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Abstract.  This paper explores the embeddings of multidimensional meshes into minimal
Boolean cubes by graph decomposition. The dilation and the congestion of the product
graph (G1 X G) — (Hy x Hy) is maximum of the two embeddings G; — Hy and G, — H,.
The graph decomposition technique can be used to improve the average dilation and average
congestion for existing mappings. One property used frequently in mesh embedding by
graph decomposition is that a £; X £3 X - - - X £ mesh is a subgraph of the product graph of
the two meshes £7 x £y x - - - x £}, and £ x €5 x - - - x £, if {; < €40 for all 1 < i < k. The graph
decomposition technique combined with some particular two-dimensional embeddings allows
for minimal expansion, dilation two, congestion two embeddings of about 87% of all two-
dimensional meshes, asymptotically. With the recent result in [4], the graph decomposition
technique, and some three-dimensional mappings presented in this paper, more than 96%
of all three-dimensional meshes contained in a 512 x 512 X 512 mesh can be embedded in a
minimal Boolean cube with dilation two. The graph decomposition technique is also used
to generalize the mesh embeddings to include wrap-around with an increase in the dilation
by at most 1, compared to a mesh without wrap-around. The expansion is preserved for
the majority of meshes, if a wrap-around feature is added to the mesh.

1 Introduction

Many linear algebra computations can be performed effectively on processor networks con-
figured as two-dimensional meshes, with or without wrap-around. Processor networks con-
figured as two- or higher dimensional meshes are also effective for the solution of partial
differential equations whenever regular grids are appropriate. Four-dimensional regular
grids are used in quantum electrodynamics and quantum chromodynamics calculations. A
multiprocessor architecture has to satisfy many needs. An interconnection network that can
emulate many communication patterns, or that provide multiple paths between arbitrary
pairs of processors, may be chosen as the physical interconnection network. Boolean cube
networks are versatile networks in that they can emulate many other networks with little
or no slowdown. The emulations are often not unique, and in some cases several emula-
tions can be performed concurrently without conflict. The use of the available bandwidth

is thereby maximized. For instance, multiple spanning tree embeddings are described in
[13, 16].

In this paper we focus on the embedding of meshes of an arbitrary number of dimensions,
and shapes, in Boolean cubes. Encoding the indices of each axis in a Gray code, is effective
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if the number of nodes along each axis is a power of two [17]. The most often used Gray
codes are binary-reflected Gray codes [23]. However, if the length of the axis is not a power
of two the Gray code embedding forces the number of processors to be allocated to an
axis to be a power of two, which for meshes of high dimension may yield a very poor
processor utilization. The ezpansion is defined as the ratio between the nodes required for
the embedding, and the nodes of the mesh being embedded. The inverse of the expansion
is a measure of the processor utilization. The expansion may be as high as ~ 2* for a
k-dimensional mesh [12]. The advantage of the Gray code embedding is that nodes that
are nearest neighbors in the mesh, are also nearest neighbors after the embedding in the
Boolean cube. If this requirement is relaxed, then the expansion may be reduced. The
dilation of an edge is the length of the path into which the edge is mapped when embedded
in the Boolean cube. Recently, Chan has shown that any three-dimensional mesh can be
embedded in a Boolean cube with dilation at most seven and minimal expansion [6], and
that any k-dimensional mesh for ¥ > 3 can be embedded with a dilation of at most 4k + 1
[5]. For two-dimensional meshes dilation two, minimal expansion embeddings have been
known for some time for most meshes [7, 14]. Dilation two, minimal expansion embeddings
for all two-dimensional meshes were recently found by Chan [4].

