Yale University
Department of Computer Science

Scaling, Machine Learning, and
Genetic Neural Nets

Eric Mjolsness, David H. Sharp, and Bradley K. Alpert

YALEU/DCS/TR-613
March 1988

Scaling, Machine Learning, and
Genetic Neural Nets

Eric Mjolsness *

Department of Computer Science
Yale University, New Haven CT 06520

David H. Sharp'
Theoretical Division
Los Alamos National Laboratory, Los Alamos NM 87545

Bradley K. Alpert*
Department of Computer Science
Yale University, New Haven CT 06520

Abstract

We consider neural nets whose connections are defined by growth
rules taking the form of recursion relations. These are called Ge-
netic Neural Nets. Learning in these nets is achieved by simulated
annealing optimization of the net over the space of recursion relation
parameters. The method is tested on a previously defined continu-
ous coding problem. Results of control experiments are presented so
that the success of the method can be judged. Genetic neural nets
implement the ideas of scaling and parsimony, features which allow
generalization in machine learning.

*Work supported in part by ONR grant N00014-86-K-0310.
tWork supported by DOE.

Genetic Neural Nets 2

1 Introduction

Can a machine generalize as it learns? The question must be properly
framed before the answer is valuable. If the problem of machine learning is
posed as one of neural net optimization [5,19], a precise scientific context
is established in which to explore questions such as generalization.

A synthetic neural net is a particular kind of circuit parameterized by
real-valued connection strengths between circuit elements called “neurons”.
Machine learning can be posed as the problem of optimizing some real-
valued function of a network over its parameter space. Such optimization
often involves measuring a network’s performance on a fixed set of inputs
called the training set. If the network then performs acceptably on a pre-
dictable set of inputs much larger than the training set, it has generalized.

What enables a neural net to generalize? We focus on the properties of
scaling and parsimony.

The information in a neural net is contained in its pattern of connec-
tion strengths. Parsimony in a network means that this information is
expressed as succinctly as possible without compromising performance. It
aids generalization by reducing the size of the search space, and therefore
the number of nets which coincidentally do well on the training set but do
not generalize.

The idea of scaling is to solve small problems, where a large fraction of
the possible inputs can be sampled as the network learns, and to use the
results to automatically generate nets which solve bigger problems. Scaling
may also be thought of as extrapolation and hence generalization along
a scale axis. This kind of generalization is of critical importance for all
considerations of cost in neural net computing and learning.

To construct neural nets which exhibit scaling and parsimony requires a
fundamental shift from the optimization of neural nets to the optimization
of relatively simple growth rules for constructing nets. As a model for what
is intended, recall that genetically prescribed growth rules for biological
neural nets are far more concise than the synapses they determine. For
example, the human genome has been estimated to contain 30,000 genes
with an average of 2,000 base pairs each [12], for a total of roughly 10® base
pairs; this is clearly insufficient to independently specify the 105 synapses
[9] in the human brain. Instead the genes probably specify rules for net-
work growth, as well as rules by which individual synapses can learn from

Genetic Neural Nets 3

experience.

The growth rules introduced in this paper are specified in terms of un-
derlying “genetic” information, which is taken to consist of a fixed number
of real-valued coefficients in a recursion relation defining a family of suc-
cessively larger neural nets. Even though our growth rules are not directly
modelled after any biological system, we summarize the fundamental shift
to the optimization of growth rules by describing the resulting artificial
circuits as “genetic neural nets”.

Since any growth rule can generate nets of unbounded size, a genetic
neural net will generally have many more connection strengths than there
are coefficients in its recursion relation. Then the net is parsimonious.
Indeed, the potential information content of the wiring in any neural net is
proportional to its number of connections, whereas the actual information
content of the wiring in a genetic neural net is at most the number of
coefficients in the recursion relation that generated it. (We assume that the
number of bits which can be stored in each connection strength or recursion
coefficient is small.) Parsimonious nets are also called “structured” nets,
and learning rules for unstructured nets, or mixtures of the two types of
nets, are outside the scope of this paper.

From a programmer’s or circuit designer’s point of view, genetic neural
nets involve two fundamental principles: “divide-and-conquer” and “super-
position”. The main idea of the divide-and-conquer strategy is to break up
a big problem into small pieces, each of which can be solved by the same
method, and then to combine the solutions. We mention the merge-sort
algorithm, fast Fourier transform and Karp’s algorithm for the Traveling
Salesman Problem in the Euclidean plane as examples of algorithms which
use this strategy. Superposition is a property which applies to the connec-
tion strength between pairs of circuit elements or neurons. The set of all
such numbers in one net may be considered as a matrix, called the connec-
tion matrix, indexed by pairs of neurons. In the context of neural networks,
it has been found that a network formed by addition or “superposition” of
the connection matrices of simpler networks is frequently able to perform a
combination of the simpler networks’ tasks [7,8]. These ideas are combined
in Section 2 to derive a generic, or problem-independent, recursion relation
for connection matrices. An infinite family of successively larger connection
matrices, called a template, is specified by each such recursion relation.

- Our strategy for machine learning with scaling and parsimony consists

Genetic Neural Nets 4

of the following steps: (1) A recursion relation generates a family of related
connection matrices of increasing size. Families of connection matrices form
a search space. This space is parameterized using the coefficients of the cor-
responding recursion relations. (Section 2.1). (2) A sequence of learning
tasks of increasing size is specified by choosing a task functional of the
connection matrices. Learning is achieved as this functional is minimized
over the coefficients in the recursion relation (Section 2.2). (3) The task
functional is combined with a parsimony constraint on the allowed recur-
sion relations, which requires that the number or information content of
the coefficients be small, to produce a global optimization problem, which
defines a dynamics on the space of recursion relations. (4) The optimization
problem so defined is infinite, and for practical purposes must be replaced
by a finite version. This is done by optimizing, or training, the recursion
relation on a finite number of small tasks and using the results to perform
larger tasks, without further training. In this way our procedure obtains
learning with generalization.

