We provide a convergence rate analysis for a variant of the domain decomposition method
introduced by Gropp and Keyes for solving the algebraic equations that arise from finite element
discretization of nonsymmetric and indefinite elliptic problems with Dirichlet boundary conditions
in R2. We show that the convergence rate of the preconditioned GMRES method is nearly optimal
in the sense that the rate of convergence depends only logarithmically on the mesh size and the
number of substructures, if the global coarse mesh is fine enough.
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1 Introduction

In the past several years, a well-developed theory has been established for the
domain decomposition solution of symmetric positive definite elliptic equations.
Despite their lack of a corresponding mathematical theory, the natural parallel
computing possibilities of domain decomposition methods also attract a large
number of applications for nonsymmetric or indefinite problems. Among them is
the “tile algorithm” introduced by Gropp and Keyes in [12]. A multi-architecture
parallel code based on this method for the linear systems of equations obtained
from the discretization of second-order elliptic problems in R? is described in [13].
We study herein the convergence rate of a variant of this method more amenable
to analysis than the original through establishing bounds for the preconditioned
system. We show that these bounds depend only mildly on the mesh and subdo-
main sizes. Some related methods and analyses for this class of problems have
appeared recently in [1], [3], [6] and [21].

By rewriting the algorithm of [12] in terms of subspaces and projections,
we show that it is closely related to the well-known substructuring algorithm
introduced in [2], which is designed for symmetric positive definite problems, and
also the iterative substructuring algorithm in [4] and [18].

Though the algorithm we consider in this paper is based on a nonoverlapping
decomposition of the domain, we employ in the convergence proof many ideas
from the theory of the additive Schwarz method [5], [6], which is based on an
overlapped subdomain decomposition. The basic technique involves a decompo-
sition of the finite element space into subspaces and the application of related
projections. A summary of these techniques for symmetric problems is given in
[10].

This paper is organized as follows. In Section 2, we present a Dirichlet bound-
ary value problem together with some assumptions which are basic to the analysis.
A two-level triangulation of the domain, the corresponding finite element spaces,
and the GMRES iterative method are introduced in Section 3. The convergence
rate analysis of Section 4 is the central and most technical part of this contri-
bution. We conclude in Section 5 with some preliminary numerical experiments
and a discussion of possible relaxations of the hypotheses.

2 A Dirichlet boundary value problem

Let 2 be an open bounded polygon in R?, with boundary 9Q. Consider the
homogeneous Dirichlet boundary value problem

Lu = f in Q
{u:Oon&Q, (1)




where L is an elliptic operator of the following form:
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We assume that the matrix {a;;(z)} is symmetric and uniformly positive
definite for z € Q, f € L*(Q), and that the equation has a unique solution in
HL(9Q).

Let (-,-) denote the usual L? inner product. The weak form of equation (1)
is: Find v € H(2) such that

B(u,v) = (f,v), Vve Hp(9), (2)
where the bilinear form B(u,v) is defined as

B(u,v) = A(u,v)+ S(u,v) + (¢u,v).

Here ,
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and &(z) = ¢(z) — 2, g%. We note that for sufficiently negative é the bilinear

form is indefinite. The Helmholtz equation is an example of this kind.
Throughout this paper, ¢ and C, with or without subscripts, denote generic,
strictly positive constants, which may have different values in different places.
They are independent of the mesh parameters, which will be introduced later.
We make the following basic boundedness assumptions for these bilinear
forms.
(i) A(:,-) is equivalent to the square of the H} () norm; i.e., there exist two
constants ¢ > 0 and C such that

cllullizy@) < Alu,u) < Cllullfyq), Yu € Hy(Q).

We shall use ||-||4 to denote the A-norm and exchange freely between the A-norm
and H} norm.
(i) S(-,-) is bounded; i.e., there exists a constant C such that

15 (u, v)| < Cllullmy@)llvllz2@), Vu,v € Hy(D).
It is easy to verify that the bilinear form S(-,-) satisfies
S(u,v) = —S(v,u), Yu,v € HY(R).
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(i) 1ll ey < -
As a consequence of assumptions (i), (ii) and (iii), the following bounds and
regularity for the bilinear form B(-,-) can be established.
(1) [B(u,0)| < Clulyo ol s Ve, v € HY(Q).
(2) Géarding’s inequality holds; i.e., there exist two constants ¢ > 0 and C' > 0
such that
B(uyu) 2 cllullly e - Cllulliay, Vue HYQ).