In [14] we used a graph decomposition, or factoring technique to obtain dilation-two
minimal-expansion embeddings for most two-dimensional meshes. Here we generalize this
technique to meshes of arbitrary dimensions, and show that this technique for minimal-
expansion embeddings yields a lower dilation than the bounds given by Chan for many
meshes. Dilation and expansion are two measures of the characteristics of an embedding.
The dilation is a measure of the minimum distance (time) for a message to move from one
node to an adjacent node in the mesh, when embedded in the Boolean cube. However,
several mesh edges may be mapped to paths that use the same Boolean cube edge. The
congestion is a measure of the number of mesh edges using the same Boolean cube edge.
Other important characteristics with respect to the efficiency of the embedding are the
number of communication channels, the active-degree, and the number of messages, the
node-congestion, a processor may need to service concurrently to fully support the mesh
emulation. We consider these characteristics of the embedding, and show that embedding
meshes by applying the graph decomposition technique may improve upon the dilation, ex-
cept in the two-dimensional case, the average dilation, the congestion, the node-congestion,
or the active-degree, compared to embedding the undecomposed mesh.

Most of the results for the embedding of meshes of arbitrary dimensions into Boolean
cubes apply to meshes without wrap-around. However, in many linear algebra computations
cyclic shifts are important operations, and in the solution of partial differential equations
periodic boundary conditions play an important role. We extend the results for meshes
without wrap-around to meshes with wrap-around.

The graph decomposition technique is based upon the idea that the original mesh can
be decomposed into two or more graphs for which good embeddings are known. The de-
composition is not necessarily unique. Moreover, for the embedding, we also consider the
embedding of meshes obtained by extending the number of nodes of the original mesh along
any axis, as long as the expansion is minimal with respect to the original mesh. These
extended meshes may allow a decomposition into smaller meshes for which effective em-
beddings are known. The main theorem in this paper is, if an £; X £3 X «+-£; mesh M can
be embedded into an n;-cube with dilation d; and an £; X £y X -+ X £}, mesh M’ can be
embedded into an ny-cube with dilation ds, then the £1€7 X L€y X - - - X €€}, mesh M can be
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embedded into an (n; + ny)-cube with dilation max(d;,d3). The mesh M is decomposable
into the two meshes M and M’ by being a subgraph of the product graph M x M’ (shown
later). In decomposing a graph it is represented as the product of graphs each of which
has fewer nodes. The number of the axes increases, and the number of nodes along an axis
decreases. If the number of nodes along an axis is a power of two, then the binary-reflected
Gray code is used for the embedding of the nodes along that axis. If the number of nodes
along an axis is not a power of two, but is decomposable into some power of two times an
integer, then a graph decomposition may be made, increasing the number of the axes by
one. For instance, a 12 X 16 X 20 mesh can be decomposed into a 3 X 4 X 16 X 5 X 4 mesh,
which can be embedded as product of a 3 x 5 mesh and a 4 X 16 X 4 mesh. Another alterna-
tive is to extend the mesh slightly, either to make it decomposable, or to a decomposition
with a better embedding. For instance, a 3 X 24 X 3 mesh can be extended and decomposed
into a 3 X 5 mesh and a 5 X 3 mesh. The graph decomposition technique may also make
use of the reshaping of subgraphs. Reshaping preserves the number of axes, but changes
the number of nodes along an axis. The reshaped mesh has at least as many nodes as the
original mesh.

The outline of the paper is as follows. In the next section we define the graph embed-
ding concepts used for the characterization of the embeddings, and give some basic results.
Then, we review some techniques used for reshaping two-dimensional meshes, such as the
break-and-fold technique [20], step embedding [1], modified step-embedding, and line com-
pression [1]. In Section 4, we give a few direct embeddings for two- and three-dimensional
meshes with dilation two and minimal expansion. Section 5 presents some results for graph
decomposition in combination with the reshaping and direct embedding techniques. In
applying the graph decomposition technique together with the reshaping and direct embed-
ding techniques, we have attained dilation two and minimal expansion embeddings of 96%
of all three-dimensional meshes contained in, or equal in size to a 512 X 512 X 512 mesh.
Section 6 extends the results to meshes with wrap-around. We conclude by a few remarks.

2 Preliminaries

For a graph G let Vg be its set of vertices, and &g its set of edges. Let |S| denote the
cardinality of a set S, and [z] and |z denote 212221 and 2U°8: 2] respectively.

