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Abstract

In this paper we discuss applications of the Steiner tree problem on graphs which are n-
_ dimensional hypercubes. Such problems arise frequently as models of evolutionary systems in
biology, archaeology, historical reconstruction, and other problems in hierarchical clustering. We
show that the weighted problem is NP-complete; we then show, with an empirically observed
assumption, that many of the above Steiner tree problems can be closely approximated by a fast
heuristic, and we observe that the same bounds can be obtained by other heuristics of the type
commonly cited in the applied clustering literature. This provides a partial explanation for the
reported effectiveness of the these algorithms in this application domain.
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1. Introduction

L.R. Foulds and R.L. Graham [FG| showed that the Steiner tree problem in phylogeny is NP-
complete. Technically, they showed that the Steiner tree problem restricted to undirected
unweighted graphs that are hypercubes is NP-complete. The phylogeny problem they discuss is a
simplification of a more general phylogeny problem which is modeled as a Steiner tree problem
on wesghted hypercubes, and although the NP-completeness of an unweighted problem generally
implies the NP-completeness of the weighted version, the proof in [FG] does not imply that the
weighted Steiner tree problem on hypercubes is NP-complete. The resolution of this seeming
contradiction involves the size of the input needed for these two problems. In the unweighted
problem, the input consists of the nodes to be connected in the Steiner tree, but omits an explicit
description of the hypercube. in which they appear; only the dimension of the hypercube is input, .
since the form of a hypercube itself is assumed to be known to the program. Further, the
number of input nodes used in the Foulds-Graham reduction is exponentially smaller than the
number of nodes of the hypercube in which they are embedded. The case of the wesghted Steiner
tree problem in hypercubes, however, is different: all the edge weights need to be explicitly
" represented in the input. Hence the size of the input in the weighted case is exponentially larger
than the size of the input used in [FG]. This leaves the possibility that the weighted case can be

solved in polynomial time as a function of the input size.

In this paper we present a simple proof that the weighted Steiner tree problem on hypercubes
is NP - complete. We then show that, with an empirically observed assumption, a known
heuristic for the Steiner tree problem on arbitrary graphs is particularly effective for the
phylogeny problem and other hierarchical clustering problems modeled either as weighted or
unweighted Steiner tree problems. We finally note that commonly cited heuristics in the applied

clustering literature also achieve the same provable bounds as this heuristic.

Definitions: Let G = (N,E) be an undirected graph on node set N and edge set E with a non-
negative weight w(i,j) on each edge (i,j) in G. Let X C N be a subset of nodes, and [X| = x. A
Steiner tree in G is any subtree of G that contains all the nodes of X, although it may contain
other nodes in N-X. The weight of a Steiner tree ST is the sum of the weights of all the edges in
ST, and is denoted W(ST). The optimal Steiner tree is the Steiner tree of minimum weight, and
the weighted Steiner tree problem is to find the optimal Steiner tree. When all edges have weight

one, the problem is called the unweighted Steiner tree problem.



A hypercube of dimension k is an undirected graph with 2% nodes, where the nodes are labelled
with the integers between 0 and 2k.1. Two nodes in the hypercube are adjacent if and only if the
binary representation of their labels differs in exactly one bit. The weighted Steiner tree problem
on hypercubes is the weighted Steiner tree problem where the graphs are hypercubes.

1.1. Motivations for the Steiner tree problem on hypercubes

The Steiner tree problem on hypercubes frequently models problems of hierarchical clustering
that arise in biology, archaeology, and historical reconstruction, etc. (see [HKT] for numerous
examples in archaeology and history, and see [W], [D], [F1], [F2], [FM] and [WA] for applications
in biology). The basic model in each of these applications is that a set of objects (animals,
gravesites, tﬁanuscripts, amino acid sequences, etc.) is described by a set of characteristics that
are each either present or absent in each object. With a set of k characteristics, there are gk
possible distinct objects, of which only a few are generally known to exist or to have existed.
Two objects are directly related if their characteristic vector differs in exactly one characteristic.
Hence the set of potential objects and the relations on them can be represented as a hypercube of
dimension k, where each object is a node in the hypercube and each relation is an edge. Given
‘two related objects (adjacent nodes) there may be a weight representing some measure of their
difference. In the case of molecules this weight might represent the energy needed to transform
one to the other; in evolution it might represent time needed for one species to evolve into the
other; or in general it might represent some measure of dissimilarity or unlikliness of the relation.
In each of the mentioned applications, the objective is to find the least weight tree in the
hypercube that connects the known objects. This is exactly the weighted Steiner tree problem on
hypergraphs. The significance of the optimal tree differs in each application, and is often
controversial. In some applications the claim is made that the tree represents a possible history
of how the objects evolved; in other applications it is used only to organize the objects; and in

some applications it is only the weight of the optimal tree that is believed to be of value.