(3) The solution w of the equation

B(¢,w) = (g9,9), V¢ € Hp(R)

satisfies ||w||g1+v(@) < C|lg]|z2(), Where v € [3,1]; cf. [15].

We note that the upper bounds on the magnitudes of B(:,-) and S(-,-) are
of different forms since one of the factors in each term of S(-,-) is an order lower
than those of the factors in A(:,-). This enables us to control the skew-symmetric
terms, and makes our analysis possible.

3 Triangulation, Galerkin approximation and
GMRES

We solve equation (2) by a Galerkin conformal finite element method. For sim-
plicity, only piecewise linear triangular elements are considered. The use of higher
order elements is possible but is not discussed here. In this section, we first in-
troduce a two-level triangulation of € R? and the corresponding finite element
spaces, then make the Galerkin approximation, and conclude with a summary of
properties of the GMRES method salient to the convergence proof.

3.1 A two-level triangulation

We employ the same two-level triangulation previously described in, for example,
(2], [4], [9], and [12] and repeated here for notational self-containedness only. In
the first step, for a given polygonal region Q € R?, we define TH = {7} to be a
shape regular finite element triangulation of . {7} is a set of nonoverlapping
triangles with diameter of order H. By shape regular, we mean that there exist
constants ¢ > 0 and C > 0 such that each 7/ contains a ball of radius cH
and is contained in a ball of radius CH. We shall refer to this as the H-level
triangulation, or the coarse mesh, and the vertices of the triangles that lie inside
2 as the cross points, see the right figure of Figure 1.

We further divide each 7/ into smaller triangles, denoted as 7). We assume
that each 7/ has a diameter of order 2 and {r}'} comprises a shape regular finite
element subdivision of  in the same sense as above. We call T" = {7/} the fine

mesh, or h-level triangulation, of €2, see the left figure of Figure 1.
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Figure 1: A sample two-level triangulation of Q. The left figure shows the fine
mesh and also the decomposition of the domain into 2;’s. The right figure shows
the coarse mesh.

Given an H-level triangulation, we can regard 2 as the union of a finite
number of subregions, denoted as ;, with diameters of order H. In practice, the
§2; are usually chosen to be either quadrilaterals or triangles whose sides coincide
with the mesh lines of TH. We refer to each §); as a substructure, or “tile”.

We now define the piecewise linear finite element function spaces over the
H-level and h-level subdivisions of :

Vh = {v* e C(Q), v*|;» is linear on 7}, Vi, v* = 0 on 9Q}
Vi = {v¥ |e C(Q), v#|,n is linear on mH Vi, v =0 on 00}
VE(u) = {v*|e V*, v* =0on 09}

VP = @V (),

and we also define V£, a subspace of V*, to consist of all functions that are
B-discrete piecewise harmonic in the interior of all §;’s and vanish at the cross
points. vk is B-discrete harmonic in Q; if

B(vh ¢") = 0, Vé" € V().

We denote by I' = U;0€; — 9Q the union of the internal interfaces of the
substructures, and define the corresponding subspace Vi C V" to consist of all
functions that are linear combinations of the h-level nodal basis functions with
nodes on I' and that vanish at all cross points. These functions are zero at all
the nodes that are interior to any §;. Throughout this paper, T';; denotes the
common edge of ; and (2;, and the corresponding piecewise linear continuous
function space is equipped with an inner product

(fag>r‘ij = (lé/2f7g)L2(Fij)’
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where f,g € H(}(42(Pij), and the operator Iy is defined by

(l0f7 ¢)L2(Fij) = (f/’ ¢,)L2(Fij)’ V¢ € H(}(P(FJ)

The prime denotes differentiation with respect to arc length along I';;. The
operator [3/? and the space H%z(l‘ﬁ) were also used in [2] and [8]. A description
of the computation of the inner product in the discrete case can be found in [2].