The embedding function ¢ maps each vertex in the guest graph G into a unique vertex
in the host graph H. The ezpansion e of the mapping is |Vg|/|Vg|. The relative expansion
for embedding a graph G into a hypercube H is |Vg|/[|Vg|]2. Under the mapping function
¢ : G — H,node: € Vg is mapped to node ¢(¢) € Vg, and edge e = (4,j) € £g is mapped to
a path ¢(e) consisting of the set of edges £,(c) = {(0(2), v1), (v1,02), ..., (vp—1,9(5))} C En.
The path ¢(e) has the node set Vi) = {@(i),v1,v2,...,05-1,0(j)}. Let dist(i,j) be
the shortest path between nodes 7 and j in the considered graph. The dilation of the
mapping ¢ is max(dist(x(),¢(7)), for all (¢,j) € Eg. The dilation of an edge (i,j) € Eg is
dist(p(7), (7)), and the average dilation of the mapping ¢ is

1

o . > {dist(o(i), ©(5))}-
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The congestion of an edge €' € Eg is Yeee, [{€'} N Ey(e)l, and the congestion of the embed-




ding is
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The average congestion of the embedding is similarly defined. The node-congestion of a
node v € Vi is Ycee [{v} N Vy(e)l, and the node-congestion of the embedding is

max {ege:a |{v} N V(o) } .

The average node-congestion is defined similarly. The adjacency node set of a node v € Vy
is the set of nodes V, = {v; | (v,v;) € €u}, and the edge set of a node v € Vy is
& = {(v,v;) € Eu}. The active-degree of a node v is |E, N {Ueees€o(e) }]> and the active-
degree of the embedding is

max
vEVy

The average active-degree is defined similarly.

If each node of the guest graph is mapped to a distinct node of the host graph, then
the expansion is a measure of processor utilization. The slow down due to nearest-neighbor
communication in the original graph being extended to communication along paths is a
function of the dilation of the edges on the path and their congestion. With a limited
communications bandwidth at the nodes, the time for nearest-neighbor communication in
the guest graph may also be influenced by the active-degree and the node-congestion.

A Boolean cube is a graph B with node set VB such that |Vp| = 2" for some n and
edge set £g = {(in-1tn-2 10y tn—10n—2 . i) |7 =1{0,1,...,n—1},%; = {0,1}}.
|€B| = n2"~1, and there emst n edge—dlspmt paths between any pair of nodes. The number
of nodes at distance d is (3)’ and of the n paths between a pair of nodes at distance d, d
paths are of length d, and n — d paths are of length d + 2. The distance between nodes i =
(fn-1in-2...%0) and j = (jn—1Jn-2 .. .Jo) in an n-cube is Hamming(i, j) = m=o(’m ® Jm),
where @ is the exclusive-or function. In the following, subcube 0 denotes the subcube that
consists of all the nodes with the most significant bit of its address being 0. Subcube 1 is
defined accordingly.

2.1 Graph decomposition

In this section we state and prove a few properties of product graphs, and the embedding
characteristics of the product graph as a function of the embedding characteristics of the
graphs forming the product graph.

Definition 1 Let G and G be two graphs. Then, the (Cartesian) product graph G X G
is defined as

Vaixa, = {[vi,v;] | Vo € Ve,,v; € Vg, }, and
Eaixa, = {([vi,v5); [vi, vk]) | Vi € Vi, (vj, 1) € €g, }
U {(['Uj,'vi], [Uk,’l)i]) I Vvi € nga(vj,vk) € gGl}‘




G1 X G can be derived by replacing each vertex of G; by G2 and replacing each edge of
G by a set of edges connecting corresponding vertices of G,. Note that Gy X G = Gy X Gy,

llengl = IVG1| * |VG2|’ and |£G1 XGzI = Ilel * ‘ngl + IVG2| * |8G1{'

Theorem 1 Let 1 be an embedding function which maps a graph G into a graph Hy with
expansion €1, dilation dy and congestion ¢;. Also, let oo be an embedding function which
maps a graph Gy into a graph H, with expansion €,, dilation d; and congestion cy. Then,
there exists an embedding function ¢ which maps the graph G1 X G, into the graph Hy x H,
with expansion e1e9, dilation max(dy, d;) and congestion max(ey, ¢2).