Foulds and Graham describe one of the classical and widely used applications of the above
model: inferring an evolutionary tree, or phylogeny, from characteristics of certain amino acid
sequences. Another concrete application (see [NA], [NI]) is the problem of recomstructing a
genealogy of manuscripts. The problem is that there is a set X of copies of a given manuscript,
which each vary from the other in some small ways. These variances are believed to have been

introduced by errors created and propagated in hand copying of the the manuscripts over time.



In this copying process, errors are introduced, but may also be corrected. It is believed that there
are lost copies of the manuscript that form part of the copying process. The characteristics that
describe the set of manuscripts are all the locations where variances occur (each variance is
assumed to be either there or not). The problem is to reconstruct a possible genealogy of the
manuscripts, under the assumption that it forms a tree, and that the tree involves as few
manuscripts, in X or not, as possible. This is exactly a Steiner tree problem on hypercubes where
each of the nodes of the hypercube represents a characteristic vector of variances, and the known

manuscripts form the set X.

2. The weighted Steiner tree problem on hypercubes in NP-complete

We reduce the unweighted Steiner tree problem on the grid to the weighted Steiner tree
problem on a hypercube. The former problem has been shown (implicitly) to be NP-complete
[GJ]. The idea of the reduction is that we will embed any mxn grid into a hypercube which has
at most 4mn nodes. In particular, we will label the mn grid points with distinct k-bit labels so
that two nodes on the grid are adjacent if and only if their labels differ in exactly one bit, and
hence the adjacency relations on the grid will be mapped into the k dimensional hypercube. We
will see that for any m and n, the number of nodes in the hypercube (2k) will be at most 4mn.

In the above embedding, there will be adjacency relations on the hypercube that don’t occur in
thé grid. To deal with these, we give a weight of 1 to every edge in the hypercube corresponding
to an edge in the grid, and a weight of 2mn to every other edge in the hypercube. The effect is
that for any Steiner tree problem in the grid, the only edges in the hypercube that will be used in
the optimal solution are those of weight 1. Hence a Steiner tree problem on the grid has weight
less than or equal to some number z if and only if the imbedded problem on the hypercube has a

solution of weight z or less.

In order for this embedding to be an NP-completeness proof, we must verify that it requires
only polynomial time in the size of the input to the Steiner tree problem on grids. This is a
technical point requiring some care. The Steiner tree problem on grids that is (implicitly) shown
to be NP-complete in [GJ] is best stated as follows: Given n integer coordinate pairs, X, and
some target z, is there a Steiner tree connecting X of weight z or less which runs along the integer
grid enclosing those n points. The key point is that in this grid problem, as in the unweighted
hypercube problem, the description of the grid is not explicitly given as input; only the



coordinates of the nodes in X are input. These points are embedded in an some mxn grid, but
the size of X might be exponentially smaller than mn. If this were the case, then the above
reduction of grids into hypercubes does not qualify as a polynomial time reduction, even thought
the size of the hypercube is at most four times that of the grid. Fortunately, in the reduction
used in [GJ], the n points in X lie on a grid which has at most [X[? grid points. Hence the
unweighted Steiner tree problem on grids, where the grid is explicitly described in the input, is
also NP-complete and hence so is the weighted Steiner tree problem on hypercubes.

2.1. How to label the grid
We consider rectangular grids of size mxn, where m and n are each a power of two. Any other
rectangular grid can be embedded in such a grid which has at most four times the number of

nodes.

For m=1, n = 2P we know there is an appropriate labelling of the nodes with p bit numbers;
this is just a Grey code numbering of the numbers between 0 and 2P-1. Now for m = 29, assume
there is an appropriate labelling of the nodes with p+q = logz(mn) bit numbers. We can obtain
a labelling for the (2m)xn grid using p+q+1 bits by flipping the mxn grid around the horizontal
axis and appending it below a copy of the original mxn grid; we add omne bit to the label of each
node in the two mxn grids. In the top mxn grid we set this bit to zero, in the bottom mxn grid
we set it to 1. In this step we have doubled the number of nodes in the grid, and only introduced
one new bit. So for m and n both powers of two, there is an appropriate labelling using exactly
log,(mn) bits, and so general mxn grids can be embedded into hypercubes with at most 4mn

nodes. Note that what we have constructed is a two dimensional version of a Grey code.

