takes arbitrary number of arguments, and always returns the
appropriate strongest elements in the domain Av. For convenience, we assume that it is pre-defined
in the initial environment gq.

A performs a global analysis to collect the facet signature of each user-defined function. These
signatures are captured by the domain SignEnv. The co-domain of A is defined as follows.

Ans = SigEnv x ((Av" x Ans") — Ans) X P(Fn)

The first component consists of the facet signatures as described above. The other two compo-
nents are only significant when the expression being analyzed is higher order. In this case, these
components represent its abstract behavior in the following sense. When a higher order function
is applied, it may induce new facet signatures; this is captured by the second component of Ans.
Also, when a user-defined function is applied, we would like to update its facet signature; this is
captured by the third component of Ans, which consists of the set of possible user-defined functions
that an expression may evaluate to.

Let us now explain the treatment of a conditional expression by function A. Besides the usual
tasks of collecting signatures from each component of the conditional, we also need to determine

19

o Valuation Functions —n

Program — SD — SigEnv
Exp — Env — Av

Exp — Env — Env — Ans

M[{fi($1,~~',$n) = cf}] (501,"',%-) =

(s [A) (p1y-- -y 0m) (Lo, AL

whererec ¢ = go[(X (p1,°-,¢n) . € [e] g[gak/zkl)/f.']
s = oA ({¢1,"-+,0n), (a1, -+, an)) . A [e] o[or/zk] slar/zx])/ fi]
(T1(d), -, Tm(d)) where Ts = a~ o az, and d=(Kc)

Di
e [=]
e [f]
p1=JLav = Lao,
(¢i = _Static) — p2Ueps,
@2 € SD — (Dynamic,p3 U3, -, 05 UeT), Tc
where p; = E~[e.'] es fori=1{1,2,3}
A1, 0n) - € [e] (elor/zx]) ~
3j€{1,...,n} st. ¢} = Dynamic - 9 €SD —

(Dynamic, TE,’ cee TE,,.
@

) mck

5[6] 0
El=]e
£lfle
£ [tf €1 €2 es] 0

g[z\(zl,---,zn) e] o
£ e(er, -ren)] @

» Te,

where ¢ = ij]l (p1,-.-,¢n)
pi = Efei] e forie{1,...,n}

Afcjes = (L,Serr,{})

Alfles = (Ls [f1{fD

Alz]es = ¢[=]

Afiferezes]os = e=T¢c = (zux',Tr{}), (r,9, F2UF3)

where (1["—,—) = gi(T,-..,T),(T,-..’T))
(ri,gi, i) = Aleidec fori ={1,2,3}
o = E[iferezes] e
T = mUrUrs
g = g2Ugs
(L A({e1,0 -+, n), (a1, -, an)) . A [€] Q[SOk/z’L]f[ak/zk]: i)
3j €{1,...,n} s.t. ¢} = Dynamic - @€ 8D — (x'Ux",Serr,{}),
(W' LI KIII’ TF, {})’
(ﬂ-l u WII’ gII’ Fll)
where (W":yI,)F") =9 ((991’"'ﬂoﬂ)a(al:"':a"))
(7", =,=) = g (T,..., T)(T,...,T))

* = wl{er, -, eme)/fIVFEF U | |m

=1
(7,9, F) = Aleles
p = £ fe(er,...,en)] 0
Y = E[ei]IQ fori={1,-~,n}
ai = (mi,—, =) = .Zl[e;]gc fori={1,---,n}

Tr ((‘Pl,'",‘Pn):(al,"',an)) = (J-iTF’{})

.A:[A(z1,---,:cn) eJos
A [6(61,"‘,61;)] es

Figure 6: Facet Analysis for higher order Programs — Part 2

20

if the abstract facet information returned is the unknown operator. Since this operator indicates
that the higher order functions returned by both branches will not be applied at the specialization
time, we must therefore apply the appropriate strongest abstract facet values to these functions in
order to collect the signature information from their function bodies. The application is performed
“in advance” before we return an answer from evaluating the conditional.

