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Partial evaluation aims at specializing a program with respect to part of the input
that is known. This process yields a new program which is a specialized version of
the original program. This specialized program is expected to be more efficient than
the original one.

In practice, there are two apparently independent strategies of partial evaluation:
on-line and off-line. An on-line partial evaluator processes a program in one single
phase, whereas an off-line partial evaluator performs some analyses before specializing
the program.

Regardless of strategies used, most existing partial evaluators have the limitation
that they only specialize program with respect to actual values. Specializing programs
with respect to static properties about the input (such as signs, ranges, and types) is a
natural extension of current partial evaluation and significantly contributes towards
adapting partial evaluation to a larger variety of applications. Although work has
been done in this direction, there has not been a formal treatment of this idea, and
the systems developed thus far do not provide users with the capability of introducing

static properties into the partial-evaluation process.




This thesis introduces the notion of parameterized partial evaluation — a generic
form of partial evaluation parameterized with respect to user-defined static properties.
This generality is accomplished by introducing an algebraic framework that enables
modular definition of static properties and systematic incorporation of these proper-
ties into the partial-evaluation process. Consequently, new kinds of partial-evaluation
applications become possible through the introduction of various static properties.

Not only does the framework guarantee the safety of the partial-evaluation process
with respect to the static properties introduced, but it also defines a formal relation-
ship between on-line and off-line partial evaluation. Moreover, it enables us to prove
the correctness of partial evaluation with polyvariant specialization (in which any
function in a program can have more than one specialized version), which has not
been done before.

Finally, the effectiveness of parameterized partial evaluation is demonstrated through
an implementation for a first-order s;trict functional language with data structures.
Some applications are experimented to show the qualitative improvement of the resid-

ual programs produced using the parameterized partial evaluator.
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Chapter 1

Introduction

1.1 Partial Evaluation

Partial evaluation is the process of specializing a program with respect to part of the
input that is known. It yields a new residual program which is a specialized version of
the original program. A faithful partial evaluator must satisfy the following criterion:
Suppose that P(z,y) is a program with two arguments, whose first argu-
ment z is known (i.e., static), but whose second argument y is unknown

(i.e., dynamic). Specialization of P(z,y) yields a residual program P, (y)
such that:

Vy, P(z,y) = P(y)
provided the evaluation of both P(z,y) and P.(y) terminates.

In theory, partial evaluation can be viewed as a realization of the S™ theorem in
recursive function theory [Kleene, 1952]. In practice, a partial evaluator is a source-
to-source program transformation, and is expected to produce more efficient programs
[Jones, 1990]. The partial-evaluation phase can be seen as a staging of the compu-
tations of a program: expressions that only operate on known data (called the static
ezpressions) are executed during this phase; for the others (called the dynamic ez-
pressions), residual expressions are generated. This staging improves the execution

time (called the run-time) of the residual program compared to the original program.

3




4 CHAPTER 1. INTRODUCTION

Two strategies of partial evaluation can be identified in practice. There are called

on-line and off-line partial evaluation respectively.

1.1.1 On-Line Partial Evaluation

An on-line partial evaluator processes a program in one single phase (e.g., [Haralds-
son, 1977,Weise and Ruf, 1990]). It uses information available in the current context
to make a decision about how to partially evaluate an expression. Thus, given a
conditional expression

if b then 3+5 else 4%7 s
if b is found to be static in some context, partially evaluating the conditional in that
context may yield the residual expression 8. If, under another context, b is found to
be dynamic, then both branches of the conditional will be partially evaluated, the
conditional construct will be made residual, and the residual expression produced is:

if b then 8 else 28.

1.1.2 Off-Line Partial Evaluation

In contrast to on-line partial evaluation, an off-line partial evaluator (e.g., [Jones
et al., 1989,Bondorf, 1990,Consel, 1990b]) divides the task of partial evaluation into
two phases: an analysis phase followed by a specialization phase.

The main analysis performed is binding-time analysis (therefore, off-line partial
evaluation is also called binding-time-based partial evaluation.) It determines which
expressions within a program can be evaluated by the partial evaluator, given a
known/unknown division of the program input. Using binding-time analysis, we can
annotate each expression in the program as either static or dynamic. The static
expressions are evaluated at partial-evaluation time (i.e., specialization time), and
the dynamic expressions are evaluated at run time.

Determining exact binding-time information is undecidable, so in practice, binding-

time analysis is performed by an abstract interpretation which approximates the de-
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sired property. Consider again the conditional expression given in the previous sec-
tion. Even though b may be known in one context and unknown in another, binding-
time analysis may conclude that b is dynamic as a safe approximation in all contexts.
Hence, the result of partially evaluating this conditional expression in all contexts
will be: if b then 8 else 28.

In the specialization phase, the specializer partially evaluates the annotated pro-
gram (produced in the analysis phase) and the partially-known input. It behaves like
an on-line partial evaluator, except that it uses the annotation of each expression to
determine how to partially evaluate that expression.

Intuitively, binding-time analysis can naturally be viewed as an abstraction of the
on-line partial-evaluation process. Unfortunately, prior to this thesis, this has not
been proven, nor even been stated formally. Viewing binding-time analysis as an
abstraction of on-line partial evaluation not only provides a more intuitive relation-
ship between these two partial-evaluation strategies, but also enables the transfer of

techniques developed for one strategy to another.

1.1.3 Applications

As a program transformation tool, partial evaluation has been applied to a wide
variety of problems. Listing all existing applications of partial evaluation is beyond
the scope of this thesis, but we can highlight some common applications, as well as

some new ones. Reader can refer to [Sestoft, 1990] for a list of other applications.

1. Pattern matching. Partial evaluation has been used to generate a more
dedicated pattern matcher by specializing a general pattern matcher with re-
spect to a specific pattern [Emanuelson, 1980,Bondorf, 1988,Consel and Danvy,
1989,Jgrgensen, 1990,Danvy, 1991]. For example, in [Consel and Danvy, 1989,
a naive string matching algorithm is partially evaluated with respect to a pat-
tern, producing a residual program that is essentially the Knuth-Morris-Pratt

algorithm.
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2. Compilation. The most publicized application for partial evaluation is the
specialization of an interpreter with respect to a program. The residual pro-
gram produced is a more efficient version of the original program, with much
of the interpretive overhead removed. This essentially achieves the effect of
compilation. Numerous experiments have been done in applying this technique
to interpreters of different languages [Emanuelson and Haraldsson, 1980,Jones
et al., 1985,Safra, 1990,Consel and Khoo, 1991b]. Further optimizing compila-
tion can be achieved using this technique by specializing the partial evaluator

itself with respect to an interpreter, and by specializing the partial evaluator

with respect to itself [Jones et al., 1985,Jones et al., 1989]. The former pro-
duces a optimizing compiler, whereas the latter produces a optimizing compiler
generator. These three different levels of usage of partial evaluation are called

the Futamura projections [Futamura, 1971].

3. Incremental compilation. Recently, Lombardi’s work on incremental com-
putation [Lombardi and Raphael, 1964,Lombardi, 1967] has been taken up by
Sundaresh to build a formal framework for incremental computation based on
partial evaluation [Sundaresh and Hudak, 1991,Sundaresh, 1991]. In particular,
a formal methodology is introduced which uses partial evaluation as a tool to
build incremental programs. The incrementality is obtained by maintaining a
cache of residual functions (result of partially evaluating a function). Based
on the algebraic properties of the residual functions, Sundaresh identifies the

“combining operator” that combines two residual functions in such a way that

re-computation in either one of the residual functions can be avoided.

4. Program execution monitoring. Partial-evaluation technique is recently
used to produce practical program execution monitors in [Kishon, 1992,Kishon
et al., 1991]. Based on continuation semantics, Kishon provides a formal model
for specifying the behavior of a large family of program execution monitors.

Partial evaluation is then called upon to specialize an interpreter with respect
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to a monitor specification; this yields an instrumented interpreter which auto-
matically combines the standard interpretation and monitoring activities. Fur-
thermore, specializing this instrumented interpreter with respect to a source
program yields an instrumented program in which the extra code to perform

monitoring has been automatically embedded.

1.2 Specializing Programs Using Static Proper-
ties

Besides specializing programs with respect to constant values, it is often necessary to
specialize programs with respect to static properties such as signs, ranges, and types.
Doing so is a natural extension of partial evaluation and significantly contributes
towards adapting partial evaluation to larger varieties of applications. This idea was
first investigated by Haraldsson [Haraldsson, 1977] and carried out in practice with a
system called Redfun in the late seventies.

Redfun partially evaluates Interlisp programs. It manipulates symbolic values
such as data types to describe the possible values of a variable and a processed ex-
pression. As an example, consider the expression (in Interlisp)

(conD ((FIXP x) (IPLUS x x)) (T x))
Suppose that x is of type integer, then the expression can be reduced to (IPLUS x x),
even though the actual value of x is unknown during partial evaluation. Furthermore,
from the operation IPLUS, Redfun deduces that the residual expression (IPLUS x x)
is again of type integer, and this type information can further be used in partially
evaluating the expression in which (IPLUS x x) is embedded.

Although the work on Redfun certainly started in the right direction, it has some

limitations:

1. The static properties used in the systems are fixed, and thus cannot be supplied

by the user. Since the kind of static properties to be used at partial-evaluation
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time usually depends on the kind of application at hand, having a fixed set of

static properties limits the system’s versatility.

2. The use of static properties is not formally defined: There is no safety condi-
tion for the definition of symbolic values, no finiteness criteria for fixed-point
iteration, etc. This hinders the opportunity for generalizing the approach to a

larger class of static properties.
3. It is computationally expensive, primarily for two reasons:

(a) It is an on-line partial evaluator. Since the treatment of an expression
within a program is determined as it gets processed, it consists of numerous
symbolic values and program transformations. (As a by-product, Redfun
could not be self-applied as noticed in [Beckman et al., 1976,Haraldsson,
1977,Emanuelson and Haraldsson, 1980], and thus, the partial-evaluation

process could not be improved.)

(b) It contains a fixed set of static properties. Computations on this set of
static properties are always performed, even though some of these proper-
ties do not contribute any useful information during partial evaluation of

a particular program.

Redfun is not alone in having these limitations. In fact, since the mid-eighties,
other partial evaluation systems have been developed with similar capabilities and
limitations (e.g., [Schooler, 1984,Guzowski, 1988,Berlin, 1990, Weise and Ruf, 1990]).

An ideal solution to this problem is a partial evaluator that accepts user-defined
static properties and utilizes them in a safe manner, without compromising its modu-
larity. This means that such a partial evaluator should be parameterized with respect
to the static properties. Functionally, in addition to the usual input (i.e., a program

and its input), such a partial evaluator should also accept a set of static properties.
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1.3 Parameterized Partial Evaluation

The work described in this thesis grew out of a perceived need for a more general
and formal treatment of partial evaluation using static properties, with the hope of
developing a formal framework for partial evaluation such that static properties can
be introduced safely and uniformly into both on-line and off-line strategies.

The thesis describes a generic form of partial evaluation, called parameterized
partial evaluation. It differs from conventional partial evaluation in that the partial
evaluation process is now parameterized with respect to static properties about pro-
gram and its input. This enables the flexible encapsulation of properties of interest
for any given application.

Since the partial-evaluation process has been parameterized, dedicated partial-
evaluation process can be obtained by providing different kinds of user-defined static
properties; each of these dedicated partial evaluators is at least as powerful as con-
ventional partial evaluators. Consequently, new applications for partial evaluation

become possible.

We introduce an algebraic abstraction methodology to model user-defined static
properties. This methodology defines the various components constituting a static
property, and imposes safety criteria for its use. Not only does the methodology cap-
ture the definition of static properties used in partial evaluation, but it also captures

the partial-evaluation behavior of the primitive operations used.

Use of this abstraction methodology is not limited to on-line parameterized partial
evaluation. Indeed, the same methodology is used to introduce static properties in
the analysis phase of off-line parameterized partial evaluation. (The properties used
in the specialization phase are similar to those used by on-line parameterized partial
evaluation.) The analysis used by off-line parameterized partial evaluation is called
a facet analysis. It allows pre-computation of static properties before actual partial
evaluation, keeping the specialization phase simple. This is a natural extension of

binding-time analysis used in conventional partial evaluation. Lastly, analogous to
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the on-line counterpart, the abstraction methodology can capture the binding-time
behavior of the primitives. Thus, it provides a uniform approach to introducing (and

utilizing) static properties in both on-line and off-line partial evaluation.

Based on the abstraction methodology, we describe a formal framework that de-
fines the parameterized partial-evaluation process. This framework is both sound and
general: it enables the correctness properties of partial evaluation to be stated and
proved, and provides a uniform approach to the formalization of both on-line and
off-line parameterized partial evaluation. The latter enables the definition of a formal

relationship between on-line and off-line partial evaluation.

Finally, the effectiveness of parameterized partial evaluation is demonstrated through
a practical implementation. Since static properties are introduced into partial eval-
uation only when they are required for an application, we can readily show that
parameterized partial evaluation has an edge over the existing work in this area of
research in that it avoids computation over properties which are not used in the

application.

The work described in this thesis is done for the partial evaluation of a first-order

applicative language. Extension to the higher order case is discussed in Chapter 5.

1.4 Thesis Organization

The remainder of this chapter lists the notation used in the rest of the thesis. Chapter
2 describes the modeling of static properties and the method for parameterizing the
partial-evaluation process. Chapter 3 provides the formal semantic specifications and
correctness properties (and proofs) of parameterized partial evaluation. Chapter 4
discusses the implementation and some applications of parameterized partial evalua-

tion. Finally, in Chapter 5, we conclude the thesis and put the work into perspective.
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1.5 Notation

Most of our notation is that of standard denotational semantics. A domain D is a
pointed cpo — a chain-complete partial order with a least element Lp (called “bot-
tom”). As is customary, during a computation Lp means “not yet calculated” [Jones
and Nielson, 1990]. A domain has a binary ordering relation denoted by Cp. The
infix least upper bound (lub) operator for the domain D is written Up; its prefix
form, which computes the lub of a set of elements, is denoted | |p. Thus we have that
foralld e D, Lp Cp d and LpUp d = d. Domain subscripts are often omitted, as
in L Ud, when they are clear from context.

A domain D is a lattice if for all z, y € D, z Uy and z My exists, where M is
the infix greatest lower bound (glb) operator for D. Any lattice D has a maximum
element T (called “top”) such that for alld € D, d Cp Tp and TpMd = d. A lattice
D is complete if || X and [1X exist for every subset X C D. A domain is flat if all
its elements apart from L are incomparable with each other. Analogously, a lattice
is flat if all its elements apart from L and T are incomparable with each other.

The notation “d € D = ---” defines the domain (or set) D with “typical element”
d, where --- provides the domain specification usually via some combination of the
following domain constructions: D, denotes the domain D lifted with a new least
element L. D; — D, denotes the domain of all continuous functions from D; to D,.
D; + D; and D; x D, denote the separated sum and product, respectively, of the
domains D; and D,. D; ® D, denotes the smashed product of the domains D; and

D,; its elements are defined by the function, smashed, such that:

smashed : Dy x D; —- D;®D,
smashed(d,e) = (d1,d;) if (di # Lp,) and (d2 # Lp,)
1p,ep, otherwise

All domain/sub-domain coercions are omitted when clear from context.
The ordering on functions f, f' € D; — D, is defined in the standard way:
fE f & (Vd € Dy) f(d) C f(d). A function f € D; — D; is monotonic if it
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satisfies (Vd,d’' € D1) dC d' = f(d) C f(d'); it is continuous if in addition it satisfies
f(U{d:}) = U{f(d:)} for any chain {d;} C D;. A function f € D; — D is said to be
strictif f(Lp,) = Lp,. It is L-reflecting [Abramsky, 1990] if fa = Lp, = a = Lp,.
An element d € D is a fized point of f € D — D iff f(d) = d; it is the least fized point
if for every other fixed point d’, we have that d C d’. The composition of function
f € D; — D; with f* € D; — Dg is denoted by f’ o f. We write Dom(f) to denote
the domain of f, and Ran(f) to denote the range of f.

Angle brackets are used for tupling. If d = (dy,...,d,) € Dy X --- x Dy, then for
all 2 € {1,...,n}, d]i denotes the i-th element (that is, d;) of d. For convenience,
in the context of a smashed product, that is, d € D; ® --- ® D,,, d* denotes the i-th
element of d. Syntactic objects are consistently enclosed in double brackets, as in [e].
Square brackets are used for environment update, as in env[d/z], which is equivalent
to the function: Av . if v = [z] then d else env(v). The notation env|d;/z;] is
shorthand for env(d;/z1,...,d,/z,], where the subscript bounds are inferred form
context. “New” environments are created by L[d;/z;]. Similar notations are also
used to denote cache, cache update and new cache respectively.

The thesis describes three levels of evaluation: standard evaluation, on-line partial
evaluation and off-line partial evaluation. A symbol s is noted 3 if it is used in on-line
partial evaluation and § in off-line partial evaluation. Symbols that refer to standard
semantics are unannotated. Finally, for generality, any symbol used in either on-line
or off-line partial evaluation is noted 3.

Finally, an algebra is noted [A; O] where A is the carrier of the algebra and O a

set of functions operating on this domain.




Chapter 2
Modeling Static Properties

We begin our discussion of parameterized partial evaluation (abbreviated as PPE) by

investigating how static properties about program input can be modeled such that:

1. they can be used during partial evaluation in a safe manner, and

2. they can be introduced uniformly into both on-line and off-line PPE.

In this chapter, we develop an algebraic abstraction methodology, called facet
mapping, to enable modular definition of static properties. More specifically, from
a concrete algebra, an abstract algebra called a facet is defined; it is composed of
an abstract domain — capturing the properties of interest — and a set of abstract
primitives that operate on this domain. It is to be used by on-line PPE.

The safety criteria of this abstraction are also captured by the facet mapping. The
mapping is defined using abstract interpretation [Abramsky and Hankin, 1987,Jones
and Nielson, 1990]. It relates two algebras with a suitable abstraction function. How-
ever, unlike abstract interpretation, not only does a facet define primitive functions
that compute static properties, but it also defines ones that use abstract values to
trigger computations at partial-evaluation time; i.e., the primitive functions produce

values that can be used during partial evaluation to reduce some expressions.

13
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Furthermore, it is possible to capture the partial-evaluation behavior of primitive
functions as a facet; this is achieved by considering an algebra whose domain is
syntactic terms and operations are primitive functions.

Facet mapping as an abstraction methodology is general enough to model static
properties used in the analysis phase of off-line PPE. (Since the static properties
used in the off-line specialization phase are similar to that used in the on-line PPE
phase, when we refer to the static properties used in off-line PPE, we always refer to
those used in the analysis phase, unless stated otherwise.) These static properties are
called abstract facets. Just as binding-time analysis is used to statically compute the
static/dynamic property, we introduce a facet analysis to statically compute prop-
erties. Again, the uniform nature of facet-mapping definition enables us to capture
the binding-time behavior of primitive functions as an abstract facet, whose domain
contains the binding-time information and operations are primitive functions.

Once the modeling of static properties has been presented, we will describe how
to parameterize the partial-evaluation process to achieve communication between a
partial evaluator (or a facet analysis, for an off-line parameterized partial evaluator)
and these properties.

To facilitate the comprehension of the modeling process, we first give a simple

example in which use of PPE is desirable.

2.1 Inner-Product Example

Consider a program which computes the inner product of two vectors of floating-point
numbers. One can think of a vector as an abstract data type V consisting of a set of

operators O listed below.

MkVec: Int -V creates an empty vector of the specified size
UpdVec : V x Int x Float -V updates an element
Vecf : V — Int returns the size of the vector

Vref: V x Int — Float returns a specified element of a given vector
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fun iprod(A,B) = fun dotProd(A,B,n) =
let n = Vec#(A) if n <= 0 then O
in dotProd(A,B,n) else Vref(A,n) * Vref(B,n)

+ dotProd(A,B,n-1)

Figure 2.1: Program for Inner-Product Computation
iprod is the main function. It has two parameters of vector type, A and B. Evaluating
iprod includes computing the size of A and invoking recursive function dotProd to
perform the actual inner-product computation.

The program for computing inner product is presented in Figure 2.1. Notice
that parameter n is the sole induction variable for the recursive function dotProd.
Therefore, we may instruct the partial evaluator to unfold (i.e., in-line) all recursive
calls to dotProd when its argument n is known during partial evaluation. This yields
a residual program with linear code. Suppose that we want to partially evaluate this
program with respect to any pair of vectors of size 3, we would expect the residual

program to look like that in Figure 2.2.

fun iprod(A,B) =
Vref(A,3)x Vref(B, 3)+Vref(A,2) * Vref(B,2)+Vref(4, 1) * Vref(B, 1)

Figure 2.2: Desired Residual Program
Desired residual program produced by partially evaluating the inner-product program
with respect to any pair of vectors of size 3.

The size information in this example represents a particular static property about
the vector which we would like to capture and have it used by the partial evaluator.
In general, we may want to introduce other kinds of static properties into the partial-
evaluation process, depending on the problem at hand; conventional partial evaluation
has difficulty dealing with this kind of information, since it specializes program with

respect to concrete values, not static properties.!

In this example, the size information can be captured by Mogensen’s partial evaluator, because
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2.2 The Abstraction Methodology

This section presents a general methodology to introduce abstract values into the
partial-evaluation process. Sections 2.3 and 2.4 describe, respectively, how to in-
stantiate this methodology for on-line and off-line partial evaluation, and provide
examples for each instantiation. (In this thesis, the words abstract and abstraction
are used in the sense of approzimate and approzimation respectively.)

In optimizing compilation, static properties are introduced to reason about a
program prior to its execution. Computation of static properties is then defined by
abstract versions of primitive functions. This structure (domain/operations) naturally
prompts us to use an algebraic approach to model static properties, analogous to the

notion of semantic algebra in denotational semantics (e.g., [Schmidt, 1986]).

Definition 2.1 (Semantic Algebra) A semantic algebra, [D; O], consists of a se-

mantic domain D, and a set of operations O over D.

The operations of a semantic algebra are assumed to be continuous.

Our approach consists of deriving, from the semantic algebra, an abstract alge-
bra composed of an abstract domain — capturing the properties of interest — and
a set of abstract primitives operating on this domain. Using abstract interpretation
[Abramsky and Hankin, 1987,Jones and Nielson, 1990], this can be formally achieved
by relating the two algebras with an abstraction function. Because we aim at ad-
dressing both on-line and off-line partial evaluation, a given algebra may be defined
at three different levels, which, listed in increasing abstractness, are the standard
semantics, on-line partial evaluation, and off-line partial evaluation. Algebras used
at these three levels of are called semantic (or concrete) algebras, facets, and abstract

facets respectively.

it takes into consideration partially-static data [Mogensen, 1988], which contains information about
the structure of the vector. However, using partially-static data to capture the size information
defeats the purpose of defining the vector as an abstract data type. Furthermore, partially-static
data can only captures structural information, but not other kinds of information, such as “positive
vector”, “non-zero vector”, etc. Lastly, the encoding of partially-static data may be residual after

partial evaluation.
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The rest of this section describes a general methodology to relate these different
levels. In essence, this amounts to relating two algebras. To investigate this, we first
discuss how to relate the domains and their operations in Sections 2.2.1 and 2.2.2
respectively. T'hen, this is formalized in Section 2.2.3 where the notion of relating

two algebras is precisely defined, together with safety criteria.

2.2.1 Relating Domains

Domains can be related using an abstraction function [Cousot and Cousot, 1977].
Such a function is strict and continuous; it maps values in an initial domain to those
in an abstract domain.

Following the example in Section 2.1, we wish to introduce some symbolic com-
putations on vector sizes abstracted from the vector algebra [V;O]. We define an
abstraction of the vector domain that captures the vector-size property. Let the ab-
stract domain be V = {L, so, s1, S2,..., T} with Vo € V : LC4%CT. For all
1 € {0,1,2,...}, s; represents any vector of size :. Domains V and V are related by
the following abstraction function.

ap . VoV
ap(v) = (v=1) = Lp, Svey)

Technically, to facilitate later proofs, abstraction functions are required to be L-
reflecting.

Abstraction functions are also used to define relations between the main domains
used at the three levels of evaluation. Standard evaluation is performed on basic
values, such as integers and booleans. We use domain Values to denote the sum of
these basic-value domains.

As a program transformation, on-line partial evaluation manipulates syntactic
constructs. Therefore, instead of operating on the basic values in Values, it operates
on their textual representations (i.e., constants). Let Const denotes the set of all
constants, we define a constant domain Values that contains all constants used during

on-line partial evaluation.
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Definition 2.2 (Constant Domain Values) The constant domain Values con-
sists of all constants in the set Const, augmented with the least element L —

Values

and the top element T —

Values *

The top element T — denotes absence of static information during partial eval-
alues
uation.
From standard semantics to on-line partial evaluation, we define an abstraction

function 7 that maps basic values into their textual representations:

T Values — Values and
7(z) = (2= Llvnes) = Ly, £7'(2)

where function K£~! maps a basic value to its textual representation — a literal con-
stant. (In defining a standard semantics, it is common to define a function K that
maps a constant to its denotable value. Thus, the role of function X~! can be con-
sidered as the inverse of K.)

Because Values is a sum of basic domains it is more convenient to consider 7 as a
family of abstraction functions indexed by the basic domains. That is, for each basic
domain D, define an abstraction function 7p : D — Values. To keep the notation
simple, we omit the indexing of function 7.