3. Approximations for the Phylogeny problem

In this section we discuss a heuristic algorithm for the Steiner tree problem which gives
particularly good approximations for the Phylogeny problem and other similar clustering
problems modeled as Steiner tree problems. We first briefly describe a heuristic developed in
[KMB] that achieves a factor of two approximation of the optimal Steiner tree for arbitrary
graphs. We then observe that the algorithm achieves better than a factor of two approximation
for a certain class of Steiner tree problems; we believe that many clustering problems modeled as
Steiner tree problems fall into this class. Finally, we indicate that these approximation bounds

also hold for several Steiner tree heuristics commonly cited in the applied clustering literature.



This provides an partial explanation for the reported effectiveness of these algorithms in the

applications discussed above.

Algorithm KMB: a factor of two approximation for Steiner tree
Briefly the algorithm given in [KMB] is:

1. Construct a complete weighted graph G’ on the nodes of G in X, and for each pair of nodes
(i,j) in X, assign the weight d(i,j) to edge (i,j), where d(i,j) is the length of the shortest path
between i and j in G.

2. Computer a minimum spanning tree, T, in G’ connecting the nodes of X. For each edge
(i,j) in T, find a shortest path between nodes i and j in G. Let T’ be the graph formed by the
union of all of these paths.

3. If T’ is a tree, then Stop, else find the minimum spanning tree of T, and then successively
delete any leaves that are not in X. The result is a Steiner tree that is at most twice the weight

of the optimal Steiner tree connecting node set X in G.

The factor of two actually applies to the minimum spanning‘tree T produced in step 2. The
graph T’ has weight at most that of T, and this weight is maintained or further reduced in step
3. We will need to refer to the analysis in [KMB] of the factor of two bound for T. This is briefly

as follows:

Consider the edges of T and for each edge (i,j) in T consider a shortest path in G between i
and j. The weight of T is exactly the sum of the length of each of these paths (note that we are
likely counting some edges more than once). Hence T defines a set of paths in G which connect
the nodes of X, and in which every node of X is an endpoint of at least one of the paths. Any
such set of paths is called a connecting set of paths. Then T, in fact, defines the least weight
.connecting set of paths in G, when the weight of an edge is counted each time it appears in a

path.

Now let ST be the optimal Steiner tree connecting X in G. Consider a depth first traversal, P,
of ST; P traverses every edge exactly twice. Now if we split P into paths that have an X node on
each‘ end, and contain no X nodes in between, then P can be considered to be the concatenation
of x paths between the nodes of X. Therefore, P defines a set of paths that connect the nodes of
X in G, and in which every node of X is the endpoint of at least one path. That is, P defines a
connecting set of paths. But T defined to be the cheapest connecting set of paths, and so the



total lengt,h' of the paths defined by T is at most the total length of the paths defined by P,
which is exactly 2W(ST).

As observed in [KMB] the bound of two is too large. Let d be the maximum distance in ST
between two nodes of X that are connected by a path containing no other nodes of X. Then the
weight of T is at most 2W(ST) - d. This will follow as a special case of the analysis below.

3.1. Steiner trees in phylogeny and other clustering applications

In this section we modify the above analysis to include more information about the structure of
ST. In particular, we observe the effect on the worst case bound when ST contains interior nodes
from X !. We assume that the depth first search of ST begins with a node of X., and consider

this node an interior node, even if it has degree one.

Definition: Let ST’ be defined as the directed tree obtained from ST by orienting each edge in
ST in the direction it is first traversed in P. Let i be a node of X with outdegree d(i), and for
each edge e directed out of i in ST, let I(e) be the set of X nodes which are reachable from i by
a directed path which traverses edge e, and which contains no X nodes other than the endpoints
of the path; let X(e) be the node in I(e) which is farthest fron; node i. Let X(i) denote these d(i)
paths from node i, and let w(i) be the total weight of the paths. See figure 1.

Theorem: The minimum spanning tree T of step 2 above has weight at most 2W(ST) -Zw(i).

Proof: The basic idea is that any connecting set of paths have weight at least that of T. We
saw above that P defines a connecting set of paths that used every edge in ST at most twice.
We want to extract a connecting set of paths from P that have a smaller total length; We will do

this by modifying the order of the depth first search.

