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Roommate Stability Leads to Marriage:

The Structure of the Stable Roommate Problem

Dan Gusfield

Department of Computer Science, Yale University

Abstract

The stable roommate problem is a generalization of the well-known stable marriage problem.
In the marriage problem n men and n women are matched into n man-woman pairs to achieve a
certain type of “stability”, while in the roommate assignment problem, individual gender is
unspecified. and any two people may form a pair. It is well known that every instance of the
stable marriage problem has a stable matching, and one can be found quickly, but in the
roommate case, there are instances of the problem which permit no stable assignments. An
instance of the stable roommate problem is called “solvable” if there is at least one stable
assignment.

In this paper we show that every solvable instance of the stable roommate problem contains an
embedded instance of the stable marriage problem which completely captures the set and
structure of the stable roommate assignments. In particular, the 2n people in a solvable
roommate instance can be partitioned into two equal sized sets called, say, men and women, and
a set of preference lists (men ranking women, and women ranking men) can be extracted from
the roommate lists, so that the set of stable assignments in the roommate problem is the same as
the set of stable marriages in the derived stable marriage problem. In addition to proving the
existence of the above partition, we give an O(n?) algorithm to explicitly obtain it and the
reduction.

The theoretical and algorithmic consequences of this partition, and algorithm to find it, are
manifest. First, the structure of the set of all stable assignments for a given solvable roommate
instance is exactly that of the stable marriage problem: the assignments form a finite distributive
lattice under the relation of dominance (male or female). Second, numerous derivative roommate
problems which generalize solved stable marriage problems can be efficiently solved. For, after
the reduction to stable marriage, the set of all stable roommate assignments for a given solvable
instance can be enumerated in O(n) time per assignment, as in [G]. As another example, if p(A.i)
denotes the position in i's list of i's mate in assignment A, then the problem of finding the
optimal stable roommate assignment A to minimize £ p(A,i) can be solved in O(n?) time, by
reducing the roommate instance to a marriage instance, and then solving the optimal stable
marriage problem in O(n%) time, as in [ILG]. Third, there are many interesting, even surprising,
theorems about stable marriage and derivative problems, which can now be generalized to the
stable roommate problem and proved via the reduction to stable marriage. Finally, the partition
theorem has immediate application in a game theoretic model of market exachanges [Q,R].

It is tempting to assert social implications for the partition result. We leave such speculation
for others.




1. Introduction

The stable roommates problem is a well known problem of matching 2n people into disjoint
pairs to achieve a certain type of stability. The input to the problem is a set of 2n preference
lists. one for each person i, where person i's list is a rank ordering (most preferred first) of the
2n-1 people other than i. A roommate assignment .4 is a pairing of the 2n people into n disjoint
pairs. Assignment A is said to be unstable if there are two people who are not paired together in
A. but who each prefer the other to their respective mates in A; such a pair is said to block
assicnment A. An assignment which is not unstable is called stable. An instance of the stable
roommates prcblem is called solvable if there is at least one stable assignment. It is known [GS,
L. K. PTW] that there are unsolvable instances of the stable roommate problem; the problem of
finding an efficient algorithm to determine if an instance is solvable was proposed by Knuth [K]

and only receuntly solved by R. Irving [I].

The stable roommates problem is closely related to and is a generalization of another well-
known problem, the stable marriage problem. In the stable marriage problem, the 2n people
consist of n men and n women, and each pair is constrained to consist of a man and a women.
Each man rauks only the women and each woman ranks only the men, and an assignment in this
problem is culled a marriage (from here on, the word “assignment” will be used only for
roommate ass;gnment). A marriage A[ is unstable if there is a man and a woman who ure not
married to each other in M, but who mutually prefer each other to their respective mates in A
In contrast to the stable roommates problem, it is well known [GS] that every instance of the

stable marriage problem is solvable, i.e. has at least one stable murriage.

It is easy to reduce the stable marriage problem to the stable roommutes problem. In this
paper we consider the opposite direction, proving a very surprising result. We show that any
solvable instauce of the stable roommate problem reduces to an embedded instance of the stable
marriage problem. In particular, the 2n people in a solvavle roommate instance can be
partitioned into two equal sized sets, called men a.d women, and a set of preference lists for a
marriage problem between the men and women can be obtained, so that the sct of stable
assignments in the roommate problem is the same as the set of stable u.arriages in the derived
stable marriage problem. In fact, the following simple rule produces such an instance of the
stable marriage problem: for each pair of people (i,j), delete i from j's roommate list, and j from
i's roommate list. if and only if (i,j) is a pair in no stable roommatc assignment; given the

partition. the resulting set of lists defines the desired stable marriage instance.

In addition to proving the existence of the above partition, we give an O(n?) algorithm to
explicitly obt:in the partition and to identify those pairs which are in no stable assignments.
Hence in O(n?) time we can reduce a solvable instance of the stable roommates problem to an

instance of the stable marriage problem with the same number of people, or fewer. The




theoretical and algorithmic consequences of the existence of this partition, and algorithm to find
it, are manifest. First, the structure of the set of all stable assignments for a given solvable
instance is exactly that of the stable marriage problem, i.e. the assignments form a finite
distributive lattice under the relation of dominance [K]. Second, numerous derivative roommate
problems which generalize solved stable marriage problems can be defined and efficiently solved.
For example, the problem of enumerating all the stable roommate assignments for a given
instance can be solved in O(n?) time (for the reduction to stable marriage) plus O(n) time, per
marriage, to enumerate each stable marriage (assignment), as in [G]. As another example, if
p(A.i) denotes the position in i's list of i's mate in assignment A, then the problem of finding the
optimal roommate assignment A to minimize X p(A,i) can be solved in O(n*) time by reducing
the roommate instance to a marriage instance, and then solving the optimal stable marriage
problem in O(n*) time, as in [ILG]. Third, the partition result has immediate applications in the
game theoretic model of market exchange, as in [Q.R]. Finally, the reduction leads immediately
to the formulition and proof of many theorems about roommates which generalize known results

for the stable marriage problem and derivatives of it.

F igure 1 shows the three stable assignments in an eight person example, and shows a partition
and an embedded stable marriage problem with the same three stable marriages.

The main result and algorithm in this paper are obtained by a close examination of Irving's
algorithm [I] which finds a stable assignment if there is one, and else reports that no stable

assignment exists. Hence we will begin by describing algorithm I.
2. Algorithm I and its execution tree D

2.1. Algorithm I ‘

Alzorithm 1 successively deletes entries from preference lists until either each person has only
one entry on its list, or until someone has no entries. In the first case, the entries specify a stable
roommate assicnment, and in the second case, there are no stabl: assignments. The algorithm is
divided into two phases. In phase one, entries are removed from lists, but no stable assignments
are affected. i.e. if j is removed from i's list, then (i.j) is a pair in no stable assignment. In phase
2, the removed entries may affect stable assignments, but the invariant is maintained at each
iteration, that ¢ f there is a stable assignment in the lists before the current iteration of removals,
then there is a stable assignment in the lists resulting from the iteration of removals. Hence if
any list becomes empty in either phase, there can be no stable assignment. Before describing the

algorithm, we need the following definitions.

Definition: The current set of lists at any point in the algorithm is called a table.




Definition: Let e denote a person. At any point in the algorithm, h, will denote the current

head of person e's list, and s; will denote the current second entry on e's list.

Definition: At any point in algorithm I, a person e, is said to be semi-cngaged to b, if and only
if e, is the bottom entry in b.’s list. A person who is not semi-engaged is called free. A person

may alternate between being free and semi-engaged.

Note that scmi-engagement is not a symmetric relation. However, if everyone is semi-engaged.

then the set of list heads is a permutation of the 2n people. We now describe algorithm I.