Recall from Chapter 1 that conventional off-line partial evaluation consists of two
phases: binding-time analysis and specialization. Binding-time analysis operates on

the binding-time domain Values, which is defined as follows:

Definition 2.3 (Binding-time Domain Values) The binding-time domain Values
is composed of the set {static, dynamic} lifted with a least element 1 — .2 It forms

Values

a chain with the ordering L — [ static C dynamic.

The abstraction function between Values and Values is defined as follows:

?Note that this three-point domain refines the usual two-point domain {static, dynamic} in that
it allows the detection of functions that are never invoked, and simple cases of non-terminating
computations. Without the value L Vo these cases would be considered static.
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T . Values — Values and
) = (e=Llym) — L

(z € Const) — static, dynamic

This reflects the fact that an expression is static if it partially evaluates to a constant.

2.2.2 Relating Operations

When abstracting one algebra from another, not only do we want to relate a domain to
an abstract domain, but we also want to relate the operators to their abstract versions.
More precisely, we want to formulate the safety condition of an approximation to an
operator.

Essentially, relating two operators consists of relating their graphs. To this end,
we distinguish two classes of operators: closed and open operators.

Closed operators are closed under the carrier of the algebra. That is, for an
algebra [A; O], we say that p € O is closed if its co-domain is the carrier A. Thus,
the abstract version of a closed operator will be passed abstract values to compute
new ones; this corresponds to an abstract primitive in abstract interpretation. In the
vector-size example, UpdVec is considered a closed primitive. As such, its abstract

version can be defined as follows:

UpTVec : V x Values x Values —» V
UpdVec(d,c,r) = (e=L 7~ )V(r=1

Values Vau\es )

The use of domain Values will become clear when we discuss open operators. Here,
we simply notice that domain V is used in the definition in place of V, since it
is the carrier of the abstract algebra. The definition simply complies with the rule
that updating a vector does not change the size of the vector. Therefore, the size
information remains intact.

Open operators have their co-domains different from the carrier of the algebra.
Intuitively, we want the abstract version of an open operator use abstract values

to trigger useful partial-evaluation computation. Interestingly, we can relate this
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division of operations to optimizing compilation where, typically, a phase collects
properties (like the job of closed operations) and another triggers optimizations using

these properties (like the job of open operations).

This division suggests that since an abstraction function relates the carriers of two
algebras, it can also be used to relate an operator and its abstract version when this
operator is closed under the carrier. However, this does not apply to open operators

because their co-domains are not the carrier.

Indeed, for an open operation to trigger useful partial-evaluation computation (or
binding-time-analysis computation in the analysis phase), it must produce a value
that can be used during partial evaluation to reduce some expressions (or, respectively,
a value that can be used during binding-time analysis to deduce the staticity of some
expressions). That is, the open operation must yield a value in the main domain
on which the latter computation performs. Since an operator may be defined at
three different levels (standard semantics, on-line and off-line partial evaluation), its
corresponding co-domain will be the main domain used at the respective level: in the
standard semantics, an operator belongs to a semantic algebra; both open and closed
operators produce basic values in Values. In on-line partial evaluation, an operator
belongs to a facet; when it is open it produces a constant in Values, provided it
is called with appropriate values (see Section 2.3). In off-line partial evaluation, an
operator belongs to an abstract facet; when it is open it mimics the facet operator

and thereby produces a binding-time value in Values (see Section 2.4).

Thus, in order to relate an open operator to its abstract version, we also have
to relate their co-domains. This is achieved by the abstraction function 7 between

Values and Va/l;es, and function 7 between Values and Values.

Returning to our vector-size example in which we represent a vector size by the
symbol s;, we notice that the primitive Vec} is open. Using domain Values as its co-

domain, @B returns the vector size by converting its symbolic value into a constant.
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@ﬂ : V — Values
Vecf(9) = (0 = L3) —

’ 14 " Values
(0 = s) = 70), Tygm,

2.2.3 Relating Algebras

Given this preliminary discussion we can now formalize algebra abstraction.
Let o = {ap: : B; — B';} be a family of abstraction functions, [A; O] and [A’; O]
be two algebras and a4 : A — A’ be an abstraction function. We extend function

a4 to one that maps from algebra [A; O] to algebra [A'; O']:

Definition 2.4 (Facet Mapping) ay : [A; O] — [A’; O'] is a facet mapping with

respect to o' if and only if

1. A’ is a complete lattice of finite height.>
2. Vp' € O, p' is monotonic.

3. ¥p € O, Ip’ € O’ such that
agpop C poaa if pisa closed operator

oop C poas if pisan open operator

Condition ! defines domain A’ as a complete lattice; this imposes a partial ordering
among its elements (i.e., the abstract values). For any two elements aq,a; € A’, we
say “ay is coarser than a,” if a; U ay = ay. Condition I also ensures termination in
computing abstract values. Lastly, Condition 3 states the safety criteria for defining
abstract operators.

Given a facet mapping, we can succinctly describe the relationship between the

components of two algebras by a logical relation [Nielson, 1989,Jones and Nielson,
1990].

3For a lattice of infinite height, a widening operator must be used to find fixed points in a finite
number of steps (see [Cousot and Cousot, 1977]).
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Definition 2.5 (Logical Relation <, ,,) A facet mapping cx : [A;0] — [A; O]

with respect to o = {aB‘{ : B; — B';} induces a logical relation <, o as follows.

I.Va €A, VdeA': a Ray @ & agfa) Eyp d.
2.Vb eB, VbV eB': b 2 bV & ap(b) Cp b

3. Let p € O and p’ € O’ be closed operators. Then,
P 2, P& Vae A, Vde A 1 a X,,, d = pla) =, P()

=y

4. Let p € O and p' € O' be open operators and p : A — B; for some domain
B,'. Then,
P R0y P ® Vae A, Vde A : a X a' = pla) 2 p(d).

—_— .._QAI

Using this logical relation, we can re-formulate the safety criteria expressed in

Condition 3 of Definition 2.4 as follows.

Property 2.1 Let as : [A; O] — [A’;O’] be a facet mapping with respect to o =
{ep;:B; = B'}.VpeOIP e€O': p X, P

Proof : We need to prove that the safety condition (Condition &) in Definition 2.4
is equivalent to the relation p <,,, p’ Vp € O. We only prove the case for closed

operators. The proof for open operators is similar and thus omitted.

1. Suppose that agr o p Ep'oay. Va€ A and Va' € A’, if a Za, @', then

as(p(a)) Ca p'(aa(a)) by the above assumption

Ca pld) monotonicity of p’ and a <, ,, o’

Thus, p(a) <., p'(a’). Since this is true for any a € A and o’ € A’ with

! /
a Za, a,wehavep <, , p'.
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2. Suppose that p <X, ,, p/, then

P=2a, P & Va€A : pa) =, plaw(a)) since a <a,, aa/(a)
& VYa€e A : aa(p(a)) Ca p(aa(a)) by Definition 2.5
= Va € A. : (aAI Op)(a) ;AI (p, (e] aA’)(a)

Since this is true for all @ € A, we have ag 0p C p' 0 aar.

This concludes the proof. a

Facet mapping provides a uniform abstraction methodology for introducing static
properties, in the form of abstract algebras, into both on-line and off-line partial
evaluation. In the following two sections, we instantiate facet mapping to introduce
static properties into these two levels of partial evaluation. Each instantiation is

illustrated by an example.

2.3 Properties Used in On-Line PPE

This section presents the use of static properties in on-line PPE. We first define the
notion of facet by instantiating the abstraction methodology described in Section
2.2. Then, we describe briefly on-line PPE. (The detail specification of on-line PPE

semantics is given in Chapter 3.)

2.3.1 Facets

A facet captures symbolic computations performed on the static properties used dur-
ing on-line PPE. As a result, while a closed operator computes new abstract values, an
open operator, when provided with appropriate abstract values, produces constants

to be used in partially evaluating expressions. Formally,

" Definition 2.6 (Facet) A facet for a semantic algebra [D; O] is an algebra [D; O]
defined by a facet mapping &z : [D; O] — [D; 6} with respect to T.
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We refer to D as the facet domain and O as the set of facet operators. The
use of facet mapping in the definition ensures the following property about the open

operators of a facet.

Property 2.2 For any open operatorp € O of arityn, chl, oydn € D and Vd; € D,
ifdi <5 di Vie{l,...,n}, then
D

~

p(di,...,d,) € Const Ap(dy,...,dn) # L = p(dy,...,d,) =7 (p(dy,...,dn))

The proof of this property is trivial, and omitted here. In essence, it states that if an
open operator of a facet yields a constant for some abstract values, this constant is
the textual representation of the value produced by the concrete operator called with
the corresponding concrete values. This is due to the fact that constants are pairwise
incomparable. Notice that this equality only holds if the call to the concrete operator
terminates. The concrete values d; are related to the abstract values cz,- under the
logical relation <~ _.

However, for soline values, an open operator of a facet may not yield a constant.
Indeed, it may be passed abstract values too coarse to be of any use. This is illustrated
in the following two examples.

The first example of a facet is the vector-size facet taken from the vector algebra
as defined in Section 2.1. We have seen part of its definition, and now we present the
complete one below. (As mentioned in page 18, function K turns basic values into

constants.)

Example 1 Vector-size information forms a facet for the vector algebra [V;O].
1. V={Lgp,s0,51,8,...,Tpl with¥Vd € V: Lo CoC Ty
2. Abstraction function

g VoV
a‘?(v) = v=1 — -Lf}, S Vecli(v)
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3. Closed operators

MkVec : Values — V

MiVee (c) = (e = Lyg,) = Ly (e= Tzn) = Tos sx
UpdVec : V x Values x Values -V
UpdVec (v,c, ry = (c= V(r=L1 1o, 0

Va.lu es ) V:I;es ) - \%ad

4. Open operators
Ve\cﬂ 'V > Vaflﬁes
Vecﬂ ( ) ( ) - -LVJ_.L”

Vref V x Values — Values
Vref (9,¢) = (=1g)V(c=Ly7) - 1L

Values

(0=s;) = 7(2), T

Values

Viles) | Values

In the second example, we want to define a sign facet from an integer algebra.
A natural set of static properties would be {L, pos, zero, neg, T}. Assume that the
operators of this algebra are {+, <}. Then + would be a closed operator: it operates
on two sign values to compute a new one. However, < is an open operator: when
possible, it produces constants which are used to trigger reduction of expressions at

partial-evaluation time.

Example 2 Sign information forms a facet for semantic algebra [D; O] = [Int; {+, <

H
1. ﬁ={.]., pos, zero, neg, T} withVd e D: LCdCT

2. Abstraction function

ag : D - D
ap(d) = d=L — L,
d>0 — pos,

d=0 — zero, neg

3. Closed operators

}:DxD-D

F = A(d, dy). (di=L)V(dy=1)— L,
C2\1=ZC’I"0—) (jz,
J2=ZC‘I"0—-) (21,(21 (] Cig
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4. Open operators
< : D x D — Values
< = A(d, o). (di=L)V(d=1) = Ly,
(di = pos) A ( d, € {neg, zero}) — 7(false),
(dy = zero) A (d = pos) — T(true),
(dy = zero) A ( dy € {neg, zero}) — 7(false),
(di = neg) A ( dg € {pos, zero}) — TF(true), T

Values

We can now explain further our approach and examine how the notion of facet

achieves the parameterization of partial evaluation.

2.3.2 Product of Facets

PPE differs from conventional partial evaluation in two ways: it collects facet in-
formation, and it propagates the results of facet computations to all relevant facets.
While the latter aspect is described in the PPE model in Chapter 3, the former is
captured by the notion of product of facets defined in this section.

A product of facets captures the set of facets defined for a given semantic algebra.
It consists of the product of facet domains and the set of facet operators. In particular,
for each operator p, a product operator, noted &, invokes each facet operation p; with
its corresponding abstract values. If p is a closed operator, the product operation
yields a product of abstract values. Otherwise, it produces either a constant, 1 —

Values

or T~ depending on the abstract values available.
alues

Definition 2.7 (Product of Facets) Let & : [D; 0] — [D;;0;] fori € {1,...,m}
be the set of facet mappings defined for a semantic algebra [D;O]. Its product of

facets, noted [ﬁ, Q], consists of two components:

—_ —_ —_

1. A domain D = Di®---@D,, = HDi,

2. A set of product operators Q such that Vp € O o, € Q-
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(a) ifp : D" - D € O isa closed operator, then
@p D" - D and
m
Qp =X (81,...,6,) . [[p:(é5,...,6%)
=1
(b) otherwise, p : D* — D’ € O is an open operator, then
wp : D* — Values and
Gp= Ab1,..,0) . (T €{l,...,m} st dj= L ) —
(3j € {1,...,m} s.t. d; € Const) — JJ’TVIII“
where d = (py(81,...,8Y), ..., (8, ..., 6™))

—
Values?

Domain D is partially ordered component-wise. Recall that for d € D, di denotes
the i" element of d. Smashed product construction is used in constructing product
domain; this ensure facet consistency, as explained below.

Although facets of a product are defined independently, the facet values with
respect to which a program is specialized must have some consistency. This notion of
consistency can be motivated by the following example. Suppose that two facets are
defined for the integer algebra: one facet describes the sign of an integer value (see
example 2), and the other indicates its parity (i.e., whether a value is odd or even).
Then, a value such as (zero, odd) should not be considered a valid facet value since

zero is an even number. Formally,

Definition 2.8 (Facet Consistency) Let [D;] be a product of facets of an algebra
[D; 0]; § € D is consistent if and only if

N{deD | d=; &Y is neither O nor {L}.

=1
i=1

In the definition, each set of concrete values to be intersected corresponds to a

particular facet property; it is defined by the logical relation <. Notice that by

—ay

definition of the relation <, the intersection will at least yield the singleton set

{L}; therefore such singleton set must not imply consistency. In essence, the above
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definition ensures that a product of abstract values represents an actual sub-domain
of D.

Technically, note that the smashed product construction is used to conveniently
eliminate inconsistent values such as (L, odd).

We assume that a program is always specialized with respect to consistent product-
of-facet values.

By the definition of facet it is easy to see that the consistency property is preserved
by both open and closed operations. This property contributes to the correctness of
the following lemma which states that if there are more than one facet that produce

constants, these constants are equal.

Lemma 2.1 Let [ﬁ, ﬁ] be a product of facets and p € O be an open operator,
If3j,ke{l,...,m}(j #k)and &,...,6, € D such that both p;(8],...,87) €

-~ -~

Const and pi(6F,...,6%) € Const, then ﬁj(gf, ... ,331) = pr(6F, ... ,gﬁ

Proof : Without loss of generality, we consider unary open operators (the argument
is noted §). Let C = (({deD | d=; 6'}. Since & is consistent, it is true that

=1
C #0and C # {L}. Suppose 3d € C such that p(d) terminates. Then, by Property
2.2, we have

$;(&’) € Const = p;(§%) = #(p(d)), and

Br(6*) € Const = p(8%) = #(p(d)).

Thus, 5;(&5) = #(p(d)) = pe(8). 0

Lastly, we show below a property about the product operators — its continuity.
Property 2.3 All operators defined in the product of facets, [’[3, Q], are continuous.

To prove Property 2.3, we notice that, since every facet domain in a product is of
finite height, it suffices to show that the facet operators are monotonic. This can be
proven by a case analysis of the different classes of values produced by the operation.

We have seen how properties of interest can be formally introduced via a facet

and how facets can be combined to form a product of facets. Let us now explore the
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generality of the approach. In particular, we want to examine how partial evaluation

of primitive operations can itself be captured by a facet.

2.3.3 Partial-evaluation Facet

So far, we have used the notion of facet to introduce symbolic computations drawn
from a semantic algebra defined in the standard semantics. In fact, the same notion
can also be used to define a facet that captures the conventional partial-evaluation be-
havior of primitives. It is called the partial-evaluation facet. More specifically, when-
ever it is passed constant arguments, a primitive defined in the partial-evaluation facet
will perform the corresponding primitive operation defined in the standard semantics.

The partial-evaluation facet is defined as follows:

Definition 2.9 (Partial-Evaluation Facet) The partial-evaluation facet of a se-

mantic algebra [D; O] is defined by the facet mapping & —~_ : [D;0] — [Vajﬁes; 6]

Values

with respect to T such that:

1. a—-—~ : D — Values
Values
aV:Iu\es = ™

2. VﬁEb\ofarityn
p: Values' — Values
p=A(dy,...,dn) . Fief{l,...;n}stdi=L~ — L~
/\(d: € Const) — F(C,[p](dh, - - dn)), Ty,

=1

where d; = (K d;) ie{1,...,n}

The abstraction function &~ corresponds to the abstraction function 7p defined
for domain Dj; the latter is obtained from the family of abstraction functions 7 given
in page 18. @7~ maps a value into its textual representation (that is, a constant).

It is easy to verify the following property about the partial-evaluation facet.

Property 2.4 The partial-evaluation facet (Definition 2.9) is a facet.
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Notice that, just like any other facet operator, a partial-evaluation-facet operator
produces value T -~ when it is passed values that are too coarse (that is, non-
constant values).

We can now discuss on-line PPE.

2.3.4 On-Line PPE

Since the task of an on-line parameterized partial evaluator is to perform partial
evaluation, it is natural to assume that the partial-evaluation facet always exists. By
convention, it is assigned to the first component of every product of facets. A sum of
these product domains is noted gb; each summand corresponds to the domain of a
semantic algebra.

Without loss of generality, we assume that every product of facets contains m
facets (including the partial-evaluation facet). Also, we assume that user-supplied
facets are globally defined, that is, the corresponding abstraction functions and prod-
uct operators are globally defined, and available to the parameterized partial evalua-
tor.

To perform PPE, we need to provide, besides the subject program and the pro-
gram input, a list of product of facets needed in this run. Let PPE,,,, denotes
a parameterized partial evaluator. Its functionality can be informally described as

follows:
PPE,.,, : [Product-of-Facet] x Program x Input — Residual-Program

where the symbol [z] denotes a list of items of kind z.

The essential job of a parameterized partial evaluator is to parameterized partially
evaluate expressions. This includes constructing residual expressions and computing
facet information. Thus, the domain used by the function that partially evaluates
expressions 1is defined as Exp x g@, where Exp is a flat domain of expressions.

The semantics of PPE is very similar to that of conventional partial evaluation.

The details are discussed in Section 3.4. In this section, we investigate how facet
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information is used in PPE.

e Semantic Domainss
g € @ = Zﬁj where ﬁj = (ﬁﬂ@'“@ﬁjm)
= and s is the number of basic domains
e € Exp

o Function K handles constants.

K[ = ([, (a5,(d), ...,a5 _(d))) whered = (K [c])€ D

e Function Kp handles primitive operations.
Ke [57] (€l (el 8u) =

(6 = Lz)— (-I-Exp,-L 5)s (8 € Const) - (

»(@p,(d), ..., a5, (d))),

&
(Ir° (el, cven)], )
where p :D* - D

§ = Ope (61, " n)
d = K&
R 1] (el s (b)) = A
(5 = Ly=)— (e, 1g), 6 € Const — (4, (aﬁi(d)""’&ﬁh(d»)
(e', <Tﬁi""’Tﬁ$n)>
where P : D* — D’
5§ = wpo(61, )
=K
"= [[po(ell"'we;z)]]

ISH

o,

Figure 2.3: £ and Kp in the On-Line PPE

Figure 2.3 displays the actions taken when constants and primitive operations are
encountered during partial evaluation. For a product of facets D, ag denotes the

t abstraction function. We define function K to handle constants, and function Kp
to handle primitive operations. Closed and open operators are respectively noted p°
and p°. Function X converts a constant to its denotable value, i.e., a basic value in
Values.

K takes a constant as argument, and invokes the abstraction functions of the

corresponding facets to compute the static properties of this constant. It returns
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both the constant (as an expression) and the set of static properties.

Kp accepts a primitive operator and its arguments, and calls the corresponding
product operator for computation. For the case of a closed operation, only the first
component of the product of facets (the partial-evaluation facet) is able to produce a
constant. If a constant is produced, its static properties are re-computed for better
accuracy, and the constant is returned as the expression component. Otherwise, a
residual expression is returned, and the primitive operation is delayed until run-time.

Treatment of an open operation differs from that of a closed operation in that any
facet of the product of facets may produce a constant. Therefore, it is necessary to
check all facet components to find such a constant.

Finally, we obtain a conventional on-line partial evaluator if only the partial-
evaluation facet is used in each product of facets defined. Thus, PPE is indeed an

extension of the conventional one.

Inner-product Example (Cont.)

Let us now return to the problem, described in Section 2.1, of partially evaluating an
inner-product program with respect to any pair of vectors of size 3. We recall from
Section 2.3.4 that an on-line parameterized partial evaluator is informally described

as
PPE,.,, : [Product-of-Facet] x Program x Input — Residual-Program

We have defined the vector-size facet in Example 1. There are two facets to be
used in replace of the vector algebra during partial evaluation: the partial-evaluation
facet and the vector-size facet. These two facets form a product of facets for vector
algebra. Referring to the original inner-product program in Figure 2.1, the input to
the main function iprod, vectors A and B, will be represented in domain Exp x 8D

as (A,(T 7=, »s3)) and (B,(T ,83)) respectively (where A and B are residual

V:I—‘u.\cs

identifiers for iprod).
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When partially evaluating iprod, the vector-size property is used to obtain the
size of vector A. Specifically, we have Vec§ (s3) = 7(3). The induction variable of
dotProd, n, is then bound to a constant value. As a result, the test expression in
dotProd is static, and thus can be reduced; also, the recursive call to dotProd can
be unfolded. The resulting program is displayed in Figure 2.4, which is as desired.
Finally, since elements of the vectors are unknown at partial-evaluation time, the
primitive operation Vref cannot be reduced; therefore, both the multiplication and

addition operations are made residual.

Fun iprod(A,B) =
Vref(A,3) * Vref(B, 3)+Vref(A,2) * Vref(B,2)+Vref(A, 1) * Vref(B, 1)

Figure 2.4: Residual Program for Inner-Product Computation
Residual program produced by partially evaluating the inner-product program with
respect to any pair of vectors of size 3.

2.4 Properties Used in Off-Line PPE

As discussed in Chapter 1, in an on-line strategy all decisions about how to process an
expression are made at partial-evaluation time. This makes it possible to determine
precise treatment based on, for example, constant values. However, this is compu-
tationally expensive because the partial evaluator must analyze the context of the
computation — the available data — to select the appropriate program transforma-
tion. This operation is repeatedly performed when partially evaluating recursive calls
to a function such that the staticity of the arguments remain the same at each call.

In conventional partial evaluation efficiency is achieved by an off-line strategy
which splits the partial-evaluation phase into binding-time analysis and specialization
[Jones et al., 1989,Bondorf, 1990,Consel, 1990b]. In particular, binding-time analysis

only computes static/dynamic property. In off-line PPE, we generalize binding-time




34 CHAPTER 2. MODELING STATIC PROPERTIES

analysis to facet analysis: an analysis that statically computes user-defined static
properties. Consequently, the task of program specialization reduces to following the
information yielded by facet analysis.

In this section, we investigate the use of static properties in off-line PPE. Since
the properties used by an off-line specializer are similar to that used by the on-line
counterpart, we concentrate on the use of static properties by facet analysis. In
this respect, we follow the approach used in introducing properties into on-line PPE:
we introduce the concept of abstract facet in Section 2.4.1, describe the product of
abstract facets in Section 2.4.2, define the binding-time facet in Section 2.4.3, and

lastly, describe briefly facet analysis in Section 2.4.4.

2.4.1 Abstract Facets

To lift facet computation from partial evaluation, we need to define a suitable ab-
straction of this process. In particular, we need to define an abstraction of a facet
that enables facet computation to be performed prior to specialization. The resulting
facet is called an abstract facet and is defined in this section.

Not surprisingly an abstract facet has the same structure as a facet. In particular
it has two classes of operators: open and closed. Similar to a facet, a closed operator
of an abstract facet is passed abstract values and computes new ones. As for an
open operator, it mimics the corresponding facet operator: it uses abstract values to
produce binding-time values. More precisely, instead of a constant it produces the
binding-time value static and instead of T =~ it produces dynamic.

Just as a facet is defined from a semantic algebra, an abstract facet is defined

from a facet. Formally,

Definition 2.10 (Abstract Facet) An abstract facet [D; O] of a facet [D; O] is
defined by a facet mapping Gy : [D; O] — [D; O] with respect to 7.

Recall from page 19 that 7 is an abstraction function mapping from D to D. The




2.4. PROPERTIES USED IN OFF-LINE PPE 35

use of facet mapping in the definition ensures the following property about the open

operators of an abstract facet.

Property 2.5 For any open operatorp € o of arityn, Vdy,...,d, € D and Vd; € ﬁ,
ifd; 2=_d; fori € {1,...,n}, then

—as

~

(p(dy,...,d,) = static) = p(dy,...,d,) C

— Values

¢ with ¢ € Const.

Proof : By the safety condition for facet mapping (i.e., condition & of facet map-

ping), we must have

F(p(dry---rdn)) Ty, Bldr, ..., dn) = static.
From definition of ¥ (page 19), we have Vz € Values, 7(z) Cm, static = =z €
Const U { L ;= }. Therefore p(ds,...,ds) € Const U {L —~ }. O

This property states that, when an open operator of an abstract facet maps some
properties into the value static, the open operator of the corresponding facet will yield
a constant value at specialization time, modulo termination.