For any function u® € V", @* denotes its restriction, or trace, on I'. If
ah, ot € H(}({:’(F i) for all T';;, we define the inner product for functions on the

interfaces as
(ahvf’h> = Z(ahaﬁh)ri;j

and the corresponding norm as | - |r= (-,-)!/2.

3.2 Galerkin finite element approximation

The Galerkin approximation of equation (2) reads as follows: Find u* € V* such
that
Buh,o) = (f,o"), Wob € V™. @

If the mesh size h is small enough, the existence and uniqueness of u” have
been extensively studied in the literature; see [17]. By using the nodal basis func-
tions, equation (3) can be transformed into a linear system of algebraic equations,
which is usually very large, sparse, and relatively ill-conditioned.

3.3 A brief discussion of the GMRES method

We are interested in using the generalized minimal residual (GMRES) method,
introduced in [16] and mathematically equivalent to the generalized conjugate
residual (GCR) method [11], to solve the following linear system of equations on
R™:

Pz = b,

where b is given in R™ and the explicit matrix expression of P need not be known.

The method begin with an initial approximate solution zo € R™ and an initial
residual rp = b — Pxy. At the m?" iteration, a correction vector z,, is computed
in the Krylov subspace

Kn(ro) = span{rg, Pro,---, P™ 'ry},

which minimizes the residual, min,eg,,(r) |6 — P(2o + 2)||. The m™ iterate is
then z,, = z¢+ 2z,,. It can be shown that the solution is reached in no more
than n iterations if exact arithmetic operations are performed.



According to the theory of [11], the rate of convergence of the GMRES method
can be characterized (not necessarily tightly) by the ratio of the minimal eigen-
value of the symmetric part of the operator to the norm of the operator. These
two quantities are defined as follows:

P P
cp = inf [iz——ﬂ and Cp = sup I a:||,
=#0 [z, 2] =0 |||
where [, -] is the inner product being used and || - || is the corresponding norm.

From [11] we then have the following theorem.

Theorem 1 If cp > 0, then the GMRES method converges and at the m*" iter-
ation, the residual is bounded as

C2 m/2
P

Irnll < 1= Z5) ol

In our application, the operator P is the preconditioned stiffness matrix of the
discrete elliptic problem and b is premultiplied by the corresponding precondi-
tioner. Our main contribution is obtaining bounds for ¢p and Cp in terms of the
mesh size parameters.

4 Algorithm and analysis

In this section, we introduce our substructuring-based domain decomposition
algorithm and provide convergence rate estimates in Theorem 2. This algorithm
consists of three types of subproblem solves at each iteration, namely, cross-point,
interior and interface solves, and is thus generically similar to the substructuring
algorithm introduced in [2].

We observe that the finite element space V* can be represented as the sum
of some of the subspaces previously introduced, i.e.,

Vh = VP 4+ VE + V.

Thus, certain projections from the finite element space V" to its subspaces can
be introduced naturally in terms of the bilinear form B(-,-).

Definition: For any u® € V* Pruh € V} is the solution of the finite element
equation ‘
B(Prut,v*) = B(uh,vh), Vot € Vi (4)

Similarly, Pou® € V% is defined as the solution of

B(Peul,v") = B(uh,v"), Vot € VL. (5)




Before defining Pgu* € Vi, we first define the restriction of Pgu” to T' as follows:
(Pguh, ") = B(u" — Pruk,v"), Vo € V. (6)

Note that P;ZL" vanishes at all cross points. We then define Prul to be the
piecewise B-discrete harmonic extension of its boundary value into the interior
of each ;; i.e.,

B(Pgu®,v") = 0, Vot e Vi

We notice that due to the nonsymmetry of B(-,-), these projections are not
in general orthogonal. Let us denote the sum of these projections by P:

P =P + Po + Pg.

It is easy to see that the computation of the projections of an arbitrary function
v* € V* involves only the solution of some standard finite element linear systems
of algebraic equations defined on the €2;, the I';;, and the coarse mesh. All of
them contain only a relatively small number of degrees of freedom compared to
the original large system, and most of these subproblems are independent of each
other, in fact that leads to an obvious parallelization, as specifically noted below.

Let us denote the projection of the exact solution u” of the Galerkin equation
(3) as b:

b = Pu" = Pu* + Pou* + Ppu”.

