Abstract: By the method of region counting, a lower bound of n 1og2 n
queries is obtained on linear search tree programs that solve the
n-dimensional knapsack problem. The region counting involves studying
the structure of a subset of the hyperplanes defined by the problem. For
this subset of hyperplanes, the result is shown to be tight.

A Non-linear Lower Bound
on Linear Search Tree Programs
for Solving Knapsack Problems

David Dobkin

Research Report #52

October 1975

Portions of this research were supported by the Office of Naval Research

under Grant N00014-75-C-0450 and by the National Science Foundation under
Travel Grant DCR-75-15624.

1. Introduction

In a previous paper [l], we showed that any linear search tree that determines membership
in a union of a disjoint family of k open sets requires at least log2 k queries. This
result can actually be extended [2] to show that any search tree using queries that are
polynomials of degree < p requires at least % 1og2 k queries to determine membership in a
union of a disjoint family of k open sets. In the present paper we will use these results
to show that any linear search tree for solving the knapsack problem of dimension n
requires at least n log2 n queries. This result will follow by showing that a subset of
this problem gives rise to at 1east-% n! regions. Although the linear search tree model
does not appear to have all of the power of the Turing machine model for which the P vs.
NP model was first proposed, this non-linear lower bound is derived on the model that is
actually used in practice for solving knapsack-type problems. To begin, we review some
definitions from [1] to set notation for this paper. The knapsack problems of dimension n
is commonly stated as follows: Given an ntl-tuple {xl,...,x , b}, does there exist a

n

vector (al,...,an) all of whose components are 0 or 1 such that

a,x, = b?
1=1 i1

We can restate this problem in a geometric fashion by observing that determining whether
the ntl-tuple {xl,...,xn, b} gives rise to a solvable knapsack problem is equivalent to
determining whether the point (xllb, xz/b, ooy xn/b) lies on any of a set of hyperplanes in
Rp, n-dimensional Euclidean space. In particular, if 1 < i < ™1 is represented in its

1 n-2

binary expansion as 1 = in-2n_ + in_1'2 + ... + 12'2 + il, we can represent the ith of

these hyperplanes as Hi(z) - 1 = 0 where

n
Hi(g) = jil ijvj.

In all that follows we shall use this second formulation, which is trivially equivalent to

the first.

The linear search tree model 1s defined as the set of programs consisting of

statements of three types:

i
Lm: Halt and accept

L,: If £f(x) RO thenigo to Lj; else go to Lk

Ln: Halt and reject

where f(x) is a linear form in the components of the n-vector x and R is one of the
relations >, <, and =. This model can be extended to polynomial search trees of degree <
p by allowing f(x) to be a polynomial of degree < p. The result of [1] can then be

stated as follows:

Theorem 1: Any linear search tree for determining membership in U Ai where each Ai is
ieT

an open subset of R" and the Ai are pairwise disjoint requires at least 1og2 |I| queries

in the worst case.
And, as observed, we have the corollary:

Corollary: Any polynomial search tree of degree < p for determining membership in i:I Ai

for {Ai}ieI’ a family of open subsets of R™ that are pairwise disjoint, requires

%-log2 |I] queries in the worst case.

Our main result will be to show that a subset of the knapsack hyperplanes divide
R" into at least %-n! disjoint open sets, so that solving the knapsack problem (i.e.
determining membership in thése sets) requires at least n log2 n queries in the worst
case. The hyperplanes that we will consider are those Hi such that the binary expansion
of 1 has exactly 2 ones in it corresponding to solutions of the problem: Given
{xl,...,xn, b}, do there exist i # j such that Xy + xj = b? Since the number of regions
generated by all the hyperplanes is at least as many as those generated by this subset,

this lower bound is a lower bound on the entire problem. We will also show that this

lower bound is tight for the problem at hand by demonstrating an appropriate algorithm.

2. A Lower Bound

In this section, we give a characterization of the regions generated by the hyperplanes in
the problem under consideration. To begin, we observe that we are seeking to determine
how many regions exist that can be expressed as the intersections of halfspaces of the

form X, +x, > 1or x, + xj <1lforl<141<3j<n. We may represent these spaces by

3 i

. ={xeR"| X, +x

< 1} and §; {xe R" | x, + Xy > 1} for 1 < i< j < n. We may

h| i i

define Tn as the set of all pairs of the form (i,j) for 1 < 1 < j £ n and then, for each