For simplicity, we assume that both the initial environments go and ¢o contain functions that
deal with primitive operations. Thus, for each primitive p, we have

oo Pl ¢1--¢n = Kp [Pl 1+ ¢n

where Kp is defined in Figure 4, and
o [PI({ 1+ @n)s (a1, +raa)) = (L,Serr,{}).

In general, the analysis as described is not guaranteed to terminate. The reason is that a
program may include higher order functions that need to be analyzed an infinite number of times.
This situation is described by Hudak and Young in [13]; they circumvent the problem by disallowing
functions whose type is of arbitrary “order” or “depth”. Here, we adopt the same restriction.

6 An Example

This section illustrates further parameterized partial evaluation with an example of a program
computing the inner product of two vectors. After describing this program, we examine its online
and offline partial evaluation when the size of the vectors is known. In this example we consider
vectors of floating point numbers.

One can think of a vector as an abstract data type V consisting of a set of operators O listed
below.

MktVec : Int — V
MktVec creates an empty vector of the specified size
UpdVec : V x Int x Float — V
UpdVec updates an element
Vecf : V — Int
Vect returns the size of the vector
Vref : V x Int — Float
Vref returns a specified element of a given vector

The program for computing inner product is presented in Figure 7. To specialize the inner
product program with respect to the size of the vectors our strategy consists of defining the size
information as a property of a vector.

6.1 Online Parameterized Partial Evaluation

In order to capture the size property of a vector, we define the Size facet [{’, 6] from the vector
algebra [V; O].

21

iprod(A,B) = dotProd(A,B,n) =
let n = Vec#(A) if n = 0 then 0
in dotProd(A,B,n) else Vref(A,n) * Vref(B,n)
+ dotProd(A,B,n-1)

Figure 7: Program for Inner Product Computation

1. V=IntU{lg, T} with the ordering L i C Ty Vi € Int.
2. Abstractlon function

a"; : VoV

a;;(v) = 1p ifo=1

Vech(v) otherwise

3. Closed operators

MEec : Values — V

MkVec(s) = (i=1,==) — 13
(‘— Valuea) - T?’ :
Up’di\/ec . V x Values x Values — V

Updvec(é’i’r) = ('= Values)v(r_ Vma)
— J_";,]
4. Og‘ez operators
Vecf : V — Values
Vecl(d) = (0 = Lg) — L=,
o Gz T,
Vref : V x Values — Values
Vref(9,4) = (0=Lp)Vvi=L,2) — Lign. Tvam,

Let us now specialize the inner product program with respect to a given size, say 3. The facet
values passed to the partial evaluator will be <A,<T — ,3>> and <B,<T —= ,3>>, (where A and
B are residual identifiers for iprod). When partially evaluating iprod, the s1ze *facet information is
used to obtain the size of vector A. Variable n is then bound to a constant value. As a result, the
test expression in dotProd is static, and thus can be reduced; also, the recursive call to dotProd can
be unfolded. The resulting program is displayed in Figure 8. Notice that it is now non-recursive;
also, since elements of the vectors are unknown at partial evaluation time, the primitive operation
Vref cannot be reduced; therefore, both the multiplication and addition operations are residual.

iprod(A,B) = Vref(A,3) * Vref(B,3)
+Vref(A,2) * Vref(B,2)
+Vref(A,1) * Vref(B,1)

Figure 8: Residual Program for Inner Product Computation

6.2 Offline Parameterized Partial Evaluation

In the offline parameterized partial evaluation, we define the abstract Size facet [{’; 6]

22

1.V = {s,d} with the ordering L5 CsCd.
Values s and d denote a static and a dynamic vector size, respectively.

2. Abstra»cﬁon function

&'-‘7 : V- V

a’{;(ﬁ) = J.;' ifo = J_{;
d ifo = T"';
s otherwise

3. Closed operators
MkVec : Values — V
MkVec(z) == J.Valu” v’ (i= Dynamic) — d, 3
UpdVec : V x Values x Values — V

UpdVec(v k) = (iI=L,— V(= Volu“) i
4. Open operators
’;ﬁ — Values
~(v) =@ = .L~) V:r“;, (¢ = s) — Static, Dynamic
I7vf V x Values — Values .
‘}-vf(v, i) =(@F=1y)Vv(i=1L,73,) — Loz, Dynamic

Let us now perform a facet analysis on the inner product program given that the actual value
of both vectors is dynamic but their size is static. Recall that besides the abstract Size facet,
the binding time facet (Definition 10) is also defined. Both parameters of dotProd will then be
bound to the pair of abstract values <Dynamic, s>. As a result, the binding time value of variable
n is Static. Thus, the facet analysis determines that the test expression in dotProd is static,
and the conditional expression can be reduced statically. This coincides with the result of online
parameterized partial evaluation; however, these reductions have been determined statically.