Phase 1 of algorithm [ iterates the following:

If there is an empty list, then terminate algorithm I; there is no
stable assignment.

Else, if everyone is semi-engaged, then go to phase 2.

Else, pick an arbitrary free person e , and execute the following
operations for each person k who is ranked below e, on h.'s
list in T: remove k from h 's list, and remove h from k's list.

Note that throughout phase 1, person i is on j's list if and ouly if j is on i's list. Hence in a
step where e, becomes semi-engaged to h;, if there is a person p who is semi-engaged to h, just
before that step, then p is (automatically) not semi-cngaged to b, after that step; This follows
since at the start of the step. p must be below e, on h/’s list, so during that step, p is removed
from h;'s list. and h; is removed from p's list. After the step, p might be free, or it might have

become (autoiaatically) semi-engaged to the new head of its list.

The set of lists at the end of phase 1 is called the phase 1 table. It is proved in [I] that if j is
missing from i's list in the phase 1 table, then there are no stuble assignments which pair i to
j. Hence if some list in the phase 1 table is empty, there are no stable ussignments. Otherwise,
when phase 1 terminates with everyone semi-engaged, j is the heuad of i’s list if and only if i is the
bottom of j's list, and so the set of head entries of the phase 1 table are a permutation of the 2n

people.
Figure 2a sLows the phase 1 table of the example from figure 1.

Phase 2

Throughout phase 2 all the people remain semi-engaged, although who they are semi-engaged
to may change. Hence at any point in phase 2, j is the head of i's list if and only if i is the
bottom of j's list. [t will also be true that i is on j's list if and only if j is on i's list. Phase 2
starts with the phase 1 table and removes entries from lists in a way similar to phase 1, but the

selection of lists is more constrained. We first need some definitions.



Definition: In a table T, an exposed rotation R is an ordered subset of people E = {el. € ...

. e.}. such that s, = h._,, for all i from 1 to r, where i+1 is taken modulo r. Note that since the

i+l
order of E is cyclic. the actual selection of which element in E is named e, is arbitrary, but that

selection determines the rest of the ordering.
Figure 2b shows two rotations that are exposed in the phase 1 table of the running example.

We will often write “R = (E,H,S)”, where H is the set of head entries of E ordered to
correspond to the order of E, and S is the set of second entries of E, with corresponding order.
Note that, as sets. S = H, and that, as ordered sets, S is a (backwards) cyclic rotation of H:
when that point is central, we will write S = H". We will sometimes say that “e is in R" to
mean that e is the E set of R; we will also say that “(e,h) is a pair in R” to mean that e = e, and

h = hi for some e in E.

Definition: If R = (E,H,S) is an éxposed rotation in table T, then the elimination of R from
T is the following operation: for every s; in S, remove every entry below e, in s;'s list in T, i.e.
move the bottom of s;'s list up to e, (from e, ;). Then remove s, from ks list, for each person k

who was just removed from s;'s list.

Notice that if all people are semi-engaged in a tuble T before a rotation elimination, then all
people are semi-engaged after that elimination; hence, one affect of the elimnination is to move the
head of ¢;'s lizt down one place, for each e, in R, i.e. e, becomes semi-enguged to the s; of table

T. Figure 2c shows the table resulting from eliminating R, from the phase 1 table.

Phase 2 of the algorithm is simply:
While sone person has more than one entry on his list, and no list is empty,

find and e!iminate a rotation.

If every person has exactly one entry on his list, then pairing each
person w.th their head entry specifies a stable assignment.

If there is an empty list, then there are no stable sssignmerts.

Figure 2d completes the execution of phase 2, eliminating rotations R, and R,.

2.2. Correctness of algorithm I
The correctness of algorithm I is proved in [I]. and will not be fully repeated here. However,
we need the statements of the central lemmas that prove correctness, and we need to extend

some of them; we will give proofs of the extended lemmas.

Definition: If T is a table, then roommate assignment A is said to be contasned in, or in, T, if

and only if every pairin Aisin T, i.e. iis on j's list, and j is on i's list for each pair (i,j) in A.




The following lemmas imply the correctness of algorithm I.

Lemma 2.1 [l]: If T is a table (in phase 2) where no list is empty, and at least one person has

more than one entry. then there is a rotation exposed in T.
Lemma 2.1 will be proved and extended in the next section.

Lemma 2.2 {I: Let R = (E,H.S) be an exposed rotation in T, and let A be any stable
assignment contained in T. If e, € E and (e}, hx) is a pair in A, then (e, hi) must also be a pair

in 4. for every e, in E.
Lemma 2.2 will be proved and extended in the next section.

Lemma 2.3 [I]: If rotation R = (E,H,S) is exposed in T, and there exists a stable assignment in
T where e, € E pairs with h, then there also exists a stable assignment in T where e, does not

pair with h. and by lemma 2.2, no e, pairs with hi’ for any e in E.

Lemma 2.4 [I]: If the algorithm ends with a single entry on each list, then pairing each person

to that entry gives a stable assignment.

2.3. Extensions of the central lemmas

We will prove lemmas 2.1 and 2.2 in order to extend them.

Proof of lemma 2.1: Let e, be a person who has at least two entries. L. and s, on its list in
T. Since the head entries are a permutation of the people, and 8 £ b, there must be a person e;
such that s, = hj' We claim that e; must have _two or more entries on its list. If not, then hj is
its only entry. and so €; is the only entry on hj’s list; To see this, note that hj is both the head
and bottom eutry on ej's list, so e; must also be both the head and bottom of hj's list. But, h}. =
s which is on e’s list, so e, (which can’t be ej) must also be on hj's list, and so both hj and e;
must have at least two entries on their lists. Repeating this argument, we must eventually cycle.

in which case a rotation has been found. [

Definition: The proof above gives an (implicit) algorithm for finding a rotation R, starting
from any person e who has at least two entries on its list in T. Let e, denote the person who is
visited twice by the algorithm (i.e. where the cycle is detected). Every person who is visited
before the first visit to e, is said to be on a tail of R, and the other people are in the body of R.

Note that in a given table, an exposed rotation may have many tails, and in a diffcrent table.
the same exposed rotation may have different tails. This is illustrated in the example of figure 2.

We will need the following extension of lemma 2.1.

Corollary 2.1: If e is a person with two or more entries on its list in table T, then e is either in

a tail or in the body of a rotation exposed in T.




rctation which is exposed in T(x), and which is the next rotation eliminated from T(x) on that

execution path out of x. We use D(x) to denote the subtree of D rooted at x.

Note that D is defined only for the the phase 2 executions. In the remainder of the paper,
when we talk about algorithm I, we will be referring to phase 2, unless we specifically state
otherwise. Before going on, it is useful to examine the execution tree D in a running example (see
figure 3). Two initial observations stand out: first, every path in the tree has the same length.

and sccond. many of the rotations seem to come in dual pairs as defined below.

Definition: If R = (E,H,S) is a rotation in D then we define R3 to be the triple (S,E,E"), where
S and E have the same order in RY as they have in R. Note that with this definition (R%)d =
R. Note also that RY has the form of a rotation; If RY is actually a rotation in D (ie. is a
rotation exposed in some table), then we call R and R4 a dual pasr of rotations. Any rotation

without a dual is called a singleton rotation.

In the example. rotations P‘l and R, are singletons, and (R, 1:5) and (R,. RG) are each a duul
pair of rotations. With this terminology. we can make a more precite observatior ubout the
paths in the example tree D: Each path from the root to a leaf in D contains every singleton
rotation, and exactly one of each pair of dual rotations. We wiil prove that this is true for any
execution tree D of algorithm I, and this fact will then be exploited to reveal the structure of the
set of stable roommate assignments. However, we first need several technical definitions and

lemmas.