Proof: We prove the theorem by constructing an embedding function ¢ : (G1xG3) — (Hy X
Hy). Let 8;° = {([uj, vi, [ur, vi])¥(uj, ux) € €6, } and S3* = {([us, vj], [wi, v])|V(vj, vk) €
£a,}. Clearly,
€a1xG, = (Uv.'evczsi}") U (Uuieval Sy').

Intuitively, the edges of Gy X G are partitioned into “G-type edges” and “G,-type edges”.
G1-type edges are further partition into |Vg,| copies, where each node in G5 identifies a
copy. S7* is a copy of G; identified by node v; in G5. Ga-type edges are treated similarly.
For the host graph H; x Hj, we define 77" and 73" similarly. Hence,

gH] xHy; = (U'u.'GVH2 7;“) U (uu,,'EVH1 ’Téui).

For each edge (u;,ux) € £g, mapped to a path

e1((uj, ux)) = {(1(u5), w1), (w1, w2), - . ., (Wp-1, P1(ur))}

in Hy under ¢q, we let ([u;, v;], [uk, v;]) € S;* be mapped to the path

{([e1(us), p2(vi)], [wi, p2(vi)]), ([w1, @2(w)], [we, 2(:)]), - - .,
([wp—1, 22(v:)], [21(uk), @2(v)])} € T2

under the new embedding function ¢, for all v; € Vg,. We define the mapping from “the
copy of G identified by v;” to “the copy of Hy identified by q(v;)” according to the
mapping 1 : Gy X Hy. The dilation is preserved to be d; for Gi-type edges and dy for
Gs-type edges. Similarly, the congestion for the Gi-type and Ga-type edges are preserved.
Note that (1) for any edges e € 7%, we have ¢(e) C Tl(‘”("‘), (2) copies of Hy (H3) identified
by different nodes in H, (H,) are disjoint, and (3) edges of H;-type and edges of Hj-type
are disjoint. Therefore, the congestion is also preserved for all edges in H; x Hy. |

The property that dilation is preserved under graph product was also observed in [19]
and [10]. The latter states that graph simulation is preserved under graph product.

In the above theorem, if ¢ has an average dilation d;, average congestion &, node-
congestion ¢}, average node-congestion ¢} and active-degree a;, and ¢, has the same set of
metrics with subscript 2, and

a= |VG1I * Igazl and ﬂ - |VH1| * |€H2l.
1€G, xG. | |Ery xHy |

Then, the embedding function ¢ has the average dilation ad; + (1 — a)d;; the average
congestion 3¢z + (1 — 3)¢1; the node-congestion ¢} + ch; the average node-congestion & + &;
and the active-degree a; + ao.



Corollary 1 Let ¢ be an embedding function which maps a graph G, into an ny-cube with
ezpansion €1, dilation dy and congestion c¢y. Also, let ¢y be an embedding function which
maps a graph Gy into an nq-cube with expansion €4, dilation dy and congestion co. Then,
there exists an embedding function ¢ which maps a graph Gy X G into an (ny + ng)-cube
with expansion €19, dilation max(dy,d3) and congestion max(cy, ¢z).

The property that dilation is preserved for hypercubes stated in this corollary has been
observed in [21] and, recently, in [24]. It is used extensively in embedding the two- or higher
dimensional meshes into Boolean cubes using Gray code on each axis.

Lemma 1 The product graph of an £y X £y X - -+ X £, mesh and an €} X £5 X -+ X £}, mesh
is an £y X Ly X -+ X £ X €] X £ X -+ - X £}, mesh.

This lemma can be proved from the definition of product graphs and meshes.

Lemma 2 [22] A k-dimensional mesh contains all linear arrays of at most as many nodes
as the mesh as a subgraph.