This circle of ideas has been tested by means of numerical simulation on
a coding problem (Section 3). Control experiments are presented so that
the success of our method can be judged. Suggestions for extensions of this
work are contained in a concluding section. A preliminary account of some
of the ideas presented here has appeared previously [14,15].

2 Genetic Neural Networks

This section contains three parts; the first presents our method for the
recursive description of connection matrices, the second outlines the method
for optimizing them, and the third compares the method with related work.

2.1 The Recursive Description of Connection Matri-
ces

The recursive description of connection matrices requires the following ba-
sic ingredients: (1) A method for indezing circuit elements or “neurons” by
specifying their position in a binary tree (a lineage tree) of circuit elements.
(2) A family of such trees parameterized by an integer specifying the prob-
lem size. (3) Recursion relations. Lineage trees are related to connection

Genetic Neural Nets 5

matrices in that a given element of a connection matrix is indexed by an
ordered pair of nodes in a lineage tree. Connection matrices as well as
lineage trees of different sizes are related by recursion relations. (4) Two
sets of parameters in the recursion relations. Decomposition matrices define
the relationship between connection matrices in successive generations of
a family. A set of basis values complete the determination of the connec-
tion matrix when a recursion relation is terminated after a finite number of
steps. The values of all of these parameters are obtained by means of the
optimization procedure discussed in Section 2.2.

To bring these ideas into focus, we begin with an example. Consider
the following matrix which represents the connections of a simple one-
dimensional chain of neurons:

/(010 0[/0 00 0)
0010/0000
000 1/0 000
0000|1000)
0000O0[(0100
0000O0|(0010
0000O0|{0O00O01
\0 0 0 0{0 0 0 O

Here a 1 in position (7,j) denotes a connection from neuron ¢ to neuron j.
Thus the matrix represents a chain of neurons in which the first is connected
to the second, the second to the third, etc. The matrix may be viewed as
four quadrants such that the upper-left and lower-right quadrants resemble
the entire matrix, the upper-right contains a single 1 in its lower-left corner,
and the lower-left quadrant is all zeroes.

We introduce an infinite family of matrices of the form (1), m1(n), and
refer to the family 7; as a template. The upper right quadrant of (1) is
a member of a second family 7. The pattern present in the families of
matrices 7, and 7, can be expressed recursively:

ni(n+1) = (" :E(an)(’);’(" th= ('fz(()") :))

The basis values 73(0) and 75(0) are not determined by (2); they must
be supplied separately. In this example, 71(0) = 0 and 7(0) = 1. To

Genetic Neural Nets 6

000 001 010 011 100 101 110 111

Figure 1: Lineage tree of neurons and their addresses.

expand the recursion relation (2), each of the four quadrants of a template
is expanded recursively unless n = 1, in which case the relevant basis
value is substituted for that quadrant. This notion of a template may
be generalized somewhat so that each quadrant of a template is expressed
as a linear combination of other templates with real-number weights.

In the Appendix we provide similar recursive descriptions for connection
matrices corresponding to two- and three-dimensional grids of neurons.

The 7,(n) notation enables us to represent entire connection matrices
recursively. We need, however, to produce recursion equations for individ-
ual matrix entries (the connection weights). To do so, we develop a method
of addressing, or indexing, each entry through the idea of a lineage tree of
neurons. Imagine the recursive iteration of Eq (2) run backwards, from
large to small matrices. At each stage, the set of neurons labelling the
rows or columns is divided into two groups labelled “left” and “right”. A
given neuron can be uniquely indexed by specifying a sequence of binary
decisions as to whether it belongs to the “left” or “right” group at each
stage. The sequence of divisions of neurons into smaller groups defines a
binary tree, the lineage tree, whose terminal nodes are the neurons. Each
neuron is now indexed by a string of 0’s (left) and 1’s (right) defining a
path through the tree. This string defines the “address” of the neuron and
is denoted by i1,...,4,. A generic element of this string will be denoted p
or g. Figure 1 shows a lineage tree of neurons and their addresses.

Let us rewrite Eq (2) using the lineage tree indexing of “neurons”. An
arbitrary element of a connection matrix is now addressed by an ordered

Genetic Neural Nets 7

pair of neuron addresses. For a connection matrix 7,(n), the entry denoting
the connection strength from the neuron with address ¢; ...?, to the neuron

with address j; ... 7, is T,1 inj1.in- 1D this notation,

=75 2073)

represents 22" equations, four of which are

1 2
11‘(2)’ny.n Jn :I“l(z)tn,.n]n
0 T ‘

12...8n,J2..Jn

T(l)

1.n,J10 Jn

where ¢, and j; each vary over 0 and 1 to produce the 2 x 2 matrix on the
right hand side. This equation is best treated as a special case of a general
recursion relation:

((b
T'i(ll)i g - (Z D T(z)tn,.n Jn ZbD Tf)’m” .Jn) . (3)
o ZbD th Anyj2..-dn 2 D th An,d2-edn

The matrix D“b appearing in (3) is called the decomposition matrix. It has
the value 1 if template T, occurs in 7, at quadrant (pg) and is O otherw1se
For example, in (2), the appropriate values of D are: Doo =1, Do 1 =1,
D1 =1, D¥? 'o = 1, and the rest are zero.
From (3) and the definition of D%, we can write the fundamental recur-

rq’
sion relation for connection matrices:

™. . . =y, D T®. n>1. (4)

t1...in,01.-0n 151 " 42..8n,2.:Jn)

This must be supplemented by the n = 0 connection matrices, T =
De. For the example of (2), D® =0 and D® =1.

It should be clear that (4) embodies a divide-and-conquer strategy for
connection matrices. Furthermore, because the right hand side of (4) is
a sum, the superposition principle for designing connection matrices is in-
cluded if D;f; is permitted to assume values other than 0 or 1.