3. Basic Lemmas
In this section we develop the basic (technical) tools that will be used in the rest of the paper.

Lemma 3.1: If R = (E,H,S) and RY = (S,E,E") are dual rotations that are both exposed in a
table T, then in T each list of E U S has exactly two elements.

Proof: This follows simply from definition of duals, and the fact that person i is the head of j's

list in any table if and only if person j is the bottom of i's list in that table. O

Definition: For a table T, the active part of T is the subtable of T consisting of those lists

which contain more than one person.

Lemma 3.2: If R = (E.H.S) and R4 = (S,E,ET) are both exposed in T, then the active part of
the table resulting from eliminating R from T is the same as the active part of the table resulting
from eliminating RY from T. Further, that active part is just the active part of T minus the lists
of EUS.

Proof: This follows directly from the definitions dual rotations and rotation elimination, and

lemma 3.1 above. OO




The following lemma extends lemma 2.2.

Lemma 2.5: Let R be a rotation exposed in table T, and (e;, b,) a pair in R. If A is a stable
assignment contained in T where e, pairs with h;, and if (e,h) is any pair in either the body of R

or a tail of R, then (e.h) must be a pair in assignment A.

Proof: Let e be a person either in R or in a tail of R. If e, is any other person such that 5, =
hj. then in 4, e, must pair with b if e; pairs with hj; If not, then e, must be paired with a
person below s, on its list, since b, is already paired with e and A isin T. But s, is the head of
ej's list in T. so e, must be the bottom of sk's list, and since Sy is on ek's list, €, is on sk's list, and
is preferred to ¢ by s,. Hence e, and s, would block A. It follows that if e; is in the body of R,
and if e pairs with hj in .4, then every e, in R must pair with hj in A. Now consider any tail of
R (relative to T). If {(eh.s) is the last triple of the tail, then s = b, for some e, in R, so (c.h)
must be a pair in 4, and the implication follows backwards along the tuil. Hence in .1. each

person in the tail must also pair with the head person on their list in T. O

2.4. The execution tree D, and dual rotations

Algorithm | is guaranteed to produce a stable assignment if there is one. However, in this
paper we are concerned with the the structure of the set of aull the stable assignments for a
particular instance: most of what we will deduce will be by examining the possible executions of

algorithm 1. Hence we need the following

Theorem 2.1: If A is any stable roommate assigument, then there is an execution of algorithm

I which produces A.

Proof: Let T be any table obtained from a (partial) execution of algorithm I, where stable
assignment A is in T. If in T. the head of each persons list is their partner in A, then, as in the
proof of lemma 2.1, each list has only a single entry, and so T is the final table of an execution of
algorithm I. and A is the resulting stable assignment. So, assume that there is a person p whose
partner in 4 is not the head element of p's list in T. Hence p’s list has at least two entries, and,
by corollary 2.1, p is either in the body or in a tail of a rotation R exposed in T. We claim that
no person e, in the body of R pairs with b, in A. This follows directly from lemma 2.5, since if
(e, h;) is a pair in A, then p’s partner in A must also be its head entry in T, contradicting the
selection of p. Hence rotation R can be eliminated from T, creating a smaller table T which still
contains the stable assignment A. The theorem follows by repeating this argument until no

rotations remain. [J

Definition: We use D to refer to the resulting execution tree, when, for a given phase 1 table,
phase 2 of algorithm I is executed in all possible ways. Each node x in D represents the table

T(x), which is the current state of the algorithm at node x. Each edge out of x is labelled with a




Definition: Let T be a table and R = (E,H,S) be a a rotaticn. If for each e, in R, b, and s , are
in e;'s list in T. then we say that R is embedded in T.

Lemma 3.3: If R and RY are dual rotations, then R is embedded in table T if and only if R9 is

Proof: This follows directly from the definition of duals, and the fact that i is on j's list if and
only if jisoni's list. O

Definition: Let R be a rotation exposed in table T, and let T(R) be the table resulting from
eliminating R from T. If rotation R’ = (E’, H’, S’) is embedded in T but not in T(R). then we
say that R removes R from T. Note that for R to remove R’ from T all that is required is that

h’; or s’, mot appear on e’s list in T(R), for at least one e’ inR".

Definition: A path P in D is said to contain the rotations that label the cedges of P.

Lemma 3.4: If P is a path from the root of D to 4 node x in D, and P’ is a path from the root
to a node x’, and P and P’ contain the same rotutions in diffcrent order. then table T(x) and
table T(x") arc identical. Hence a table is determined by the set of rotations leading to it, not by

their order.

Proof: It is clear from the way that elements are removed in phase 1 and phase 2, that at any
point in phase 2, the current table T is determined by the original full table and the bottom
elements of each list in T. The bottom element of person i’s list is changed only if person i is in
the S set of an eliminated rotation. Hence the bottom of i's list in T is given by the person p
who i most prefers, such that i is the second element in p's list in some rotation on the path to
T.0O

We are now ready to state and prove the first non-trivial technical lemma.

Lemma 3.5: If R = (EH,S)and R" = (E’H ",S") are two distinct rotations exposed in a table
T, then R removes R’ from T if and only if R = RY. Hence the only way to remove an
exposed rotation is to explicitly eliminate it or its dual rotation, if it has one.

Proof: One direction is trivial. If R and RY are dual rotations, then since one is embedded in
T if and only if the other is, the elimination of R must remove RY. To prove the other direction,
suppose that R and R’ are exposed in T, and that R 7% R’ eliminates R’ from T. We will show
that R’ must be RY. The elimination of R moves the head of € to s;, and moves the bottom of s;
to e, for each e, in E. Then a person s; € S is removed from the list of a person p if and only if p
is below e, on s's list in table T. Clearly these removals of individual people from T affect the
lists of people in E’ only if s;is in H" (hence in S°), or if s;isin E’. To see that the first case is
not possible, recall that in table T the elements in the H column are a permutation of the 2n
people, and that in each rotation R, the set of S elements and H elements in R are the same. So




even though the S column of table T is not necessarily a permutation (i.e. a person can appear
more than once in the S column), no person can appear in the S set of more than one rotation
exposed in T. Hence S N S” = S 1 H” = 0, and so the first case is not possible. Hence the
elimination of R removes R’ from T only if some s.1sin SN E’. For ease of discussion, assume

wlog that s, € SN E’. and that s, = e"i

If e % h'j. then the change of the bottom of 5, to e, (the consequence of eliminating R) will
not affect R’, so we assume also that e, = h'j. Let T(R) be the table resulting from eliminating
R in T. Since the bottom of s's list moves up to e,. which is the head of s,'s list in T (since s, =
e’ and o= h'j). §,'s list in T(R) contains only the single element e, It follows that if e’ isin
E’. then e’.’s list in T(R) must also contain only a single element; if not. then, in T(R). o'i will
be on a tail that leads to no rotation, since H’ is unchanged by the elimiuution of R. This would
be a contradiction of corollary 2.1. So in T(R) each e’ in E’ contains only a single element in its
list. Now R’ is exposed in T, so each e’. in E” has two or more elements on its list in T, so the
affect of eliminating R in T is to move the bottom of each e’.in R’. But this is possible only if

for each e'i €EE’, e'i =s, and h'i = e, for some e, in R.