It is important to understand that b € V* can be computed without a priori
knowledge of the solution u* of (3). The computation is done by first solving the
following equations,

B(Pput,v") = (f,v"), Yo" e VP,
B(Pou,v") = (f,o"), Yo" e VE,
(P;ﬁh,'ﬁh) = (f — Pru*, "), Vol € Vik,
B(Pguh,v*) = 0, Yohe V}
PEuhI[‘ = PEuh,

and then taking the sum of the above solutions.
Using b as the right-hand side, we can define a new system of linear equations
as

Pu" = b (7)

Because of the special choice of the right-hand side, it is not difficult to verify
that equation (7) has the same solution as the Galerkin equation (3) when the
operator P is invertible.




In general, the preconditioned operator P is not symmetric even in the case
that L is selfadjoint. A method based on GMRES has been introduced in [12]
to solve a system of similar structure. Its convergence rate is the subject of
the sequel. The algorithm is described by specifying how to perform the matrix
vector multiply Pu”.

Algorithm: For a given u® € V*,
Step 1. Find Pju® by solving the interior problems.

B(Pru",v") = B(u*,o"), Yo" € V}.

Note that V}* is a direct sum of V}*(€;)’s. The problems on each substructure are
independent of each other and can be solved in parallel.
Step 2. Find Pou” by solving a coarse mesh problem.

B(Pgul,v®) = B(u*,v"), Vo e V.

This is independent of step 1, and therefore can go in parallel with step 1.
Step 3. Find Pgu? by solving the interface problems.

(Pgut, o) = B(u" — P, v*), Yo' e VL.

The problems on each I';; are independent, and therefore can be solved in parallel,
once the solutions from step 1 are available in both subdomains.
Step 4. Find Pgu” by solving the interior problems. For each €,

B(Pgu,v") = 0, Yo" € V),

with the boundary condition Pgu’ |sq;, which is available after step 3. The
solutions on different subregions are independent and may be done in parallel.
Step 5. Find Pu® = Pou® + Pru® 4+ Pguh.

According to Theorem 1, the rate of convergence of the algorithm can be
estimated in terms of certain spectral bounds for the operator P. The following
main theorem shows that the operator P is nearly uniformly well-conditioned in
the sense that the bounds depend only mildly on the mesh parameters H and &,
if the coarse mesh size H is small enough.

Theorem 2 There exist constants Hy > 0, ¢(Hp) > 0 and C(Hy) such that, if
max{H", H(1 + In(H/h)*)} < Hy holds, then

(1) 1P 4 < C(Ho)lluPla, Vust € V™

(2) A(ut, Pub) > c(Ho)/(1 + In(H/R)?)A(uh,u), Vuh € Vh.




The proof will be given at the end of this section.

Remarks: (a) The requirement that H(1 + In(H/h)3) < Hg arises from the
existence of the nonsymmetric and indefinite terms. In the subsequent proofs it
can be seen that the condition is unnecessary if L is symmetric positive definite,
and the constants ¢(Hy) and C(Hp) are independent of the coarse mesh size.

(b) The constant Hy effectively determines the maximum size of the substruc-
tures, or their minimum number. It is a problem-dependent constant. Generally
speaking, Hy decreases if we increase the coefficients of the skew-symmetric terms
or make ¢ more negative. It also depends on the shape of the domain §; for ex-
ample, if the domain is not convex, Hy will depend on the sizes of the reentrant
angles. This is reflected in the constant v, which was introduced in the end of
Section 2, cf. [15].

The second half of this section is devoted to the proof of Theorem 2. We begin
by defining some Sobolev norms. The Sobolev space of order one-half on 99; is
denoted as HY/?(0Q;); cf. [2], pp. 112. Because T, which can be regarded as the
union of all I';;s, is not a simple curve, we define the corresponding semi-norm as

I’U(CIJ |H1/2(F) Z I’U |H1/2(8Q.‘)’

where v(z) € Vi vanishes on 9, and the sum is taken over all ¢’s.
To prove Theorem 2, we need to establish some technical lemmas. The first
lemma was essentially proved in [2].