Figure 9 displays the information yielded by the facet analysis of the inner product program
when only the size of the vectors is static; more precisely, we show the facet values of the main
expressions of the program. For conciseness, the values Static and Dynamic are noted Stat and
Dyn respectively.

Program Code Facet Values
iprod(A, B) = A = <Dyn, 8>, B = <Dyn, 8>
let n = Vecj(d) Vecf(A) = < Stat >
in dotProd(A, B, n) A = < Stat>
dotProd(A, B, n)= A = <Dyn, 8>, B = <Dyn, s>
if
n =0 n = <Stat>
then 0 < Stat >
else vref(A, n) * Vref(B, n) vref(A, n) = <Dyn>, Vref(B, n) = <Dyn>
N ,
dotProd(A, B, n—1)
Figure 9: Abstract Facet Information After Facet Analysis

23

The underlined binding time value represents the static value obtained from the size abstract
facet value. Notice that the size information is only used in the main function, iprod. This
means that, at specialization time, size facet computation is only required for iprod (in fact, it
is only required for partial evaluation of the abstract syntax tree rooted by the open operation
Vect). Binding time analysis is the only facet computation performed for dotProd. This constrats
with the online parameterized partial evaluation of the inner product program where the size facet
computations was performed for each function manipulating vectors.

7 Conclusion and Future Works

Redfun is the main approach aimed at specializing programs with respect to static properties. Since
then other partial evaluation systems (e.g., [19, 11, 2]) have been developed based on this approach.

Parameterized partial evaluation goes beyond this in that: it captures both online and offline
partial evaluation; the notion of facet provides a formal method to introduce user-defined static
properties; finally facet analysis achieves efficiency of the specialization phase by enabling self-
application.

Furthermore, our approach subsumes conventional self-applicable partial evaluation a la Mix
[16] in that it generalizes the notion of binding time analysis to any static properties.

We are currently implementing parameterized partial evaluation for higher order functional
programs and investigating various extensions to this framework. In particular, we are looking
into parameterized partial evaluation for a lazy language. We are also exploring partial evaluation
parameterized with respect to operational properties such as strictness properties.

Acknowledgments

To the Yale Haskell Group. Thanks are also due to Karoline Malmkjeer, Olivier Danvy, Paul Hudak,
Pierre Jouvelot and David Schmidt for thoughtful comments on earlier versions of this paper.

References
[1] S. Abramsky and C. Hankin, editors. Abstract Interpretation of Declarative Languages. Ellis
Horwood, 1987.

[2] A. Berlin. Partial evaluation applied to numerical computation. In ACM Conference on Lisp
and Functional Programming, pages 139-150, 1990.

[3] D. Bjgrner, A. P. Ershov, and N. D. Jones, editors. Partial Evaluation and Mized Computation.
North-Holland, 1988.

[4] A. Bondorf. Automatic autoprojection of higher order recursive equations. In N. D. Jones,
editor, ESOP’90, ¢ European Symposium on Programming, volume 432 of Lecture Notes in
Computer Science, pages 70-87. Springer-Verlag, 1990.

24

[5] R. M. Burstall and J. Darlington. A transformational system for developing recursive programs.
Journal of ACM, 24(1):44-67,1977.

[6] C. Consel. Analyse de Programmes, Evaluation Partielle et Génération de Compilateurs. PhD
thesis, Université de Paris VI, Paris, France, June 1989.

[7] C. Consel. Binding time analysis for higher order untyped functional languages. In ACM
Conference on Lisp and Functional Programming, pages 264—-272, 1990.

[8] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In ACM Symposium on Principles
of Programming Languages, pages 238-252, 1977.