So we now know that if R removes R’ from T, then as sets, E°’ = H,and H’ = E = §".
This is necessary if R* = RY, but in order to actually prove that equality, we need to show that
the order inside the sets is correct. We already know that the correspondence between E’ and
H" is correct, i.e. that e’, = s, and h’, = e,, for the same k. So, assuming wlog that s, =¢e}
we must show that s”, = e, for each i, where i+1 is taken (mod r), and r is the size of R. To
do this, we first note that in T the list of every element in R contains exactly two elements; this
follows from the fact shown above that in T, each e, in R is the head of s;'s list, so s; is the
bottom of e's list, so each element in R has exactly two people on its list in T. But then each e
can be only on the list of b, or s, in T. Further, e, appears once in H’ and once in S’. Now e is
the head of si’s list in T, so e, must be the second element in hi's list in T. So e'i =5 = hi+l‘
and the second element on b, ,'s listise _,,s0s" = €, as claimed. Hence if R removes R’

1+1 i
from T, then R* = RY. O

Later in the paper we will strengthen this theorem to show that if R is exposed in T, and R” is
embedded in T, but perhaps not exposed, then R removes R’ from T if and only if R’ = R4

4. The structure of D
In this section we examine the structure of D, as this structure will reveal the structure of the

set of stable assignments.
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4.1. Covering Rotations

Definition: Let x be a node in D and D(x) the subtree of D rooted at x. The active part of D{x)
is the tree D(x) where at each node y in D(x), T(y) is replaced by the active part of T(y). Note
that the edge labels of D(x) do not change.

Definition: If R and R¢ are dual rotations, and path P in D contains etther of them, then we

say that P corers R and R9. IfRis a singleton, and P contains it, then then P covers R.

Lemma 4.1: Let x be a node in D with associated table T(x). Every path from x to a leaf in

D(x) covers the same set of rotations.

Proof: Let d(x) denote the maximum number of edges on any path from x to a leaf in D. The
theorem will be proved by induction on d(x). For dix) = 1, if there is only one edge out of x (i.e.
only one rotation exposed in T(x)) then the basis is trivially true. If there are two rotations I
and R’ exposed in T(x), then. by lemma 3.5, they must be duals of esch other, since rotating
either one of them results in a table with no rotations (i.e. each removes the other). Similarly,
there cannot be more than two rotations in T(x), since the elimination of any of them removes

them all. So the basis is proved.

Assuming that the theorem holds for d(x) < k, let x be a node in D where d(x) = k+1, and let
z be a child of x such that d(z) = k; by the induction hypothesis, all paths from x through z to a
leaf must cover the same rotations; let P be any such path, and let R be the rotation labelling the
edge (x;z). If R is the only rotation exposed in T(x) then there is nothing to prove, so let v be
another child of x. and let R’ be the rotation on the edge (x,y). We will show that every path

from x through y to a leaf of D(y) covers the same set of rotations as P.

If R* = RY then, by lemma 3.1 (since both R and RY are exposed in T(x)), the active parts of
T(z) and T(y) are identical, and hence the active parts of D(z) and D(y) are identical. Further,
d(z) = k, and d(y) < k, so each path from z covers the same rotations, and each path from y
covers the same rotations, so, since the subtrees from z and y are identical, any path from z must
cover the same rotations as any path from y. Then every path from x through y covers the same

rotations as P.

If R” # RY, then. by lemma 3.5, R is still exposed in table T(y), and R’ is still exposed in
table T(z). Let z° be the node associated with the table obtained by eliminating R’ from T(z),
and let y* be the node associated with the table obtained by eliminating R from T(y); and let
P(z") and P(y ") be paths from x to leafs in D that pass through z* and y’ respectively. Now the
set of rotations on the path from the root of D to z” is exactly the same as the set of rotations on
the path to y’, hence by lemma 3.4, T(z’) is identical to T(y’), and so D(z’) = D(y’). It
follows, as in the case above, that P(z") and P(y’) cover the same set of rotations. But, P(z")

covers the same set as P, and since d(y) < k, any path out of y covers the same set of rotations
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as P(y '), hence covers the same set as P. Node y was an arbitrary child of x such that y 5£ z. so

the theorem is proved. O

By definition, every rotation is exposed somewhere in D, hence the major consequence of this

theorem is the following

Path Theorem

Theorem 4.1: Every path from the root of D to a Icaf covers all the rotations. Further, since
no path can contain both a rotation and its dual, euch path contains every singleton and exactly

one of each dual pair of rotations.
Corollary 4.1: Every path in D from the root to a leaf has the same length.
Hence the cbservations in the example hold in geueral.
We can now strengthen lemma 3.5.

Corollary 4.2: If R is exposed in table T, and R’ is embedded in T, then R removes R’ if and
only if R* = RY.

Proof: Clearly, R removes R? whether R9 is exposed or not. To prove the converse, let x be a
node in D with associated table T(x), and let y be the child of x obtained by eliminating R from
T(x). Since R’ is embedded in T(x), neither R’ nor R’4 are on the path from the root to x. If R
removes R’. it removes R’d also, so neither of these rotations is on any path from x to a leaf.

Hence to avoid contradicting theorem 4.1, it follows that R* = RY. O

We continue to clarify the structure of D. The following lemma augments lemma 3.2, and will

be needed in the proof of the next theorem.

Lemma 4.2: If P is a path from the root of D to a node x in D, and P’ is a path from the root
to a node x’, and P and P’ cover the same set of rotations, then the active parts of table T(x)
and table T(x") are identical, and hence the active parts of D(x) and D(x ") are also identical.

Proof: Note first that since no path can contain both rotations in a dual pair, the length of P
and P~ are the same. Let dP and dP’ be the parts of P and P’ respectively, after the point v in
D where P and P’ diverge. The proof of the lemma is by induction of the length of dP (which is,
of course, also the length of dP’). For length of one, dP must contain R while dP’ contains RY,
for some dual pair of rotations. Then in T(x), both R and RY are exposed and the basis follows
from lemma 3.2. Now assuming the theorem holds for dP of length k, consider dP of length
k+1. and let R and R’ be the first rotations on dP and dP’ respectively, and let Vg and vp. be
the first nodes below v on these paths (see figure 4a). If R* = RY then the active tables are the
same after eliminating either rotation, and hence there must be a path from vg that is identical
to the part of dP” starting at vp.. Hence the table T at the end of that path is T(x"). But, by
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the inductior hypothesis, the active part of T(x) is the same as the active part of T, hence the

theorem follows in this case.

Now suppose that R" 5% RY. There are two cases to consider: either R is on dP’, or R%is on
dp’.

Let w be the point on dP " where R (in the first case) or Rd (in the second case) is eliminated.
Since both R and R’ are exposed at v, R must be exposed at every table on dP’ down to .

In the first case, consider the edge on dP’ into w, and let R* be the rotation eliminated there
(see figure 4b). If instead of eliminating R*, R is eliminated at that point, R* will not be
removed (since R* 5 Rd), hence the path which is identical to dP’ except that the order of R*
and R is reversed, is in fact a path from v; call that path dP*. Now dP’ and dP* contain
exactly the same rotations, so the table at the end of dP* is T(x’). Repeating this argument up
the length of dP’, moving R up at each step and leaving the rest of the path the same, it follows
that there is a path from v through VR which contains the same rotations as dP’, and hence ends
with table T = T(x"). But, by the inductive hypothesis, as above, the active parts of T(x) are
identical to the active parts of T, and hence of T(x").

In the second case, there must be a path, P(R), from v through Vg- Which is identical to dP’,
except that R replaces RY (see figure 4c). This follows from lemmma 3.2, and the fact that R is
exposed at w. But now dP’ and P(R) diverge below v, hence by the induction hypothesis, the
active part of the table, T, at the end of P(R) is identical to the active part of T(x’). Now we
can repeat the step argument of the first case, moving R up P(R) to v, and conclude that there is
a path from v through vp which contains exactly the same rotations as P(R). Then, by the
inductive hypothesis, the active part of T(x) is the same as the active part of T, which is the
same as the active part of T(x'). O

Theorem 4.2: Let R and RY be dual rotations, and x a point in D. If R is exposed in T(x), then
Rdis exposed in D(x).