The recursive description presented above is limited to square matrices
of size 2% x 2%, corresponding to “neuron” indexing by complete, balanced
binary trees. We will next show how this limitation can be removed.

Genetic Neural Nets 8

Consider the effects of allowing more general lineage trees. For example
consider the class of Fibonacci trees, denoted F(n). These are parameter-
ized by an integer n and have the form F(n) = (F(n — 2), F(n — 1)) with
F(1) = F(2) = terminal nodes. Here we have used a composition operation
(,) to build trees out of smaller trees: (L, R) denotes a tree composed of a
root node, a left branch leading to left subtree L, and a right branch leading
to right subtree R (see figure 2). If lineage trees are Fibonacci trees, the
connection matrices will have sides of length 1, 2, 3, 5, and 8. Sizes 3 x 3
and 5 x 5 are given as examples:

TOO,OO TOO,OI TOO,lO TOO.]IO TOO,I 11

TO,O T0,10 TO,ll TOI,OO TOI ,01 TOI,IO TOl,l 10 TOl,lll
TIO,O TlO,lO TlO,ll TIO,OO TlO,Ol T10,10 TlO,llO TlO,lll
Tll,O Tll,lO Tll,ll T110,00 TllO,Ol T110,10 TllO,llO TllO,lll

N0 Tirer Tinge Tiae T)
(5
It is also possible to consider multi-parameter tree families, each with a
corresponding family of connection matrices.

Removing the restriction to complete, balanced binary trees has the ef-
fect of allowing termination of paths at different depths in the tree. Then
the row and column labels of a connection matrix would have different
lengths, so equation (4) could not be applied. This problem can be cir-
cumvented by formally extending the shorter string using multiple copies
of a new symbol ‘2’, until its length equals that of the larger string. Equa-
tion (4) is again applicable, although the decomposition matrix must be
augmented by parameters D3 and D3}

As a further refinement we may set T{® = 1, where € is the empty
string, and we may add a final ‘2’ to each string and set D = 6,,D®),
where 6, is the Kronecker delta. In this manner the basis values become
part of the decomposition matrix. Thus the recursion parameters, the basis
values, and the new parameters D;g and Dgg can all be aggregated into one
4-index object (D2?).

Our basic equation (4), which now accomodates general lineage trees,
can be rewritten with the recursion expanded as

() — a,bo bo,b1 bp—1,bn
noil-'-imjojlmjn - Z Dio,jo Z Di: WJ1 e E Dimjn (6)
bo bl bn

Genetic Neural Nets 9

10/ 1

1107111

Figure 2: Fibonacci trees, defined by F(n) = (F(n—2), F(n—1)), forn = 4
and n = 5. Note that F(5) contains a copy of F(4) on its right side, and a
copy of F(3) on its left side.

We observe that for ¢ and j fixed, equation 6 is a sum (over b,) of matrix
products, and a given term in the sum over {bo...b,} is the (¢,)" element
of a tensor product.

Equation (6) is fundamental in defining the meaning of the templates
and lineage trees. Through the recursive division of templates into quad-
rants and of sets of neurons (contained in a lineage tree) into left and right
subsets, the formalism embodies the principle of divide-and-conquer. The
summation makes it possible for several networks to be superimposed, a
technique generally useful in network design.

The recursion equation approach to Genetic Neural Networks has great
expressive power. It allows networks to contain arbitrary interconnections,
including cycles. It also encompasses replication, as demonstrated in the
Appendix, suggesting applications to VLSI design where replication and
hierarchy are fundamental.

2.2 Learning and Network Optimization

Current methods of learning with circuits or neural networks generally in-
volve minimization of an objective function Ei,q which characterizes the
task to be learned. Standard techniques for accomplishing this include the
Boltzman Machine [5], back-propagation [19], and Master/Slave nets [11].
In applying these methods, one customarily uses the connection matrices

Genetic Neural Nets 10

T as independent variables. When recursion equations for genetic neural
networks are used, however, it is the D-matrices which are the indepen-
dent variables, and the objective function depends on them through the
connection matrices: Fiask = Epask(T(D)).

With this understanding, we can use simulated annealing or, if the
connection matrix is of “feed-forward” type, back-propagation to search
for the optimizing set of D-matrices.

For these optimization methods, T' depends not only on D but also on
the lineage tree. If a fixed family of lineage trees is chosen, depending
for example on a single size parameter or “generation number” n, then
Eiask = Eiask(T(D,n)). The goal is to minimize this quantity for some or
all very large values of n, but only small values of n are available in practice
due to the expense of optimizing the objective function for large connection
matrices. But evaluating E;,q once is much cheaper than optimizing it and
can therefore by done for much larger values of n, if there is reason to believe
that T'(D,n) might scale well.

For this reason we optimize the task performance on the first g genera-
tions of small networks. Thus we optimize

g
Eta.sk = Z Etask(T(D, n))’ (7)
n=1
so that a single D is forced to specify T at a variety of different sizes,
and then we evaluate Ey o (T(D,n)) for n > g. It is a remarkable fact
that this E(T(D,n > g)) can still be very low; in other words, that for
optimization purposes equation (7) can approximate

G>g
Etask = Z Etask(T(D’ n)) (8)
n=1
This can only be done by finding and using scaling relationships, expressed
in our case by the decomposition matrix D.

We wish to discourage learning by large scale memorization, i.e. by the
formation of large look-up tables, because such procedures do not allow
generalization. To control the amount of information which may be stored
in D we add a parsimony constraint to Ei,sk. Several measures of parsimony
are possible; the one which we have adopted in this paper is

Eparsimony = Y, V(D2 (9)

abpq

Genetic Neural Nets 11

where V (D), the parsimony cost of each template entry, has three compo-
nents: a cost A, if D is nonzero, a cost A, for each bit in a binary expansion
of D, and a cost A3|z| for an extra factor 27, where z is an integer, in the
expression for D.