[9] P. Emanuelson and A. Haraldsson. On compiling embedded languages in LISP. In ACM
Conference on Lisp and Functional Programming, Stanford, California, pages 208-215, 1980.

[10] H. Ganzinger and N. D. Jones, editors. Programs as Data Objects, volume 217 of Lecture Notes
in Computer Science. Springer-Verlag, 1985.

[11] M. A. Guzowski. Toward developing a reflexive partial evaluator for an interesting subset
of Lisp. Master’s thesis, Department of Computer Engineering and Science, Case Western
Reserve University, Cleveland, Ohio, 1988.

[12] A. Haraldsson. A Program Manipulation System Based on Partial Evaluation. PhD thesis,
Linkoping University, Sweden, 1977. Linkoping Studies in Science and Technology Disserta-
tions N° 14.

[13] P. Hudak and J. Young. Higher-order strictness analysis in untyped lambda calculus. In ACM
Symposium on Principles of Programming Languages, pages 97-109, 1986.

[14] P. Hudak and J. Young. A collecting interpretation of expressions (without Powerdomains).
In ACM Symposium on Principles of Programming Languages, pages 107-118, 1988.

[15] N. D Jones and F. Nielson. Abstract interpretation: a semantics-based tool for program
analysis. Technical report, University of Copenhagen and Aarhus University, Copenhagen,
Denmark, 1990.

[16] N. D. Jones, P. Sestoft, and H. Sgndergaard. Mix: a self-applicable partial evaluator for
experiments in compiler generation. Lisp and Symbolic Computation, 2(1):9-50, 1989.

[17] F. Nielson. Two-level semantics and abstract interpretation. Theoretical Computer Science,
69:117-242, 1989.

[18] D. A. Schmidt. Denotational Semantics: a Methodology for Language Development. Allyn and
Bacon, Inc., 1986.

[19] R. Schooler. Partial evaluation as a means of language extensibility. Master’s thesis, M.I.T.
(LCS), Massachusetts, U.S.A, 1984.

[20] P. Sestoft. The structure of a self-applicable partial evaluator. In [10], pages 236-256, 1985.

25

A Proofs

A.1 Proofs on Logical Relations

Property 1 Let a4 : [A; 0] — [A’; O] be a facet mapping with respect to Values, V p € O and its
corresponding abstract version p’ € O, p Ca,, p'.

Proof : We need to prove that the safety condition (Condition 5) in Definition 2 is equivalent to the
relation p C.,, p’ Vp € O. We only prove the case for closed operator. The proof for open operator is
similar and thus omitted.

1. Suppose that agropEp'oaysr. Va € A and Va' € A’,if a C,,, @, then

aa(p(a)) Car p'(car(a)) by the above assumption
Ca p(a') monotonicity of p’ and a C,,, a

Thus, p(a) Ca,, p'(a’). Since this is true for any a € A and o’ € A’ with a Co,, a’, we havep G, ,, P
2. Suppose that p Ca,, p'. Va € A,

pCe,, P = pla)Ca,, plaa(a)) since a Co,, aa/(a)
& aa(p(a)) Car p(aa(a)) by Definition 3
= (carop)(a) C (p'oaur)(a)

Since this is true for all a € A, we have agsop E p' o aryr.

This concludes the proof. O

A.2 Proofs on Online Parameterized Partial Evaluation

Property 2 For any open operator p € O of arity n, vd; € D and Vd; € D such that d; Cy_ d; with i €
{1,...,n} °
p(dy,---,ds) € Const Ap(dy,---,dn) £ L = p(d1,---,dn) =7 (p(d1,- -, dn)).

Proof : Let 13(31, . ~~,ti,,) = ¢; and T(p(dy,--+,ds)) = c2, where ¢, ¢2 € Values. Notice that ca # L.