Proof of the theorem: Let z be the closest ancestor of x such that RY is exposed in D(z), and
let y (possibly x) be the child of z on the path from z to x; Let R, be the rotation on the (z,y)
edge. Let P be a path from z to a leaf, where P contains RY, and let R, be the first rotation on
P (see figure 5a). If R, R2 , then the active tables after ehmmatmg either rotation are the
same, so the subtrees below those two points must be the same, hence D(y) must contain RY. So,
assume that R % R, 4 Neither R, nor R, d is on the path from the root to z, so either R, or
R must be on P, say at a point w. I\ote that in either case, R, is exposed at w, as in the aboxe
proof of lemma 4.2. Hence if RY is before w on P, then we can assume P contains R,. IfP
contains R and RY is after w (see figure 5b), then consider the affect of eliminating R, at w; the
resulting active table is the same as after eliminating Rl , so there is a path from w which
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contains R, So we can always assume that P contains R, and RY But now, we can move R,
up a step at a time. as the preceding proof, concluding that there is a path from z through y that

contains R, This contradicts the selection of z, and proves the theorem. [
Corollary 4.3: If R is the only rotation exposed in T(x), then R has no dual rotation.

Corollary 4.4: If R and R¢ are duals embedded in T(x), then both are exposved somewhere in
D(x).

Corollary 4.5: If R and RY are duals, then there is a point x in D where both R and RY are
exposed in the table T(x).

Corollary 4.6: If R and RY are dual rotations, then there is a stable roommate assignment

where each e, is paired with h;, and also one where cach e, is paired with s, where e isin R.

Proof: At point x where both R and RY are exposed, eliminating RY makes h. the only element
on e's list, and eliminating R makes s; the only element on e/s list. With either elimination, the

algorithm is guaranteed to find a stable assignment in the resulting table. O

4.2. Finding all the rotations in O(n‘) time

At this point we digress to point out that the above corollaries give an O(n*) time algorithm to
identify all the rotations. We run Irving's algorithm once, following a path P in D, finding the
rotations on P. If R is a rotation on P, then, using corollaries 4.1 and 4.3, we can test if Rdis a
rotation by simply returning to the point on P where R is eliminated and successively choosing
and eliminating any rotation other than R. By corollary 4.2, we will either expose and eliminate
RY, or we will have a table where only R is exposed; in the latter case, R can have no dual
rotation, by corollary 4.3. There are at most n(n-1) rotations on P, and each running of Irvings
algorithm costs O(n®) time, so although the size of D can be exponential in n, all rotations in D
can be found in O(n?) time. Of course, in practice this procedure can be sped up by noting at

each step which other rotations are exposed.
5. The structure of the rotations and stable assignments

5.1. Unique elimination
Definition: Let ¢, b, s, be a triple in rotation R; hence when R is eliminated from any table it
is exposed in, the bottom of s;'s list moves from e, to e, where i+1 is taken mod r. Let A(R.i)

denote the set of people on s’s list between e, and e, including e; but excluding €
Similarly, let B(R,1) be the people between e, and € including €1 but excluding e,
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Lemma 5.1: For any ¢, in R, R is the only rotation whose elimination moves the bottom of 5's
list to a person in A(R,i), and is the only rotation whose elimination moves the bottom of s;'s list

from a person in B(R,}).

Proof: Let R’ be a different rotation whose elimination mcves the bottom of si’s list to a

person p in A(R.i). from a person q. Clearly, since e is above q, and p is above €., oo pathin D

+1
can contain toth R and R’. Further, RY (if it is a rotation) cannot precede R’ on any puth,

since RY moves the head of s;'s list to e, ,, which is below p. Similarly, R" cannot precede R4 on

+1

any path, since it moves s;'s bottom to p, which is above e, But every path contaias either R

+I
or RY, so no path contains R’, contradicting the definition of a rotation. The proof for moves

from B(R,i) is similar. O

Corollary 5.1: A person p is the H element a person q's list in at most one rotation, and is the
Ty p q

S element of ¢'s list in at most one rotation.

Corollary 5.2: If p 5 e. and p € A(R,i), then s; can never be paired with p in any stable

roommate assignment.

Proof: Consider any path P where p is paired with s;- Since 5; prefers p to e, p is not the
bottom of s;'s list in the phase I table. Hence, somewhere on P, p must become the bottom of s;'s
list. But this contradicts lemma 5.1 above. O

5.2. The partial order IT* of rotations
Let R be arotation with the triple e;, b;, s, in R. If p 3¢ h;, and p is above s, in e;'s list, then R

will never be exposed until p is removed from e;’s list.

Lemma 5.2: Let p be a person who must be removed from e,'s list before R is exposed. There
is only one rotation, R’, other than Rd, whose elimination removes p from ei’s list. Hence R’

must precede R on any path in D which contains R (i.e. on which R is eliminated).

Proof: From examination of algorithm I, there are only two ways in which p can be removed
from e;'s list: either the bottom of ;s list moves up above p, or the bottom of p’s list moves up
above e,. The first case happens when Rd (if it is a rotation) is eliminated, and by lemma 5.1,
that is the only way that it can happen. By lemma 5.1 again, the second case can happen only
when a particular unique rotation, R’, is eliminated. To see that R’ must precede R on any
path containing R, recall that if RY is eliminated, then R is removed. 0

Definition: If p must be removed from e,'s list before R is exposed, and if R’ is the (unique)
rotation whose elimination causes the removal of p from e/'s list, then we say that R’ ezplicitly

precedes R.

Definition: Let IT* be the reflexive transitive closure of the above relation of explicit
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precedence. It is clear that IT* is a partial order on the rotations.
Figure 8 shows the Hasse diagram of IT* for the running example.
The following lemma follows directly from the definition of IT* and lemma 5.2.

Lemma 5.3: If (R’, R) € IT*, then R’ is on every path in D that contains R, and R" precedes

R on each of these paths.

The converse of the lemma is also true, but it will not be needed. However, it gives us the
freedom to say R’ precedes R, either in the context of IT*, or in the context of paths in D. Hence,

we call IT* the precedence relation on the rotations.

5.3. The structure of the stable assignments
Definition: In partial order IT*, a subset C of rotations is called closed if and only if it is closed
under the predecessor relation, i.e. if R is in C, and R precedes R in IT*, then R’ is in C.

Theorem 5.1: There is a one-one correspondence between stable assignments and the set of
those closed subsets of IT* which contain all the singleton rotations, and contain exactly one of

each dual pair of rotations.

Proof: One direction is trivial. Let A be a stable assignment and P be a path in D which
results in assignment A. We claim that the set C of the rotations on P forms a closed subset in
IT* of the required type. We know that each path in D contains all the singleton rotations and
exactly one of each dual pair of rotations, hence we only need to show that C is closed in IT*.
But, by lemma 5.3 above, any rotation that precedes R € C must be contained on P, hence C is
closed. Conversely. let C be a closed set of the required type; we will show that there is a path P
in D which contains C exactly. First, the maximal elements Cj C C (those with no predecessors
in IT*) must be exposed rotations in the phase I table, and since only one of any dual pair is in C,
there is a subpath from the root of D consisting of the rotations Cy- After the C, rotations are
eliminated, the elements C, C C whose only predecessors are in C, must now be exposed, and
again. each remain exposed until eliminated, and hence there is a path from the root consisting of
Co followed by C, Continuing in this way, there is a path from the root to a leaf in D consisting
of the rotations in C. O

5.3.1. The lattice generated from IT*

It is well known that if P is a partial order, then the family of all closed subsets of P defines a
distributive lattice L under the relation of set inclusion; that is, each element of L is a closed
subset of P, and if C and C" are two closed subsets in P, then C < C’ in L if and only if C* C
C in P. Further, every finite distributive lattice can be generated in this way from some partial
order [B,GR]. It is also well known [K,GS84,R] that, for a fixed instance of the stable marriage
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problem. the set of all stable marriages forms a distributive lattice under the relation of male
dominance, and hence, as shown explicitly in [IL], there is a partial order © such that the stable
marriages correspond one-one to the closed subsets in ©. This partial order © never has more
than O(n”) nodes for an n person instance of the marriage problem; it can be found quickly [ILG,
GJ: and once obtained, it is the key to the efficient solution of many problems concerning stable
marriage [ILG, G].