In the case of partially evaluating the inner-product program (in Section 2.1) using
off-line PPE, a possible static property that we may like to compute in the analysis
phase will be the availability of vector-size information during specialization. This
can be described as a vector-size abstract facet derived from the vector-size facet
(Example 1). This enables us to determine, prior to specialization, whether vector-
size computation can produce constants. The vector-size abstract facet is defined

below:

Example 3 Information about Vector-size availability forms an abstract facet with

respect to the vector-size facet [V; 0.

1. V = {s,d} with the ordering 1Ly EsCd.

Values s and d denote a static and a dynamic vector size, respectively.
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2. Abstraction function

ap VoV

ag(d) = =1y -1y, 0=Tp —d, s

3. Closed operators

MkVec : Values — V
MkVec (i) = (i= = L) (z = dynamic) — d, s
UpdVec : V x Values x Values -V

UpdVec (0,0,k) = (i=Ly=— )V (r=Ly) — 1y, 0
4. Open operators

Vecf : V — Values

Vecﬁ (v ) (0= -L") = Lo (0 =s) — static, dynamic

Vref V x Values — Values

Vref (5,4) = (5= ly) V(=1 — 1 dynamic

Values ) Values®

We don’t need to restrict the static properties used in the analysis phase to be
one with domain of three (or even two) elements. In fact, the definition of abstract
facet is general enough that its domain can virtually be of arbitrary size. However,
to ensure the termination of the analysis, all domains used in the analysis need to
be of bounded size. In example 2, we define a sign facet. We can also define a
sign abstract facet which, at analysis time, determines whether sign computation can

produce constants. The size abstract facet’s domain has more than three elements.

Example 4 The abstract facet for the sign facet [ﬁ, 6] is defined as follows.

1. D =D (similar to Example 2)
2. ag s the identity mapping between D and D.

3. 0 = {Z, ¥} where T has the same functionality as + and < is defined as
follows.
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: D x D — Values
= A(a,b).a=L Vdb=L1— L
a=pos N (b€ {neg, zero}) — static,
a=zero N b= pos — static,
a=zero N (b€ {neg, zero}) — static,
a=neg A (b€ {pos, zero}) — static, dynamic

VAXIVAN

The above two examples reinforce the idea that both facets and abstract facets
are defined under one abstraction methodology. As such, the user will not experience
any “cultural shock” when shifting from one partial-evaluation strategy to another.
The similarities in modeling static properties do not end here; even the grouping and

the use of static properties are similar, as will be illustrated in the next few sections.

2.4.2 Product of Abstract Facets

As in on-line PPE, we now define product of abstract facets, which captures the set

of abstract facets derived from the set of facets defined for a given semantic algebra.

Definition 2.11 (Product of Abstract Facets) Let&; : [D;; 0;] — [D;; 0] fori €
{1,...,m} be the set of Facet mappings defined for the facets of a semantic algebra
[D; O]. Its product of abstract facets, noted [25, (2], consists of two components:
1. A domainD = Hﬁ, ;
=1

2. A set of product operators Q such that Vp € O do, € Q

(a) if p : D® — D is a closed operator, then
@y :D" D and

= A 617 Hpt(aia

=1
(b) otherwise, p : D™ — D' is an open operator, then
@, : D" - Values and

Gp= Mby,..nb) . Fe{l,...,m}st.di=L —)— L

Values Values?’

(35 € {1 ...,m} s.t. d; = static) — static, dynamic
where d = (51(8},...,8L), ..., Bm (8™, ..., ™))
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Domain D is partially ordered component-wise. Since all the product components
are of finite height by definition, the product domain is also of finite height. The
following lemma expresses the fact about the product operators, just like Lemma 2.3.

Its proof is similar too.

Property 2.6 All operators defined in the product of abstract facets, [ﬁ, (l], are continuous.

2.4.3 Binding-time Facet

While the conventional partial evaluation behaviors of algebraic operators is captured
by a facet, their binding-time behaviors can similarly be captured by an abstract facet.

Such an abstract facet is called the binding-time facet.

Definition 2.12 (Binding-Time Facet) The binding-time facet of a partial-evaluation
facet [Values; O is defined by the facet mapping g, - [Values; O] — [Values; O]

with respect to T such that:

1. Values — Values and

@ V:I;:;.;

a~— = T (defined in page 19)

Values
Q.Véeaofarityn

5:Values — Values and

6=X(d1,-.,dn) . Fje{l,...,n}st.dj=1L — — 1

Values V;l;res ?

A\ (d; = static) — static, dynamic

i=1

It is easy to verify the following property about the binding-time facet.
Property 2.7 The binding-time facet (Definition 2.12) is an abstract facet.

Not surprisingly, Definition 2.12 captures the primitive operations of conventional
binding-time analysis. As a result, not only does a facet analysis compute user-
defined abstract values, but it also computes binding-time values in the way that a

binding-time analysis does.
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2.4.4 Facet Analysis

We are now ready to discuss facet analysis. It is essentially a conventional binding-
time analysis, as described in [Sestoft, 1985] for example, extended to compute
- abstract-facet information. Analogous to the definition of on-line PPE, we assume
the binding-time facet to be always defined. The main semantic domain used by
the analysis is denoted by SD, which is a sum of products of abstract facets — each
summand corresponds to a semantic algebra. The binding-time facet is assigned to
the first component of each product. Detailed discussion appears in Chapter 3. In
this section, we investigate how abstract-facet information is used in facet analysis.

Figure 2.5 displays the actions taken when constant and primitive operations
are encountered during facet analysis. We define function K to handle constants,
and function Kp to handle primitive operations. Closed and open operators are
respectively noted p° and p°.

K takes a constant as argument, invokes the abstraction functions of the corre-
sponding facets and abstract facets to compute the static properties of this constant.
(Facets are needed as well as abstract facets because the latter is defined as an ab-
straction of the former.) It returns the set of static properties used at facet-analysis
time.

Analogous to function Kp in Figure 2.3, Kp accepts a primitive operator and its

arguments, and calls the corresponding abstract product operator for computation.

Inner-product Example (Cont.)

Let us return to our example of partially evaluating the inner-product program with
respect to any pair of vectors of size 3. In the analysis phase, we may want to deal
with the availability of vector-size information, and we therefore use the vector-size
abstract facet defined in Example 3. In our case, the actual value of both input
vectors are dynamic but their sizes are known. Recall that besides the abstract Size

facet, the binding-time facet (Definition 2.12) is also defined. Both parameters of
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e Semantic Doma,inss
) € SD = 213] where D; = (Dj; ®--- ® Dim)

i=1 and s is the number of basic domains

e Function K handles constants.

fé[[c]] = (f’l(d),...,f’m(d)) where T; = &= o &as and d=(K ¢

5.‘ D;

e Function Kp handles primitive operations.
Kp »°1 (31, .. n) = G)pc(gl, 5) where
K:P[[p]](‘sl’ ) ) = 6 - J‘V%s - SD’<
wherep : D" - D
d = po(by,...,6,)

: D" - D

P
§,Tx. o T

5;,,>

Figure 2.5: K and Izp in Facet Analysis

iprod will then be bound to the pair of abstract values (dynamic, s). Consequently,
the binding-time value of variable n is static. Thus, facet analysis determines that
the test expression in dotProd is static, and the conditional expression can be reduced
statically. This coincides with the result of on-line PPE; however, these reductions

have been determined statically.

Figure 2.6 displays the information yielded by facet analyzing the inner-product
program when only the vector sizes are static. We show the facet values of the main
expressions of the program. For conciseness, the values static and dynamic are

noted Stat and Dyn respectively.

The underlined binding-time value represents the static value obtained from the
size abstract-facet value. Notice that size information is only used in the main func-
tion iprod. This means that, at specialization time, size-facet computation is only
required for iprod. (In fact, it is only required for partial evaluation of the ab-
stract syntax tree rooted by the open operation Vecf.) Consequently, only partial-

evaluation-facet computation is required for dotProd at specialization time.

This contrasts with on-line PPE of the inner-product program where the size-facet
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Program Code Facet Values
iprod(A, B) = (Dyn,s), B = (Dyn, s)
let n = Vecf(4) Vecﬁ( )= (Stat)
in dotProd(A, B, n) = (Stat)
dotProd(A, B, n) = A = (Dyn,s), B = (Dyn, s)
if
n =0 n = (Stat)
then 0 (Stat)
else vref(A, n) * Vref(B, n) vref(A,n) = (Dyn), Vref(B,n) = (Dyn

+
dotProd(A, B, n—1)

Figure 2.6: Abstract-Facet Information after Facet Analysis

computation is performed each time function dotProd is invoked.

2.5 Discussion

We have defined an abstraction methodology called facet mapping that models the
static properties for both the on-line and off-line levels of partial evaluation. Facet
mapping is general enough to model conventional partial-evaluation behavior and
binding-time behavior of primitive operations. As such, we can naturally extend

conventional partial evaluation to PPE, at both the on-line and off-line levels.

So far, we have laid out the techniques for defining as well as utilizing static
properties. Throughout the discussion, we have linked the framework closely to con-
ventional partial evaluation. Certainly, it is possible to envision various extension
to this framework so that more accurate facet information can be derived. Several

possible extensions are listed below.
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2.5.1 Encoded Concrete Values

A feature of PPE is the ability to derive constants from the facet computation in
addition to the usual way of producing constants via static-expression evaluation.
Recall that constants are textual representation of concrete values. In defining a facet,
it is possible that some concrete values are encoded as elements of the facet domain.
For instance, the symbolic value zero in the sign facet (Example 2) corresponds to
the constant 0 in Values and the concrete value 0 in the integer domain. A partial
evaluator cannot establish the relationship between the encoded concrete values and
their corresponding concrete values. Currently, such a relationship is only realized
(and used) through the evaluation of open operators. This is because open operations
may evaluate to some constants in Values — the domain of the partial-evaluation
facet.

Similarly, in the analysis phase of off-line PPE, static binding-time information
may be derived from the abstract-facet values used. For instance, we may wish that
facet analysis recognizes the fact that the abstract value zero in the sign abstract facet
is static information that can be utilized in the specialization phase.

In this section, we present a means for a partial evaluator to recognize these en-
coded concrete values and use them as constants when they appear, without resorting
to open operations. Hence, zero in the sign facet above will be recognized as constant

0 by the partial evaluator, and as static by the facet analysis.

Why Concretization Function Is Not Adequate?

In abstract interpretation, a concrete domain and an abstract domain are related by
a pair of functions « and . Function « is called the abstraction function; it assigns
an abstract value to each concrete value in the concrete domain. Function 7 is called
the concretization function; it maps each value in the abstract domain to a set of
concrete values. As such, it appears that concrete values (and therefore constant

values) can be obtained by first applying v, then extracting the concrete values from
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the resulting set. In the case of defining a facet, although it may be possible to derive
function « from the abstraction function defined for the facet, using a concretization
function to obtain concrete values from an abstract value is more problematic. Since
the co-domain of v is in general the powerset (or powerdomain, to be exact) of the
underlying concrete domain, computation using a concretization function may not
terminate in general. In the case of sign facet, we may define y(zero) = {0},
and 0 can be retrieved from the result of application. However, when we apply ~
to the other non-bottom facet information (like pos, neg), the computation will not
terminate since their corresponding values in the concrete domain form an infinite
set.

A variant of the concretization function may appear to answer our question: Let
@ : [D;0] — [D; O] be a facet mapping with respect to 7, we define a “concretization
function” ¥ : D — Values such that

VdeD, 7(a(d) Gy 7 (d).

= Values

¥ as defined may function as a decoder for the encoded concrete values during on-line
PPE, but it does not work in the analysis phase of off-line PPE. For instance, given
the sign abstract facet, if we chose 3 : D — Values to map T 5 to value static, then

7 can be defined to satisfy the criteria

vdeD, 7(&(d) Sy, 7).
Unfortunately, value static derived from 7 does not reflect the fact that the underlying
value in domain D is a constant.

Concrete-value Decoder

What we need is a terminating function that maps those, and only those encoded
concrete values (in the facet domain) to their corresponding constant values. We call

this function the concrete-value decoder. It is defined as follows:
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Definition 2.13 (Concrete-value Decoder) Let ag : [D;0] — [D; O] be a
facet mapping defined for semantic algebra [D; O] with respect to 7. A concrete-value
decoder for the facet [ﬁ, 6] 15 a continuous function [i : D — Values such that there

e:cistsasetggﬁand
1.vdeD, p(d)eConst & de3;
2.¥deD, V3eS, apd) =3 = p(ap(d) = 7 (d).

We call the set S the concrete-value set.
The first requirement for function 2 implies that elements not in S are mapped to
either L =~ or T = in Values. The second requirement ensures the elements in
alues aiues
S are indeed encoded concrete values. The definition of i gives the user the flexibility
of choosing a set of constants to be recognized by the partial evaluator.
We can extend the definition of a facet to include the concrete-value decoder. This

is manifested using the example for sign facet.

Example 5 Sign information forms a facet for semantic algebra [D; O] = [Int,; {+,

<}
1. ﬁz{J_, pos, zero, neg, T}withVd e D: L T dC T

2. The abstraction function is

D D — ﬁ
ap(d = d=L - 15, d>0 —pos, d=0 — zero, neg
Notice that zero is an encoded concrete value for 0.

Q)

3. i is defined as follows:

Q D — Values
fid) = d=L—>1,d= zero—>7(0), T

4. 6, the set of primitives, is defined in Ezample 2.

Lastly, We redefine a facet mapping to be (a,z) : [D;0] — [ﬁ, A].
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Using Concrete-value Decoder

In defining a facet mapping to be a pair (&, ), any property information useful to
the partial evaluator can be flown out of the facet, either via open operations or
by applying the concrete-value decoder. For a partial evaluator to accept this new

channel of information, we modify the definition of product of facets as follows:

Definition 2.14 (Enhanced Product of Facets) Let (&, ;) : [D; O] — [D;; O]
fori € {1,...,m} be the set of facet mappings defined for a semantic algebra [D; O].
Its product of facets, noted [13, ﬁ], consists of two components:
1. A domain D = ﬁl ®...9D,, = Hﬁ,
i=1

2. A set of product operators Q such that Vpe O o, € Q-

(a) ifp : D* > D € O is a closed operator, then
Wy : D —D and

@p =X (by,...,6,) . (37 € {1,...,m} s.t. 4;(8) € Const) —
(@5,(d), ...,az_(d), [I¢&

=1
where Hg’ = Hﬁ,(S{,,&’z)
=1 =1
d = K(;(8))
(b) otherwise, p : D™ — D’ € O is an open operator, then
& D" — Values and

Gp= Ab1,...,0,) . (Fje{l,....m}st. bj=1 ~)> L

Values Values’

(3j € {1,...,m} s.t. §; € Const) — SJ"vahTes
where &= (ﬁl((%%, S, (T, 6™))

PPE remains intact since the use of encoded concrete values only occurs at the
level of product of facets.
Lastly, the definition of abstract facet needs to be enhanced to capture the concrete-

value-decoder operation. This means that during specialization, when an encoded
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concrete value is mapped to a constant by the decoder, it may be captured in the
analysis phase by mapping the abstract version of this encoded concrete value to
value static in the abstract facet. The abstract concrete-value decoder of an abstract

facet makes reference to the underlying facet, and is defined as follows:

Definition 2.15 (Abstract Concrete-value Decoder) Given a facet defined by
the (&, i) : [D;0] — [D;O]. Let ag : [D; O] — [D; O] be a facet mapping defined
with respect to T. An abstract concrete-value decoder for the abstract facet [ﬁ, 6] is

a continuous function i : D — Values such that there ezists a set S C D and
1.YdeD, i(d) = static & deS;
2.¥deD, ¥se§, az(d) =35 = p(asd) = 7 (2 ).

Again, we can enhance the definition of product of abstract facets so that the
availability of those constants that can be detected in the analysis phase are computed

either via open operations or via abstract concrete-value decoder.

2.5.2 Refining Domain Values

Traditionally, 3-point (or 2-point) binding-time domain is used by binding-time anal-
ysis. Since some constants (concrete values) may appear in any program, it is con-
ceivable that certain amount of constant propagation/folding (and also static com-
putation) be performed in the analysis phase. This requires a new domain which
also includes constant values, and a new set of operations that operates on constants.
However, experience in partial evaluation has indicated that the additional static
computation gained from constant propagation in the analysis phase may not be
abundant enough to warrant the construction of more complicated domain.

In an attempt to construct our framework based on the conventional partial eval-
uation, we define Values to be the 3-point domain. However, in the presence of

a large variety of static properties, static information may frequently be produced
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from abstract-facet computations. Therefore, the use of a binding-time domain with
constants may become ever more justifiable. In fact, in an implementation of PPE
done in CMU, Colby and Lee enhanced the domain Values to include constant val-
ues [Colby and Lee, 1991]. More experiments are still needed to observe the effect of
using this enhanced domain.

Care must be taken when enhancing Values to include constants. Since it is
necessary to ensure the termination of facet analysis, all domains used in the analysis
phase are to be of finite size. Thus, only a finite number of constants can be included
in Values. Let Const’ C Const be the finite set of constants included in Val~ues,

the ordering of the elements in Values will be

VceConst', L — C ¢ C static C dynamic.

Values —

Since domain Values is used as co-domain of the open operators of any abstract facet,

we would expect the definition of these open operators be modified accordingly.
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Chapter 3

Semantic Specifications and

Correctness Proofs

We have seen in Chapter 2 how we can model a static property by instantiating a
facet mapping. In this chapter, we shift our attention to PPE itself, and provide the
semantic specifications and correctness proofs of both on-line and off-line PPE. Since
PPE is a natural extension of conventional partial evaluation, correctness properties
about the former can always be restated to fit the latter. In this chapter, we first
describe the existing theoretical work on conventional partial evaluation; we then

present our approach and techniques used in building the theoretical foundation of

PPE.

3.1 Overview

In Section 1.1, we stated the correctness criterion of a partial evaluation as follows:

Suppose that P(z,y) is a program with two arguments, whose first argu-
ment z is known, but whose second argument y is unknown. Specialization
of P(z,y) yields a residual program P, (y) such that:

vy, P(z,y) = Fu(y) (3.1)
provided the evaluation of both P(z,y) and P,(y) terminates.

49
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Regardless of the strategy used, partial evaluation is a non-trivial process, it in-
volves numerous program transformations. Therefore, proving the correctness of this
process must go beyond the extensional criterion given by Equation 3.1; it must be
based on the semantics of partial evaluation. This approach should also provide the
user with a better understanding of the process.

Several works on proving the correctness of conventional partial evaluation have
appeared in the literature recently, all dedicated to off-line partial evaluation. In par-
ticular, Gomard in [Gomard, 1992] defines a denotational semantics of a specializer
for lambda calculus,! together with its correctness proof. However, the specializer
is limited to monovariant specialization. (That is, every function in a program can
have at most one specialized version created during specialization). In [Launchbury,
1990], Launchbury defines in a denotational style a binding-time analysis and proves
its correctness with respect to the standard semantics. He also shows that his re-
sult corresponds to the notion of uniform congruence, a restrictive version of the
congruence criterion for binding-time analysis defined by Jones [Jones, 1988]. How-
ever, since the correctness proofs are done with respect to the standard semantics,
they do not provide any insight as to how binding-time properties are related to the
partial-evaluation process, and more specifically to that of on-line partial evaluation.

The work described in this chapter is distinct from the existing ones in two as-
pects: First, it provides a correctness proof for polyvariant specialization (that is,
a function in a program can have more than one specialized version created during
specialization); second, it adopts a uniform approach for both defining and proving

the correctness of on-line and off-line PPE semantics.

3.1.1 Structure of the Semantics

In polyvariant specialization, when a function call is suspended (i.e., the call is not to

be unfolded during partial evaluation), a specialized version of the function is created;

1The binding-time information are provided by the user, and therefore its derivation is not in-
cluded in the semantics.
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it is this suspended function call that characterizes the specialized function. During
partial evaluation, if all suspended function calls are collected, they characterize the
residual program, and can actually be used to construct the latter.

This observation prompts us to specify PPE semantics in terms of collecting in-
terpretation, as described in [Hudak and Young, 1991]. (The resulting semantics
is also similar to the minimal-function-graph (MFG) semantics [Jones and Mycroft,
1986].) Consequently, as is the case with collecting interpretation, the PPE seman-
tics comsists of two functions: the local semantic function (or the standard semantic
function, using the terminology of [Hudak and Young, 1991]) describes partial eval-
uation of expressions. The global semantic function (correspondingly, the collecting
interpretation) describes the collection of specialization patterns. (A specialization
pattern contains information, obtained from a function call, which characterizes the

corresponding specialized function generated.)

3.1.2 Uniform Approach for Defining and Proving the Cor-

rectness of PPE Semantics

A uniform approach to defining and proving the correctness of both on-line and off-
line PPE semantics enables us to define the relationship between these two levels of
partial evaluation. Furthermore, it provides a basis for applying techniques from one
level to the other. The uniformity of our approach is based on the following two

techniques:

1. Factorized Semantics: We define a core semantics [Jones and Muchnick,
1976,Jones and Nielson, 1990] which consists of semantic rules, and uses some
uninterpreted domain names and combinator names (Section 3.2). This seman-
tics forms the basis for all the semantic specifications defined in this chapter.
Specifically, by providing a specific interpretation to the domains and combina-
tors of the core semantics, we obtain an instrumented semantics which extends

the standard semantics to capture all function applications performed during
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Off-line PPE

Core Semantics > On-line PPE

Instrumented Standard Semantics

Figure 3.1: Factorized Semantics and Logical Relations

Factorized semantics enable the instantiation of various semantics of interest from
the core semantics. Logical relations relate two adjacent levels of semantics.

program execution (Section 3.3). Using other interpretations, we define an on-
line PPE semantics (Section 3.4), a facet analysis and a specialization semantics
(Section 3.5) respectively. The advantage of using a factorized semantics is that
different instances can be related at the level of domain definitions and combi-

nator definitions.

. Logical Relations: We use the technique of logical relations [Jones and Niel-

son, 1990,Abramsky, 1990,Mizuno and Schmidt, 1990] to prove the correctness
of PPE semantics. Logical relations are defined (1) to relate on-line PPE se-
mantics to instrumented semantics, and (2) to relate facet analysis to on-line
semantics. Since all these semantics are instantiated from the same core se-
mantics, their relations can be defined locally by relating their domains and
combinators. The resulting proofs thus conform closely to our intuition about

the relations between these semantics.

Our approach is summarized in Figure 3.1. Note that the specialization process of

off-line PPE can be systematically and correctly derived from its on-line counterpart,

using the information collected in the facet-analysis phase.
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3.2 Core Semantics

We begin the discussion of the semantic specification of PPE by presenting a
core semantics. The subject language is a first-order functional language. Figure 3.2
defines its syntactic domains. The meaning of a program is the meaning of function
f1. We assume all functions (and primitive operations) have the same arity.

The core semantics is defined in Figure 3.3. It is used as a basis for all the other
semantic specifications defined later, and it factors out the common components of
those semantic specifications. This semantics is composed of two valuation functions:
€ and A. Briefly, € defines the standard/abstract semantics (called the local seman-
tics) for the language constructs, while A defines a process which collects information
globally (called the global semantics). The structure of the core semantics is similar
to that used in [Hudak and Young, 1991] for defining collecting interpretation. A
similar structure is also used in [Sestoft, 1985] to define a binding-time analysis.

The core semantics is defined by semantic rules. It uses some uninterpreted do-
main names and combinator names. A specific semantics is defined by providing
an interpretation to these domains and combinators. As a result, relation between
two instantiated semantics can simply be defined by relating their domains and their
combinators. Indeed, all three semantic specifications presented in this chapter are
defined from the core semantics displayed in Figure 3.3. Also, their correctness are
proven using the relations defined between their domains and combinators, as is de-

picted in Figure 3.4.