For efficiency of network evaluation, feed-forward networks may be en-
couraged by penalizing all but the feed-forward connections:

g
Efeed—forwax'd(D, g) = Z Z IT‘%J(D’ n)" (10)
n=1 2]

feedback

This term is of the same form as Ei,q, but is not nearly as task specific,

depending only on the assignment of neurons to successive layers in the

network. In our experiments, however, we simply truncated feedback con-

nections to zero rather than penalizing them. Equation 10 could be mod-

ified to include all connections, thereby introducing a general sparseness

constraint that favors less costly connectivity patterns in the final network.
The entire objective function employed in Section 3 is of the form

E(D) = Etask(Da g) + Epa.rsimony + ﬂEfeed—forwud(Da g)a (11)

which depends on g, A, A2, A3 and u, and is to be minimized by simulated
annealing.

2.3 Discussion

There are notable differences between the optimization method just de-
scribed and others currently in use. The Boltzman Machine learning rule,
for example, is a local rule involving symmetric connections. Symmetric
connections imply that there is an additional energy function, not present in
our formulation, which depends on neuron activities rather than on synapse
strengths and is minimized as the network runs. The back-propagation
learning rule is a local rule originally restricted to feed-forward connec-
tions. Equation (6) can express asymmetric and non-feed-forward connec-
tions, and we will not impose an energy function which is minimized by
neuron activities, so these restrictions on connectivity do not apply to Ge-
netic Neural Nets.

Genetic Neural Nets 12

Genetic Neural Nets as described by equation (6), on the other hand,
are not local. Non-local learning rules are required to express the structure
which is present in the network.

Back-propagation has difficulty with generalization (see e.g. Denker et.
al. [2]) and is very costly, if it does not actually fail, when scaled up to
larger circuits [17]. We think that the basic reason for these scaling and
generalization problems is the unstructured nature of the networks that can
result from back-propagation. The use of a concise reparameterization of
the space of connection matrices favors structured nets which scale.

Both back-propagation and the Boltzman Machine involve gradient de-
scent in the space of connection matrices for a neural network, but back-
propagation may be the more practical algorithm, at least when it is re-
stricted to feed-forward nets. (The case of non-feed-forward networks is
dealt with by Lapedes and Farber [11] and by Pineda [16].) To compare
our method to back-propagation, which allows one to compute dT/dt
dEscore/dT efficiently for a feed-forward network, one need only obtain
dT/dD analytically from equation (6) and follow gradients:

Q x aESCOl'e — Z aEscore@

dt 8D 8T 8D’
Our experiments with this gradient descent method were much less suc-
cessful than the experiments with simulated annealing reported in Section
3, owing perhaps to very local minima introduced by the parsimony con-
straint. »

There is a body of recent work in theoretical computer science which
supports the idea that parsimony is important to machine learning. We
cite the work of Angluin [1], Haussler [4], and Rivest and Schapire [18] We
also mention the hand-designed structure in the networks of Scalettar and
Zee [20] which leads to successful generalization. We expect parsimony and
structure to be of increasing importance in studies of machine learning,.

We use the genetic analogy in a fundamentally different way than does
John Holland and colleagues in their work on “genetic algorithms” [6].
For Holland, genetics provides new ideas for searching, such as crossover,
whereas we focus on parsimonious rules for constructing nets. We never-
theless expect that our approach would be enhanced by the use of crossover
and his by more extensive use of parsimony.

Genetic Neural Nets 13

3 Experiments with the Continuous Code
Problem

We next describe the results of numerical simulations which were carried
out to test the ideas presented in the previous section. We consider the
following problem [14], illustrated in figure 3. Given a unary input z, for
example a one-dimensional image with a single spot at position z, the task is
to compute a compressed code for z in such a way that nearby z’s have codes
which are “nearby” in the sense that they differ by only a few bits. In other
words, a small change in the input number corresponds to a small Hamming
distance between the two output codes, a small Hamming distance between
two code words corresponds to a small distance between the corresponding
numbers (graceful degradation under codeword corruption - a kind of fault-
tolerance), and in general the unsigned difference between two numbersis to
be a monotonic function of the Hamming distance between the two codes.

This defines a “continuous code” problem which requires optimization
of a feed-forward neural network with N input neurons equally spaced on
the unit interval, A = 2log N output neurons, and no interneurons, so that
two unary inputs which are geometrically close to one another will produce
two outputs which are close in the Hamming metric. The objective function
- for this task therefore relates geometric distance to Hamming distance:

i—jp 14 ak
N I —ZZ(%:‘-%J’) (12)

a=1

Etask(0) = f: [

i,J=1

where o,; € [0,1] is the value of the output neuron indexed by a when
the input neurons are all clamped to zero except for the i** one, which
is clamped to one. If only the i** input neuron is on, the column o,; de-
scribes the net’s output and is thus the code word corresponding to input
¢. Likewise, each ouput neuron may be thought of as a “feature detector”
in which case the row o,. is the feature to which it responds. Equation (12)
is quartic in 04;.

Because there are only N legal inputs to this network, the problem of
generalization is not nearly as difficult as it could be for some other tasks.
However it is definitely nontrivial, since we will train the network for sizes
N (and A = 2log N) which are far smaller than those for which we will

Genetic Neural Nets 14

N Inputs . .
Connection Matrix T

A Outputs

Output Matrix (continuous code)

® Neuron off
@ Neuron on

Figure 3. The continuous coding task. A connection matrix of the form
shown generates a feed-forward network. For each input i the network out-
puts are recorded in a column of the output matrix (or code matrix). The
continuity of the output matrix is numerically evaluated by an objective
function. Nearby values of i should generate nearby output codes if the
objective function is to be minimized.