Lemma 1 There exists an Hy > 0 such thdt, if H < Hy, then for any uh € V*,
there exist ul € Vi, uk € V& and uly € Vi, such that,

h h h h
uh = uf 4 oub + b,

and also

||U1”H1(Q) + “uC“Hl @ T ”uE“Hl(Q) C(1+ ln(H/h))“uh“HI(o)’
where C = C(Hp) > 0 is a constant independent of H and h.

Proof: The decomposition can be constructed easily. For any given u® € V*,
let wh = u* — ul, where ul, is the linear interpolant of u* on the H-level nodes.
We choose u? to be the solution of the equation

B(u}Ilvgbh) = B(wh7¢h), V¢h€ VIh7

h h h

with a zero boundary condition on the interfaces, and define u¥ = u* — ul — u}.

It is easy to verify that u% € V.
Using Lemma 3.4 in [2], we have

gl @) < C(L+ In(H/R))||u* | -
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Since
B(u?au’}) = B(wh’u}IL)v

by Garding’s inequality and Friedrich’s inequalities,
(1 = CHY)|lullfy) < Cllw’llay@lluillm@-
Thus, if H is small enough,
w0y < C(Ho)llw" | ma@y < C(Ho)(1 + In(H/R)"?||[u*||g3(0)-
The bound for ||u,’{.;||§16 () can be obtained by using the triangle inequality. O

Lemma 2 There exists a constant C, such that, for any B-discrete harmonic
Junction w" € VR(S), which vanishes at all cross points

A(wh7 wh) < C(wh Iaﬂw w" IaQi)’

Proof: Let us take a special B-discrete harmonic function w* which vanishes on
'\ T;;, where I';; is one of the edges comprising 9€;. If we can prove the lemma
for this type of function, we are done.

Let w € H}(:) be the solution of the problem

B(w,$) =0, V¢ € HY(Q), w=w"ondN;.
By a well-known a priori inequality; see, e.g., [15], we have

|wlipse@y < C lwhﬁréé“‘(r.-»’

for a small positive ¢ > 0. We also have, using the approximation property of
finite elements, that
]w - whﬁp(m) Chkl’wlipk(gi)
Ch?clwh|2 1f24e
HOO

Clwh|

(I'sj)

IN AN A

2

Hl*(Tiz)’

The last step is due to an inverse property of the finite element function on I';;.
Consequently,

lwhﬁ{l(n,-) < C(jw— whl%(l(n;) + |w|§{1(9i)) < Clwhlilgf(m)'

The proof is completed by noticing the equivalence of the A(-,-) norm and the
square of the H' norm, and also the fact that |w" C(w" |aq;, w" |ag;)-

2 <
O H?(Tij) —

We have defined two norms for the interface functions. In the next lemma,
we give the relations between these two norms. For the proof, we refer to [2].
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Lemma 3 There exist ¢ > 0 and C such that, for any w" defined on T that
vanishes at all cross points,

clw 3y < (W, w") < C(1+ In(H/R)?)|w*31/2ry-

The next lemma, which is essentially due to Schatz [17], gives the approxima-
tion estimates for the coarse mesh projection. A proof can be found in [6].

Lemma 4 There exist constants Hy > 0 and C(Hp) such that if H < Hy, then
(DI Pov” — ut|lm) < Cllutllm), Yu' eV,
(Q)HPcuh - uh”Lz(g) S C’H”HPcuh - uhHH(}(Q), Vu" (S Vh.

Remark: Let us recall that v € [1,1]. If the polygonal domain § is convex,
then H can replace H” in the second part of this lemma.
The following lemma is essential to our spectral lower bound estimate.

Lemma 5 There exist constants Hyo > 0, ¢(Ho) > 0 such that, iof H < Hy, then
1Pru* |3y ) + | Pov g ey + |1 Poutlf = ¢/ (1 + In(H/B))|u* |3 qy

for any uh € V*,
Proof: By Lemma 4, we can easily obtain that

[ [1320y < C(Hh”“h”?qg(n) + | Pout|[F2(g)- (8)
Replacing the L? term in Garding’s inequality for u* by (8), we have

(= CH™)|uMfq) < I1Pou® |2y + B(u", u).
Let us assume that H is small enough so that
c—CH” > ¢ > 0.