3.3 Standard and Instrumented Semantics

3.3.1 The Semantics Specifications

In Figure 3.5, we instantiate the core semantics to define the standard semantics of

our language. As is customary, we will omit summand projections and injections.
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¢ € Const Constants
z € Var Variables
p € Po Primitive Operators
f € Fn Function Names
e € Exp  Expressions
e u= clz|p(er,...,en) | fer,-.-r€n) | if €1 €2 €3
Prog := {fi(zi,...,2.) = e}  (fi is the main function)

Figure 3.2: Syntactic Domains of the Subject Language

1. £ : Exp — ECont where ECont = Env — Results
Elc] = Constz [c]
Ellz] = VarLookupz [z]
gﬂp(el’“',en)]] = Primo_f?f [[P]](__E[[elﬂ"_'"gﬂen]])
Elif e1 €2 3] = Condz (E[lea], Efle2], Ees])
Elf(esr--rea)l = Appz [FIEe], - Elenl)
where Constz : Const — ECont
VarLookupz : Var — ECont
PrimOpg : Po — ECont™ — ECont
Condz : ECont® — ECont
Appz : Fn — ECont™ — ECont

2. A : Exp — ACont where ACont = Env — Result¢
Alc] = Constx [c]
Alz] = VarLookup% [z]
Alp(e, ..., en)] = PrimOpz [p] _(:71[[61]],;., 74[[?2]])
Alif e1 ez e5] = Condxz (Aled], Ales], Ales]) (E[er]) B
Alf(er,...,en)l = Appz [f] (Aled],- .., Alea]) (Eleals- .-, Eleal)
where Constz : Const — ACont
VarLookupw : Var — ACont
PrimOpz : Po — ACont™ — ACont
Cond : ACont® — ECont — ACont
Appz : Fn — ACont™ — ECont™ — ACont

Figure 3.3: Core Semantics
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[Resultz ; Combg] (€, A) [Result 7 ; Comb ]

y 'y

[Resultz ; Comby] (€, A) [Result 7 ; Comb 3]

A A

[Results ; Combe] (£, A) [Result 4 ; Comb 4]

Figure 3.4: Relations between three levels of evaluation

Resultz and Resulty are the result domains used by semantic functions £ and A
respectively. Combz and Comby are their respective set of combinators.

e Semantic Domains
v € Resulte = Values = Int + Bool
p € VarEnv = Var — Values
¢ € FunFnv = Fn — Values” — Values
Env = VarEnv x FunEnv

e Valuation Functions
Eproy : Prog — Values™ — Values
gProy [[{ fi(zlv s ,xn) = Ci}]](vl, ‘e ,'Un> = ¢ IIfl]] ('I)l, . ,’Un)
whererec ¢ = L[strict {Mv1,...,vn) . E[ei] ((L[ve/zk]), )}/ fi]

E=¢

e Combinator Definitions
Conste [[c] = Mp,4) . K []
VarLookupg [[z] = A(p, ) . pl=]
PrimOpg [p] (ki,---, k) = A(p,¢) - Ke[p] (k1(p, 8), - - -, kal(p, @)
Cond5 (kl, k27 k3) = A(ioa ¢) . kl(p7¢) - k2(p7 ¢)’ kg(p, ¢)
Appe If] (k1yeo o k) = A(p,8) - SL1 (E1(0, @)y » nlp 6))

Figure 3.5: Standard Semantics
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Only the interpretation of the valuation function & is provided since the definition of
standard semantics does not require collecting information globally. For a function
f, “strict f” is a function just like f except that it is strict in all its arguments.

In order to investigate the relationship between the standard semantics and the
PPE semantics, the former is enriched to capture information about function appli-
cations. This enhanced semantics, called instrumented semantics, collects all func-
tion calls performed during the standard execution of a program. Function calls are
recorded in a cache, which maps a function name to a set of standard signatures.? A
standard signature consists of the argument values of a function application. This is
depicted in figures 3.6 and 3.7.

The continuity property of the function £ is well-known, for the function is the
same as conventional standard semantic function for a first-order applicative language.
Since the function A describes a kind of collecting interpretation (over function calls,
instead of all expressions), its continuity can be proven along the same argument
described in [Hudak and Young, 1991]. This involves rewriting the specification of
A into a functional, and showing the continuity of that functional.® The detail is

omitted in this thesis.

3.3.2 Correctness of Instrumentation

Because the local semantics is exactly identical to the standard semantics, we only
need to show that the instrumentation part of the instrumented semantics is correct.
That is, the instrumented semantics captures (in the cache) all the calls performed

during standard evaluation. Since the language we consider is strict, only those

2Notice that powerset, instead of powerdomain, is used to model the content of the cache. This
avoids some technical complication incurred in the correctness proof, as discussed in [Hudak and
Young, 1991].

3In fact, the proof required here, as well as those for the continuity property of both on-line and
off-line PPE, is simpler than the one described in [Hudak and Young, 1991]. This is because (1) the
subject language is first-order applicative, (2) information is collected only at each call site, instead
of all expressions, and (3) treatment of function application is uniform (i.e., collecting the result of
processed arguments), independent of the function definition.
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¢ Semantic Domains
v € Resulte = Values = as in Figure 3.5
p € VarEnv = as in Figure 3.5
¢ € FunEnv = as in Figure 3.5
o € Resulty = Cachey = Fn — P(Values®)

e Valuation Functions
Eproy : Prog — Values” — Cachey
Erreg [{ Filwrs- .- 120) = €}lons. e 0a) = A(L[{(0n, .- 0m)}/fi])
whererec  h(c) = o U
h(ULA [e]l (Llve/ze])g | (vr,---,va) € o[ £i],
[fi] € Dom(o)})
¢ = Llstrict (M(v1,...,va) . € [&] (L[ve/zk]) 6)/fi]

E=¢
A=A

Figure 3.6: Instrumented Semantics — Domains and Main functions

standard signatures that represent function calls with non-bottom argument values
are collected in the cache. We shall refer to these function calls as non-trivial calls.
The following lemma describes the behavior of the instrumented semantic function

A. It is used to show the correctness of instrumentation.

Lemma 3.1 Given a program P. Let ¢ be the function environment for P defined by
the instrumented semantics. If the standard evaluation of P with input (vy,...,v,)

terminates, and o is the cache computed for P by A, then

1. For any ezpression e in P, if a non-trivial function call occurring in e is per-

formed when e is evaluated, then A records the call in the cache.
2. For any function definition in P of the form
fi(xl,”',zn) = fj(ellr"?e:z) T

Let (vi,...,v,) € o[[fi]. If evaluating f; with argument (v}, ... ,v") results in

-y Vp

a call to f; with (vf,...,v), where vy = E[e](Llv}/zi],4) VI € {1,...,n},
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¢ Combinator Definitions
Consts [c] = as in Figure 3.5
VarLookup; [z] = as in Figure 3.5
PrimOpg [p] (k1,...,k,) = as in Figure 3.5
Condg (ky, k2, k3) = as in Figure 3.5
Appe [f] (K1,..., k) = as in Figure 3.5

Consta [c] = Ap,¢) . (Af-{})
VarLookup 4 [z] = A(p,¢) . (A\f.{}) .

PrimOpA Hp]] (al,-- . 7an) = ’\(pv ¢) . U ai(ﬂ? ¢)

Cond.A (ala az, (13) kl = )\(P, ¢) . al(;a ¢)U(kl(p’ ¢) - az(P, ¢)7 a’3(pa ¢))
App.A [[f]] (ah;l"v an) (kl""v k'n) =

Ao, ¢) - Jailp @)U (Fie{l,...,n} stw;=1) -
=1 (ASf A1), L{{ves- -5 020}/ f])
where v; = ki(p,¢) Vi € {1,...,n}

Figure 3.7: Instrumented Semantics — Global semantic function

then (v{,...,v;) € of;], provided vy # LVl € {1,...,n}.

Proof (Sketch):

1. We want to show that the predicate “if a non-trivial function call occurring in e
is performed when evaluating e, then the call is recorded in the cache produced

by A” is true. The proof is done by structural induction over e.

2. The second part of the lemma is shown by examining local function 4 in function
Eprog- If (v1,...,v.) € o[f:], then A will be called to collect non-trivial calls
occurring in the evaluation of f; with L[v}/xz] as its variable environment.
Using the first result of this lemma we know that (v,...,v") € o[[f;], provided
v # L, Vle{l,...,n}. a

Theorem 3.1 (Correctness of Instrumentation) Given a program P, let P be

evaluated with input (vi,...,v,). For any user-defined function f in P, if f is
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called with non-bottom argument (vi,...,v.) during the standard evaluation, then

(v1,---, o) € o[l f].

Proof : From Lemma 3.1, and noticing that, since none of the initial input should
be bottom, the initial call to f; with argument (v;,...,v,) is captured in the cache

(by the definition of Ep,yy). a

3.4 On-Line PPE

In this section, we instantiate the core semantics to obtain an on-line PPE semantics.

Using logical relation, we then prove the correctness of this on-line PPE semantics.

3.4.1 The Semantics Specification

Figures 3.8, 3.9 and 3.10 display the on-line PPE semantics. The semantics aims at
partially evaluating a program with respect to a set of static properties (including
constants). It yields a residual program consisting of the specialized functions created
at partial-evaluation time. As was described in Section 2.3.4, we assume that the
partial-evaluation facet always exists during partial evaluation — it will be assigned
to the first component of every product of facets. A sum of these products of facets is
noted 55; each summand corresponds to a semantic algebra. For brevity, We write
T3 to represent the maximum value of any summand of SD.

Partial evaluation of an expression always produces a residual expression. Besides
using [ ] to denote an expression, we also use it as an operator that constructs
expressions. This operation is assumed to be strict in all its arguments (i.e., the
subexpressions). To this end, domain Exp containing all expressions forms a flat
domain.

The semantics consists of three valuation functions: & Progs € and A. Function £ Prog

begins the partial-evaluation process by calling function A to collect information from
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function calls encountered during partial evaluation. At the end of the process, it calls

function MkProg to construct the residual program.

o Semantic Doma,inss

§ € 8D = ZﬁJ where D; = (ﬁ;@@ﬁ;")
7=1 and s is the number of basic domains
€ Rei1il s = Exp x SD
€ K@E’nv =/Yar - Ris\ultg
Env = VarEnv X FunEnv
€ FunEnv = Fn — Result% — Result;

€ Resulty; = Cachez= Fn — P(Transf x Result})

N S

QP O

e Valuation Functions
f;:r,,g : Prog — Result% — Prog,
Eprog [{fi(z1,---, a:n) = e}] (01,...,0,) = .
Af[kprog (h(-L[A{(S? 1}}3 AR "A’n>}/fl]))¢A
whererec h(6) = U A(U{A [e] (L[0}/zk],9) | (—=,0,...,0%) € &[f:],
A T Il € Dom(3)})
¢ = _L[.StT'iCt (/\(f)l, . ,f)n) € [[e,-ﬂ (..L[f)k/il}k], (ﬁ))/f,]

£
A =

| on|

® MkProg Definition
MkProg 6 ¢ = { fi¥(z1,...,2zx) = 0[1] (s,01,...,0.) € 6[f],

[f:] € Dom(5)}
where fi? = SpName(IIfi]],f)h-u,ﬁn)

o = € [e] (Lloe/ze], 9)
(z1,...,zx) = ResidPars ([fi],01l1,...,0.l1)

Figure 3.8: On-Line PPE — Domains and Main functions

Function € defines partial evaluation of an expression. [t yields a value ¢ €
Result; = Exp x 8D, where the first component (0]1) is a residual expression and

the second component (9]2) is a product-of-facet value. Domain Result; is partially

ordered component-wise.
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e Local Combinator Definitions
Constz [[c] = A(p, ) . 16 [l
VarLookupg [[:c]] /\(p, $).p [z I . A
PrimOpgz [p] (k1,---,k.) = A(5,9) - Kp [p] (k1(4,8), .- -, En(p, 9))
Condg (kl,kg,kg) = /\(p, ) . (111 € Const) — ((K(01{1)) — 0q,03),

([ef 91l1 D201 031, 02]2 Ll 95]2)

where d; = k(p,¢) Vi€ {1, 2, 3}
Appz [f] (k1o ka) = A(B, @) . (Ft [FILL (Bt(51),.. ., Bt(6)) = u

- ¢ [[f]] (vlv"vA )a
Ps g ([fsp(ed,- -, €0)], ")

where 0; = ki(p,¢) Vi€ {1 ..,n}

foo = SpName([f], %1,...,d,
(ef,.. ek) Resszrgs ([[f]] (b1, ..., bn), (D1l1,...,0,01))
(¢,6) =6 [f] (8,...,5,)
(01,...,05) = SpPat ([[f]]7
(br,...,b.) = (Ft[f])I2(

° Primitive Functions
K : Const — ResultA

R I = ([ (G5(d), ..., 5n()) whered = K [] € D

. ,’Un) (b],,bn>)

’<\ 1y-
bi(51), ..., bi(9n))

K : Po — Result" — Resultz
Kr [p7] (¢, 81), - - -5 (€, 8)) =
6 = 'L‘D)_')<J-Etpa-l- )
(51 € Const) —» (& (&A (d),--., apa(d))), (€,6)
where p° : D — D
3— wP°(61’ n)
e = ﬂ..pi(e’l? ) n)II
~ d :AIC(51) ~
Kp [[po]] ((ellﬂv‘Sl)""a(e:n‘sn)) =
(

—)A J—Ezp,-l-ﬁ)’

& = [p"(ehs- - €l)]
d = K(d)

Figure 3.9: On-Line PPE — Local Semantics

d€ Const — (d,(a51(d),...,@5m(d))), (¢,(TH1r--s Thm
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e Global Combinator Dgﬁnitions
Constz [e] = X3,9) - (\F - 1)
VarLookup =] = A(3,9) - (\f - {})
PrimOp; [[PH (&17 R ,&n) = A(167 (3) : U &i(ﬁv qAS)
R . i=1
Cond 3 (a1,a2,43) k1 = A(p,9) . a1(p,¢) U ) R R
6] € Const — (IC(&Q — ao(p, ?),&3(/3, 3)),
S i2(p, ) U as(5, 6)
where (e, (61,...,8T)) = ki(p, d)
App 3 [f] (a1, - -+, @) (kuy-.., k)
=1

where 6 = ((Ft[f])I1(5(1),...,bt(0,)) =u) —
L[{(w, 01, .., 80)}/f], L{(s, 01, -..,07)}/f]
(01,-..,0,) = SpPat ([f], (D1,---,0n), (b1s-..,bs))
b} = (FE LD (B(30), . BH(5))
v = ki(p,¢) Vie {1,...,n}

Figure 3.10: On-Line PPE — Global semantic function

3.4.2 Treatment of Function Calls

One of the central issues in partial evaluation of functional programs is the treat-
ment of function calls. Basically, there are two kinds of transformation performed in
partially evaluating a function call: unfold and specialization. Each transformation
has a major pitfall which may cause non-termination of the partial-evaluation process.
These pitfalls are infinite unfolding and infinite specialization.

This section first presents the treatment of function calls. Then, we use the notion

of filter to capture various call treatments [Consel, 1989].

Call Unfolding

Unfolding a function call consists of replacing the call by the result of partially evalu-

ating the function body, in an environment binding the parameters to the arguments.
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As an example, consider the following function®*, which appends n numbers (from

m to m+n) to a list 1.°

fun appendn (n m 1) =
if (n < 0) then 1 else m :: (appendn (n-1,m+1,1))

If the function call appendn(2,4,v), where variable v is dynamic, is unfolded, the
resulting expression is 4::5::6::v . In this case, unfolding is safe (i.e., it will termi-
nate) because the induction variable n is static. Although safe, unfolding may cause
computations to be duplicated. This happens when a parameter occurs more than
once and its corresponding argument is dynamic. However, this can easily be avoided
by a preliminary analysis as described in [Bondorf and Danvy, 1991].

Not all function calls can be unfolded. Consider unfolding appendn(u,v, [3,4]),
where u and v are dynamic. In this context, the recursion of function appendn is
under dynamic control. Therefore, systematic unfolding of calls to this function will
cause non-termination of partial evaluation.

When unfolding cannot be performed, the function call has to be suspended.

Call Suspension

When a function call is suspended, a specialized version of the function is created
with respect to the static arguments. A new function call (called the residual call)
consisting of the name of the specialized function and the dynamic arguments is
substituted for the original function call. Consider suspending the function call
appendn(u,v, [3,4]) with both u and v being dynamic. The resulting specialized
function is

fun appendn-1(n,m) =
if (n < 0) then [3,4] else m :: (appendn-1(n-1,m+1))

4Although contrived, this example illustrates many aspects of the treatment of function calls.

SAll program code are written in a simplified format of Standard ML [Milner et al., 1990]. As
such, operator :: represents the “consing” of an element to form a list, and [...] forms a list, with
the empty list represented by [J.
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and the residual call is appendn-1(u,v). Since a function is specialized with respect
to static arguments, calls with different static arguments produce different special-
ized functions (thus attaining polyvariant specialization). Hence, when suspending a
function call, the partial evaluator first determines whether a specialized version of
the function has already been created via a previously suspended call with the same
static arguments. If so, it does not create a new specialized function; rather, it re-
places the original call by a residual call to this specialized function. This is illustrated
in the above specialized function appendn-1, where the recursive call also refers to
appendn-1 since this call, when suspended, contains the same static arguments as
the previously suspended call.

It is not always safe to specialize a function with respect to all the static argu-
ments of the call; some arguments may cause infinite specialization [Consel, 1989].
Consider a systematic suspension of all calls to appendn, with the first call being
appendn(u,2, [3,4]) where variable u is dynamic. Suspending this first call causes a
specialized version of appendn to be created, using the pair of static values (2,[3,4]).
Since the induction variable is dynamic, both branches of the conditional in appendn
are partially evaluated. Consequently, suspending the recursive call to appendn causes
a new specialized version of appendn to be created, using the pair (3,[3,4]). Since
the termination condition is dynamic, each recursive call to appendn will yield a new
specialized function and this process will not terminate. To prevent infinite special-

ization, some static arguments should not be propagated.

Filters

Exactly how a function call is to be treated can be determined by the user, or auto-
matically by some termination analysis (e.g., [Sestoft, 1988]). To capture this piece
of decision making, we introduce the notion of filters.

Using filter to specify the treatment of a function call has been developed for the
conventional partial evaluator Schism [Consel, 1988,Consel, 1990b]. In this scheme,

each user-defined function in a subject program can be associated with a filter speci-




3.4. ON-LINE PPE 65

fication.

A filter specifies how to transform a function call (unfolding/suspension) and how
to specialize a function, when call suspension occurs. A filter consists of a pair of
strict and continuous functions. The first component of the filter specifies whether
a call to this function should be unfolded or suspended. It has the functionality
(VaTﬁesn — Transf) where Values is the binding-time domain (see Definition 2.3)
and domain Transf contains two values: u and s, which stand for unfolding and
specializing respectively. This function is invoked with the binding-time values of the
arguments of a call. If it returns u, the call is unfolded. Otherwise, it returns s; the
call is then suspended and the function is specialized.

Domain Transf is ordered as follows: u C s. This ordering reflects our intujtion
about the termination behavior of these transformations: unfolding a function call
will terminate less often than its specialization. This means that replacing a call
unfolding by suspension cannot cause non-termination; however, the converse is not
true. A detailed discussion on the treatment of calls can be found in [Sestoft, 1988],
for example.

The way a function is specialized is specified by the second part of the filter. It
has the functionality (Va—lEesn — V:;lEesn). It receives the binding-time value of
each argument of the call and returns a list of binding-time values; each of which
specifies if the corresponding argument should be propagated. Specifically, value
static indicates that the corresponding argument is to be propagated, whereas value
dynamic indicates otherwise. As an example, function appendn with filter can be
written as follows:

fun appendn(n,m,1l) =

(filter (if (stat? n) then u else s) [n,Dyn,1])
if (n < 0) then 1 else m :: appendn(n-1,m+1,1)

where the two components of the specified filter are the bodies of the two filter
functions described above. During facet computation, each parameter (such as n,

m and 1) is assigned the binding-time value of its corresponding argument value.
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In the first component of the filter, predicate stat? returns true if its argument
is static. The above filter specifies that whenever the first argument of a call to
function appendn is static, the function call should be unfolded. Otherwise, it should
be suspended. In specializing the function, the second component of the filter specifies
that the second parameter is assigned a binding-time value dynamic (Dyn), and the
corresponding argument is therefore not propagated.

keeping filter specification local to each function is crucial in controlling the
partial-evaluation process with respect to the context of a call. Consider the filter of
appendn above. It expresses different behaviors: if appendn is called with the first
argument (parameter n) static then the call is unfold; otherwise, the call is suspend,
and appendn is specialized without propagating the second argument. This contrasts
with some of the existing strategies which provide unconditional annotation at each
call (or function) to indicate how that call is (or all calls to that function are) to be
treated [Haraldsson, 1977,Jones et al., 1985]. In these systems, an annotation denotes
an unconditional directive to the partial evaluator. Further discussion can be found
in [Consel, 1988,Consel, 1989).

Note that one could introduce an automatic phase to annotate a program as to
what to do for each function call. However, these annotations may lower the quality
of the residual programs and can sometimes cause non-termination [Sestoft, 1988].

Although the above discussion applies to conventional partial evaluation, it can
be readily applied to the PPE.® Thus, for a function f, the two components of its
filter are denoted by Ft[f] |1 and Ft[f] |2 respectively. When a function call is
suspended, a specialized function will be created. The specialized-function name is
denoted by f;*. It is uniquely identified by two components: the name of the original

function f; and the specialization pattern.”

8Using other kind of facet information to control the treatment of function call can be achieved
with minor extension to the filter. This is discussed in Section 3.6.

"The specialization pattern describes information about the arguments used in specializing the
function. Each argument value is represented in the pattern by an expression and a product of facet
values. The expression is either a constant (which is to be propagated at function specialization) or
a parameter name (representing an unknown argument). Thus, a specialized pattern is defined as:
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In the on-line semantic specification depicted above, we use function bt to deter-
mine the binding-time value of a value in Resultz. Formally, bt is defined as bt (e, 3)
= 7 (8Y).

Creation of specialization patterns and specialized-function names are achieved
by continuous functions SpPat and SpName respectively. Function SpPat is defined

as follows:

SpPat : Fn x Result} x Values" — Result? and
SpPat = A(f,(01,.-.,00),(b1,...,ba)) . (07,...,0p)
where Vi € {1,...,n},
o = (e}, (diy 62, 8))
(ef,d)) = b =static — (e;,d]),
b; = dynamic — (z;, T 7= ), (LEop, Lygm,)
b= (e (81,8%,...,0m)
where z,,...,z, are the parameters of function f. Functionally, SpPat converts
some of the constant values in the call arguments into non-constant values (since
not all constant values are propagated during function specialization). By converting
a constant into a non-constant, SpPat replaces the expression component of that
constant argument by a parameter, and raises the product-of-facet-value component
to a coarser value (one whose partial-evaluation-facet value is T =~ ). Using the
terminology of abstract interpretation, we say that the non-constant value is a safe
approzimation of the original constant value. This implies that SpPat satisfies the

following property:

Property 3.1 Let (01,...,0,) be the arguments of a call to function f. For all
i € {1,...,n}, let b; € Values such that bt(;) Ty, bi. Then

Vie{l,...,n}, &2 Cg 6112,

where (05, ...,05) = SpPat (f,(b1,...,0n), (b1, .., bn)).

Exp x SD ™ or simply, Result>.
3
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This property can be easily verified by noticing that only the partial-evaluation-facet
value of the second component of any argument may change in the computation.
Furthermore, such a change only makes the value coarser.

Function SpName produces a unique specialized-function name from the original

function name and the specialization pattern. It has the functionality:
SpName : (Fn x Result?) — SpFn

where SpFn is a flat domain of specialized-function names.
Those call arguments that are not propagated during function specialization be-
come arguments of the residual call. They are extracted from the call arguments by

the continuous function ResidArgs. ResidArgs has the following functionality:
ResidArgs : Fn x Values x Exp™ — Exp™ (for m <n).

Furthermore, ResidPars is a continuous function that returns a tuple of parameters;
each parameter replaces a residual argument in forming the specialization pattern.

ResidPars has the following functionality:

ResidPars : Fn x Exp™ — Var™ (for m < n).

3.4.3 The Global Semantic Function A

Function A collects partial-evaluation signatures associated with user-defined func-
tions. A partial-evaluation signature is created when a non-trivial function call is
partially evaluated. It consists of two components: A transformation tag (from do-
main Transf defined in page 65) indicating the transformation performed on the
function, and the argument values of the application. If the call is suspended, its
corresponding partial-evaluation signature is a transformation tag together with a
specialization pattern.

All signatures are recorded in a cache. Formally, it is defined as

Cache; = Fn — P(Transf x Result}).
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The cache is updated using a lub operation which is equivalent to set-union operation.
That is, Vo1,02 € Cachez, o1 Uoy = Af . (a1[f] U o[ f]).

Lastly, it is worth noticing that, just like a binding-time analysis, gpm performs a
fixed-point iteration to obtain a cache. Such fixed-point iteration can be viewed as a
semantic specification of the pending-list technique used in existing partial evaluators.
The cache produced will be used by MkProg to generate the residual code for all the
specialized functions.

The following lemma state the continuity property of both £ and A. The proof for
the continuity of £ is done by induction, whereas the proof for that of A is achieved

again using the technique described in [Hudak and Young, 1991]. We omit the detail

here.

Lemma 3.2 Both € and A are continuous in all their arguments.

3.4.4 Correctness of the PPE Semantics

Before proving the correctness of the semantics, we can already show that PPE se-

mantics subsumes standard evaluation in the following sense:

Theorem 3.2 Given a program P, suppose that (1) the input to this program is
completely known at partial-evaluation time, and (2) all function calls in this program

are unfolded during partial evaluation, then for any erpression e in P,

(€ [el(p, ) = (€ [el(p, )1,

where both ¢ € FunEnv and ¢ € FunEnv are fized for the program, p € VarEnv, and
p € VarEnv is defined as:

p = Azl (7(d),(45:(d),...,d5m(d))) where d=(p[z]) € D.
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Proof : We need to show that £[e] R E[e], for the logical relation R between
domains of € and € defined by:

v’k\Re,ult?ﬁ & 7(v) = 0]l A D2 = (@5:1(v),- -+, 85n(v))) whereve D
p Rvurgns p & V[z] € Var, plz] ﬁﬁewlig Alz]

(di,d3) Rpyxp, (d1,ds) & dy Rp, di A dy Rp, dy

fRpy—p, f & VdeD,,Vie Dy, dRp, d = f(d) Rp, f(d)

It suffices to show that ¢ R ¢. Since this involves the recursive function environ-
ments ¢ and ¢3, we prove the validity of R using fixed-point induction on Kleene’s
chain over ¢ and ¢, with the least element (in this proof, 7 ranges over all user-defined

functions):

(¢0,<]30) = ( L[(strict (Mv1,---,vn) - Lvawes)/fi],
L[(strict (M(d1,-..,9n) - (LEzp, Lg3))/ fi])-
It is true trivially that ¢ R QASO.