Genetic Neural Nets 15

test the network. In fact the sizes of successive generations, indexed by an
integer n, will be determined by N = 2".

The energy function Fi,(0) in equation (12) becomes a function of T
rather than o once we determine o(T'). This involves running the network
on each input 7; that is, the input neurons are clamped to zero except for the
i** one which is set to one. Then neuron values s; are repeatedly updated
until they all stop changing. Various update rules can be employed; we use
the update rule for discrete neurons

si(t +1) = {1+ sgn(3 Ty (2] (13)

Whether the update is done synchronously (as in this equation) or asyn-
chronously does not matter for a feed-forward net. In this way we obtain
E.asx(T') which together with equation (6) defines Eyaa(T(D, n)) which may
be substituted into equation (7). Then the entire objective function E(D)
is given by equation (11). We optimize E(D) by simulated annealing [10]
using the Metropolis method [13] for updating each decomposition matrix
element. The temperature schedule is determined by an initial temperature
thigh, & constant factor freduce for reducing the temperature, a fixed number
of accepted local moves required at each temperature, and an upper bound
on the number of rejections allowed at a temperature which, if violated,
terminates the run. Initially all decompostion matrix entries D;Z are zero.
Simulated annealing involves generating moves which alter the tem-
plates. A single move consists of changing one D;g; a sequence of moves
repeatedly runs through all possible values of indices a, b, p, g. For the
purpose of generating possible moves, each nonzero D;g is represented
in binary numbering as D;S = m X 2% = £bibi_1...bo X 2°. The num-
ber of mantissa bits, k + 1, varies and contributes to the parsimony cost,
V(D;g = A1 + A2k + A3|z|, where Aq, Az, A3 are input parameters.
Initially D;g is zero so V(D;S) = 0. The move from zero is to +1 x 2°,
+1x 272, or £1 x 274, with all six choices equally likely. Subsequent moves
serve to increase, decrease, or maintain the precision k, or set D;g =0, all
with equal probability. For example, if D;g = 101, x 273, the precision is
increased by moving to 1011, X 27* or 1001, x 274, the precision is decreased
by moving to 10, x 272 or 11, x 272, and the precision is maintained by
moving to 110, x 272 or 100, x 273, Note some of these moves create trailing

Genetic Neural Nets 16

zeroes in the mantissa; this is necessary to ensure there is a path to any
number.

The lineage trees used are shown in figure 4; they contain N = 2" input
neurons and A = 2log N output neurons.

We record here the values of various parameters used in the optimization
experiments. There were three families of decomposition matrices (index
a and b ranged from 1 to 3 in D2); this number was chosen to minimize
computing costs and as a further hard parsimony constraint on the solu-
tions. These three families were trained on generations 2 through 5 and
tested on generations 6 through 8; the temperature started at thign, = .05
and dropped by factors of frequce = .8 each time 500 update changes were
accepted, stopping only when 20000 rejections were required to get these
500 acceptances; the parsimony weights were A\; = .00032, A, = .000005,
and A3 = .000005.

At any value of p we can compare the Genetic Neural Network method’s
performance to simulated annealing considered as an optimization method
operating directly on the space of all one-layer feed-forward connection
matrices. The simplest experiment involves comparing GNN and simulated
annealing for the sequence of slightly different tasks parameterized by p
(equation (12)) by computing the ratio of scores

Egenetic(P) n)
<Econtrol(p .t))

where the control score is averaged over three independent runs. Twelve
runs for each of several values of the task parameter p are shown in figure 5.
During the GNN simulated annealing procedure, genetic descriptions are
sometimes found which scale better than any later configuration, but are
thrown away. This phenomenon may be called “overlearning” and we do not
entirely understand it, though it is similar to many dynamical systems in
which a trajectory will linger near one attractor before settling into another.
To take advantage of this phenomenon, we test the genetic description on
size n = 6 (one size larger than the training set) after each 500 update
acceptances. We continually keep the genetic description with the lowest
score so far on size n = 6. This stored decomposition matrix is the output of
the GNN optimization procedure; the decomposition matrix chosen is often
the last one reached in the course of annealing. Since the evaluation on size

17

Genetic Neural Nets

balanced tree
with 32 leaves

Figure 4. The lineage trees used in the experiments consist of two sub-
trees: a balanced binary tree of size N for the input neurons and an almost
balanced binary tree of size A for the output neurons. An almost bal-
anced tree of size M consists of almost balanced subtrees of size [M/2]
and |M/2]. Trees for A = 6 and A = 10 are shown.

Genetic Neural Nets 18

n = 6 is performed very infrequently compared to the training evaluation
on sizes n = 2 through 5, it adds almost no computational expense.

The average of control experiment scores is empirically well-behaved:
the associated standard deviation is only a few percent of the mean. As
shown shown in figure 5, however, the genetic scores vary by a factor of
as much as thirty between good runs and bad runs, both of which happen
frequently. To filter out the worst runs we consider a set of four successive
runs and choose the output of the genetic learning procedure to be the best
decomposition matrix in the set, as judged by its performance at n = 6. It
is this filtered genetic description which we examine for scaling; its relative
score, averaged over three sets of runs, is

(min4 runs Egenetic(p, n)>3 sets of runs
R(p,n) =
(p) (Econtrol(pa ’I’L))g runs

This quantity is shown by the dotted line in figure 6 for generation n = 5,
the last generation for which the decomposition matrices were trained, and
for which N = 32 and A = 10. The associated variance, and the relative
scores for each run
m1n4 runs Egenetic(p, n)
(Econtrol(p, n))3 runs ’

are also shown as a function of p in this figure. Next, the recursion relation
(6) is used to extrapolate far beyond the training set to generation n = 8,
where the network size parameters are N = 256 and A = 16. The resulting
large network has had no training at all on any inputs of size N = 256, and
yet performs well as indicated by the solid line in figure 6, with associated
data points and variances. We note that the comparison with the control
experiments is best near p = 0 and p = 1, and is not as good near p = .5.
This may indicate that the solution is intrinsically more complicated near
p = .5. We also report that, as the size n is increased past 5, the p = .5
control scores decline slowly and the absolute GNN scores rise very slowly.
Thus there is nontrivial scaling behavior even for p = .5.