Hence,
Cl“'lh”%{g(n) < |[Pout||7a(q) + B(ut, u™). 9)

By using the decomposition Lemma 1, there exist u? € V{, ul € V) and ub, €

V} such that

h h h h

Consequently, we have
B(uhub) = B(ubub) + B(uh,ub) + B(uhub). (10)
We now bound the right-hand side of (10) term by term.
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By using the definition of the projection, the first two terms can be bounded
easily:
B(ut,u}) = B(Prut,uf) < C|IPrut|lmyllullmg ) (11)

and
B(ut,ub) = B(Pou",ug) < ClPout|luyallu |y (12)

However, the third term cannot be estimated as simply. We show that
B(u* ) < C((1 -+ n(H/h)| Pt bl + 1 Pr* Ly llusllmgcey)- (13)
From the definition and the fact that
B(u" — Prut, ¢") =0, V¢t € V!,

we obtain that .
(Pguh, k) = B(u" — Pru®,uly). (14)

Hence, from (14), ~
B(u" — Pru*,uby) < |(Pguh, i), (15)

which can be bounded by

[(Peut, @) < |Poutlplabl

< C(1+ In(H/h))| Peub|p|ay| s ry-
By using the trace theorem, it can be further bounded by
C(1+ In(H/h))| Pt lr|[upllmyca)-
The term B(u",u%) can then be bounded as
B(uhul) = B(uh — Pl ul) + B(Pruh, ul)
< C(1 -+ In(H/W) Prat el ) + CIPre Ly bl o)

Combining the above results and applying Schwarz’s inequality to (10), we have

Bluh,ut) < O\l Prutlfy o) + 1 Pont iy g + (1 + In(H/R)?| Pot

X\/“u}}”?{(}(ﬂ) + ”“g“%g(n) + 2”“1"13“%&(9)'
(16)
Thus, the proof can be accomplished by returning to (9), using the fact that
1 Peu|Fa@) < CllPou |y llv* g,

12




Schwarz’s inequality and also Lemma 1.0

We have mentioned before that the contribution from the skew-symmetric
or zeroth-order terms are of lower order in H compared with the second order
terms. The use of this fact is made through the following lemma. We call this
the H-lemma.

Lemma 6 There exists a constant C, independent of H and h, such that, for
any uh € V*h,

(1) |(éut, Pguh)| < CH(A(uh,uh) + A(Pgut, Pgut)).

(2) |(éut, Prut)| < CH(A(uh, ut) + A(Pruk, Prut)).

(3) |(5P[uh, P[uh)l S C'HZA(PIU", P[Uh).

(4) |(&(ut — Pouh), Pou)| < CH(A(uh,ut) + A(Poul, Pou®)).

(5) |S(Pgut, Prut)| < CH(A(Pgu®, Pgut) + A(Prut, Prut)).

(6) |S(uh, Prut)| < CH(A(u", uh) + A(Put, Prut)).

(7) |S(u* — Pouh, Pout)| < CH(A(uh, uh) + A(Pou”, Pou™)).

Proof: The proofs for each statement are straightforward, so we shall just men-
tion the ideas briefly. For the L? inner products, we bound by the L? norm of
each component. One or both components can contribute an H factor as we
move from L? to Hi. To do so, we apply Friedrich’s inequality to Pru*, or apply
Lemma 4 to u* — Pou”, or make use of the approximation property of Pgu”
(cf. Theorem 3.3 in [19]), together with the fact that Pgu® vanishes at all cross
points; then use the inequality ab < 1/2(a? + b?).

As to the inequalities for S(-,), we first apply assumption (ii), using the L?
norm for the component that can contribute an H factor, and then employ the
same devices as for the L? inner products mentioned above. O.

Now, we are ready to prove Theorem 2. First, the upper bound part:

Since P is the sum of three projections, we estimate them one at a time. For
Py, by using its definition,

B(P,-uh, Pluh) = B(uh, Pluh).