As before, we can think of P as a collection, C, of paths that run between each successive X
node encountered on P. These paths form a connecting set of paths in G. But observe that we
can delete any path in C which backs up to a node of X in P, and still have a connecting set of
paths. For example in figure 2, the path from v to w in P can be deleted. The set of paths
obtained in this way is still a connecting set of paths, and hence has total length at least as great

as the weight of T, but has less than the total length of P. Therefore, the weight of T is bounded

!Reasoning of the type used here is more finely developed in [SU] to improve the general bounds of [KMB|



by 2W(ST) minus the total length of the paths removed.

Now the above argument holds for any depth first search, so the idea is to find a depth first
search that maximizes the savings obtained by the above observation. We will show a depth first
traversal, P*, of ST such that for each internal X node i, every path in X(i) backs up to node i in
P’. That means that in P’, if i is any internal X node and e is any edge directed out of i, then
node i is the first X node visited after X(e). Equivalently, X(e) is the last node in I(e) that is
visited in P’. It is easy to modify the rules of the depth first search to achieve this for each
internal X node: In ST’, if (u,v) is a directed edge from u to v, and on a path in X(i), then it
should be traversed in the forward direction only after all other edges out of u have been

traversed (twice). The existence of traversal P’ proves the theorem. El

The bound of ST -Xw(i) is of interest for the class of .problems where Zw(i) is a large
percentage of W(ST). Many of the clustering applications involving the evolution or derivation
of a system of objects often exhibit this property. This is empirically observed, but is also
suggested by the nature of the applications: the nodes of X form part of an evolutionary system
in which one node spawns or generates others. In fact, for some of these problems, most of the
nodes in X are interior nodes in ST. This happens when there are long chains of derivations
along which there is no branching, i.e. each node (both X and non-X nodes) along the path has at
most one descendant. Even in the case when the existing species are likely to be leaves of the
evolutionary system, fossil remains may exist which form part of X and which these are often
internal nodes of the optimal tree. This is also true for problems in architecture and archaeology
where one type of building or tool precedes and leads to the development of other later objects.
Further, in the clustering problems we have been discussing, the nodes of ST-X represent objects
in the system for which all evidence has been lost. But in many instances, most of the relevant

objects are known, so that the percentage of internal nodes not in X is small.

There are other characteristics of optimal Steiner trees arising in the above applications which
further support the claim that algorithm KMB achieves a better bound than two for these
problems. For exax;xple, in some problems |I(e)| is small, independent of the size of X. When [I(e)|
< 2, then T is within 1.5W(ST) for the weighted problem, and within 1.33W(ST) in the

unweighted Steiner tree problem.



3.2. Other good heuristics

The approximation algorithm KMB discussed above did not originate in the clustering
literature. In this section we suggest that many reasonable heuristics for Steiner tree will perform
as well as the KMB algorithm. We look at one algorithm which is typical of the heuristics that
appear in the applied clustering literature. The Steiner tree constructed is called H.

1. Find the two nodes, i,j in X of shortest distance in G, and a shortest path that connects
them. The nodes and edges on this path are put into H. Nodes i and } are deleted from X.

9. While there are nodes in X not in H find the shortest path in G that connects a node v in X
but not in H to a node in H. Add the nodes and edges on that path to H. Delete v from X.

This algorithm can be viewed an adaptive version of algorithm LMB KMB, when the minimum
spanning tree in KMB is computed by Prim's algorithm, i.e. by always adding to a single
connected component in the cheapest way. In KMB the weights for G are computed once and
fixed throughout the minimum spanning tree computation. Here the minimum spanning tree
algorithm begins with the weights used in KMB, but, essentially, may reduce some of the weights
after each iteration. These distance reductions amount to assuming that any edge in G N H now
has distance zero, so that if the edge weights in G* reflect the current distances in G, the weights
in G’ between X nodes not in H and X nodes in H may be reduced. The question is how the
resulting tree, H, compares to T. It seems intuitive that H has weight no greater than T, and this

is a consequence of the following two lemmas that we state without proof.

Lemma 1: If C, and C, are two weight vectors for the edges of a graph G, and C, <C,in
each component, then the weight of the minimum spanning tree when the weights of G are given

by C, is less than that when the weights are given by C,.

Lemma 2: At any point in the running of Prim’s algorithm, let G” be the graph obtained from
G’ by contracting the edges already selected. Then the minimum spanning tree of G’ consists of

these edges plus the edges in the minimum spanning tree of G”.
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Figure 1: Optimal Steiner tree ST. The nodes in set X
are circled. The node numbers give the order that the
nodes are first visited by P. The dashed paths represent
the paths in X(i) for i = {1,3,7}. W(ST) = 87, and
Dw(i) == 66.
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Figure 2: Optimal Steiner tree ST. The node numbers
are given by P. The backword path from v (4) to w (1).