Because of the beauty and the theoretical and algorithmic utility of the lattice structure for
stable marriages, it is desirable to find a similar algebraic structure to tie together the set of
stable roommate assignments. However, the situation for the stable roommate problem at first
seems more complex; the closed subsets of IT* that correspond to assignments are constrained to
be of a special form: they must contain every singleton rotation, and must contain exactly one of
every dual pair of rotations. It isn’t immediately clear if there is a known and useful algebraic
structure defined by these particular closed subsets. We will answer this question, showing that
the set of stable assignments also forms a distributive lattice under the same relation as in the

stable marriage problem.

Lemma 5.4: Let (R, Rd) and (R}, Rld) be two dual pairs of rotations, and R’ a singleton

rotation. Then:

1) Neither R nor R¢ can precede R’ in IT*, i.e. only a singleton rotation can precede a

singleton.
2) R precedes R in IT* if and only if Rld precedes RY.
3) R cannot precede both R, and Rld in IT*.

Proof: Since each singleton rotation is on every path in D, any rotation which precedes a
singleton rotation must be on every path in D. So if R precedes R’, R is on every path, and RY is
on no paths in D, contradicting the assumption that R4 is a rotation; so the first fact is proved.
For the second fact, observe first that since R precedes R,, no path can contain both Rl and RY,
so any path containing RY contains Rld. Now if P is a path with RY before Rld, consider the
point x where R is eliminated. Both R, and Rld are embedded in T(x), so, by corollary 4.4, R,
is exposed in D(x), contradicting the fact that no path can contain both R and R,. So Rld
precedes RY, and fact 2 is proved. Fact 3 follows from fact 2, for if R precedes both R, and Rld,
then by transitivity, R precedes itself, which is impossible. [
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5.4. The dual partial orders IT and m

As a consequence of lemma 5.4 above, if we remove the singleton rotations from IT*, the dual
rotations can be partitiom?d1 into two sets, IT and Hd, so that the following conditions hold for
any non-singleton rotations R and R’: R is in JT if and only RY is in I79; no element of I7
precedes an element of I'Id, nor does an element of I7T9 precede an element of IT; and R precedes
R’ in I7 if and only if R*9 precedes RY in IT8. Hence IT and IT9 are themselves each partial
orders under the precedence relation, and they are inverted images of each other. Figure 7

illustrates this for the running example. With these observations, we have the following

Definition: Let R be the rotations in /7, and R the rotations in I79. For a subset C C R, let
CY be the set of duals of the rotations in C (of course, C4 C Rd).

It follows immediately from lemma 5.4 that

Corollary 5.3: C is a closed set of rotations in I7 if and only if (R - C)d is a closed set of

rotations in IT9.

Hence there is a one-one correspondence between the closed subsets in I7, and the those closed
subsets in IT* which contain every singleton and exactly one of each dual pair of rotations: a
closed subset C in IT corresponds to the subset in IT* consisting of the singleton rotations, plus C,
plus (R - C)d, and this subset is closed in IT*; conversely, a closed subset K in IT* corresponds to
the subset (R N K) in 71, and this subset is closed in IT.

Summarizing we have

Theorem 5.2: There is a one-one correspondence between the closed subsets in IT and the set

of stable assignments.

As mentioned above, the set of all closed subsets in a partial order forms a distributive lattice
under the relation of set inclusion. Hence, as in the stable marriage problem, the set of stable
roommate assignments can be represented by a distributive lattice which is generated from I7,
which, as a function of n, is a small, efficiently obtainable partial order. A stable assignment A is
less than stable assignment A’ in L if and only if the closed subset in IT associated with A
contains the closed subset associated with A’. In the case of stable marriage, the relation in the
lattice can be similarly expressed in terms of closed subsets and set inclusion, but it can also be
easily expressed as the relation of (male) dominance [K]. For the roommate problem, we do not
(yet) have such a simple characterization of the relation. It will be clear from the next section.

and made explicit in the last section, that the relation in L is also one of dominance.

IThe partition is not unique if the set of all non-singleton rotations form more than two connected components of -
IT*. However, any partition that satisfies the conditions will do.
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6. The partition, and reduction to stable marriage

6.1. The partition

In this section we will show that there is a partition of the 2n people into two sets M and W',
called men and women, such that every stable assignment is a mapping between M and W, i.e.
there are no (M,M) pairs or (W,W) pairs in any of the stable roommate assignments. We will
then show a reduction of the roommate preference lists to lists specifying an instance of the
stable marriage problem between M and W, so that the stable assignments are exactly the stable
marriages in the derived problem. We will also give a (first) algorithm to find a partition.

Lemma 6.1: If person p is in the H set of a rotation R in R, then p is not in the H set of any
rotation in R, but, of course, p is in the E set of Rie ®d. Similarly, if person p is in the E set
of a rotation R in R, then p is not in the E set of any rotation in R4 although it is in the H set
of R4 e &

In other words, once the singleton rotations have been deleted, the people in the remaining
rotations can be partitioned into those who are in the E sets of rotations in 8 (hence in the H =
S sets of rotations in &d), and those who are in the E sets®, then of rotations in wd (and in the
H = S sets of rotations in R). This is certainly reflected in the rotations of the running example.

Proof: Suppose p is the H element of ¢, in R € R, and also the H element of ¢’ in R’ € R4,
In any table where R is exposed, e, is the last element on p's list, and similarly, when R’ is
exposed, e’ is the last element on p's list. Suppose wlog that p prefers person e, toe’. Then by
lemma 5.2, R’ must be eliminated before R can be exposed, hence R’ is on any path that R is
on. ButR’ € ®%, soR'4 € R, and R and R"¢ generate a closed subset in ® (simply take R and
R and all predecessors of them in ®), so there must be a path in D containing both R and R’9.
But that path would then contain both R’ and its dual, which is impossible. The second part of
the lemma follows from the first, for if p is in the E set of R € R, then it is in the H set of R4 €
R, hence it can't be in the H set of any rotation in ®, hence it can’t be in the E set of any
rotation in ®%. O

Definition: Let D* be the subtree of D on which all the singleton rotations are eliminated
before any non-singletons are, and in which no rotation in R9 is eliminat=d before a rotation in

R.

By lemma 5.4 and theorem 5.2, it is clear that D* generates all the stable assignments of
D. Since a table is determined only by the eliminated rotations, every path in D* has the same
table after the elimination of the singletons; let T* be this table (hence T* contains all the stable
assignments). Without loss of generality we can also assume that there is only one path leading

to T*, and we let x* be the (assumed) unique node associated with T*.



19

Definition: If persons i and j are paired together in some stable assignment, then they are
called a stable pasr. If they are paired together in all assignments, then they are called a fired

pair.
Lemma 6.2: Person i is in a fixed pair if and only if i's list in T* has only a single entry.

Proof: First, since D* contains all the stable assignments, if i's list in T* contains only one
entry. j. then (i,j) is a pair in every stable assignment. If i's list in T* is not a single entry, then i
must be in the E set of a rotation R, and in the H = S sets of rotation RY. Hence by corollary

4.6, 1 is in at least two stable pairs. O
Lemma 6.2, combined with corollary 4.6 gives the following

Lemma 8.3: 1If (e,,j) is not a fixed pair, then it is a stable pair if and only if j = b, in some

non-singleton rotation.
We can now define a partition of the 2n people into two sets M and W.