Applying Gérding’s inequality to the left-hand side and using the boundedness
of B(,-) for the right-hand side, we obtain

C“PIuh||12ql(n) - C”PI“h”%ﬂ(n) < ||Uh||H3(Q)“PI“h“Hg(n)-
0

Noting that Pu® € @;H}(€:), by using Friedrich’s inequality in each subregion
Q;, and taking the sum over all subregions, we have

”PIuh“%?(Q) < CH2||PI“h”%Ig(n)°
Therefore, if H is small enough, as argued for (9), we obtain
”PI“h“Hg(Q) < 1ellwllmae)-
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The bound for P can be obtained easily by using Lemma 4 and the triangle
inequality,
| Pou* |3y < Cllw*llaze)-

We now proceed to bound Pgu”. By definition,
(Pgut, Pgut) = B(u — Pru®, Pgu®),
which can be bounded from above by

Cllu™| gz oy | Pev” || 0y
Applying Lemma 2, we have
| PEu |33 @) < C{Pruk, Pgut) < Clu™| 3 @yl P || 13 05
ie.,

I Pev |3y < ClluMlaze)-

The upper bound for P can be obtained by combining the estimates for Pr, Pc
and Pg.

Next, the lower bound part:

For any given u* € V%, by using the definition of P, we have

A(ut, Put) = A(uh, Pruh) + A(uh, Pou®) + A(u, Pgu®).

We estimate the right-hand side term by term. It is easy to see, using the H-
lemma and letting H be small enough, that

A(uh, Prut) = B(uh, Prut) — S(uh, Prut) — (éu*, Prut)

e A(P[uh, P[’uh) + (5(P[uh — uh), P]’uh)

(17)
—S(uh, Prut)

v

c(Ho)A(Pru*, Pru*) — CH||u*|| %y q

and similarly,
A(ut, Pout) = A(Pouh, Pouh) + (¢(Pou® — uh), Pouh)
—S(uh — Pouh, Pou™) (18)

> o(Ho)A(Pou”, Pout) — CHI||uh||3 o
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In our next step, using the H-lemma, we bound the term A(u"*, Pgu®) from below.
(Pgut, Pgut) = B(u" — Prut, Pgut)
= B(Pgu*,u* — Prut) + 2S(ut — Prut, Pgu®)
= B(Pguh,u?) + 2S(u* — Prut, Pgu®)

(19)
= B(u", Pgu®) + 25(—Pru*, Pput)

IA

C(A(uh, Pgut) + £ A(Prut, Prul)+
L A(Pgut, Pgu*)) + CH”uh”?Jg(n)'
Using Lemma 2, we have

A(Pgu", Pgut) < C(Pguh, Pgut).
Together with (19), we obtain

A(ut, Ppu®) + 2 A(Pruh, Pruk)
e (20)
hl||2
> c(1 — CH){Pguh, Pgut) — CH|[u"||% o).

Finally, by combining all the above estimates and assuming that H is small
enough, we have

A(uk, Puh) > c(A(Prut, Prut) + A(Pou®, Pouh)
+(Pgut, Pgut)) — CH|[u" |3 )
> (¢/(1 +1n(H/h)*) — CH)|[uM|7 )
= (1 +Wn(H/h)*)7 (e = CH(L + In(H/R)*))l[u"}30)»
which completes the lower bound proof, if we require that H(1 + In(H/h)?) be
small enough.Ol
5 A numerical check and concluding remarks

Motivated by empirically slowly growing iteration counts for the “tile algorithm”
as h — 0 with (H/h) fixed on a variety of boundary value problems (as in Table
3 of [12]), we have theoretically established bounds for a variant preconditioned
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system. These bounds depend on H and h only through the logarithm of their
ratio, and are thus similar in form, though a logarithm or more weaker, to those
of [2], [9] and [4] for other problems in the plane. In the union of this and these
three previous papers, domain decomposed preconditioned Krylov iteration for
combinations of the cases of selfadjoint or non-selfadjoint and overlapping or
non-overlapping subdomains all receive coverage. We conclude with a number of
remarks on the applicability of the analysis.

In the non-selfadjoint cases, H must be “sufficiently small” for the proofs
to go through. “Sufficiently small” refers to the dominance of the second-order
terms relative to the first- and zeroth-order terms. Roughly speaking, in

Au + Kluo, + Kou = f )

where u, represents a directional derivative, we must have H|K;| and H?|Ko|
bounded by sufficiently small constants. The product H|Kj| is a substructure
Reynolds number. The restriction on the size of H is not an unexpected weakness
in domain-decomposed preconditioning. Similar requirements of a “sufficiently
fine” coarse grid are needed to make multigrid proofs go through in the presence
of skew-symmetric perturbations to the elliptic terms; see, e.g., [14].