By the safety condition for facet, we must have ¢ Cyaim, O Since any two distinct constants are incom-

parable in Vaj;es, we must have ¢; = ¢3. O

Lemma 3 Let [ﬁ, ﬁ] be a product of facets and p € O be an open operator,

If 3j,ke{l,---,m}(j#k)andby, -5

» € D such that both ﬁj(g{, . ,3}1) € Const and
Pe(8%,---,8%) € Const, then p;(&,--- &)=

ﬁk(é\f’ ot agkn)

Proof : Without loss of generality, we consider unary open operators (the argument is noted 6). Let
m

C = ﬂ{d €D | dCg, 6'}. Since 8 is consistent, it is true that C # @ and C # {L}. Suppose 3d € C
i=1

such that p(d) terminates. Then, by Property 2, we have
9;(6') € Const = p;(§') = #(p(d)), and

26

Pr(8%) € Const = pr(8¥) = #(p(d)).
Thus, p;(8) = #(p(d)) = pe(éF). O

Property 4 All product operators defined in the product of facets [ﬁ, ﬁ] are monotonic.

Proof : It is easy to see that function &, for closed operators is monotonic since all its constituent facet
operations are monotonic.

To prove that function &, for open operations is indeed monotonic, we first observe the fact that
V61)"')6n E'D,VJE{I,,m} :

(81,1 80) = @ (1)

=Values
m
where 4 = H pi(61,--+,6;). Without loss of generality, we assume that the operator takes one argument.
i=1
Thus, we need to show that Vé;, 6, € D,
61 E‘B 62 = &,,(61) I;Vms Qp(sz).

Let 9 =@, (51), the proof is done by case analysis of the different classes of value ¢ produced by the operation.

LIdo=1, =~ thend C — ‘:’9(32) since ¥ is the least element in Values.

2. If 5 € Const, then by (1), Vj € {1,...,m}, we have

——— —— ?) —— A' Aj —— A' Aj
'LVa.Iucs EValues v E-;Values Pj (51) gValuea pj (62)

If3k € {1,...,m} such that f;(8%) is constant, then this constant must be % and & = d:p(gg); otherwise,
O Cyaimes @p(82) = Tygms,
3. If =T, =~ ,then by (1),Vj € {1,...,m}, we have

— —— D.: hj e~ D Aj
TVaIues ;Values Pj (61) l-':Valuea Pj (62)

]?ut T2, is the top element in Values, therefore, Vj € {1,...,m}, pi(63) =T — ,and &p(bs) =

Values
.
Therefore, @, is monotonic. O

Property 5 The Partial evaluation facet (Definition 7) is a facet.
Proof: We need to show that & ,— : [D;0] — [Values; O] is a facet mapping with respect to Values.

This is accomplished by considering the conditions for a facet mapping.

1. Values is an algebraic lattice of height 3.

2. We want to show that Vp € 6, p is monotonic. Without loss of generality, we assume that p takes one
argument. Thus, we need to show that

Vdi,dy, di Cd2 = p(di) C p(da).

The proof is done by case analysis of the different values of ds.

27

o dy= 1,7, Then dy = Lz, too. By the definition of p, we have p(dy) = Lvam, = p(dy).

e d, € Const. Then either d; = dp or d; = Lyam, For the former case, we have p(dl) = ﬁ(dg).
For the latter case, we have p(d;) = L

Vs, Since L —~ is the least element in the domain,
R . alues Values

thus, p(d1) E p(d2).
o dy = V "™ . Then p(dg) Tvm s by definition of 5. Since TV:I-“\C s is the maximal element

in the domam, p(dl) C p(dg).
Hence, Vp € 6, p is monotonic.

3. If p € O is a closed operator, then its corresponding abstract version is p’ : Values — Vaflﬁes, the
type of which matches that of p as defined in Definition 7.

4. If p € O is an open operator with functionality D — D’, where D’ is some domain different from D,
then its corresponding abstract version is p’ : Values — Values, the type of which again matches
that of p in Definition 7.

5. To prove the safety of the abstract operations, we define C, __ as a relation between D and Values

such that: A - vetwer
Vd €eD,VdeValues : dCo . d & «

Values

Valuec() —Valuea

We need to show that Yp € O, if p € O is its corresponding abstract version, then p C, . p. That
Values
is, Vi € {1,...,n},Vd; € D,Vd; € Values :

n
A Ca — di) = p(dy,...,dn) Ca — B(d1,...,dn).)

. Values
i=1

This is achieved by considering the result produced by p(d,...,d,). Notice that p(dy,...,d,) returns
either a concrete value or L.