Suppose that R is true for some element (n, <Z>n) in the ascending chain, we would

like to prove that R is true for (Pr+1, $n+1) where

(i1, @) = ( Ll(strict {Mo1,...,vn) . E[e](Llve/zk], dn)}/fi],
L[(strict {A(b1,...,9,) . E[e](L[x/zx], dx)}/ i])-
That is, we want to show that

V[f:] € Fn,Vj € {1,...,n},Vv; € Values, Vo, € Resultg,

n

A R9;) = burlfdvr,- .. 00) R o [fil(B1,- .., 5n)-

=1
Or, equivalently,
V[fi] € Fn,Vj € {1,...,n},Vv; € Values, Vo, € Resulty,
Aw@; Ro;) = Eled(Llve/zil, 6n) R E[ed(LIok/24], $n)-
J=1
The proof is by structural induction on e. It suffices to show that R holds for all

the corresponding pairs of combinators used by &€ and € respectively.




3.4. ON-LINE PPE 71

o The proofs for Consts and VarLookup, are easy, and thus ignored.

e PrimOp, : This is done by structural induction and a case analysis over all the

possible argument values of the primitive.

e Conds : This is done by structural induction and a case analysis over the

possible values produced by ki (L[6x/zx], ¢x)-

o App; : For any user-defined function f, suppose that all corresponding ar-
guments of App, and App; are related by R. Vi € {1,...,n}, let v; =
ki(L[ve/zk], #n) and 0; = /::t-(_l_[f)k/zk], ¢A3n) We have Vi € {1,...,n}, v k\gcwu? 0;
by the structural-induction hypothesis. Since both ¢, and ¢, contain only
strict functions, R holds when some of the arguments is bottom. On the
other hand, under the condition that all function applications are unfolded,
Appg[[f]](l?:l,...,lzzn) is reduced to én [f1 (%1,-..,9.). By the fixed-point-

induction hypothesis,

6 Rén = ulfl(vr,---,va) R Gulf1(n, -, 00)-
Hence, App, R Appg.

This concludes the proof. O
We begin the discussion about the correctness of PPE by first observing that
any constant produced by partially evaluating a primitive call is always correct with
respect to the standard semantics, modulo termination. This observation is stated

formally in the following lemma:

Lemma 3.3 Let [D; ()] be a product of facets for an algebra [D;O]. Let ¢ = (€]
p(z1y. . z0)] (L[([zi]), 8:) /2], L)) L1, and v = E[p(z1,. - -, za)[(L[d:/2:], L) where

d; € ﬂ{deDldea 5,’}, Vie {1,...,n}. Then,
j=1 3

(c € Const) and (v # Lviwes) = c¢=T7(v).
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Proof : First, we notice that

(Elp(e1, - - -, 2a)] (Lldi/zi], L)) = Kp[pl(dy, .- ds) = p(di,...,dy).

As defined in the on-line PPE semantics, we have

(g[[p(xh B :I:n)]](_J_K[[.’B,‘]], 8,‘)/1:,'], -L))ll = (ﬁp[[p]](([[zl]], 31)? SRR (Hxn]L Sn)))ll

Given that (E[p(z1, ..., za)[(L[([z:],8)/z:], L)) L1 € Const, the proof is done by

case analysis of the different classes of primitive operators:

1. If p is a closed operator:

Given (Kp[p](([z1],81)s. .-, ([za],8.)) L1 € Const. By definition of on-line
PPE for closed operators, this constant can only be produced by the partial-

evaluation facet (that is, the first component of the product of facets). Thus,

(Kelpl({[z1], 81, - - -, ([2al, 62))11 = p1(8L,...,81) € Const.

Given that (E[p(z1, ..., 2z,)](L[d:/z:], L) # L and p(6L,...,61) € Const, by
Definition 2.9, we have Vi € {1,...,n},8! € Const. ThenVi € {1,...,n},Vd; €
D such that d; = K(8}):

8,8 = #(Kplpl(dy,...,dn)) = 7(p(dy,...,dn)).

. If p is an open operator:

(Kplp](([z1],64), - - -, ([z=],62)))11 € Const implies that this constant is pro-
duced by a facet operation in the product of facets. Lemma 2.1 says that we
can consider any facet that produces the constant. Assume that the ** facet

produces this constant; This is denoted by p;(6i,...,58%). By Property 2.2, we
have ﬁi(gi""73jl) = ?(p(dl"",dn)).

This concludes the proof. a
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Since an abstract value used during partial evaluation represents a set of concrete
values, a partially-known input (91,...,9,) to a program during partial evaluation

represents a set of concrete inputs to that program. That is,
(D1,...,0n) represents the set {(v1,...,va) | &5 (v:) = 0;, 1 € {1,...,n}},

where, for each v; € D;, the corresponding abstraction function is éz.

{1,...,n}). The safety criterion described in Equation 3.1 is now expressed in our se-

(for z €

mantic specification as follows: Partial evaluation of a program with input (y,...,9,)
is correct if it produces a cache that captures all possible non-trivial calls performed
during the execution of a program (under the instrumented semantics) with input
taken from the set represented by (¢1,...,?,), modulo termination.

One word about termination. All nontrivial (conventional) partial evaluators so
far have had problems in preserving termination. The problem can either be with the
partial-evaluation process itself or with the generated residual program. (See [Go-
mard, 1992] for discussion about termination preservation.) This problem also exists
with PPE. In fact, since the termination of call unfolding/specialization is controlled
by usér-a,nnotation (via filter specification), we rely on the user to ensure the termi-
nation of the partial-evaluation process. The safety criterion expressed above is the
same as that expressed for conventional partial evaluation of applicative programs.

The safety of the semantics can be shown by relating the local and global semantics
to their respective counterpart in the instrumented semantics. That is, we define a
logical relation RE relating £ and £, and a logical relation RA relating A and A.
Notice that RE relates the results v and & computed by € and & respectively. Since
0= (e, 3) € (Exp x g’b), RE is composed of two relations, RE and 'R‘;’:?, that relate
a concrete value v to e and & respectively. It turns out that the correctness of RE
depends on that of RA. At the same time, the correctness of RA depends partly on
the correctness of RZ2. Therefore, we shall prove the correctness of 'RE“ then that of
RA and finally that of RE:. Lastly, we combine the result of R and R? to express

the correctness of RE.
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Correctness of R%

In this section, we define and prove the correctness of the relation R% between the
result of £ and the second component (the product of facets) of the result of £. We

begin with a relation which relates a basic value with a product-of-facet value:

Definition 3.1 (Relation jag?)) For any value v € D and § € SD with § =
(61,...,6m),

~-

vjc—,@& & Vie{l,...,m}, vj&s; 6,

where Zag, is the logical relation induced from the facet mapping from D to D', and

D! ®---® D™ is the product of facets of D.

m

Since (v ja’;a é) = (/\(v ja 6‘)), Racs is a logical relation between Values and
=1

SD (assuming that the values have been injected into their respective sum domains).

Next, relation ja‘é’:‘; is extended to provide relationship between various domains
used by the local semantic functions of both the instrumented and the on-line PPE

semantics.

Definition 3.2 (Relation 'R,g?) R is a logical relation between domains of £ and
£ deﬁned by:

A

RResultA vV < v Ea,\ {71,2

P 7?’Va'rEn‘u b & V[[.’E]] € Var p[[xII RResuItA p[[a)]],
) ’R,FMEM $ < V[[f]] € Fn,Vi € {1,...,n},Vv; € Values, V9; € Resulty,

A R 8) = G101, 0) R 71, . 50)

=1

<d1,d2) ’R'%lxDz (Jl,dAQ> =4 d1 RD21 cfl /i d2 R%z 622 R
f RDI_,D2 f & VYdeD,Vde D, dRE d = f(d) RE f(d).

The next lemma shows that the use of user-defined functions at on-line level is

related to that at the instrumented semantics.
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Lemma 3.4 Given a program P, let ¢ and é be the two function environments for

P defined by the standard and the PPE semantics respectively. Then ¢ RE cf)

Proof : We need to show that V[f]] € Fn,V: € {1,...,n},Vv; € Values,V9; €
Result,

n

A R 8) = 6[f1(vss- .., va) RE $[F1 (61, .., bn).

i=1

The proof is similar to that for Theorem 3.2, proving the validity of relation RE using

fixed-point induction on Kleene’s chain over ¢ and dAJ RE trivially holds for the least
element in the chain.

Suppose that RE: is true for some element (¢m, én) in the ascending chain, we

would like to prove that RE? is true for (¢n41, q3n+1) where

(Sntts Fnt1) = { L[(strict {Mvi,...,va) . E[e](LIv/z], 2)}/ fils
L[(strict {A(Bn,... 5n) - E[e(LIbe/2el, 30}/ 1.

That is, we want to show that
V[f] € Fn,Vj € {1,...,n},Vv; € Values, ¥o; € Resultg,

A RE ) = buralfl(vn,- ., 00) RE 3ol f1(B1, - - -, b0).

j=1

The proof is by structural induction on e. It suffices to show that R& holds for all

the corresponding pairs of combinators used by £ and & respectively.
o Constg : R is true trivially by comparing K and K.
o VarLookups : by structural induction.

o PrimQOps : PrimOpg RE PrimOp; holds by structural induction and a case

analysis over the values produced by PrimOpz. Proof is omitted.

o Condg : Condg ’RE? Cond holds by structural induction and a case analysis

over the values produced by k; (3, én).
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o App, : For any user-defined function f, all the corresponding arguments of

Appe and Appy are related by RE: (by the structural-induction hypothesis).

If the call is unfolded, Appz[f] (ky, ..., k) is reduced to bl f] (61, ... s 0n)s
whereas Appc[[f] (ki,..., k.) is reduced to ¢,[f] (v1,...,v,). Notice that
viR%ﬁi Vi € {l,...,n}. Since ¢, RE (in by fixed-point-induction hypothesis,
we have

$ulf1(v1, - - -, va) RE Su[[f](6n, ..., b0).

If the call is suspended, the second component of the result is ,[f] (/,...,8").

By Property 3.1 of function SpPat, we must have V: € {1,..., n}, 0:]2 Csp 0il2
and therefore v; RS 0;. Let o = <2>n[[f]](1‘)1, ...,0p). We have

Gallf1(v1,- -, vn) Sas o [fixed-point-induction hypothesis]

and

912 Tz (Sulf1(8),-..,0))12 [Continuity of ¢u[f]]

Thus, ¢a[fJ(v1, - ,va) R $ulf1(3),...,8,). Hence, Apps R Apps.

Hence, ¢ ’R‘§2 q3 This concludes the proof. O

Lemma 3.4 leads directly to Theorem 3.3, which states that the local semantic
function £ is an “abstraction” of the £ in the sense that, if the abstract values accepted
by £ is a safe approximation of the static properties derived from the basic values
accepted by £, then the result produced by £ is also a safe approximation of the static

5

properties produced by €.

Theorem 3.3 (Correctness of Local Semantics — 2nd Component) £ RE £,

Proof : From Lemma 3.4. a
Before we close this section, let us make an observation about the relationship

between the first and second components of a value produced by E.
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Observation 3.1 During partial evaluation, all values ¥ € Resultz satisfy the fol-
lowing conditions: 1. ©]1 € Const A (]2)|1 € Const & 0[1 = (0[2){1;
2. 0|l=1g, & (02|l =1+~

Values®
The above observation comes directly from the definitions of K and Kp in Figure 3.9.
We say that a value ¥ € Result; is R-consistent if (1) it satisfies one of the above
conditions and (2) its second component (product of facets) is consistent, as defined

in Definition 2.8. This fact is used in the next section.

Correctness of the Global Semantics

In this section, we prove the correctness of the global partial-evaluation semantics (1)
by relating the semantics of A with A using logical relation RA , and (2) by showing
that all the non-trivial calls performed at standard evaluation are captured by A.
Since both A and A produce caches, RX relate these caches. That is, whenever
a standard signature for a function is recorded in the cache produced by A, there
exists a logically related partial-evaluation signature for that function in the cache

produced by A. Formally,

Definition 3.3 (Relation RX) RA is a logical relation between domains of A and
A defined by:

v Rﬁm,h v & (0 is R—consistent) A (v RE: )
&

~ n ~
('01, T ,'Un> 7?’.(AT'ra'n.s:f X Rcsultg\) (t’ 61’ M) ﬁ") < /\(’U,‘ Rﬁesult; 61)

=1

o Rﬁesult; & A Vuf]] € DOTI’L(O’),VS € 0[[f]]7 s ¢ &[[fﬂ’ s Rz‘Transf X Result;}\) 5
P R{}arEn'u ﬁ < V[[d:]] € Var’ p II.‘II]] R‘gesultz_\ ﬁﬁx]]
¢ Rfmpn & < VIf1€Fn,Vj€{1,...,n},Vv; € Values,Vs; € Result;,

/\ (UJ Rﬁcsull? {)]) = ¢[[f]](v17 cety Un) Réesult? éﬂfﬂ(ﬁl’ R 671)

j=1

(dl7 d2> RngDz (dAl,dA2) Aad dl Rgl Jl A d2 Ré; Jg
fRA b F & vdeD,VieD:, dRA d = f(d)RA fd).
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Note that the R-consistency (Observation 3.1) ensures that the first component
of ¥, the residual expression, is consistent with the result of the partial-evaluation
facet. Observe that there is no value in the standard signature corresponding to the
transformation tag of the partial-evaluation signature. In fact, the transformation
tag of a standard signature could have been obtained by performing filter computa-
tions at the standard-semantic level. However, the transformation has no effect on
standard evaluation. Furthermore, since filters are continuous, the transformation
tag computed is guaranteed to be at least as precise as that computed at the on-line
level. Thus, we can ignore this information without compromising the correctness of
the global semantics. Lastly, we note that the lub operation (which is the set-union
operation) on caches preserves RA.

The next lemma shows that all the standard signatures recorded in the final cache
produced by A are “captured” in the corresponding cache produced by A in the sense
that they are related by RA.

Notice that whenever A uses a value % in decision making (in combinators Cond ;
and App7), only the partial-evaluation-facet value is used, as is manifested by the
definition of functions SpPat and bt, and the description of function F't. Therefore,
only the second component of % is needed to show the correctness of .A. Although the
first component of © (the expression) is modified by A when dealing with combinator
App 3, it should be noted that the modification is the same as the one done in I3 , and

by Observation 3.1, the modified value is still R-consistent.

Lemma 3.5 Given a program P, for any € such that € RA E, let ¢ and $ be two
function environments for P defined by the standard and the partial-evaluation se-

mantics respectively. For any expression e in P, for any variable environments p and
p such that p RA P,
Alel(p,¢) R*  Alel(5, ).

Proof : The proof is by structural induction on e. Firstly, notice that

ERAE = $RAS.
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It suffices to show that R holds for all the corresponding pairs of combinators used
by A and A respectively. By structural induction, it is easy to see that R4 holds for

constants, variables and primitive calls.
1. Cond4: By structural-induction hypothesis, RA holds for the test expression.

(a) If 5} € Const, since k(p, ¢) RA lAc(ﬁ, $), the branch chosen will be the same
for both A and A, and by structural-induction hypothesis, RA holds.

(b) It 5} = T .~ , then all non-trivial calls in both branches are recorded by

Values

A. Again, by structural-induction hypothesis, RA holds.

2. App 4: By structural-induction hypothesis, RA holds for all the arguments to
the application. As for the application itself, if it is recorded by A, then it
is non-trivial. By structural induction on the arguments, the application is
also recorded by A. Its transformation tag is either u or s. It is easy to see
that R* holds when the transformation tag is u. If the tagis s, RA holds if
Vie {1,...,n}, 0|2 C 9/|2, where (01,...,0,) is the result of applying SpPat
in A. This is true by Property 3.1.

Therefore, A[e]l(p, ¢) RA Ale] (5, 8). a

Notice that, for a value 9, there may be more than one value v such that v RA 5.
Therefore, the above lemma shows that given an expression e, A captures all calls
within e that may be invoked under different initial value v with v RA 5. The
following theorem uses Lemma 3.4 to prove that the final cache produced by the
global semantics is “complete” in the sense that it captures all the non-trivial calls

performed during standard evaluation.

Theorem 3.4 (Correctness of Global Partial-Evaluation Semantics) Given a
program P. Let € be a valuation function of the partial-evaluation semantics such
that € RA £, Let (v1,...,0n) and (01,...,0,) be initial inputs to P for standard and
partial-evaluation semantics respectively, such that wv; RA v;, Vi e {l,...,n}. Ifo

and & are the final caches produced by A and A respectively, then o RA 5.
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Proof : Firstly, we notice from the definition of fpw that (s,01,...,0,) € 6[f1],
just like (v,...,v,) € ofi]. Next, A in &proy applies A to each partial-evaluation
signature in the cache, similar to function 4 in £p,,,. Since lub operation preserves
RA, o RA 5. O

By Theorem 3.1, we know that o contains all the non-trivial calls performed at

the standard evaluation. Since o R4 0, all these calls must be captured by &.

Correctness of R¢

We now prove the correctness of the residual expression produced by & using the
relation R& which relates a residual expression to a concrete value produced by
. Intuitively, a residual expression and a concrete value are related if the former
evaluates (under standard evaluation) to the latter. This requires “post-evaluation”
of the residual expression. Therefore, R& is not simply a relation between a value
and a residual expression; it is a relation between a value, a residual expression
and its “post-evaluated” value. In the following definition, we introduce the notion of
satisfiability to aid in formulating this relation. This notion is similar, though simpler,
to the definition of agreeability used by Gomard in [Gomard, 1992]. For clarity, a =, b
denotes the equality between a and b, provided both of them terminate. Of Course,
a=1b = a=, b. For an expression e, we define F'V(e) to be the set of free variables

In e.

Definition 3.4 (Satisfiability) Given a program P.Let py € VarEnv be a variable
environment for a residual expression such that Dom(ps) = FV(6|1). We say pq

satisfies the pair (v,d) if
V= S[[{)ll]]([)d, ¢I) A v ﬁ&@ '&1-27

where v € Values, © € Result;, and ¢ is the function environment, defined by the

standard semantics, for the specialized version of program P.
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Without loss of generality, we assume that every user-defined function consists of
two parameters (z; and z2). To show the relationship between £ and &, we must
first show that the function environments they take as arguments are related. The

following lemma clarifies this relation.

Lemma 3.6 Given a program P. Let ¢ andq3 be the two function environments for
P defined by the standard semantics and the partial-evaluation semantics respectively.
For any user-defined function f, let py be a variable environment that satisfies both

the pairs (v1,0;) and (v, d2) with vy,v, € Values and 91,9, € Resultz. Then,

SLf1 (v1,v2) =1 € [(BLST (81, 82)11] (pas 8,

where ¢' is the function environment, defined by the standard semantics, for the spe-

cialized version of P.

Proof : The proof is similar to that described in [Gomard, 1992]. The major
difference lies in the the fact that the property of a cache o is used to show the
correctness of partial evaluation of function application. This enables to show the
correctness of multiple instances of specialized functions.

Since the lemma involves three functions FunFEnv: ¢,  for program P, and ¢’ for

the residual program, we define the functional @ as

® (o) bards) = ( LI{A(v1,v2) - E[el(Llvr/zk,], 6a)}/ fi |V [£i] € F],
LU{A(b1,2) - ELe(Llow/x], 6a)}/fi | ¥ [£] € Fm,
L[{AW) . E[e*](Lv/z], L)}/ f | V specialized function f°]).
In this proof, i ranges over all user-defined functions.

Let R be the predicate over ® such that:

RE

R% (8,6, 4')
= V [f] € Fn, Yovy,v; € Values, V,,9; € Resultz, Yps € VarEnv,

A\ (pa satisfies (v;,05)) = SLfil(v1,v2) =1 ELSLLN (B2, 92410 (0a, 8-

i=1
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The predicate can be proved using Kleene’s approximation over ®, with the least

element

<¢0a‘$0’ ¢6> = _L[(strict (/\(017”2)  Lvanes))/ fi |V [[fz]] € Fn],
L[(strict (A(y,02) - _Lgesuug))/ fi IY [f:] € Fn],
L(strict (AM(v1,v2) . Lvaies)/fP | V specialized function f°P]),

and the predicate RE: over the n + 1°* approximation being

Ritt Saer RO (Gnrs Sntt, b
= V [fi] € Fn, Yv1,v; € Values, Vdy,9; € Resultz, Vpa € VarEnv,
2

N\ pa satisfies (vj, ;) =
J=1

Gnar [Fl(v1,v2) =1 EN(Snsr [£] (51, 92))11](pa> By
= V [fi] € Fn, Yvy,v; € Values, Vo, € Resultz, Vpy € VarEnv,
2

N\ pa satisfies (v, d;) =
i=1

Ele:l(Llve/zt], 6a) =1 ENELeD(L[8x/24], $n)) 1D (pas Gtr)-
Notice that at any 7+1° approximation, ¢/, is obtained from the residual program

produced by A and £, both having ¢;;; as their function environment. Formally,
i1 = Ll(strict{rv. E[e”](L[v/z], 6)})/ ]

for all specialized function f*? with body e*”.
¢’ is derived from cache & produced by A and ¢@. is derived from cache &; at the
i** approximation. Below are properties about &; and ¢/.
Property 3.2 Vi€ {0,1,...}, & Couche Tis1-

Proof :  From the result that 6’s are the cache produced by A with.
function environment ¢; and A is continuous over all its arguments. O

Property 3.3 Vi€ {0,1,...}, ¢} Crungne ¢}yq-

Proof : Since Vi € {0,1,...}, ¢! is obtained from the residual program,
which is the result of gp,.og. Inspecting the function definition of épmg
shows that it is continuous over all its arguments. In particular, since
Vi€ {0,1,...}, 6i Ccache Git1, therefore @} Crunkny Gty a
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We prove the validity of RE: by fixed-point induction:

For the least element, (¢, o, #y), we have @[ £;](vi,v2) = L vawes and qg[Ifi]](z‘)l, D) =
L Result 3 Thus, ’R,g1 (do, qA50, #p) holds vacuously.

Suppose that RE! is true for some element (¢, <;Z>n, #!) in the ascending chain, we
want to prove that RE is true for (bnt1, $n+1, br1) = O, $n, ).

For clarity, we introduce the following abbreviations:
1. L[vg/z¢] is abbreviated by p and L[dx/z4] by p.

2. Given an expression e, we abbreviate £[e](p, ) by [e]e, and E[e])(5, ¢,) by

[elz
The proof of ’R,if,_l requires structural induction on e.

e If e is a constant or a variable, the proof is trivial, and thus omitted.

* eisaprimitivecall, [p(es, ..., en)]. Let v = [[p(es,...,en)]e, & = [p(es, . .., )]z

— REZ., holds trivially if 4 = L Result -

~

— If /1 is a constant, then ©]1 = 7(v) from Theorem 3.3. Therefore, ’R,i{H

holds in this case.

— If 9] 1 is not a constant, then the residual expression is of the form
[p(ef,---,en)], where ef = [e]z Vi € {1,...,n}. By the structural-
induction hypothesis, ’Rf‘_,_l holds for all the arguments of the primitive
call. Furthermore, since p and j contain all the bindings for free variables
in e, they also contain the bindings for free variables of the arguments. We

thus have:
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Ellr(er, - - -, en)zl(pas 1)
= Elp(et; - - -, €)1 (pas 1)
= Kp[pl((€lerl(pa; ¢rs1)), - - - (Elenl(pa, Drya)))
[from standard semantics]
=, Kplpl([e]e, - - -, [er]le) [structural-induction hypothesis]

= [p(es,- .., en)]e [from standard semantics]

Therefore, 7?,,8:‘_,_1 holds.

e is a conditional expression, [[if e; e, e3]. ’R,ilﬂ holds trivially if e, is partially
evaluated to L Result - If e; is partially evaluated to a constant, then the result
of partially evaluating e is obtained from partially evaluating either e, or es.

By the structural-induction hypothesis, R,+1 holds.

If e; is partially evaluated to a residual expression, then the result of partially
evaluating e has the form [if €7 ej €3], where €] = [Je;]+ Vi € {1,...,3}. There-

fore,

EMlif e ez es]gl(pa, #rsr)
=E[if € e e5](pa, Hry1)
= (E1e1](pa, $r1)) — (Elez](pa; 8711))s (E[e3](Pa, b))

[from standard semantics]
=, [er]e — [e2]e, [es]e [structural-induction hypothesis]
=[ef e1 €2 e3]e [from standard semantics]

Thus, R, holds.

e is a function application, [[fi(e1,e2)]. Partially evaluating e may result in the
application being either unfolded or specialized. Suppose that the application is
specialized, without loss of generality, we assume that the first argument of the
application is static and propagated, whereas the second argument is dynamic.