When the bound on H|K,| is violated, full GMRES will still converge, but
may become uneconomical, and restarted GMRES may theoretically fail. Thus,
it may in general be necessary to accept a large cross point system in the step of
the preconditioner involving Po. In practice, in [12] the only restrictions on the
size of the cross point system were related to overall storage, not to convergence
failure.

Theorem 2 is not guaranteed to hold for the tile algorithm as formulated in
[12] since the interface solve is defined therein by projecting the function itself to
the interface instead of the B-discrete harmonic part, and by using as an interface
operator simply the tangential part of L. Thus, the first set of subdomain solves
(step 1 in the algorithm described herein) is skipped, and both the operators and
right-hand sides of step 3 are different. As a result, Lemma 2 cannot be used in
bounding the symmetric part of P from below in Theorem 2, and a factor of A
appears in the final result. Of course, the tangential interface operator may have
a better constant than the lé/ %_type operator in strongly convective problems,
(see, e.g., the comparisons in [7]), but the latter is better either as h — 0 or as
|K1| — 0. Numerical experiments with the self-adjoint example #5 from [12], in
which the tangential operator is replaced with an FFT-implementable l(l,/ % bear
this expectation out.

We have implemented the present algorithm for homogeneous Dirichlet bound-
ary conditions and tested it on the convection-diffusion problem (see also [20])

—Au+o-Vu=f
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on a uniformly gridded unit square, with ¢* = (10,10) and f so chosen that the
solution is ¥ sin(7z) sin(7y).

We report in the table below the iteration counts for three codes at three
different levels of refinement, for a reduction in the initial residual (for a zero
starting guess) of 1075, The first two columns give the fine and coarse mesh
parameters, which are maintained at a constant ratio of 8 mesh cells per tile,
as the mesh is refined. Note that the cell Reynolds numbers (essentially h|o|)
are modest in this problem so that strict Galerkin discretizations may be used
without loss of monotonicity in the solution. The first column of results is for
the code described in [12], the second for the present algorithm, and the third
for an additive Schwarz algorithm for nonsymmetric problems, which also em-
ploys GMRES (see [4]). All three algorithms were implemented through a set
of modules described in [12] and [13]. In the additive Schwarz algorithm, only
one fine mesh width of overlap was employed. The three codes are not uniformly
optimized, so no execution times are indicated. We point out that the iterations
of the original tile algorithm are inherently cheaper than the present algorithm,
since they involve half as many subdomain solves, and thus comparable times are
achieved on the test problem. The additive Schwarz times are better than either
on the finest grid.

h=1T H~T [ Orig. Tile Alg. | Present | Add. Schw.

16 2 9 12 10
32 4 20 20 11
64 8 26 20 10

It is clear from the table that the asymptotic bound of Theorem 2 is achieved
rather soon in h, and also that the O(1) bound of additive Schwarz is achieved
even sooner.

We have assumed throughout Dirichlet boundary conditions on 2, a quasi-
uniform A-triangulation, and exact subdomain solves in the preconditioner. In
applications, it is of interest to relax all three. The extension to Robin or Neu-
mann boundary conditions (as long as the degenerate Neumann case is avoided)
involves a standard modification of the proof, in which boundary terms are re-
tained in (2). Only the constants change in Theorem 2.

Locally adaptive refinement is a practical motivation for moving away from
a quasi-uniform h-triangulation. The experiments with refinement in [12] show
comparable iteration counts for globally and locally refined problems with the
same effective h, although we have not so extended the main theorem of this
paper.

Like adaptive refinement, the use of approximate subdomain solves in defining
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the preconditioner (a modification of the definition of Pr), introduces complica-
tions that we have not included in the proofs. Approximate factorizations (ILU
and MILU) have proved to be fairly unsatisfactory replacements for the exact Pr
in [12]. It is expected that spectrally equivalent fast Poisson solvers will prove to
be acceptable replacements, in the » — 0 limit, and that the main theorem can

be generalized to include them with suitable replacement of the interior problem
in (4).

Acknowledgement: The authors are indebted to Professor Olof B. Widlund
for reading an early draft and suggesting important revisions.
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