Definition: If (i,j) is a fixed pair, then arbitrarily put either i or j into set M and the other into
set W. For a remaining person i, if i is in the E set of some rotation in ®, then put i in M, else
put i in W. By corollary 4.6 and lemmas 6.1 and 6.2, the sets M and W form a partition of the
2n people. We will often call the people in M “men”, and the people in W “women”. Such a
partition for the running example is shown in figure 1.

With this definition and the above results, the following is easy to prove, after first noting that
only the elimination of rotations in ® move the head of a man’s list, and similarly, only the

elimination of rotations in R move the head of a woman'’s list.

Theorem 6.1: Let T be any table in D, for a solvable roommate instance. Matching each man
te his head entry in T is a stable assignment, and similarly, matching each woman to her head

entry in T is also a stable assignment.
Finally, we have the main theorem of the paper.

Partition Theorem

Theorem 6.2: If (i,j) is any stable pair, then exactly one of i or j is in M, and the other is in
W.

Proof: This is true by definition for any fixed pair. Suppose i is not in a fixed pair, and that i
is in set M; consider any path P in D* from x* to a leaf where i pairs with j. Since (i,j) is not a
fixed pair, j cannot both be the head and the bottom of i's list in T*. However, j is both the head
and the bottom of i's list at the end of P, so, at some point on P, either the head or the bottom

of i's list must change. When the head changes, i is an E element in the rotation R being
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eliminated, and the new head of i's list is an S element of R; hence, by lemma 6.1, the new head
must be in W. Similarly, when the bottom changes, say from k to k’, then i must be 5, = th
in the rotation being eliminated; hence, again by lemma 6.1, k* is in W. At some point or P, j

becomes either the new head or the new bottom of i's list, and so j is in W. O

Corollary 6.1: [M| = |W| = n.

6.1.1. Finding a partition

It should be clear from the results so far that we can find a partition M,W in the following
way: find the set of rotations; eliminate all the singleton rotations from the table after phase I of
Irvings algorithm; using the precedence relations on rotations, partition the non-singleton
rotations into those in R and those in R9; and note the people in the E sets of R, putting them
into M, putting the people in the H set of ® into W, and dividing each fixed pair arbitrarily
between M and W. Note that we only need to identify the rotations in ®; we do not need to
explicitly build the partial orders IT or IT9. In the next section we will present a simpler
procedure that finds a partition of the people without the need to classify the rotations into R
anid R9.

6.2. Reducing stable assignment to stable marriage

In this section we show that, given a partition of the 2n people into sets M and W, we can
construct an instance of the stable marriage problem between M and W, such that every stable
marriage in the derived problem is a stable roommate assignment in the original roommate
problem, and visa versa. The existence of this reduction complétes the relationship of the
solvable stable roommate problem to the stable marriage problem. It also permits a simple
exposition of efficient solutions to several problems of selecting particular “good” stable
assignments, if there are more than one, and for the efficient enumeration of the set of all stable
assignments. The analogous stable marriage problems are discussed and sclved in [ILG, G}, and
although those solutions can be modified and applied diréctly to the roommate problem, reducing

the roommate problem to stable marriage allows a more efficient exposition.

There are many (M,W) preference lists that will work. Unfortunately, the most obvious and
“attractive” reduction, that of deleting every man from each man's roommate list, and removing
every woman from each woman's roommate list, does not work. In this paper we will discuss a

reduction that is easiest to prove correct.

Definition: For T a subtable of T*, let C(T) denote the table where the list of each person p is

obtained from T by deleting every person who is not in a stable (roommate) pair with p.

We will show that C(T*) defines an (incomplete) instance of the stable marriage problem
between M and W, such that the stable assignments in T* (recall that T* contains all the stable
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assignments) are stable marriages in C(T*), and conversely. The proof of this, in a following
sequence of lemmas, will be somewhat indirect: we will reduce the stable marriage problem on
C(T*) to a stable roommate problem on C(T*), so that we can apply the (roommate) theorems
already obtained in this paper. We will then see that the set of rotations obtained from the
roommate problem on C(T*) is exactly the same as the set of rotations obtained from the
roommate problem on T*; it will then follow that the stable marriage of C(T*) are exactly the

stable assignments of T*.

Definition: Let MP be a complete instance of the stable marriage problem (between M and W),
obtained from C(T*) by adding to the end of each man (woman) i’s list any woman (man) who is

not on i's list in C(T*).
Lemma 6.3: All stable marriages for instance MP are contained in C(T*).

Proof: We first show that the head of each list i in T* is in a stable pair with i. To see this,
not that only rotations in ® move the head of a man's list, and only rotations in ®¢ move the
head of woman's list. Hence the maximal assignment in L (the empty subset of R) must assign
each man to the head of his list in T*. Similarly, the minimal element in L (the complete set R)

gives assigns each woman to the head element in her list in T*.

So the head entries of T* and C(T*) and, of course, MP are the same. It also follows that the
bottom entries of T* and C(T*) are the same, for j is the head of i's list in T*, if and only if j is
the bottom of i's list in T*. But (i,j) is a stable pair, hence i is on j's list in C(T*). C(T*)is a
subtable of T*, so the bottoms of C(T*) and T* are the same.

Now T* is a table obtained from running algorithm I, so the head entries of T* form a
permutation of the 2n people. Hence, if we run the classical Gale-Shapley stable marriage
algorithm on MP with the men proposing, then each man gets his first choice in table MP, hence
in table C(T*). This marriage is called the man-optimal marriage, so in the man optimal
marriage, each man gets his first choice in C(T*), and each woman gets her last choice in C(T*).
Symmetrically, if the woman make the proposals, yielding the woman-optimal marriage, then
each woman gets her first choice in MP and in C(T*), and each man gets his last choice in
C(T*). It is well known [K] that on the preference list for each person i (for the stable marriage
problem), any person outside the interval specified by i's mates in the man-optimal and the
woman-optimal marriages can be deleted without changing the set of stable marriages. Hence
the stable marriages of MP are exactly those of C(T*). O

We now reduce the problem of finding stable marriages in MP (hence in C(T*)) to the
problem of finding stable assignments in a larger table RMP.

Definition: Let RMP be an instance of the stable roommate problem on M U W, obtained
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from MP by adding to the end of each man (woman) p's list all the men (women) other than p.

Note that C(T*) is an initial sub-table of MP, which is an initial sub-table of RMP. Clearly, if
A'is a stable assignment in RMP that is contained in C(T*), then A specifies a stable marriage in

MP. The converse is proved true in the following

Lemma 6.4: Every stable roommate assignment. in RMP is in C(T*), hence is a stable
marriage in C(T*).

Proof: If man m is paired with a man in an assignment in RMP, then there is a woman w who
is paired with a woman in that assignment. But w prefers m to any woman, and m prefers w to
any man, hence the assignment is not stable. So all stable assignments in RMP are contained in

MP, and so are stable marriages in MP. But all stable marriages in MP are contained in C(T*).
O

So the set and the structure of the stable marriages in C(T*) is exactly that of the set and
structure of the stable roommate assignments in RMP. Since we have now reduced the marriage
problem on C(T*) to a roommate problem, we can apply what we know about the roommate

problem.
Lemma 6.5: The phase 1 table of algorithm I applied to RMP is C(T*).

Proof: The proof here is exactly as in lemma 6.3, i.e. that the head elements of each list in
RMP are a permutation, and if j is the head of i's list in RMP, then i is in C(T*) on j's list, and
is the last entry on i's list in C(T*). O

Hence the question of what phase 2 of algorithm I does on C(T*) is meaningful. Let C(D*) be
the execution tree resulting from running algorithm I, in all possible ways, starting with the phase
1 table C(T*).

Lemma 6.6: Let P be a path from x* in D* (hence starting with table T*) containing rotations
{Ky, .. , R.}. Then there is a path in the C(D*) containing the same set of rotations, and the

resulting stable assignment is the same.