One may also study generalization along the scale axis in more detail as
in Table I, where (miny runs Egenetic(p, 7)) and (Econtrol(p, 1)) (each averaged
over three trials, as before) are displayed as a function of n, for p = .1. At
p=.1 and n > 5 the control scores are relatively flat, so we report genetic
scores for sizes considerably beyond the sizes for which we can afford to do

log (genetic score/<control>)

Genetic Neural Nets 19

@WN Performance - Unfiltered

1 N I v i v I

X
X
X
X
X X
X
x o
X X
” X %
% . o
§ ; 8
¥
o g g 8
g
i X
1 1 N 1 N 1 " 1 1
0.0 0.2 0.4 0.6 0.8 1.0
p

Figure 5. The ratio of scores of genetically optimized nets and of con-
trol experiments involving simulated annealing of unstructured nets, as a
function of a parameter p appearing in the continuous coding task. Control
experiments are averaged over three runs. For each p, twelve GNN runs
are shown. Crosses show results for n = 5, the largest training size for
the genetic optimization (but very infrequent evaluations are also made at
size n = 6 to prevent overlearning, as described in the text). Open circles
show results for n = 8, where the network is obtained by pure extrapolation
without any further training,.

<min genetic score>/<control>

R =

Genetic Neural Nets 20

@AW Performance - Filtered

r T T T T T v T T T

0.0

0.2 0.4 0.6 0.8 1.0
P

Figure 6. The ratio of filtered scores for Genetic Neural Nets and of the
control experiments as described in figure 5. All GNN experimental results
are averaged over three sets of four runs; within each set of four runs the
best result for n = 6 is selected. This procedure reliably filters out the poor
runs present in figure 5. Dotted lines show results for n = 5, the largest
training size for the genetic optimization. Solid lines show results for n = 8,
demonstrating scaling without further training or filtering.

Genetic Neural Nets 21

the control experiments. The relatively flat GNN scores extend well past
the training set size; this demonstrates successful scaling. In addition, it is
possible to come considerably closer to the control scores by using a slower
GNN annealing schedule than that used in Table I and figures 5 and 6.

On a Multiflow Trace 7/200, the computing time for a single run of
the control experiment for n = 8 was 4.4 CPU-hours, whereas the GNN
method required an initial investment of 18.6 hours (including four runs
for the filtering step) to get the recursion relation for sizes n = 2 through
5, and an extra half second to extrapolate the recursion relation to obtain
a connection matrix for n = 8. The initial GNN investment time may
not yet be minimal, because the continuous coding score energy is com-
pletely recomputed at each move in the GNN procedure, but incrementally
recomputed for each move in the control experiment. It is possible that
incremental GNN evaluation would be faster. Nevertheless, for larger sizes
the GNN method becomes much faster than the control method because
only the relatively small extrapolation time changes; it is not necessary to
recompute the recursion relation.

Table I shows further comparative timing data which demonstrate a
great advantage for the GNN method: not only do the asymptotically GNN
timings increase linearly in N = 2", compared to the control timings which
are increasing quadratically, but there is an additional constant factor of
about 10? which favors the GNN timings. The control experiment timings
are minimal, since they assume that the required number of acceptances
and the allowed number of rejections in the control experiment’s annealing
procedure scale linearly with N, which is an optimistic assumption. Also,
unlike the control timings, the GNN timings are much smaller than the
quadratically increasing time required to perform a single evaluation of the
energy function; thus only the time to compute the network, and not the
time to exhaustively test it, is reported. All reported timings are averages
over three runs. We conclude that the GNN learning method is asymptot-
ically much faster than the control method.

Genetic Neural Nets 22

[Table I: Scaling and Timing, p = .1
Measured || Size n, N = 2" and A = 2n
Quantity 2-5 6 7 8 9
GNN: '
score .1381 + .0012* .1431 £+ .0023 .1466 + .004 .1479 4+ .0034 .1477 + .0031
timing 16766° 1+ .05 .2+ .05 .5+ .05 1.2 £ .05
Anneal T:
score .1364 + .0001* .1394 + .0001 .1400 #+ .0001 .1400 £+ .0001 ¢
timing 214 £ 25 793 + 48 3548 £ 136 15902 + 123 64000%°
Measured || Size n, N = 2" and A = 2n
Quantity 10 11 12 13
GNN:
score .1474 £+ .0033 .1466 £+ .003 .1462 + .0026 .1460 + .0023
timing 2.7+ .05 6+ .17 129+ .1 28.17 £+ .05
Anneal T:
score ¢ ¢ ¢ ¢
timing [c c c

@Score is for size 5.

5Multiply by four to account for filtering. Includes training on sizes 2-5.
¢Not computed due to expense.

dEstimated.

All timings in seconds.

We present an example of a decomposition matrix and its n = 3 and
n = 6 output matrices o,; which were found by our optimization procedure.
The example is for the case p = .1 and has scores of .0971 for n = 3 and
.1423 for n = 6, which are good. For clarity of display, blanks indicate
matrix entries with value 0. Forn =3, o is

1111
11 11
1111

1 11
1111
111 1

Genetic Neural Nets 23

and for n = 6 it is

(11111111 11111111 1111111111111111
1111 11111111 1111 1111 1111 1111 1111
1111111111111111 1111111111111111

11111111 1111111111111111 11111111
1111 1111 1111 1111 1111 1111 1111 1111
11111111111111111111111111111111

1111111111111111 1111111111111111
1111 1111 1111 11111111 1111 1111 1111
1111111111111111 1111111111111111

11111111 11111111 11111111 11111111
1111 1111 1111 1111 1111 1111 1111 1111

\ 111 11 1111 111 111 11 111 111 1111 11 111)

In agreement with results of our earlier investigations [14] at small p, all
of the features (the rows of these o matrices) are Walsh functions. (To
make this identification we must replace zero entries with -1, or use out-
put neurons with values +1 instead of 0 and 1.) The Walsh functions are
a standard orthogonal set of basis functions [3] used in the Walsh trans-
form, analagous to trigonometric basis functions for the Fourier transform.
Algorithms for computing the Walsh functions are given in [3] and below.