(a) If p(dy,...,ds) = L, then (2) is vacuously true.

(b) Suppose that p(dy,...,dn) # L, then Vi € {1,...,n}, di # L since p is strict. This implies that
d; # 1, assuming that di Co — d;. Tt also xmphes that p(dy,...,dn) # L; so #(dy,...,ds)

Values

is either a constant or it is T —~ . If p(dl, . ,.) = Tyor,, then p(dy,...,dn) Ca —

Values
i)(tfl, ..oy dp). If p(dy, .. n) produces a constant, then p(dl, ,,) = #(p(d1,...,dn)) by the
definition of p. Again, p(dl,.. d,)Eo, — p(dl, . dn)

alw

Therefore, Definition 7 holds.

Thus, a is a facet mapping with respect to Va’h:es, and Definition 7 defines a facet. O

——
Values

Theorem 1 Let [ﬁ, ﬁ] be a product of facets (including the partial evaluation facet) for an algebra [D; O],
3j€{1,---,m} such that,

(c€ Const) A (Elp(es, -zl Lldi/2] L) # L = c=7(Elplas, -, en)]Lldi/2i]L)
where ¢ = (PE[p(z1, - - -, 2a)] L[([2:], &) /2] L L)1 and d; € {d€ D | dC~_ &}

D

28

Proof : First of all, notice that

(8'[}7(1?1,-“,2")] [di/zi]-L) = K:Pﬁp]‘(dl"")dﬁ) = p(dly""dn)‘

As defined in the online parameterized partial evaluation semantics, we have

(PElp(zs, -, za) Iz, &) /2] L L)L = (Relp([eil, - -+ [2a]) Br, -+, 8) L)1
Given that (PE[p(z, - - -, 2n)][([2:], 6:)/2:] L L)11 € Const, the proof is done by case analysis of the different

classes of primitive operators:

1. If p is a closed operator:

Given (Kp[p]([z], - -, [z,,]])(gl, ‘e ,3,,).L)11 € Const. By definition of parameterized online partial
evaluation, for a closed operator, this constant can only be produced by the partial evaluation facet
(that is, the first component of the product of facets). Thus,

(Kelp)([z:], -+, [za)B1y- -+, 8a) L)1 = $2(8}, - -, 8}) € Const.
Given that (8[[p(:cl, o z)][di/2:]L) # L and $1(é},---,8L) € Const, by Definition 7, we have
Vi € {1,---,n},6} € Const. Then Vi € {1,---,n},Vd; € D such that d; = K(é}):
131(5%’ o »5711) = %(’CP[[p]](db Tt 1 dn)) = ‘f'(P(dl,) dﬂ))'

2. If p 1s an open operator:

(Ep{[p]}(l[xl]] o [za]){(81, -+, 82) L) |1 € Const implies that this constant is produced by a facet
operation in the product of facets. Lemma 3 says that we can consider any facet that produces the
constant. Assume that the i*® facet produces this constant; this is denoted by p,(61, o, b *). By
Property 2, we have p;(8%,---,8.) = #(p(dy,---,ds)).

This concludes the proof. O

A.3 Proofs on Offline Parameterized Partial Evaluation

Property 6 For any open operator p € O of arity n, Vd; € D and Vd; € D such that d; C~ d; for
ie{l,.--,n}

(5(31, sy J,.) = Static) = p(ds,---,dn) Cyom, ¢ With ¢ € Const.

Proof : By the safety condition for abstract facet, we must have
#p(dy, -+, dn)) Cyom, Bld1, -+, dn) = Static.
By definition of ¥, we have

Vz € Values, F(z) C,—~— Statzc = z € ConstU{L

Val Values}

Therefore ﬁ(tfl, ,dn) € Const U {J-wme,} o

Property 7 All product operators defined in the product of abastract facets [ﬁ, (2] are monotonic.

29

Proof: It is easy to see that the operator for closed operat.lon 1s monotonic since all its constituent abstract
facet operations are monotonic.