Lemma 3 [22] An £; X £y X -+ - X £y mesh is a subgraph of the mesh

o
L1y XLyg X+ 'Xflal X€o1 XLloyg X+ 'szc,,z Xeo o XLpy XLpg X+ 'kaak, Zf H f,’j > K,', Vi <i<Lk.
ij=1

This lemma can be easily derived from Theorem 1 and Lemma 2.

Theorem 2 Let @1 be an embedding function which maps an £11 X €12 X + -+ X {1, mesh My
into an ny-cube with expansion eq, dilation dy and congestion ¢;. Let @y be an embedding
function which maps an £y X 22 X - -+ X o mesh M, into an ny-cube with expansion e,,
dilation dy and congestion cy. Then, there exists an embedding function ¢ which maps
an £3 X £y X -+ X € mesh M into an (ny + ny)-cube with expansion ¢ = eyeq, dilation
d = max(dy,dz) and congestion ¢ = max(cy,cz), where £; = L€y for all 1 < j < k.
(If £; < Lyjly; for all 1 < j < k, then the embedding function ¢ has an ezpansion ¢ =
162 [15,(L15€2;/4;), dilation d < max(dy,ds) and congestion ¢ < max(cy, ¢3).)

Proof: It follows from Corollary 1 that the product graph M; X M; can be embedded into
an (ny +ng)-cube with dilation max(ds, dz). Since the mesh M is a subgraph of the product
graph My x M; by Lemma 3, the proof is complete. lI

We have given the proofs of the existence of embedding functions with the desired
properties. We now define the embedding function ¢ satisfying the existence theorems
for mesh M. The embedding function ¢ is defined as a function of ¢; and ¢;. Let z =
(21,22,...,2) be a node in the mesh M. Let z; = 2;61; 4+ y; and 0 < y; < £y; for 1 < i < k.
Define

Yis if z; is even,

(,51(1131,1172, ey Thky Y1, Y25 - '>yk) = (/91((?/{, yéa .. 7y;c)) where yzl = {fli -1 vi, otherwise.
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The new function @ differs from the function ¢; in that a reflection of the mesh is performed
for axes for which z; is odd. The function ¢ can be defined as follows:

(P((zl’ TR zk)) = ¢2(($17w27 . '7wk))H¢1(wla L2yeeesThyY15Y2,-- °’yk)'

Note that if both ¢; and ¢, offer minimal expansion embeddings it does not follow that
the embedding function ¢ inherits this property. ¢ yields minimal expansion only when
€162 < 2.

Corollary 2 Ifan €3 X £y X -+ - X £, mesh M can be embedded in an n-cube with expansion
e, dilation d and congestion ¢, then an £ X €5 X -+ X £} mesh M', £; = £;2™ can be
embedded in an (n+ Y, n;)-dimensional cube with expansion ¢, dilation d and congestion
c. (Ifl: < 4;2™ for all1 < i < k, then the mesh M' can be embedded with an expansion
e = [15.,(L:2™ /€%, dilation < d and congestion < c.)

Proof: Simply use the binary-reflected Gray code embedding as the embedding function
@9 in Theorem 2. 1

The corollary has been used implicitly in [7] and [14]. The new embedding function can
be easily derived as follows:

o((z1,22, ., e))|G(21, Y1)l |G 22, 92)I| - - |G (2, 1),
{G(yi), if 2; is even, 1)
G(2™ —1-1y;), otherwise.

e((z1llys, 22lly2, - - -, 2kl lyr))

where G(z;,¥;)

The above embedding function is not the only one that satisfies Corollary 2. The linear
array described in Lemma 2 is not unique. Axis ¢ of the mesh M’ in Corollary 2 is derived
by finding a linear array embedded in an £; X 2™ mesh, say M;, such that most edges are
dilation one edges. The edges along the first axis in the mesh M; have dilation < d, but the
edges along the second axis have dilation one. Traversing edges mostly along the second
axis minimizes the average dilation, in general. Let d; be the average dilation of the edges
of the ith axis in the mesh M in Corollary 2, then the average dilation of the embedding of
the mesh M’ can be shown to be

k _ & . _ k k k
14y {(df — )2l =i g, — 1) m/‘f} D {“ﬂ"‘ - (1 eﬂ“f)/(eﬂ“‘)}
=1 J=1

1=1 7=1
P

d; — 1

~x1 .
* 2 G

=1
The approximated term shows that the average dilation decreases as the size of the subcube

(that applied with Gray code embedding) increases.