Then [[fi(e1,e2)]z becomes [f;7([ez]z)] where f;? is the specialized function.
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The partial-evaluation signature obtained from this application is (by the defi-
nition of A) (s, leilz ([z2], 8")) where
& = (Tvﬁ;’,gz, oee ,3’"),
(leida, (Izal, 8% = SpPat(Li], ([ealz, [eals), (static, dynamic)),
(= (84,8%,...,6™) = [ed
Thus, the specialized function f;* is included in the residual program produced;

its definition is as follows.

f7(22) = [(Salfil(ledz (IaD, 6)))U]
= [(8.L£1(F(Leale), ([z2], 8)))i1]
The last equality holds by structural-induction hypothesis and by the fact that
only constants are allowed to be propagated in a function specialization. The

corresponding entry of f;* in ¢/, is

strict(Av . E[(@ulfil(F([exlle), ([, 8))1D(Llv/za), 44))  (3.2)

Thus, we have

& ﬂﬂ’p(ﬂezﬂg)]] (Pas ¢:1+1 )
= $n 1 [F1(Ele2lz(pas 9r41))

=1 ¢ [P 1(Te2le) [structural-induction hypothesis]
= E[(Sa 11 (Tele)s (2D, 8))UIN( L Lezle /2], 8,)

=1 a[fil([erlle, [e2lle) [fixed-point-induction hypothesis]
= [fi(er, 2)]e

In the derivation above, the fourth equality is valid based on an instance of
our fixed-point-induction hypothesis. This is because (L[[ez]¢/z2]) is the only
environment that satisfies both the pairs ([ei]¢, 7([e1]e)) and ([ez]e, ([z], ).
Therefore, Rf:f,_l holds for the application. :

On the other hand, consider the case where the application is unfolded. The

~

equality in Rﬁ;l becomes

$alfil([ealle, [eale) =1 ENSalf(lerls Ted )] (pay Hrgr)-  (3:3)
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For Equation 3.3 to hold, py must satisfy both ([e1]e, [er]z) and ([ez]e, [e2]z)-
That is, Vi € {1,2},

(vi =1 E[B:l1](pas #ly1)) A (vi Ragy 0il2).

This is true by the structural-induction hypothesis, Property 3.3 about ¢!

n+1?
and Theorem 3.3.

Using pq, the fixed-point-induction hypothesis is

$ulfl([erle, [e2le) =1 EN(BaL£1(Tealz Teal2))i 1] (pas 6L)s

Notice that the only difference between the hypothesis and Equation 3.3 is the
usage of ¢, and ¢},;. Let & = (Sa[£:](([ea]p), ([e]lp)))L1. Since the domain
Exp is flat, the only case where Equation 3.3 may have failed to hold would be
when standard evaluation of ¢’ made references to specialized functions defined
in ¢, ,;. Suppose that f*® were such a function, and its call in e’ were [ f*?(r})].
This residual call would be the result of partially evaluating a function call.
Let the function call be [f(r1,72)]. Then, it would be the case that at the nt*

approximation, we had

[f(risre)le =1 EMLf(r,r2)l8l(pa, 67) = ELF7(ri)](pa, 47)

be true vacuously (by the hypothesis), but at the n + 1°¢ approximation, the

equation
[f(ri,ra)le =1 ELFP(ri)(pas brta) (3.4)

became false. However, Equation 3.4 is the result of function specialization,

and we have already proved its validity. Thus,>we arrive at a contradiction, and

~

Equation 3.3 must therefore hold. Hence, R‘,ff,_l holds.

Hence, RE: (o, é, 4 ) holds. This concludes the proof. o
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Correctness of R¢

Now, we are ready to define the relation between £ and £. This is defined in terms
of the result of Theorem 3.3 and Lemma 3.6. Firstly, since both £ and £ take
variable environments as their arguments, we need to relate these environments. To
do so, we extend the notion of satisfiability to define the relationship between variable
environments, instead of pairs of related values. This is a variant of the notion of

agreeability as defined by Gomard in [Gomard, 1992].

Definition 3.5 (Agreeability) Let P be a program in our first-order language.
Suppose ¢’ is the function environment, defined by the standard semantics, for a
specialized version of P. Also, let p,ps € VarEnv be two variable environments de-
fined by the standard semantics, and p € VarEnv be a variable environment defined
by the partial-evaluation semantics. For any ezpression, e in P, p, p and p; agree

on e at ¢’ if

V] € FV(e), plz] =1 E[(Al=Dill(pa; ¢) A pllz] Zazy (Al=D)I2.

The notion of satisfiability can then be expressed in terms of agreeability as follows.

Observation 3.2 Given that py satisfies all the pairs in the set {(v1,01),. .., (Vn,n)}-
Let p = L[v1/21,...,0/2y], and p = L[b1/21,...,0n/2,]. Then, for any ezpression

e in P with FV(e) = {z1,...,Zs}, we must have p, p and pg agree on e.

Notice that p and p as defined in Observation 3.2 represent how all the vari-
able environments used in standard and partial-evaluation semantics are constructed.
Therefore, the result of Lemma 3.6 can be expressed in terms of an arbitrary expres-

sion in program P as follows.

Corollary 3.1 Given a program P in our first-order language. Let ¢ and & be the

two function environments for P defined by the standard and the partial-evaluation
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semantics respectively. Let ¢' be the function environment, defined by the standard
semantics, for a a specialized version of program P. Then, for any ezpression e in

P, ¥p,p € VarEnv and pg € VarEnv that agree on e at ¢', we have

Elel(p,4) =1 & [(ELel(p. 6))11](pa, &)

Correctness of the local partial-evaluation semantics can be stated as follows:

Theorem 3.5 (Correctness of Local Partial-Evaluation Semantics) Given a
program P in our first-order language. Let ¢ and é be the two function environments
for P defined by the standard and the partial-evaluation semantics respectively. Let
¢’ be the function environment, defined by the standard semantics, for a specialized
version of program P. Then, for any ezpression e in P, ¥ p,p € VarEnv and pd €

VarEnv that agree on e at ¢', we have

Elel(p,¢) =1 € L(ELel(p, ))I1](pa, ') and
Elel(p,8) Zagy (ELel(p )2

Proof : From Theorem 3.3 and Corollary 3.1. a

3.5 Off-Line PPE

Off-line PPE of a program consists of two phases: the preprocessing phase called facet
analysis, and the specialization phase. In this section, we use the technique of logical
relation to define and prove the correctness of facet analysis. This conforms to our
intuition that facet analysis is an abstraction of on-line PPE. Lastly, we describe a
systematic way of deriving the specializer from on-line partial evaluation using the

result of facet analysis.
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¢ Semantic Domains ,
§ € Resul 5= SD= Zﬁj where D; =(Dj; @ -+ ® Djm)
i=1 and s is the number of basic domains

€ VarEnv = Var — SD

p

é € FunEnv = Fn — §D° — 8D
Env = VarEnv x FunEnv

§ € Sig = (Transf x SD")

6 € Resulty = Cache; = Fn — Sig

° Va.luatlon Functions
55,..,9 Program — SD — Cachez ) )
gPTOﬂ [[{ft(zh"'zxn) = e*}]] <61a 'n) h(’L[(sv6l"‘~,6n>/f1])
whererec k(&) =
ol
h(U{A led] (L[6c/ze)s @) | (=,1,...,60) = GLA,
; [ € Dom(3)})
= L{A(b1,---,8,) . € [e](LIbe/2e], )}/ fi]

=&
= A

=

Figure 3.11: Facet Analysis — Domains and Main functions

3.5.1 Specification of Facet Analysis

Analogous to the definition of on-line PPE, we assume the binding-time facet to
be always defined in facet analysis. The main semantic domain used by the analysis
is noted SD. It is a sum of products of abstract facets. The binding-time facet
is assigned to the first component of each product. For brevity, we write Tz to
represent the maximum value of any summand of SD.

Figures 3.11 to 3.12 display the facet analysis for our first-order language. The
analysis aims at collecting facet information for each function in a given program; this
forms the facet signature 6f the function. More precisely, a facet signature in domain
Sig is created when a function call is processed by facet analysis. It consists of

two components: A transformation tag similar to that used in the partial-evaluation
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e Local Combinator Definitions
Constz [c] = A(5,9) . K [c]
VarLookupg [=] = A(p, é) . plz] _
Pmmop HP]] (kla k) ’\(P7 ) KP[[p]] (kl(ﬁ7 )’akn(ﬁ’¢))
Condz (kl,k2,k3) = A(p,¢) R - 1l — -Lzsv’
i o 8l = static —» &, U &, T 5
where & = ki(p,¢) Vi€ {1,2,3}
Appz U] (o) = A58) . (FELfIL (B B =
o = S U1 Gy ), T
where 6; = ki(p, ) Vie {l,...,n}

e Primitive Functions

K : Const —» SD

Kl = (I’l(d) F"‘(d)) where T% = az o az and d=K []
Kp : Po - 8SD" — 8D

ICP [»] (51, §n) = ciJ,,c(61,...,~n) where p° : D" — D

’CP IIPO]] (51, 5n) = b = 'LV;I;’:: — 1= D’<b TD'2’ Tﬁ'm)

where P : D" — D'
b = Gpo(y,...,5,)

e Global Combinator Definitions
Const 7 [c] = A(p, ) - ()\f Lsig)
VarLookupA [z] = A5, 9) . (Af. -LSzg)
PrimOp [7] (1, ,3) = M59) . | | &(5.9)

- ~ =] - -~
Cond 7 (@1, a3,d3) k1 = A(p, ) . a@1(p,¢) U &2(% #) U as(p,9)
Appz If] Grye o n) (kv k) = A(5,9) . (] a(5.) 05
i=1
where &' = (Ft[f])I1 (8},...,8)) = )

. - ~J-[<u 5}) n)/f]’ L[(s, 61, - 6)/ f]

6] = (b;,62%,...,8™) Vz €~{1 ,~n}

<bl, bn) ~= (Ft[[f]])lz (6%’ . a611z)

6 = k-(ﬁ,qS) Vie {l,...,n}

Figure 3.12: Facet Analysis — Local and Global semantic functions
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signature, and the result of filter computation on call arguments.

The valuation function £ is used to define an abstract version of each user-defined
function. The resulting abstract functions are then used by the valuation function A
to compute facet signatures. These signatures are recorded in a cache (from domain
Cache ;). As usual, computation is accomplished via fixed-point iteration. Functions
K and Kp perform the abstract computation on constants and primitive operators
respectively.

The analysis is monovariant: each user-defined function is associated with one
facet signature. Various facet signatures associated with a function at different call
sites are folded into one signature using the lub operation. This operation is defined

as follows:

V&1,52, € Cachey, 61U&; = L[(t,61,...,8,)/f | VIf] € Dom(3,) U Dom(5>)]
where (3,61,...,8,) = ([f] € (Dom(5,) N Dom(5,))) —
U, & uey,... 8 usm,
[f] € Dom(&1) — &1[f], 620f]
(t,8,...,8) = alf]
("8, 8 = &S]

3.5.2 Correctness of Facet Analysis

The initial input to facet analysis is an abstraction of the initial input to on-line partial
evaluation. The facet analysis is correct if its final cache (Cache 7) contains the
abstraction to all the partial-evaluation signatures of the on-line partial evaluation.
The correctness is shown by relating the local and global semantics to their respective
counterpart in the on-line partial-evaluation semantics. That is, we define a logical
relation R that relates £ and & , and a logical relation RA that relates A and 4. We
first show the correctness of the local semantics defined by £, and then that of the

global semantics defined by A.
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Correctness of &

We begin by defining a logical relation between product of facets and product of

abstract facets.

Definition 3.6 (Relation 55,55) For any value § € 8D and § € SD,

a

§=:_68 & Vie{1,...,m}, § <5_ &.
SD D?

where jagg is the logical relation induced from the facet mapping from D' to D'.

Since (4 Ra 8 = ( /\(5’ 6‘ ), 2a s isa logical relation between 8D and
i=1
SD. Intuitively, é jas‘i é imphes that & is a safe approximation of value obtained

by applying abstraction functions to each facet of . We say that in this case § is
an abstraction of §. Relation R defined below extends this abstraction relation to

various domains used by the local semantic function.

Definition 3.7 (Relation RE ) RE isa logical relation between domains of € and £
defined by:

b 'R'%csult?g Aad 612 j'g 3
ﬁ R‘%/GTE"‘” ﬁ A4 V[[Z]] € Var, ﬁ [[23]] R‘;:Zesultg ﬁ [[.’B]]
b Rernpms & & VISD€ Fn, Vi € {1,...,n}, Vi € Result;,¥6; € 5D,

/\(vs anu~5) = G, 00) RRmu~ 2 [CIPP )

=1

(di,d2) RS, up, (i, &) & dyRE dy A dy RE, dy
fRop, f & VieDy,VieD,, dRE d = f(d) RS, f(d).

Lemma 3.7 Given a program P. Let $ and & be the two function environments for

P defined by the partial-evaluation semantics and the facet analysis respectively. Then
$ RE 4.
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Proof : The proof is similar to the proof for Lemma 3.4, and is thus omitted. O
We can now express the correctness of the local semantic function using the rela-
tion RE. The following theorem states that: if the input to £ is an abstraction of the

input to £, then the result of computation by £ is still an abstraction of that by &.
Theorem 3.6 (Correctness of Local Facet Analysis) £ RE £,

Proof : From Lemma 3.7. a
An immediate consequence of Theorem 3.6 is that when value static is obtained
from computation done by &, the corresponding result obtained from computation

done by £ is either a constant or a bottom. This is stated precisely as follows:

Corollary 3.2 Given a program P. For any ezpression e in P, and ¥p € VarEnv,

(& [el(B, @)1 = static = (€ [€](p, )1 € Const U {Lps}

where both 43 € FunEnv and ¢ € FunEnv are fized for the program, and p € VarEnv
is defined such that p RE p.

This result will be fully utilized when we consider the off-line specializer.

Correctness of the Global Analysis

We prove the correctness of the global analysis (1) by relating the semantics of A
with that of A using logical relation RX, and (2) by showing that all the non-trivial
calls that are recorded by A are captured in the cache produced by A.

Definition 3.8 (Relation ’RX) RA is a logical relation between the domains of A
and A defined by estending relation RE to include the relation between & and &
produced by A and A respectively:

-~ ~ ~ N ~ n . ~ ~
(t1 617 ] 6") Rgig (t’ 61’ AR 671) < (t ';T'ransf t) A /\(’Ui Ricsultg 61)

=1

& Rbewun & & VY [f] € Dom(o),¥s € 5[f],35 € 5[f] such that § RE, 3
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We note that R4 is an extension of RZ. Therefore, we say that & is an abstraction
of 5if & RE Result - . We also notice the lub operations defined on both caches preserve
RE Result 7+ Wlth this relation, the next lemma shows that all the partial-evaluation
51gnatures recorded in the final cache produced by A are captured in the corresponding

cache produced by A in the sense the latter is an abstraction of the former.

Lemma 3.8 Given a program P. Let ¢ and & be two function environments for P
defined by the partial evaluation and the facet analysis respectively. For any ezpression

e in P, for any p, p such that p RA 2,
AlLel(3,9) R* A[el(59).

Proof : The proof is by structural induction over an expression. Firstly, notice
that ¢ RA é. It then suffices to show that R4 holds for all the corresponding pairs
of combinators used by A and A respectively. By structural induction, it is easy to
see that R4 holds for constant, variable and primitive calls. We show below that R4

holds for the case of conditional expressions and function applications.

1. Condz: By the structural-induction hypothesis, all the corresponding pairs of
arguments are related by RA. Since the result of Cond 7 1s the lub of the caches
produced at all the arguments, whereas the result of Cond 4 1s the lub of the

caches produced at some of the arguments, RA must hold.

2. Appz: By the structural-induction hypothesis, RA holds for all the arguments
to the application.

Let & = L[{(Z,%{,...,09!}/f] and & = L[(£,87,...,8")/f], we need to show
that & RA &

We consider the cases with different transformation values produced at the facet

analysis level.
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o Iff =u, then { = u by the monotonicity of filters. Thus, V¢ € {1,...,n},

o = &p,én) [by definition]
RA @i(p, n) [structural-induction hypothesis]
= & [by definition]

Therefore, & RA 5.

o If i =s, then f Cr,ans Y { by monotonicity of the filter.
Let (d1,...,0,) and (8;,...,5,) be the initial arguments computed for
the application. By structural induction, Vi € {1,...,n}, 1};7215,-, By the
monotonicity of filter,
(br,...,ba) T (br,....bn)
where (by,...,b,) = (Ft[f])I2 (bt(51),...,bt(0,)) and
(biyooosba) = (FHDREL..08)
Let (97,...,0;) = SpPat ([f],{01,.-.,0n),(b1,...,b,)). From the defini-
tion of SpPat and Property 3.1, we have
SpPat ([f], ($1,- -+, Dn)y (b1s- .., Ba)) RA (8,....5),
where Vi € {1,...,n}, 8 = (b;,8?,...,8"). Since (£,&,...,5") is the

facet signature produced for the application, we therefore have & RA 5.

~
b
3 bn

Thus, (E_! a:(p, dn) U &) RA ([! @i(p, #n) U 5). Hence, Appz RA App 7.
Hence, R4 holds in general. This concludes the proof. O
Now, we can express the correctness of the global semantic function in the fol-
lowing theorem. Intuitively, the correctness property reflects the fact that if input
to a program at facet analysis is an abstraction of the input to the same program at
on-line partial evaluation, then the result produced by the facet analysis is also an

abstraction of that produced by the partial evaluation.

Theorem 3.7 (Correctness of Global Facet Analysis) Given a program P in
our first-order language. Let (9y,...,%,) and (&, .. .,8,) be initial inputs to P for
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on-line partial evaluation and facet analysis respectively, such that o; RA &, Vi€
{1,...,n}. If & and G are the final caches produced by A and A respectively, then

& RA G.

Proof : Firstly, we notice from the definition of gpmg that (s,gl,...,gn) is the
corresponding facet signature for f; in . Therefore, (3,51,... , ~n) C &[fi1]. This
captures the initial call to the on-line partial evaluation: (s, dy,...,9,) € 6[f1]- Next
hin €, Prog applies A to each facet signature in the cache, like function hin & Prog- Slnce

lub operation preserves R4, ¢ R4 5. a

3.5.3 Deriving the Specialization Semantics

We now describe the derivation of the specialization semantics (for off-line partial
evaluation) from its on-line counterpart. This derivation is based on the observation
that, prior to on-line partial evaluation, facet analysis has determined the invariants
of this process. Indeed, the result of the on-line partial-evaluation computations has
been approximated and is available statically. Thus, the aim of this derivation is
to transform the on-line partial-evaluation semantics so that it makes use of facet

information as much as possible. The uses of facet information are listed below:

1. Predicates testing whether an expression partially evaluates to a constant can
safely be replaced by a predicate testing whether this expression is static in its

binding-time facet.

2. Filter computation for a function call can safely be replaced by an access to the

function’s facet signature; it contains the call transformation to be performed.

The use of facet information collected for an expression requires that this infor-
mation be bound to the expression. That is, each expression in a program should
be annotated with the information computed by the facet analysis. We achieve this

annotation by assigning a unique label to each expression in a program and binding
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this label to the corresponding facet information. A cache, noted ¥, maps each label
of an expression to its facet information. For a label I, we write (¢ 1), to denote the
product of abstract facet value corresponding to I. If [ is the label of a function call,
then (4 [), refers to its transformation (i.e., unfolding or suspension).

Note that this annotation strategy only requires a minor change to the core seman-
tics. Namely, the labels of an expression must be passed to the semantic combinator.
For example, in specializing a labeled conditional expression [[(i f el 2 %)], the com-
binator Cond; takes as an additional argument (I, l1,13,13). Besides passing labels
to combinators, we extend the usual pair of environments to include the cache (i.e.,
% € AtCache).

Figures 3.13 to 3.15 depict the detailed specification of the specialization process.
Each interpreted combinator is similar to that of on-line partial evaluation, except in

the following cases:

1. For both Condz and Cond g, the predicate that determines whether the condi-
tional test evaluates to a constant has been replaced by a predicate that tests

the staticity of its binding-time facet value.

2. For primitive call, the predicate testing whether the result of the operation is a
constant has been replaced by a predicate testing the staticity of the resulting

binding-time facet value.

3. For both App; and App 2, filter computation has been replaced by an access to
the static information about the function call: facet value of the arguments and

function call transformation.

At this point, it is important to notice that the specialization semantics that we
derived indeed describes a specialization process. In fact, as mentioned in [Bondorf

et al., 1988,Jones et al., 1989], binding-time analysis was introduced for practical

8Note that for simplicity we did not introduce labels in the core semantics presented on page 54.
Indeed, labels are only used for the specialization semantics.
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reasons. Namely, by taking advantage of binding-time information, the specialization
process can be simplified and its efficiency improved. This is a key point for successful
self-application [Jones et al., 1989).

Thus, the off-line strategy aims at lifting as many computations as possible from
specialization by exploiting static information. In another word, there exists a wide
range of specializers for a given language; it depends on how much pre-computation
has been performed prior to specializer. In fact, the specialization semantics derived
in the previous section may be used as a basis to introduce many optimizations. In

the next chapter, we will mention some of these optimizations.

3.6 Discussion

We have presented the semantic specifications and correctness proofs for both on-line
and off-line PPE semantics. In doing so, we have addressed and solved a series of
open issues in partial evaluation such as relating on-line partial evaluation to standard
semantics, showing that facet analysis (and thus binding-time analysis) is an abstrac-
tion of the on-line partial-evaluation process, and formally defining the specialization
semantics.

Having a well-defined relationship between on-line and off-line PPE enables the
transfer of techniques developed in one strategy to another. In particular, we have
already seen in this chapter that techniques used in specifying and proving the cor-
rectness of the on-line PPE semantics are transferred and used in specifying and
proving the correctness of facet analysis. This saves efforts in both the specification
process and the proof. Further evidences on transfer of techniques can be found in
the implementation (Chapter 4).

Using factorized semantics and logical relations as tools, this work should improve
the understanding of partial evaluation. Also, it should provide a basis for implemen-
tation. In fact, the specifications presented in this chapter have been implemented

using Standard ML. (More discussion about implementation is presented in the next
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chapter.)

Partial-evaluation facet plays an important role in the correctness proof of on-line
partial evaluation. This is manifested in the correctness proof of the global semantic
function A. In this respect, we note that the correctness of A only depends on the
static information available during partial evaluation, not the residual expressions
produced. Since the partial-evaluation facet captures only the processing of static
information during partial evaluation, and omits the manipulation of residual ex-
pressions, it fits nicely into, and greatly simplifies the proof for A. In fact, without
partial-evaluation facet, the correctness of A may appear to be dependent of the resid-
ual expression produced. Because the generation of some of the residual expressions
(the residual calls, in particular) depend on the cache, A and € become circularly
dependent of each other ; this makes the correctness proof much more tedious. Using
partial-evaluation facet, we can easily specify the semantics and prove the correctness
of both conventional on-line and off-line partial evaluation [Consel and Khoo, 1992].

Like other formal work on partial-evaluation specification, we did not address the
issue of termination preservation. Instead, we use the notion of filter to specify the
function call treatment. The filter described here utilizes the binding-time value of
the call arguments to make decision about call transformation. This technique has
been used in the conventional partial evaluator Schism [Consel, 1989]. However, it is
conceivable that other kind of information can be used in specifying call treatment.
In particular, abstract-facet information may be used. Thus, with sign abstract-facet
information, we may want to design a filter for a function whose calls will always be

unfolded when its arguments are positive.