To prove that operator for open operation, &,, is indeed monotonic, we first observe the fact that
V61, b eDVie{l,...,m):

Gp(b1,...,80) T~ & (3)

Value.s

where § = Hﬁ;(g’i, .- ,3:,) Without loss of generality, we assume that the operator takes one argument.
i=1

Thus, we need to show that Vgl, b2 € ’5,
61C58 = &p(61) Cymm, @p(02).
Let o = &p (51), the proof is done by case analysis of the different classes of value ¥ produced by the operation.

L. fo=1, == 6 then¥ C —— w,,(gg) since 7 is the least element in Values.

‘2. If ¥ = Static, then by (3), Vj € {1,...,m}, we have
—_ —_— S — 5:(8 — (8]
'LVaIues EVaIues v [—;Values bj (61) l;Valuea pj (62)
If 3k € {1,. ,m} such that pk(62) = Static, then by the definition of the product operator, ¥ =
Gp(82); otherw1se O g w,,(ég) = Dynamic. o
3. If # = Dynamic, then by (3), Vj €{1,...,m}, we have
Dynamic = % E =~ p; (&) Cvom, Pi (&).
But Dynamic is the top element in Values, therefore, Vj € {1,...,m}, 13](55) = Dynamic, and
Op(82) = 0.

Therefore, &, is monotonic. O

Property 8 The binding time facet (Definition 10) is an abstract facet.
Proof : We need to show that & —— : [Va/laes; 0] - [V;l;es; O] is a facet mapping with respect to

Values. This is accomplished by considering the conditions for a facet mapping.

1. Values is an algebraic lattice of height 3.

2. We want to show that Vp € 0, p is monotonic. Without loss of generality, we assume that takes one
argument. Thus, we need to show that

Vdi,da, di Cdy = p(dy) C p(da).

The proof is done by case analysis of the different values of ds.
[] d2 = J'V:;IT:;:' Then dl = J'V:mves
e dy = Static. Then either d; = dj or Jl =

For the latter case, we have 13((?1) =
thus, 5(d:) C #(dz).

P(d1)

. For the former case, we have §(d1) = p(d2).

too. By the definition of 5, we have ﬁ(cil) =

Values
V lu

Ly Smce Ly is the least element in the domain,
alues’ ues

30

o dy = Dynamic. Then p(dg) = Dynamic by definition of p. Since Dynamic is the maximal
element in the domain, 5(d;) C #(d2).

Hence, V5 € O, p is monotonic.

3. Ifpe O is a closed operator, then its corresponding abstract version is p’ : Values — Vz;l;es, the
type of which matches that of f in Definition 10.

4. We do not need to consider open operator since O has none.
5. To prove the safety of the abstract operations, we define Co — as a relation between Values and

Values
Values such that:

vd EVa/l;es,VJG Values : dl:a~ d e a

Values

Valuea() —Values d

We need to show that Vp € O ifpe O is its corresponding abstract version, then p Co — p. That
Values
is, Vi€ {1,...,n},vd; € Values,Vdg € Values :

. .
¢ Co—) = f(d1,....dn) Cye, Bdr, -, dn)- (4)

i=1
This is achieved by considering the result produced by p(ds,..., dn).
(a) If p(dy,...,dn) = L=, then (4) is vacuously true.

(b) If p(ds,...,ds) returns a constant, then by definition 7, we have Vi € {1,. -yn} d; € Const.
This imphes that Vi € {1,...,n},d; € {Static, Dynamic}, since d; Co — di. From the defi-
Values
nition of p, we must have p(dl, . ,,) € {Static, Dynamic}. Therefore, p(ds, ..., dp) Coa —
- - Values
(di,...,dn).
(c) If p(dy,...,dn) = Ty, then from the definition of p (Definition 7), 3j € {1,...,n} such
that cf_,- =Tymm, while Vi € {1,...,n},J.- # L. This implies that 35 € {1,...,n} such that
Jj = Dynamic, while Vi € {1,...,n},d; # L (Since Vi € {1, .. .,n},di Co — d;in (4)). Thus,
- - R - - Values
ﬁ(dl, ey dn) = Hence, p(dl, dn) Evms ﬁ(dl, ey dn)

Therefore, (4) holds.

Value.s

Thus, « is a facet mapping with respect to V;l;es, and Definition 10 defines an abstract facet. O

Values

31