Proof: By corollary 4.6, if (e;b;5,) is a triple in non-singleton rotation R, then both (e; b;) and
(e;, ;) are stable pairs in D*, hence all the elements of any rotation on P are in C(T*), and their
relative order is unchanged in each list. Hence all the exposed rotations of T* are exposed
rotations in C(T*). At the start of P (at x*) the bottom entries of T* are the same as the
bottoms of C(T*), and it follows from lemma 5.1 that each time a person p is the S element of a
rotation being eliminated on P, the bottom of p's list moves up to the person who is the next
person on p's list in C(T*). Hence by induction on the order of the rotations on P, every initial
subpath of P is also a subpath from C(T*) in C(D*), and the lemma follows. [
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Hence every rotation in D* is in C(D*). Now we will show the converse.
Lemma 6.7: All rotations in C(D*) are in D*.

Proof: Consider a person e;, and let q be the bottom of s list in C(T*). We first claim that
every person on ;s list in C(T*), other than g, is b, in some rotation in D* containing e, To see
this, note that since (e,.q) is a stable roommate pair in T*, there is a path P in D* where q is
made the head of e;'s list. Let j 5% q be another person such that (e,,j) is a stable pair in T*, i..
jis on e's list in C(T*). Now on P, j must be removed from e,’s list before q can become the
bead. This happens either when j = h, (and e, is the bottom of j’s list) in some rotation R, and
R is then eliminated. or when the bottom of j's list is below e, and is then moved strictly above e
by the elimination of some rotation. But by corollary 5.2, the second case would imply that (e,d)
is not a stable pair in T*. Hence each person on i's list in C(T*), other than q, is b, for some
rotation in D*, hence for some rotation in C(D*).

We can now prove the lemma. By corollary 5.1, each person j can be the H element for person
e, in at most one rotation in C(D*) (we car apply corollary 5.1 here because C(D*) is an
execution tree of a roommate problem). But each person other than q is already the H element
for e, in a rotation in D*, hence in C(D*). Further, q can’t be b, for any rotation in C(D*), so

C(D*) contains only those rotations that are in D*. 0

Hence D* and C(D*) contain exactly the same set of rotations, and hence produce exactly the

same stable assignments. It now follows that

Theorem 6.3: The stable marriages in C(T*) are exactly the stable assignments in the original
stable roommate problem, and the lattice L of stable assignments obtained from I7 is identical to

the lattice of stable marriages obtained from C(T*).

6.2.1. A simpler algorithm for finding a partition

The correctness of the above reduction of the stable roommates problem to the stable marriage
problem gives a simple way to find a partition of the 2n people into sets M and W. Given the
stable pairs, which, by lemma 6.3, are known once the rotations have all been found and the
singletons have been identified, a partition can easily be obtained by using the fact that i is on j's
list in C(T*) if and only if i and j have different gender. Hence, once the stable pairs are known,
the partition and reduction can be found in O(nz) time. The easiest way to see this is to consider
the stable pairs as a graph, where each person is a node, and there is an edge between two nodes
if and only if the associated people are in a stable pair. Then the partition theorem says that
this graph is bipartite, with an equal number of nodes on each side. Any two-coloring of the
nodes yields a proper partition of the nodes, and hence, of the people (note that any proper
partition can be obtained this way). It is well known how to obtain such a coloring in time

proportional to the number of edges, here the number of stable pairs. Hence the total time for
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the partition and reduction is O(n?), the time needed to find all the rotations, and identify the
singletons. We believe that the time can be reduced; this the focus of current research.

7. Extensions and Specializations

Given a partition of the 2n people into men and women as above, we have the following:

Definition: Stable assignment A dominates (from a male perspective) A’ if and only if no man
prefers his partner in A’ to his partner in A.

It is known that in the case of stable marriage, the relation in lattice of all stable marriages is
(male) dominance. An immediate consequence [K] of this is that if M and M’ are two stable
marriages, then the mapping of each man to his most preferred mate in those two marriages, is
also a marriage. and it is stable. Given theorem 6.3, this must also hold for stable assignments,
and the relation in L must also be that of (male) dominance. Many other theorems which hold

‘can similarly be defined and proved for the roommates case, via the

for stable marriages
imposition of gender and the reduction to stable marriage. For example, theorems about
polygomy, misrepresentation of preferences, and the case of people refusing to pair with certain

other people, are easily extended to the roommate case.

As shown in the proof of lemma 6.4, the stable marriage problem is a specialization of the
stable roommate problem, hence it is interesting to see what the general results in this paper
umply for the marriage problem. In particular, it is interesting to compare the results here to
those of [IL], where a structure of the set of stable marriages was first obtained. The results in
this paper specialize to those in [IL] for the marriage problem. However, the structure of stable
marriages is somewhat simpler than the general roommate structure, and this allows faster
algorithms to construct it, and a simpler view of how to construct stable marriages from the
partial order(s). Hence the structure resulting from specializing the roommate structure to stable
marriage, at first appears different than that in [IL]. In the next paragraphs we sketch additional

observations that connect the structures and the expositions.

By lemma 8.5, there are no singleton rotations in an instance of the marriage problem. Hence
any path in D essentially yields all the rotations in the stable marriage case. The time for a
single execution of algorithm I is O(n®), and hence for the stable marriage problem, all the
rotations can be obtained that quickly; that bound was first obtained in [G] by a different
method and argument. Further, since the partition is known in the marriage case, it is easy to
follow the path P(R) in D which contains only rotations in ®. While the exposition in [IL] is
very different from the one given here, one can interpret the method in [IL)] for finding rotations
as a traversal of P(R). Finally, in the marriage case, any particular stable marriage can be
extracted from II more easily than in the roommate case. Before detailing this, we note the
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following theorem for roommates.

Theorem: Let C be a closed subset in IT, and let A(C) be the corresponding stable roommate
assignment. If T is the table obtained by starting with T* and eliminating exactly the rotations
in C, then in T, each man's mate in A(C) is his head entry in T.

This theorem holds both for the stable roommate and the stable marriage problems, but it is
much more useful in the marriage problem, because the partition is known ahead of time, and T*
can be obtained in O(n?) time; in the roommate case, T* cannot be identified until the singletons
are known, and, at present, that takes O(n%) time. This theorem essentially connects the
structure in [IL] to that obtained by specializing the results in this paper to the stable marriage
problem. Hence in [IL], all stable marriages are obtained from the man optimal stable marriage,
via elimination of rotations in R, and the concept of dual rotations, or singletons, is never

discussed, or needed.

7.1. Comment

A final comment on the relationship of the paper [IL] to the present paper. It was known for
some time that the set of stable marriages forms a distributive lattice, and although the stable
marriage literature contains many calls for a more compact and useful representation of the set,
the partial order representation was made explicit only recently in [IL], where that representation
is proved entirely in the setting of the stable marriage problem, and the Gale-Shapely algorithm.
It was subsequently noted in [GILS] that the structure results of [IL] could be obtained by making
reference to classical theorems about distributive lattices, in particular that any finite distributive
lattice is isomorphic to the closed subsets of a partial order, under the relation of set inclusion.
However, in the case of the solvable roommate problem, it was unknown that the stable
assignments form a distributive lattice, and hence that the assignments can be represented by the
small partial order IT and obtained from the rotations. The proofs of these results, in this paper,
follow the spirit of the proofs in [IL], i.e. the arguments are made entirely in the setting of the
stable roommates problem and algorithm I. If I had learned the structure of the stable marriage
problem only from the more concise lattice theoretic view, I doubt that I would have developed
the needed intuition for these results, and I doubt I would have conjectured and obtained the
structure of the roommate assignments. Hence I owe a large intellectual debt to the ideas and
exposition in [IL], no matter if they are subsequently replaced by a more compact and algebraic

exposition.
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