Extending the 7,(n) notation of equation (2) to include the 3 x3 matrices
D2, where the * subscripts take values ‘0’,‘1’, or ‘2’ as described in section
2.1, we may express the learned recursion relations as

0 010
o(n+1)=| 1(n) —7m(n) 0|0
0 0 | 0
[—71(n) %7‘1(7’&) 0
nn+1)=| nn) 7n(n) 0 v
—ni(n) —2n(n) | 311(n) (14)
0 0 0
r(n+1) = %Tz(n) —372(n) | T2(n))
0 —47y(n) | 272(n)

for all n > —1. Also 7,(—1) = 1, for all a.

Genetic Neural Nets 24

Here the 3 x 3 matrices are to be converted to 2 x 2 matrices in accordance
with the shape of the lineage tree as well as its maximum depth, n, in the
manner determined by equation (6). The horizontal and vertical bars in
equation (14) separate the 2 x 2 matrices from the terminating values D2,
Dg, and Dg3.

Note the great simplicity of these recursion relations. They may be
understood fairly easily: the 7o family of matrices, which serves as the final
network connection matrix, is specialized to eliminate all but the feed-
forward connections from input neurons to output neurons and thereby
gain parsimony. The Walsh functions are implicit in the expression for

11(n 4 1), for they are generated by the tensor product
Ty imrovin = My i Mig oy - - - Mi g
where
1 -1 -1
-1 -1 1
-1 1 -1
1 1 1

-1 1
M=() 1), MOM=

[
-

which is, in our notation,

—-ni(n) m(n)| O
nn+1)= ni(n) mn(n)| O
0 0 |m(n)

for N = A = 2". The remaining entries of 7, and 7, may be regarded as
adjustments for the fact that A is neither large nor a power of 2 in the
continuous coding problem.

A second example illustrates the dominant GNN behavior for p > .8.
This set of solutions generates output matrices which appear to be nearly
optimal for p = 1, and are not optimal for p < .9 but score well enough and
are very simple. We exhibit one particularly parsimonious set of recursion
relations which was learned for p = 1. The n = 3 output matrix o is

1

111

1111
11111
1111111
11111111

Genetic Neural Nets 25

and larger sizes also result in triangular matrices, scaled up. The triangular
o matrices show that the network computes a kind of unary code in which
the position of the single input neuron which is turned on is linearly mapped
into the position of the boundary between blocks of on and off output
neurons. The recursion relations themselves are

To(n+1)=
ni(n) 7(n) |0
nn+1)= 0 8n(n)|{o
0 T2(n) |0 (15)
Tz(n) %Tg(n) 0
ra(n+1)=| 7m(n) m(n) 0
T2(n) T2(n) | —672(n)

for all n > —1. Also 7,(—1) = 1, for all a.

Once again the 7o family is specialized to eliminate all but feed-forward
connections. Now 7 is specialized to create rectangular blocks of negative
matrix entries, and 7, is specialized to make triangular submatrices. (The
thresholding operation for the output neurons sent zero or positive input
sums to +1 output values and negative input sums to zero output values;
the learned solutions rely on this treatment of the special zero-input-sum
case.) The coefficients 8, 1, and 6 could be set to unity without affecting
performance.

4 Extensions of the GNN Theory

The purpose of this section is to outline several fundamental extensions of
the GNN theory presented in Section 2. The experimental investigation of
these ideas is left to future research.

Genetic Neural Nets 26

4.1 Structured Trees

The families of lineage trees defining the address of a neuron have had a
regular structure, but their structures have been imposed as part of the
task. Can these structures be learned, and what would be gained by doing
so? The principal advantage would be that the optimization procedure
would have greater freedom to choose its own mapping of the problem onto
circuit elements, i.e. to develop its own representation of the problem.

The objective functions of Section 2.2 depend on the decomposition
matrices and on the lineage trees. What we shall do here is provide a
recursive description of families of lineage trees in terms of new parameters
analogous to those occurring in the decomposition matrices.

The nodes in an infinite binary tree can be indexed, or addressed, by
strings ¢; ...%, of 0’s and 1’s. To each node in the tree we assign a variable
L;,..i, which is 1 if that node occurs in the present lineage tree, and zero
otherwise. L;, . i, will be determined by a set of real weights W;, ;.. If
Wi, ..in is among the N largest weights in the tree, then L; ; =1 and the
i node is in the tree. Otherwise it is zero and the node is not in the tree.
This procedure can be expressed as the minimization of

B D) = (3 X Liin NP =3 3 LiyiWasn (16)

n=0 t1...in n=0t1...tn
In analogy with equation (4) for the decomposition matrices, we can
now write a recursion relation for the weights.

W'a = ZbB=l w?bWb

1.0 1 fg.dpn (n’ Z 1) (17)
The set of weights which specify the desired lineage tree can be taken to
be W ,; Asin the case of the number of connection strength templates,
if B is small then the lineage tree is structured.