100 CHAPTER 3. SEMANTIC SPECIFICATIONS

e Semantic Domains

!l € Labels

~5 € 8D = asin On-linL v € Result; = asin On-line
(t,6) € Att = (Transf xSD) § € 8D = as in Off-line

Y € Atgache = Labels—-»Attt“{ € Refzilt 4 = asin On-line

p € VarEnv = asin On-line @ € FunEnv = as in On-line
Env = VarEnv x FunEnv x AtCache

e Valuation Functions
81:,,,9 : Prog — Result? — AtCache — Prog,
gprog [[{f,'(.’l!],: .o ,$n) = 6;}]} <’l‘>], ceoy i}n}. “l,\[) =
MkProg (h(L[{(s,?1,...,8.))}/ f1]))é
whererec h(G) = ou o
h(U{A's-‘VA Hein(l[i}k/zk]’ ¢, 1/)) I (-7 ﬁ;, sy '61’7,) € &[[fz]L
) [£] € Dom(5)})
¢ = L[strict {A(d1,...,0,) . &z [el(LOr/zk), ¢, 0)}/ £i]

e MkProg Definition
MkProg6 ¢ ¢ = { f¥(z1,...,2x) = 9|1 | Y(s,ts,... »On) € 6[[fi],
V£l € Dom(5)}
where f* = SpName([f:],1,...,0,)
V' = &g [ed(L[ox/z4], 6,9)
(T1,--.,2k) = ResidPars ([f]],0:111,... y Ondl)

Figure 3.13: Specialization Semantics — Domains and Main functions
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e Local Combinator Definitions
Constgz [d] (1) = Mp,¢,9) - K [€]
Vargs [21 () = A3,6,9) . f ]
Pmmopsg IIPII (kh n) 6 (l ll’ ) A= .. .
’\(P’¢7¢') K:SP [[P]] (kl(Pa¢a¢) » kn ( ’¢9¢)) (¢ 1)y
Cond$£ (k],kg,k3) <l 11,12,13) =
A(p, ¢,¢) (1,b L)) = static - (K(911) — o, 93),
o ([ef 9ud1 9201 95]1], 9202 U 93]2)
where v, = k(f;,(ﬁ,z[)) Vie{l, 2, 3}
Appsg 'If]] (kla k ) (l ll, n)
/\(P,¢ 'tb) ( l)t =u-—- ¢ [[f]] (vl’ <3 Dn),
L U DL Te)
where 0; = ki(p,9,¢) Vie {1,. }

fr SPName(l[f]],vn i,
(€1,...,€}) = ResidArgs ([[f]] (b1y...,bn), (01ll,...,0,]1))
(v,, ,v n) = SpPat ([f],(%1,...,9n), (b1,-..,bn))

(Brye- s bn) = (8,...,6]
= (1,b L), Vie{l,...,n}
e Primitive Functions
K : Const — Result;
K [ = (as in On— Lme Semantics)

ﬁsp Po — Result" — SD — Result;
Ksp [p°] (€1, 1), . ( 8n)) &
(6 = Lg)'*(-LEr?v ) R
(8" = static) ~ (&, @3 (@), Gpa(d)), (¢0)
where p¢ : D* - D
3:@,431,...,3,,)
e = [p°(es. .-, €r)]

d=K@)
KZSP IIPO]] ((61,51) ( €y n)) 6 =
(d = 'LV¢Iac:) <J'E”’ SD)

(8 = statzc) (d, (@gn(d), .., @5m(d))), (€,(THnr--s THm)
where p° : D* - D’

J = &}p°(31, e ,Sn)
e = [p°(ey, ... en)l
d=K(d)

Figure 3.14: Specialization Semantics — Local semantic function
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e Global Combinator Deﬁmtlons
Constz [] (I) = /\(P,¢,¢’) Al Lag
Var—-— [I:v]] () = Mpy %) . N, Lay

PrimOpgz [P] (&1,---»8n) (L., 1) = Xp,,9) . || ai(p, 8, )

i=1
Conds_A (al,az,a:;) k1 (l 11,12,13) =
(p,¢ D) . (al(pa é, 11’))“
(9 D! = static) — K(8! ) — Gx(p, é, ¢') as(p, 6, %),
. az(P, ¢7 )Ua3(pa ¢, ))
APPS_A ﬂf]] (a1,---, a) (kl’ y k) (L.l n) =

A(p, $,9) - (I_J &(p,d,9))ué

t—l

where ¥; = k(p,¢ $) Vie{l,. ,n}
& = (%1) Di=u— J—[{(u 01,0, 00) Y/ £y L[{(s,03,--.,87)}/f]
<v1’ ) S],)Pat (II]:']] (Ul’ 767&)’ <bla" . ,b‘n))
(_bl, ~n) (611’ 1)
6 = (zb ), Vie {1 ,n}

Figure 3.15: Specialization Semantics — Global semantic function




Chapter 4
Implementation

Techniques for implementing partial evaluation abound. Throughout the years, var-
ious optimization techniques have been applied to the partial-evaluation process.
While these techniques improve partial-evaluation efficiency, they also make the
partial-evaluation process less comprehensible. Due to the lack of theoretical founda-
tion, many implementations have been based on the intuitions of the implementors,
instead of a provably-correct semantic model. This naturally raises doubt about the
correctness of such large software systems. Furthermore, it hinders the introduction
of new optimization techniques, since it becomes difficult to reason about the effect

of these optimizations on the correctness of the system.

The semantic specification of PPE described in the previous chapters provides the
desired foundation for implementation. In this chapter, we first show the implemen-
tations of both on-line and off-line PPE based on our semantic model. Secondly, we
describe some optimization techniques. Lastly, to demonstrate the effectiveness of

PPE, we present some applications and assess their performance.

103
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4.1 Current Implementation

We have implemented both on-line and off-line PPE for a first-order applicative lan-
guage with data structures. This language is very much in the style of other first-order
functional languages. It is monomorphically typed. A program consists of a series of
data-type declarations followed by function definitions. The first function defined is
the main function of the program.

Each function consists of four parts: a name, parameters, an optional filter spec-
ification and an expression. Filter specification controls the treatment of calls to the
function. It is described in Section 3.4.2. When it is left out, every call to the function
will be systematically unfolded.

Two kinds of algebraic data types are available: union and product. A union
type is declared using the DataType construct, and a product type using the Type
construct. Three operators define manipulation of data structures: DCons constructs
a data structure, Sel selects a component from a structure, and CaseType acts like a
conditional construct: it allows selection of a branch using the data-constructor name

of the test. Following is an example of a typical program written in this language:

datatype Stack = Empty | Entry of (Int,Stack)
Fun SumStack (x)
caseType x
(Empty => 0
else =>
(let ( [i (Sel x 1)])
(addInt i (Sumstack (Sel x 2)))))

Although programs written in this language are assumed to be well-typed, we
have not implemented the type inference system. To aid the partial evaluator in de-
termining the type of each expression, type information is attached to the expression.

Thus, the above program is implemented as follows:

datatype Stack = Empty | Entry of (Int,Stack)
Fun SumStack (x [Stack])
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caseType x
(Empty => 0
else =>
(et ( [i (Sel [int] x 1)] )
(prim [int] addInt i
(call [int] Sumstack (Sel [Stack] x 2)))))

Certainly, with a type inference system installed, we can safely discard the type
annotation. Therefore, for clarity, all programs shown in this thesis are without type
information.

Recall from Definition 2.2 that the constant Domain Values contains the textual
representation of all basic values provided by our first-order language. It is defined
by data type Value as follows (note that the Standard ML datatype notation [Milner
et al., 1990] is used in declaring data types):

datatype Value = Num of int | Bool of bool | Str of string
| Constr of string * string * (Value list)

Data constructor Constr captures other kind of basic values that are of algebraic
nature, such as the vector domain. It also captures the representation of static prop-
erties. For example, the size property of a vector having size 3, viewed as a static
property, can be represented as Constr("Vect", "Size", [Num(3)]).

Recall from Chapter 3 that the local semantic function of on-line PPE operates
partly on product of facets (55) In this implementation, it also operates on data

structures. Thus, the actual domain used is defined as data type DSValue:

datatype DSValue =
PFCons of string * (Value list) | (* product-of-facet value *)
Prod of string * (DSValue list) | (* product type *)
Sum of string * string * (DSValue list) (* union type *)

The first field (of type string) associated with each data constructor of DSValue
contains the value’s type. The second field associated with constructor Sum contains

the data-constructor name of the union type.
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Data type DSValue constitutes the second component of the result domain for the
local semantic function. The first component is the domain for residual expressions,

which is also the syntactic domain processed by both the local and global semantic

functions. It is defined by data type Exp:
datatype Exp = Var of string * string | Const of Value * string
Prim of string * (Exp list) * string

Cond of Exp * Exp * Exp * string

Call of string * (Exp list) * string

Let of (string list) * (Exp list) * Exp * string
DCons of string * (Exp list) * string

Sel of Exp * Exp * string

—_—— e ——

This set of possible expressions extends the one described in Figure 3.2 (for a
first-order language) to include a Let construct and primitives for data structure
manipulation. These primitives are: DCons constructs a data structure and Sel
selects a field from a structure. Incidentally, the construct CaseType that appears in
the subject language can be translated into other more elementary expressions (i.e.,
conditional and structure-field-selection expressions).

Note that every expression construction ends with a field of type string. This
field contains the type information about the expression. Retaining type information
is important because it helps choose the corresponding primitive operations from a

list of products of facets.

4.1.1 On-Line PPE

Our parameterized partial evaluator is implemented in Standard ML [Milner et al.,
1990]. The semantic specification given in Chapter 3 can be readily translated into a

program. Several modifications are made to the specification:

1. The meta-language describing the semantics is a lazy language, whereas the im-
plementation language is strict. The problem is resolved by converting the se-

mantics into continuation-passing style [Steele, 1978,Danvy and Filinski, 1991].




4.1. CURRENT IMPLEMENTATION 107

This rids the partial evaluator of evaluation order. (Such conversion algorithms

are already available, for example, in [Danvy and Filinski, 1991].)

2. Partial evaluation of the Let construct is included. This involves partially
evaluating those expressions associated with local variables, updating the lo-
cal environment, and partially evaluating the Let body. When some of the
local variables defined are not assigned to constants, the Let construct remains

residual in order to capture the binding of these dynamic variables.

3. Partial evaluation of a data structure construction simply returns the con-
structed structure. Partial evaluation of a structure-field selection returns the
selected field when it is present. Otherwise, the selection operation is frozen

until run-time.

Implementing Facets

The implementation is modular; that is, the partial evaluator consists of several
modules, each of which can be tested independently before being put together to form
the system. The Standard ML module construct directly supports modular design.
Specifically, the user of our PPE implementation defines facets using Standard ML
modules. These facets are then tested before being used by the parameterized partial

evaluator. A facet has the following signature:

signature FACET =

sig
val bot : Value (* bottom *)
val top : Value (* top *)
val Operators : string list (* operator list *)
val abs : Value -> Value (* abstraction function *)
val lub : Value * Value -> Value (* lub operator *)
val glb : Value * Value -> Value (* glb operator *)
val opType : string -> OpClass (* operator classification *)

val cop : string -> (Value list) -> Value (* closed operators *)
val oop : string -> (Value list) -> Value (* open operators *)
end
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Notice that, for a facet ﬁ, both L7 and T are specified explicitly in the def-
inition. This is necessary, since the former will be used in defining the product of
facets, and the latter will be used by the partial evaluator. Because the facet domain
is a complete lattice, we need to define both the lub and glb operators. The oper-
ator classification indicates whether an operator is closed or open. Following is the
Standard ML definition of a facet module called VecSIZE that defines the vector-size
property:

structure VecSIZE : FACET =
struct
val bot = Constr("Vect","Bot",[])
val top = Constr("Vect","Top",[])
val Operators = ["MKVEC","UPDVEC","NUMVEC","REFVEC","EQVEC"]
fun abs (Constr("Vect","VEC",_)) =
Constr("Vect","Size", [Array.oop "NUMVEC" [a]])
| abs _ = Constr("Vect","Top",[1)
fun lub (Constr("Vect","Bot",[1),y) =y
| lub (x,Constr("Vect","Bot",[])) = x
| 1ub (x as Comstr(_,"Size",_),y as Constr(_,"Size",_))
if (x=y) then x else top
I 1ub (L, ) = top
fun glb (Constr("Vect","Top",[1),y) = y
| glb (x,Constr("Vect","Top",[]1)) = x
| glb (x as Comstr(_,"Size",_),y as Constr(_,"Size",_))
if (x=y) then x else bot
| glb (_,.) = bot
fun opType "MKVEC" = Closed

opType "UPDVEC" = Closed
opType "NUMVEC" = Open
opType "REFVEC" = Open

|
|
|
| opType "EQVEC" = Open

fun cop "MKVEC" [Constr(_,"Bottom",[])] = Constr("Vect","Bot",[])
| cop "MKVEC" [Constr(_,"Top",[])] = Constr("Vect","Top",[])

| cop "MKVEC" [n as (Num(_))] = Constr("Vect","Size",[n])

| cop "UPDVEC" [Constr(_,"Bot",_),_,_] = bot
| cop "UPDVEC" [_,Constr(_,"Bottom",_),_] = bot
| cop "UPDVEC" [_,_,Constr(_,"Bottom",_)] = bot
| cop "UPDVEC" [Constr(_,"Top",_),_,.] = top
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| cop
fun oop
| oop
| oop
| oop
| oop

| oop
| oop
| oop
| oop
| oop
| oop
| oop
| oop

"UPDVEC"
IINI]’MVEC"
"NUMVEC"
"NUMVEC"
"REFVEC"
"REFVEC"

"REFVEC"
"REFVEC"
"REFVEC"
"EQVEC"
"EQVEC"
"EQVEC"
"EQVEC"
"EQVEC"

[a as Constr(_,"Size",_),_,.]1 = a
[Constr(_,"Bot",_)] = Constr("INT","Bottom",[])
[Constr(_,"Top",[1)] = Constr("INT","Top", [])
[Constr(_,"Size",[n])] = n

[Constr(_,"Bot",_),_] = Constr("INT","Bottom",[])
[_,Constr(_,"Bottom",_)] =

Constr ("INT","Bottom", [])

[Constr(_,"Top",_),_] = Constr("INT","Top",[])
[..,Constr(_,"Top",_)] = Constr("INT","Top",[])
[x,y] = Constr("INT","Top", [])
[Constr(_,"Bot",_),_] = Constr("BOOL","Bottom",[])
[..Constr(_,"Bot",_)] = Constr("BOOL","Bottom",[])
[Constr(_,"Top",_),_] = Constr("BOOL","Top",[])
[_.Constr(_,"Top",_)] = Constr("BOOL","Top",[])
[Constr(_,"Size", [Num(n)]),

Constr(_,"Size", [Num(m)])] =

if n <> m then Bool(false) else Constr("BOOL","Top",[])

| oop
end

"EQVEC"

[x,y] = Constr("BOOL","Top",[])

Although a good modular tool, a Standard ML module is not a first-class object.

Therefore, facets defined as modules cannot be integrated to form a product of facets.

This problem is circumvented by converting a facet module into a Standard ML data

structure of type FacetType defined as follows:

datatype FacetType

Facet of string

(* Facet name *)

* Value * Value (* bottom and top *)
* string list (* list of operators *)
* (Value -> Value) (* abstraction function *)
* (Value * Value -> Value) (* lub operation *)
* (Value * Value -> Value) (* glb operation *)
* (string -> OpClass) (* operator classification *)
* (string -> (Value list) -> Value) (* Closed operators *)
* (string -> (Value list) -> Value) (* Open Operators *)

The data structure capturing the vector-size facet, called size, can therefore be

obtained by the following binding;:
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val size = let open VecSIZE in
Facet ("VecSIZE",bot,top,Operators,
abs,lub,glb,opType,cop,oo0p)
end ;

Implementing Product of Facets

Facets are grouped together to form a product of facets. A product of facets is

implemented as a data structure of type Prod0fFacets:

datatype ProdOfFacets =

PFacet of string (* Prod0fFacet name *)
* int (* number of facets *)
* DSValue * DSValue (* bottom and top *)
* string list (* list of operators *)
* (Value -> DSValue) (* abstraction function *)
* (DSValue * DSValue -> DSValue (* lub operation *)
* (DSValue * DSValue -> DSValue (* glb operation *)
* (string -> OpClass) (* operator classification *)
* (string -> (DSValue list) -> DSValue) (* closed ops *)
a*

(string -> (DSValue list) -> string -> DSValue)
: (* open ops *)

Notice that open operators take one more argument (of type string) than closed
operators. This argument contains the type of the result of the open operation.

Applying a list of data structures of FacetType (i.e., facets) to the function
mkPFacet creates a data structure representing a product of facets. Function mkPFacet
defines each component of the product of facets from the corresponding components

of the constituents. Furthermore, it defines the product-of-facet operations.

fun mkPFacet (name, flst) = (* PE facet must be the head of flst *)
let val pfnum = length(flst)
fun iterate [] 1l1s = 11s
| iterate ((Facet(_,b,t,0p,a,l,g,ot,c,pn))::[])
(bs,ts,0ps,abss,1s,gs,ots,cs,pns) =
(rev(b::bs),rev(t::ts),0p::0Ops,rev(a::abss),rev(l::1s),
rev(g::gs),ot::ots,rev(c::cs),rev(pn::pns))
| iterate ((Facet(_,b,t,_,a,l,g,_,c,pn))::fs)
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(bs,ts,0ps,abss,1s,gs,ots,cs,pns) =
iterate fs (b::bs,t::ts,Ops,a::abss,
1l::1s,g::gs,ots,c::cs,pn: :pns)
val (bs,ts,Ops,abss,ls,gs,ots,cs,pns) =
iterate flst ([1,00,01,00,03,00,03,03,[D)
val pfbot = PFCons(name,bs)
val pftop = PFCons(name,ts)
fun mkDh x = let val (PFCons(_,bots)) = pfbot
val bs = map (fn (x1,x2) => xi = x2)
(zip x bots)
in if (foldl (fn x => fn y => x orelse y)
false bs)
then pfbot
else (PFCons(name,x))
end
fun abs x = PFCons(name,(map (fn a => a(x)) abss))
fun lub (PFCons(_,x),PFCons(_,y)) =
mkDh (map (fn (f,pair) => f(pair)) (zip 1ls (zip x y)))
fun glb (PFCons(_,x),PFCons(_,y)) =
mkDh (map (fn (f,pair) => f(pair)) (zip gs (zip x y)))
fun marknonCarrier [] = []
marknonCarrier ((pfv as PFCons(s,x))::pfvs) =
if (s = name) then pfv::(marknonCarrier pfvs)
else PFCons("OPEN",repeat (hd(x)) pfnum)::
(marknonCarrier pfvs)
fun cop opname [] = mkDh (map (fn f => (f opname [])) cs)
| cop opname args =
let val vs = map (fn (PFCons(_,x)) => x)
(marknonCarrier args)
val args’ = zipstar vs
val (r as PFCons(_,pe::_)) =
mkDh (map (fn (f,ars) => (f opname ars))
(zip cs args’))
in case pe of Constr(_,"Bottom",_ ) => r
| Constr(_,"Top",.) =>r
| _ => abs(pe)

end
fun omegal [] v ty = v
| omegal (v::vs) cv ty =
case v of Constr(_,"Bottom",_) => v
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| Constr(_,"Top",_) => omegal vs cv ty
| _ => omegal vs v ty
fun oop opname [] ty =
let val opres = map (fn f => (f opname []1)) pns
in PFCons("OPEN", [omega0 opres (Constr(ty,"Top",[1)) tyl)
end
| oop opname args ty =
let val vs = map (fn (PFCons(_,x)) => x)
(marknonCarrier args)
zipstar vs
map (fn (f,ars) => (f opname ars))
(zip pns args’)
in PFCons("OPEN", [omegaD opres (Constr(ty,"Top",[1)) ty]l)
end
in PFacet(name,pfnum,pfbot,pftop,hd(0ps),
abs,lub,glb,hd(ots),cop,o0p)

val args’
val opres

end ;

We have already seen how the data structure size for the vector-size facet is
obtained. Similarly, we can create a data structure (name it vectPE) for the partial-
evaluation facet of vector. Using function mkPFacet, we can now produce the data
structure representing a product of facets for vector; it contains both the partial-

evaluation facet and the vector-size facet:

val vectPF = mkPFacet (‘‘VECTOR’’, [vectPE,size]) ;

4.1.2 Off-Line PPE

Implementation of off-line PPE is analogous to the on-line case. The semantic speci-
fication given in Chapter 3 is used once again to guide the implementation. In partic-
ular, facet analysis has been extended to handle binding-time information about data
structures; this information is called partially-static structures [Mogensen, 1989).
Techniques for handling partially-static structures are available in the literature.
In this implementation, we adopt the technique described in [Consel, 1990a]. This

technique attaches a label (called a cons-point) to each data constructor occurred in
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a program. It manipulates these cons-points when analyzing data structures. Cons-
points are represented by integers; they are assigned uniquely to each data constructor
when the program is parsed. Since the number of cons-points used is determined by
the number of data constructors appeared textually in the (finite) program, it is finite.

Facet analysis now operates on the set of cons-points in addition to the domain

SD. This enhanced domain is implemented as a data type DAValue:

datatype DAValue =
FACons of string * (Value list) (* prod-of-abs-facet value *)
| Conspt of string * (int list) (* data structure *)

The first field (of type string) associated with each data constructor contains its
type. Notice from the representation of the product-of-abstract-facet value that all
static properties are represented by the data type Value, just like those in the on-
line counterpart. Data constructor Conspt works as follows: during facet analysis,
when this constructor is assigned to a variable (or an expression) in the program, its
integer-list field represents the set of possible cons-points that may be assigned to
this variable (or expression); that is, the set of possible data constructors that may
be assigned to this variable at specialization time.

Notice that facet analysis depends on type information, whereas binding-time
analysis does not.! This means that there is no one single value that represents
any static value occurring in the program. Consequently, input description of facet
analysis cannot simply be taken from the binding-time domain VaAlﬁes, as is the case
with binding-time analysis.

As is the case with facets, abstract facets are defined using Standard ML modules.
Once tested, an abstract facet is converted to a data structure of type AbsFacetType.
Analogously, a product of abstract facets is implemented as a data structure of type

ProdofAbsFacets. These two types are defined as follows:

1Regardless of whether a program is typed, binding-time analysis only deals with binding-time
values. In facet analysis, however, it is necessary to retain type information, since values of different
types may have (and usually do have) different product-of-abstract-facet values.
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datatype AbsFacetType =.

AFacet of string (* Abstract Facet name *)
* Value * Value (* bottom and top *)
* string list (* list of operators *)
* (Value -> Value) (* abstraction function *)
* (Value * Value -> Value) (* lub operation *)
* (Value * Value -> Value) (* glb operation *)
* (string -> OpClass) (* operator classification *)
* (string -> (Value list) -> Value) (* Closed ops *)
* (string -> (Value list) -> Value) (* Open Ops *)

datatype ProdOfAbsFacets =

PAFacet of string (* ProdOfAbsFacet name *)
* int (* number of facets *)
* DAValue * DAValue (* bottom and top *)
* string list (* list of operators *)
* (DSValue -> DAValue) (* abstraction function *)
* (DAValue * DAValue -> DAValue) (* lub operation *)
* (DAValue * DAValue -> DAValue) (* glb operation *)
* (string -> OpClass) (* operator classification *)
* (string -> (DAValue list) -> DAValue)

(* closed ops *)
* (string -> (DAValue list) -> string -> DAValue)
(* open ops *)

Applying a list of abstract facets to the function mkPAFacet creates a product of
abstract facets. This function is similar to the function mkPFacet used in producing

product of facets; its definition is omitted here.

Using the result of facet analysis, we annotate the expressions in a program with
abstract-facet information. The annotated expression is represented by data type
AnnExp. This type is similar to Exp, except that each data construct is associated
with an additional field, of type DAValue, to capture the abstract-facet information.
The specializer now takes the annotated program as input and returns a residual

program without annotation. The specializer is as specified in Chapter 3.
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4.1.3 Optimizations

While the semantic specifications capture the essence of PPE and guide their imple-
mentations, they do not address the efficiency aspect of partial evaluation. In fact,
a direct implementation of the specification would result in a partial evaluator that
is unreasonably slow. This is mainly due to repetitive computations in the course of
partial evaluation. For instance, two identical function calls in a program are partially
evaluated independently even though the result of partially evaluating the second call
can be readily obtained from the result of partially evaluating the first one. In order
to eliminate repetitive computations, and to obtain an efficient partial evaluator in

general, various optimizations are needed.

Since PPE is a natural extension of conventional partial evaluation, optimization
techniques employed by the latter can also be applied to the former with minor
modifications. Moreover, improvements obtained from these techniques can also be
realized in PPE. Therefore, some, but not all, optimization techniques have been

included in the current implementation.

An important optimization that eliminates many repetitive computations is to
make the cache containing partial-evaluation signatures available during partial eval-
uation of an expression. When suspending a function application during partial evalu-
ation, the partial evaluator first computes the function arguments. It then looks in the
cache for any partial-evaluation signature that matches the current set of arguments.
If a match occurs, the result of suspending the application is retrieved directly from
the cache; otherwise, the function of the application is specialized, and the cache is
updated to record this new partial-evaluation signature. This optimization eliminates
repetitive partial evaluations of those function applications that are to be suspended.

Almost all existing partial evaluators employ a variant of such optimization.

Another optimization included is the technique of depth-first specialization with
pending list: when a function application is encountered, if its argument-set fails to

match any partial-evaluation signature in the cache, the function body is immediately
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partially evaluated (thus the term depth-first). Furthermore, a pending list is kept
during partial evaluation; this list contains those calls that are currently activated
for specialization, but not yet completed. To determine a new recursive suspended
call, the partial evaluator only needs to look on the pending list for a suspended call
that matches the arguments of the current application. This optimization technique
is commonly used in conventional partial evaluation — be it on-line or off-line. A
detailed discussion can be found in [Weise and Ruf, 1990].

Two other optimization techniques included in current implementation are the

following:

1. Re-use specialization. This optimization aims at reducing the number of spe-
cialized functions in the residual program. It determines sets of specialized
functions with different specialization patterns but identical specialized body.
It then replaces functions in each set by one representative function; that is,

re-using the representative function.

This technique was first presented in [Ruf and Weise, 1991] for the partial eval-
uator Fuse. It determines the opportunity for ré-using an existing specialized
function before specializing a function. As such, this technique reduces partial-
evaluation time. On the other hand, since it speculates that re-use is possible
before specializing a function, not all specialized functions within a set can be

detected and replaced by the representative.

A similar optimization is also found in the field of compilation, under the name
of procedure cloning [Cooper et al., 1992]. The goal of procedure cloning is to
produce specialized versions of procedures, each dealing with different input
data. Here, different versions of a procedure may have different input data
but the same procedure body. In [Cooper et al., 1992, the decision to re-use
a procedure is performed after the specialized versions are created. This does

not save compilation time, but it can identify more re-use opportunity than the
approach of [Ruf and Weise, 1991].
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Both the techniques described above can be implemented in our partial evalua-
tor. Since the second technique requires less modification to the existing system,
and detects more re-use opportunity than the first one, we implemented the sec-

ond approach in the current system.

2. Eliminating useless facet computations. This optimization applies to off-line
PPE. Even though only useful facets are introduced during partial evaluation,
not all these facets are needed throughout the whole program. For example, if it
is determinéd at analysis time that a particular facet computation will produce
a constant, then it is not necessary to perform computation on other facets in
the same product at specialization time. On the other hand, if it is determined
at analysis time that every facet computation of a primitive operation will
return the top element in its respective facet domain, then it is not necessary
to perform these facet computations at specialization time. On a larger scale,
if it is detected that a particular function will not utilize any facet information,
and will always return totally dynamic result, then facet computations will not

be needed when specializing this function.