subset of K of Tn’ we ask whether

§, = n S n n S,
Kowne ™ @, pex 1

n
is empty or not. There are 2(2) such subsets and at first one is tempted to believe that
each subset gives rise to an open subset of R". We may observe, however, that for n = 4,
if K = {(1,2),(3,4)}, then GK = §12 n §34 n §i3 n §é4 n §14 n §é3vis empty since a point
in this set would satisfy Xy + X, < 1, X4 + x, < 1 as well as %y + X3 > 1, X, + X, >1, a
contradiction. Furthermore, it is clear that if Kl and KZ are different subsets of Tn
such that SKl and GKZ are non-empty then these intersections are disjoint open sets.
Openness follows since these sets are the intersections of finite collections of open sets,

and to show that they are disjoint we observe that there is an (i,j) that belongs to Kl

and not K, (or to K, and not K,) so that every point in § satisfies x, + x, < 1 and
2 2 1 Kl i 3

every point in § satisfies x, + x, > 1.
K2 i j
Now we wish to determine conditions on K < Tﬁ such that GK is nonempty. We begin

with one such set and apply the appropriate permutations to generate at least-% n! others.
Lemma: 1f K= {(1,3) | i+ j < n + 1}, then 8 is non-empty.

i 4 . .
Proof: Let X = ¥ 372 for 1 £ i £ n; then Xy + xj <1 4f and only if 1 + j < n + 3/2 if

and only if (i,j) € K. Hence the point (xl,...,xn) is an element of K, which is therefore

non—empty. [

2
We observe that K is a subset of Tn consisting of f%{l elements and that i occurs
in exactly n - 1 pairs of K 1f i < %-and n+ 1~ 1 pairs if 1 > %; For each permutation

7 of n elements we define w(K) as {(n(1),n(j))! (i,j) € K} and observe that if ™ and T,
are two permutations such that T and T, do not send L%J and L%J + 1 into the same pair

of integers then nl(K) and ﬂz(K) are necessarily different subsets of Tn' Thus,

Theorem 52: There are at least %-n! different subsets K of Tn that give rise to non-empty

sets GK.

Using this theorem in concert with Theorem 1, we obtain the main result of this

paper.

Theorem 3: Any linear search tree for solving the n-dimensional knapsack problem (or
even the n—-dimensional knapsack problem restricted to solutions of the form Xy + xj = b)

must require %—n log n - l.0.t. queries in the worst case.

Furthermore, since polynomial queries can be simulated by linear queries, we have:

1
Corollary: Any polynomial search tree of degree < p requires at least . n 1og2 n queries

in the worst case to solve the n-dimensional knapsack problem.

3. An Upper Bound

In this section, a method is given to match the lower bound given in the previous section

for the restricted knapsack problem mentioned there. Given an input {xl,...,xn, b}, we

wish to determine whether there exist distinct integers i and j such that X + xj =b,.

To do so, we may use the following:

Algorithm KS2:

I. Sort XpseeerX to yield a sorted list Yisee oYy such that, for 1 > j, vy 2 yj.

II. Test to determine whether any vy is %n If two or more are, halt and accept the
input., If one is, drop this element from the list and proceed to Step III. If none
is, proceed to Step III.

I1I. For each i, 1 £ 1 £ n, determine the least ji such that vy + yj <1, If

1

vy + yj .1 = 1, halt and accept; otherwise, continue.
i

IV. Halt and reject.

Step I in this algorithm requires n 1og2 n steps, Step II can be done in log2 n steps by
binary search, and Step III can be done in at most 2n steps by a merging strategy.
Therefore the entilre algorithm requires n log2 n + l.o.t. steps matching the leading term

in the upper bound.

4, Conclusions and Research Problems

The major results of this paper are a lower bound of n log n queries for the solution of
the knapsack problem with a linear search tree and a similar upper bound for the
restricted version of the problem under consideration. These results may possibly be
improved by considering less restricted versions of the problem. For example, it is
reasonable to conjecture that a better lower bound could be obtained by considering the
regions generated by all 20 knapsack hyperplanes rather than merely a subset of (2) such
hyperplanes. Unfortunately, Strassen [2] has observed that no better lower bound than
O(nz) can be obtained by applying Theorem 1, as at most 0(2n2) regions will be generated

by a set of 2" hyperplanes in R®. Such a lower bound has been given for a more general

hyperplane search problem in [1].

References

{1} D. Dobkin and R. Lipton.
On the complexity of computations under varying sets of primitive operations.
Proceedings of the 2nd GI Symposium on Automata Theory and Formal Languages,
Springer-Verlag. To appear.

[2] V. Strassen.
Personal communication, May 1975.