We give an example. Consider the class of almost balanced lineage
trees used in our experiments and described in Figure 4. Figure 7 gives
an assignment of weights W! ; to the infinite binary tree which gives this

class of lineage trees. The figure also shows a set of weights W? ; which

are needed in the recursion relation for W} ; . To produce these weights,
one uses equation (17) with the hand-designed coefficients

Genetic Neural Nets 28

Similarity Matrix. The effect of S,. on the optimization procedure will be
expressed by a new contribution to the objective function. We pick this to
be of the form:

EFSM(D,S) = ;V Z z DabDachc (19)
be pga

substitutions contexts

This has the following effects: Sj. increases when templates b and ¢ are
in competition for the same position, and template ¢ will be introduced
into competition with template b when S, > 0. The efficacy of this new
term may be measured by varying its Lagrange multiplier and observing
the effect on performance.

Our experiments so far have not involved sufficiently many templates
to justify the use of the Function Similarity Matrix. It may be thought of
as a means of organizing a large library of templates for use in learning.

4.3 GNN Summary

As augmented by structured trees and the function similarity matrix, we
may summarize the full GNN approach to learning as follows.
WTE =, DA TP, =iy in; i =is...i)
(z)Wa % E wabW
choose the largest N weights W} to get a lineage tree
(20)
(3)E(D) = denemtions n Etask(T(D, n)) + Zabpq V(D;’g

v Zbc qua quD;;Sbc

The unstarred expressions have been tested by numerical experiments whose
results are reported in this paper. The findings on the test problem consid-
ered may be summarized as follows: (a) genetic neural nets permit general-
ization by scaling in that nets trained on small problems continue to score
well on much larger versions of the same problem, and (b) the computation
with structured nets is more efficient than direct optimization of connection

Genetic Neural Nets 27

1/2 x 1
1/8 x 2 2 3

1/32 x 4 4 6 6 5 5

1/128 x
8 8 12 1210 1014 14 9 913 1311 1115 15

Figure 7. A portion of the infinite structured lineage tree determined
by weights generated in equation 17 and 18.

wel =1/2, wi'=1/2, wi?=1/2, W!=1

w=1, wB=1, W2=0 18
WE=1/8, w®=1/4, W3 =1/4 (18)
All other w;b are zero.

4.2 Function Similarity Matrix

Consider a collection of templates. The operation of substituting one tem-
plate for another in a decomposition matrix would, with high probability,
be counter-productive (result in a lower score). However, if two templates
b and c are known on the basis of past experience to perform a similar
function, then the substitution of ¢ for b should improve the score with
probability approaching one half. How can we discover and use such simi-
larities?

If a decomposition matrix element Dgg is nonzero, the collection of in-
dices a, p, g, specifies a place where b can occur. We call the triple a,p, q a
context of b. If ¢ can be substituted for b in one context, we propose that
c is similar to b and can also be substituted in another context.

We introduce slowly changing variables Sy, € [0,1] which measure the
degree of similarity between b and ¢. The matrix S is called the Function

Genetic Neural Nets 29

matrices to a degree that increases with problem size. Equation (20) is our
present formulation of Genetic Neural Networks, and it is subject to change
in response to new experiments.

Appendix: Recursive Descriptions of Grids of
Dimension 2 and 3

In the following recursion equation, 71(n) specifies the connection matrix
for a two-dimensional toroidal grid whose neurons are numbered in the
hierarchical zig-zag order shown in figure 8(a). The dimensions of the grid
are 2217/2] x 92[n/2]

The relationship between the templates is shown as a graph in figure
8(b). a and b are independently controllable weights on the final grid con-
nections in the z and y directions, respectively, allowing one to describe
anisotropic, homogeneous grids. The recursion equation is

n(n+1) =

ra(n) + 7a(n) + 75(n), 74(n) _
(74(n), 2(n) + 73(n) + 75(n)) ,» 1(0)=0

m(n +1) = ()) 3(0) = 0

m3(n)

nnrn)= (7), n =0

Tg(n)

(21)
) , 74(0) =a

75(n)

r(n41) =

(7%
ra(n+1) = (ms(n) ?
(ndr

8) r5(0) = b

for all n > 0.

A similar set of templates specifies three-dimensional toroidal grids as

Genetic Neural Nets ' 30

1 »>2 »>5 —»6 — 1
v A\ ; \ 4
3 >4 »7 »8' >3
\ \4 v
9 ——»10 13—»1 4—>9
\4 \4
11 12— »1 5——31 6—>»11
\ 4 4 \4 \4

1 2 5 6

Figure 8. (a) 2-d toroidal grid: connection pattern and ordering of sites.
Note periodic boundary conditions for 4 x 4 grid. (b) 2-d grid: graph of
dependencies between templates.

Genetic Neural Nets 31

Figure 9. (a) 3-d grid: local ordering of sites. (b) 3-d grid: template .
dependency graph.

Genetic Neural Nets 34

[15] Eric Mjolsness, David H. Sharp, and Bradley K. Alpert. Recursively
generated neural networks. In Proceedings of the IEEE First Annual
International Conference on Neural Networks, IEEE, 1987.

[16] F. J. Pineda. Generalization of backpropagation to recurrent and high-
order networks. In Proceedings of the IEEE Conference on Neural In-
formation Processing Systems - Natural and Synthetic, IEEE, Novem-
ber 1987.

[17] David C. Plaut, Steven J. Nowlan, and Geoffrey E. Hinton. Ezperi-
ments on Learning by Back Propagation. Technical Report CMU-CS-
86-126, Carnegie-Mellon University, 1986.

[18] Ronald L. Rivest and Robert E. Schapire. Diversity-based inference
of finite automata. In 28th Annual Symposium on Foundations of
Computer Science, 1987.

[19] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Inter-
nal Representations by Error Propagation, chapter 8. Volume 1, MIT
Press, 1986.

[20] R. Scalettar and A. Zee. Perception of Left and Right by a Feed For-
ward Net. Technical Report NSF-ITP-87-49, Institute for Theoretical
Physics, Santa Barbara, 1987.

*U.S. GOVERNMENT PRINTING OFFICE: 1988-0-573-034/80019