Facet analysis allows us to determine statically which facet computations will
produce constants at specialization time. We can exploit this information to
eliminate, prior to specialization, the facet computations that do not produce

static values.

In the current implementation, we identify, for each static expression in a pro-
gram, those abstract facets which actually produce static values; (There can
be more than one such abstract facets.) We thus determine a minimal set of
abstract facets needed to produce all the static values in the program. In doing
so, we eliminate the time spent on computing irrelevant facet information at

specialization time.

There are other existing optimization techniques that can also be included in the

implementation. For example, at the off-line partial evaluation level, specialization-
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action analysis described in [Consel, 1989,Consel and Danvy, 1990] can be used to
infer statically the actions to be performed by the specializer. The basic specialization
actions include standard evaluation of an expression and performing no computation
on an expression. These actions can be determined using the abstract-facet value of
an expression.

Finally, in comparison with the existing partial evaluators which have static prop-
erties built in, the framework of PPE can be considered a kind of optimization. This
is because by including only those facets pertaining to an application of partial eval-
uation, we have already eliminated a lot of static-property computations irrelevant

to the given program.

4.2 Some Applications

Using static information about program input, PPE enhances conventional partial
evaluation by producing more dedicated residual programs. In Chapter 2, we have
seen how to use vector-size information during the parameterized partial evaluation
of an Inner-product program to produce a linear residual code. In this section, we
provide two more applications to further demonstrate the effectiveness of this new
form of partial evaluation. Specifically, we apply parameterized partial evaluation
to specialize a pattern matcher and to specialize an interpreter. Both applications
result in qualitative improvement in the residual programs produced. Because we
have chosen these applications such that both on-line and off-line PPE’s produce

identical residual programs, we only discuss the on-line case here.

4.2.1 Improving Pattern Matching

In this section, we apply PPE to specialize a pattern matcher with respect to a subject
string and a partially-known pattern string. The experiment is based on a modified

version of the pattern matcher for strings in [Consel and Danvy, 1989]. Figures 4.1
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Fun kmp (p d)
Filter ((if (or (isDyn d) (isDyn p)) Specialize Unfold) (Par Par))
caseType p (Nil => true
x => (start p d4))
Fun start (p d) Void
caseType d (Nil => false
x => (restart p d))
Fun restart (p d) Void
(if (eqInt (Sel p 1) (Sel d 1))
casetype (Sel p 2)
(Nil => true
x => caseType (Sel d 2)
(Nil => false
x => (loop (Sel p 2) (Sel d 2) p)))
(start p (Sel d 2)))

Figure 4.1: Pattern Matcher — Part 1

and 4.2 display this modified version. It deals with integers instead of characters.

The pattern matcher has the following known effect: partially evaluating the
pattern matcher with respect to a pattern string produces a residual program that
has the effect of the KMP algorithm [Consel and Danvy, 1989]. This result can
be realized in the context of PPE without facet information (except, of course, the
partial-evaluation facet).

Suppose that we know some information about the subject string. In particular,
suppose that the pattern string is [2, 1] and the subject string is [3,x,1,2,y,3,x,y,6,
¥,1,x,x,1], where variable x is known to be either 1 or 3, and variable y is known to
be either 2 or 4. Then, it is possible to produce a more specialized residual program
by taking into account the possible values of x and y.

Firstly, consider the case of conventional partial evaluation, which cannot capture
the information about the possible values of x and y. The following residual program

is produced by conventional partial evaluation:

Fun MAIN (mx5 mx7)



120 CHAPTER 4. IMPLEMENTATION

Fun loop (p d pp)
Filter ((if (isDyn d) Specialize Unfold) (Par Par Par))
(if (eqInt (Sel p 1) (Sel d 1))
caseType (Sel p 2)
(Nil => true
x => caseType (Sel d 2)
(Nil => false
x => (loop (Sel p 2) (Sel d 2) p)))
(let ([np (skmp pp (Sel pp 2)
(addInt (length (Sel pp 2))
(negInt (length p))))1)
(if (eqlst np pp)
(if (eqInt (Sel pp 1) (Sel p 1))
(start pp (Sel d 2))
(restart pp d))
(loop np d pp))))
Fun skmp (p d n) Void
(sloop p d n p d n)
Fun sloop (p d n pp dd nn)
Void
(if (eqInt n 0)
P
(if (eqInt (Sel p 1) (Sel d 1))
(sloop (Sel p 2) (Sel d 2) (addInt n (1)) pp dd nn)
(skmp pp (Sel dd 2) (addInt nn (1)))))
Fun length (1) Void
CaseType 1 (Nil => 0
x => (addInt 1 (length (Sel 1 2))))
Fun eqlst (a b) Void
casetype a
(Nil => (CaseType b (Nil => true
x => false))
x => caselype b
(Nil => false
y => (andBool (eqInt (Sel a 1) (Sel b 1))
(eqlst (Sel a 2) (Sel b 2)))))

Figure 4.2: Pattern Matcher — Part 2
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(KMP1 mx5 mx7 mx5 mx7 mx7 mx5 mx5)
Fun KMP1 (x1 x2 x3 x4 x5 x6 x7)
(If (EQINT 2 x1) True
(1f (EQINT 1 x2) True
(1f (EQINT 2 x3)
(If (EQINT 1 x4) True
(If (EQINT 2 x5) True
(If (EQINT 2 x6)
(If (EQINT 1 x7) True
(If (EQINT 2 x7) True False))
(If (EQINT 2 x7) True False))))
(If (EQINT 2 x5) True
(If (EQINT 2 x6)
(If (EQINT 1 x7) True
(If (EQINT 2 x7) True False))
(If (EQINT 2 x7) True False))))))

In PPE, we take into consideration the set of possible values assigned to variables x
and y. This is achieved by defining a possible-value facet. This facet captures the set of
possible values assigned to a variable; it also defines the primitive operations on value-
sets, rather than usual values. The residual program produced by the parameterized
partial evaluator is:

Fun MAIN (mxi mx3)
(KMP1 mx1 mx3 mxi mx3 mx3 mx1 mx1)

Fun KMP1 (x1 x2 x3 x4 x5 x6 x7)
(If (EQINT 2 x5) True False)

This result shows that, by taking into account static information about the dy-
namic values, the partial evaluator, with the help of facet computation, can reduce
many conditional tests in the program to constants. Consequently, many conditional
expressions can be reduced to one of the branches, and the residual program produced
become more dedicated than the one produced by conventional partial evaluation.

A similar result can be produced by the Redfun system [Haraldsson, 1977], which
has the possible-value operation built in. However, we note that operations over sets

of values can be considerably more time consuming than operations over values. In
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other applications where information about set of values is not required, Redfun will

nevertheless spend time computing these operations.

4.2.2 Compiling Untyped Programs

It is well-known that partially evaluating an interpreter with respect to a program
produces a residual program in which some interpretive overhead is removed. In
the context of untyped language, an interpreter for such language usually contains
code that performs type checking on the program it is interpreting. However, a
conventional partial evaluator that specializes such an interpreter with respect to a
program only removes the type-checking code from static expressions. This is because
type information is a static property about a value; it can only be determined from
known values, not from dynamic values. Our goal in this section is to perform as
much type-checking-code removal as possible by introducing a type facet into PPE.

First, we set up the right environment for partial evaluation. Notice that two
programs are read in before partial evaluation: the interpreter and the program to be
interpreted. They are read in using the same parser. In an untyped program, basic
values do not possess explicit type information. Since our partial evaluator specializes
typed programs, in order to have it specialized untyped programs, we introduce into
the partial evaluator a built-in data structure called Univ (for universal type) which
captures all basic values. We also modify the parser so that basic values in the parsed
program are turned into values of universal type. The result is a partial evaluator for
untyped programs.

Figures 4.3 and 4.4 show the data-type declarations and main functions used by
the interpreter. Function Operation interprets primitive operations of the target
language: for each primitive operation encountered during the interpretation of a
program, function Operation checks the types of the arguments and performs com-
putation on the more refined primitive operation used by the interpreter.

Given the following factorial program (written in the language to be interpreted
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datatype Optr = Plus | Times | Negate | Equal
datatype Exp = C of Univ | V of Univ | Opr of Optr * list
| Condition of Exp * Exp * Exp
| Apply of Univ * list
datatype FDef = FD of Univ * list * Exp
Fun Intpr (progm ins)
Filter (Specialize (Par Par))
(1et ( [p (Sel progm 1)] [body (Sel p 3)] [vars (Sel p 2)] )
(Eval body (updenv (nil) vars ins) progm))
Fun Eval (A env main) Void
caseType A
(C => (Sel A 1)
V => (envLookup env (Sel A 1))
Opr => (let ( [op (Sel A 1)] [es (Sel A 2)] )
(Operation op (Meval es env main)) )
Condition => (let ( [el (Sel A 1)] [c (Eval el env main)]
[e2 (Sel A 2)] [e3 (Sel A 3)] )
(if ¢ (Eval e2 env main) (Eval e3 env main)))
Apply => (let ( [args (Sel A 2)] [cs (MEval args env main)]
[fcn (funLookup main (Sel A 1))] )
(EvFun fcn cs main) ) )
Fun Meval (args env main) Void
caseType args
(Nil => (nil)
x => (Cons (Eval (Sel args 1) env main)
(Meval (Sel args 2) env main)) )
Fun EvFun (fcn vs main)
Filter(Specialize (Par Par Par))
(let ( [vars (Sel fcn 2)] [e (Sel fcn 3)]
[env (updenv (nil) vars vs)] )
(Eval e env main))

Figure 4.3: Interpreter for Untyped Language — Part 1
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Fun Operation (Op vs) Void
caseType op
(Plus => (let ([v1 (Sel vs 1)] [v2 (Sel (Sel vs 2) 1)] )
(if (and (isInt vi) (isInt v2))
(addInt vi v2)
"Error: Plus with non integer args"))
Times => (let ([v1 (Sel vs 1)] [v2 (Sel (Sel vs 2) 1)] )
(if (and (isInt v1) (isInt v2))
(mulInt vi v2)
"Error: Times with non integer args"))
Equal => (let ([v1l (Sel vs 1)] [v2 (Sel (Sel vs 2) 1)] )
(if (and (isInt vi) (isInt v2))
(eqInt vi v2)
(if (and (isStr vi1) (isStr v2))
(eqStr vi v2)
"Error: Equal with non integer args")))
Negate => (neg (Sel vs 1)) )

Figure 4.4: Interpreter for Untyped Language — Part 2

by the interpreter) as an input to the interpreter,

[(FD ol [uxn]
(Condition (Opr (Equal) [(V "X"),(C 0)])
(c 1)
(Opr (Times)
[(V nxn)’
(apply "F" [(Opr (Plus)
[(v »x"), (Opr (Negate) [(C 1)1)1)1)1IN]

the residual program produced by conventional partial evaluation of the interpreter
with respect to the factorial program and dynamic program input is shown below.
Notice that type-checking code is in-lined. (These are marked with symbol %¥% in the
residual program.)

Fun EVFUN2 (x)

(1f (If (ISINT x) %%
(EQINT x 0)
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"Error: Equal with non integer args")

1
(Let ( [V2 (EVFUN2
(If (ISINT x) Wi
(ADDINT x ~1)
"Error: Plus with non integer args"))] )
(If (AND (ISINT x) (ISINT V2)) %

(MULINT x V2)
"Error: Times with non integer args")))

PPE can remove type-checking code using the type facet. The facet domain is a
flat lattice consisting of the set of all type names (such as Int, Bool, etc.). The facet
operators are all the refined primitive operators used by the interpreter. To remove
type-checking code, we specialize the interpreter with respect to the factorial program
and the program input of type Int (but dynamic value). The result is shown below.

Notice that all interpretive overhead has been removed.

Fun EVFUN2 (x)
(If (EQINT x 0)
i
(MULINT x (EVFUN2 (ADDINT x ~1))))

A similar result can be obtained using systems such as Redfun and Fuse [Weise
et al., 1991]. Both systems are designed to specialize untyped programs, rather than
typed programs. Therefore, they have the type information built in. They lack the
flexibility to freely introduce and remove static information into their systems. (This

disadvantage was discussed at the end of Section 4.2.1.)

4.2.3 Other Applications

Parameterizing partial evaluation opens up new areas of application of partial eval-
uation. Most notably, it increases the opportunity for producing compiled programs
with different kinds of optimization.

We have seen how typing-checking code can be removed from the residual pro-

gram using PPE. A similar technique can be applied to produce other optimized
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compiled programs (i.e., residual programs) using other kinds of static information.
For instance, we have implemented a facet that captures information about whether
an integer is a bignum or a fixnum. Using this information, the interpreter is able to

choose at partial-evaluation time the appropriate operations for integers.

Static properties can also represent operational information. For instance, it is
possible to define a facet that captures information about single-threadedness of
vectors.? This information again allows the interpreter to choose the appropriate

primitive operations for vectors.

All these examples require the interpreter to recognize and process some opera-
tional information. Thus, the interpreter is no longer the standard one; rather, it is
a non-standard interpreter that includes these operational behaviors. Nevertheless,

the partial evaluator itself is transparent to these different interpreters.

The notions of facets and products of facets provide a natural way to model
static properties used in the compilation phase. They provide a common backbone
whereby compiler and partial evaluator interact. This may enhance the role of partial
evaluation in compilation. Experiment in this area is underway.

In conventional partial evaluation, we are able to obtain a dedicated residual
program for formatting output, by specializing a general formatting program with
respect to a specific format. Using PPE, we create even more opportunities for
generating dedicated residual programs. A potential application would be to capture
the static properties of a class of devices into facets, and have a parameterized partial
evaluator specialized a general device driver routine with respect to that class of
devices. This may produce a more dedicated driver that only handles that class of

devices.

%In functional language, updating a vector usually creates a copy of the entire new vector. If a
vector being updated has no other references to it at the time of the update, then the update could
be done destructively, effectively re-using the old vector, and thus achieving the same efficiency as
an imperative assignment to the vector. A vector having this property is said to be single-threaded
[Hudak and Bloss, 1985,Hudak, 1987).
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Program PPE(sec) | PE(sec)
Inner-product (n=20) 0.48 0.47
Pattern matcher 4.14 11.12
Compiling Inner-Product 7.99 8.62
Compiling using type info 2.78 2.52

Table 4.1: Partial-Evaluation Time Measurement
4.2.4 Performance Measurement

So far, we have seen the qualitative improvement of the residual programs produced
by PPE. We now look at the quantitative aspect of PPE; our objective in this section
is to measure the time taken for performing PPE.

Without user-defined facets, a parameterized partial evaluator behaves like a con-
ventional partial evaluator. In fact, it differs from the conventional case only in that
it looks up the definition of primitive operators from a list of products of facets (with
each product contains only the partial-evaluation facet) instead of from the envi-
ronment. Since the optimization techniques implemented in a conventional partial
evaluator can also be applied to a parameterized partial evaluator, we can safely re-
place a conventional partial evaluator by a parameterized one without user-defined
facets. The advantage of comparing PPE with and without facets is that both partial
evaluations are treated with the same kind of optimizations. Therefore, the result of
comparison shows the overhead of introducing facets into the systems, rather than
other irrelevant factors.

Table 4.1 shows the time taken for generating residual programs through partial
evaluation with and without facets. The second column lists the partial-evaluation
time taken to do the job with facets, while the third column lists the time taken to
do it without facets.

The first test program is the inner-product program that we discussed in chapter
2. The vector size used in the test is 20. The facet used is the vector-size facet
defined in Section 4.1.1. In the case of partial evaluation without facet, we modify

the program so that the main function (iprod) now has one more argument — vector
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Program Facet Analysis(sec) | BTA(sec)
Inner-product 0.55 0.01
Pattern matcher 11.45 0.17
Compiling Inner-Product 243.55 1.85

Table 4.2: Analysis Time Measurement

size. In doing so, we are able to pass size information as static value.

The second row in the table shows the time taken to specialize a pattern matcher
with respect to a specific pattern string and a partially-known subject string, as was
described in Section 4.2.1. We have already seen the qualitative improvement in using
facets during partial evaluation; here, we show that there is also an improvement
in partial-evaluation time. This is because, by using a possible-value facet, a lot
of conditional tests in the program can be reduced to constants, and so only one
conditional branch needs to be partially evaluated. In conventional partial evaluation,
many conditional tests cannot be reduced to constants, and both branches of the
conditional need to be partially evaluated.

In the third test, we specialize an interpreter with respect to the inner-product
program and vector-size information. In the final test, we determine the time taken
to specialize an interpreter with respect to a factorial program and type information.

Except in the second test, the other tests show little difference in partial-evaluation
time. Besides the fact that facet operations used in these tests are not computationally
intensive, another less obvious reason is that with PPE, the user can select only those
facets that are of interest for current partial evaluation; this reduces the time taken
for computations over useless facets.

Certainly, the user can introduce facets with expensive computations, and con-
sequently PPE using that facet can become time consuming. However, from the
measurements provided above, we see that facet computations shorten the partial-
evaluation time when they can reduce conditional tests to constants. This observation
should be a good guideline for selecting facets for PPE.

Similar timing results (i.e., same as that depicted in Table 4.1) can be obtained for
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off-line specialization. However, facet analysis will in general run more slowly than
binding-time analysis. Timing comparison for facet analysis and binding-time analysis
is shown in Table 4.2. Two reasons account for the slow-down in facet analysis: (1)
Primitive operations are handled uniformly in binding-time analysis regardless of their
types. (That is, when the arguments of a primitive operation are of value static, its
result is static; otherwise, it is dynamic.) This avoids looking into the environment for
primitive-operation definition. On the other hand, every primitive operation in facet
analysis involves looking into the list of products of abstract facets for its definition.
This slow down is proportional to the length of the list of products of abstract facets.
(2) Totally-static data structures in facet analysis are not represented by value static;
instead, they are represented by similar structures with static components replaced
by product-of-abstract-facet values. This implies that more time is required for facet
analysis (than for binding-time analysis) to construct and dereference totally-static
data structures. The time difference can become prominent when specializing an
interpreter, where the program to be interpreted is a totally-static data structure.

This result is shown in the third row of Table 4.2.

4.3 Discussion

We begin the implementation of both on-line and off-line PPE by translating the
semantic specifications given in Chapter 3 into Standard ML programs. We then
apply several opti‘mizations to make them efficient. These optimizations have already
been used in conventional partial evaluation. Generally, the quality of the residual
programs produced by PPE is better than that produced by conventional partial eval-
uation. Furthermore, since none of the facets is built in, only those facets pertaining
to an application are used during partial evaluation. This can eliminate many compu-
tations over useless static properties, which is not possible in those partial evaluators
that have built-in static properties.

In terms of time efficiency, the performance of on-line PPE (and off-line special-
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ization) depends partly on the amount of facet computation required. However, in
partially evaluating a conditional expression, facet computation can reduce a condi-
tional test to a constant, so that only one conditional branch is required for partial
evaluation; this consequently reduces partial-evaluation time.

Facet analysis tends to run more slowly than binding-time analysis because totally-
static data structures are represented fully using data structures and products of ab-
stract facets, instead of value static. A possible way to reduce analysis time would be
to include constants in the binding-time domain, as was described in Section 2.5.2.
In doing so, we provide an opportunity for reducing conditional tests to constants;
thus, facet analysis needs to analyze only one conditional branch, instead of two. This
technique is used in on-line PPE. Again, we notice that optimization technique that

is developed at the on-line level is transferred to the off-line level.

In Section 4.2.2, we show the technique of converting a parameterized partial eval-
uator that specializes typed programs to one that specializes untyped programs. This
implies that the framework of PPE is applicable to both typed and untyped languages.
When dealing with an untyped language, a universal algebra is defined containing a
universal domain and all primitive operations. Facets become abstractions of this
universal algebra. Since all facets are derived from the same semantic algebra, there
is only one product of facets. The resulting product domain has the similar structure

as the type domain used by the type evaluator in [Young and O’Keefe, 1988].




Chapter 5

Conclusion

In this chapter, we briefly discuss related work and future work, and sum up the

thesis.

5.1 Related Work

Redfun [Haraldsson, 1977] was the first partial evaluator to specialize programs with
respect to symbolic values. Since then, other partial evaluation systems with similar
capabilities have been developed (e.g., [Schooler, 1984,Guzowski, 1988,Berlin, 1990]).
The latest system developed along this line is Fuse [Weise and Ruf, 1990,Weisé et al.,
1991]. This partial evaluator utilizes type information during program specialization.
In particular, it uses symbolic values to represent both a value and the code to produce
the value. This technique is similar to the value-descriptors and g-tuples introduced
in Redfun. However, instead of fixing the set of static properties used by the system
(as in Redfun), Fuse allows the user to modify the specializer’s code to introduce new
type information.

In contrast to our approach, Fuse and its predecessors are restricted to an on-
line strategy. Also, they do not provide a safe and systematic approach to introduce

user-defined static properties; when a static property is introduced, it is usually done
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by modifying the partial evaluator’s code. Finally, the lack of a formal methodology
makes it difficult to reason about combining various symbolic values.

Generalized Partial Computation [Futamura and Nogi, 1988, Takano, 1991] is a
program optimization approach that aims at specializing programs with respect to
various information (called u-information) such as logical structure of programs, ax-
ioms for abstract data types, etc. It uses a set of transformation rules to specialize a
program, and calls upon a logic system to compute u-information for each expression
in the program. The safety of the computation thus relies on the underlying logic
system and its relation with the semantics of the language in which programs are
written. This relation is currently under study [Takano, 1991]. Generalized Partial
Computation does not address off-line partial evaluation. Also the literature in the
field [Sestoft, 1990] does not report any implementation of this approach.

Lastly, in developing the correctness properties of PPE, several ideas in denota-

tional semantics have influenced our work:

1. Collecting interpretation [Hudak and Young, 1991,Jones and Mycroft, 1986].
This idea enables the specification and correctness proof of polyvariant special-

ization.

2. Factorized semantics [Jones and Nielson, 1990]. This idea leads to the definition
of formal relationship of on-line and off-line PPE. It also opens up the oppor-

tunity for the transfer of techniques developed at either strategy to another.

3. Satisfiability criteria [Gomard, 1992]. This technique forms the basic founda-
tion for proving the correctness of residual expressions generated by partial

evaluation.

5.2 Future Work

The concept of PPE advances the research in partial evaluation to a new frontier.

Not only does it extend conventional ideas about partial evaluation in a natural way,
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but it also provides the users with the opportunity to steer the partial-evaluation
process via various static properties pertaining to the application at hand. The work
presented in this thesis can be extended in several directions, many of which have

been discussed at the end of each cha.ptef. Below, we list other possible extensions.

1. Funneling facet information. In the specification of on-line partial evalu-
ation given in Figures 3.8 and 3.9, we provided a less complete treatment of
conditional expression than the one described in Redfun [Haraldsson, 1977).!
Indeed, Redfun is able to extract more refined properties from the conditional
test and funnel these properties and their complements to the consequent and

alternate branches respectively.

By defining a facet domain as a complete lattice, we can easily extract more
refined properties from the conditional test. However, we have difficulty in
producing the complement of these properties as accurate as desired, since a
lattice element may have more than one (and sometimes no) complement [Davey
and Priestley, 1990].

This problem is common in the field of functional languages. Shivers, in de-
scribing the technique for performing type recovery in Scheme [Shivers, 1991],
provides a solution to the funneling problem for type information. It may be

possible to generalize the technique to handle arbitrary facets.

2. Polyvariant facet analysis. In the specification of off-line PPE, we described
a monovariant facet analysis. In fact, the result of facet analysis can be tremen-
dously improved by introducing polyvariant facet analysis. This is a natural
extension of polyvariant binding-time analysis. The latter has been used in the
off-line partial evaluator Schism to successfully specialize a functional version
of Prolog interpreter [Consel and Khoo, 1991b]. However, preliminary result
shows that although the analysis result can be extremely accurate, it tends to

be slow. Much work remains to be done in this area.

1However, the current treatment is commonly practiced in most conventional partial evaluators.
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3. Extending language domain. Although this thesis describes PPE for a
first-order functional language, the framework as it is can be used for partially
evaluating programs written in other languages, such as higher order language

or imperative language.

In the case of higher order functional language, a sketch for PPE of higher order
programs was presented in [Consel and Khoo, 1991a]. Future work is needed
to formally specify and prove the correctness of PPE of higher order programs.
This will involve using closure analysis [Sestoft, 1989] in the off-line analysis
phase, and correspondingly, closure evaluation in the on-line PPE phase. Pre-
liminary studies in this direction indicate that such an extension is feasible
since it would be based on an existing framework for abstract interpretation of

higher-order programs, such as [Jones, 1991].

5.3 Conclusion

This thesis aims at investigating a general and formal treatment of partial evaluation
using static properties, with the hope of developing a formal framework for partial
evaluation such that static properties can be introduced safely and uniformly into both
on-line and off-line strategies. We presented a generic form of partial evaluation, called
parameterized partial evaluation, that goes beyond the objective of investigation in
that it also solves some open issues such as the relationship between on-line and
off-line partial evaluation and the correctness proof of polyvariant specialization.

On the practical side, by providing different facets for different applications, pa-
rameterized partial evaluation was shown to provide a framework for specifying and
implementing a large family of partial evaluators, each being dedicated to a specific
application. Besides our implementation, parameterized partial evaluation has al-
ready been successfully implemented for a first order subset of ML at CMU [Colby
and Lee, 1991].
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