Corollary 3 Let ¢; be an embedding function which maps an £;; X Lig X « -+ X £;1, mesh M;
into an n;-cube with expansion ¢;, dilation d; and congestion c¢; for 1 < i < r. Then, there
ezxists an embedding function ¢ which maps an £y XLy X+ - -X £y, mesh M into a (3=, n;)-cube
with expansion ¢ = []i_, ;, dilation d = max;<i<-{d;} and congestion ¢ = maxj<i<r{¢},
where {; = [[1<ic, bij for 1< j < k.




Proof: Simply apply Theorem 2 r — 1 times. I

Clearly, expressions for the dilation and the congestion are also valid for £; < [T, <i<r bij
and the expansion becomes

e = (IT &) * ([T Vasc)/ Vil
i=1

i=1

We use the results about the embedding of product graphs to combine previously known
techniques [15, 7, 14, 4] for the embedding of meshes in Boolean cubes. We also use the
decomposition technique in combination with some new results for the embedding of three-
dimensional meshes. The graph decomposition technique together with the direct embed-
ding of three two-dimensional meshes allows 87% of all two-dimensional meshes [14], asymp-
totically, to be embedded with dilation two, congestion two and minimal expansion. Both
the average dilation and average congestion are one asymptotically. The average dilation
of the dilation-two embedding of all two-dimensional meshes by Chan [4] does not decrease
as the size of the mesh increases. Chan does not consider the congestion. The graph de-
composition technique in combination with all previously known results yields dilation-two
minimum-expansion embeddings of 96% of all three-dimensional meshes £; X {3 X {3, such
that 1 < 4;,4;,€3 < 512. By using Gray code embedding, only 29% of the meshes achieve
minimal expansion for the considered three-dimensional domain. The best known upper
bound for the dilation for the embedding of all three-dimensional meshes with minimal
expansion is seven [6].

2.2 Lower bounds for the expansion of dilation one embeddings

The binary-reflected Gray code embedding yields dilation one embeddings, but the expan-
sion may be high. In the next section we determine the fraction of all possible meshes for
which Gray code embedding yields minimal expansion embeddings. The following theorem
due to Havel and Méravek [12] shows that any dilation one embedding has the same expan-
sion as the binary-reflected Gray code embedding. Hence, if the Gray code embedding does
not yield minimal expansion, then any minimal expansion embedding must have a dilation
of at least two.

Each node of the n-cube is represented by an n-bit binary number. Each node of the
£; X £3 mesh is represented by an address (i,5), where 0 < i < £ — 1,0 < j < £y — 1.
There is a one-to-one mapping from edges of the mesh to edges of the cube in a dilation
one embedding. By “an edge in a cube is in dimension i” we mean that the addresses of
the two end points differ in bit ¢. The most significant bit (msb) is bit n — 1 and the least
significant bit (Isb) is bit 0. The label on an edge in the mesh represents the dimension of
the corresponding edge in the cube.

Theorem 3 [12] If an €y X £y X - - X £ mesh is embedded in an n-cube with dilation one,
then n > Y8 [log, 4;].

Proof: Consider a two-dimensional mesh first. Label each edge in the mesh with a number
that represents the dimension of the corresponding edge in the cube. A legal labeling should
satisfy the following two properties:
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Figure 1: (a) Dimensions of a cycle of length 4. (b) Vertical or horizontal cuts. (c) The set
of dimensions of vertical edges and the set of dimensions of horizontal edges are disjoint.

1. Any cycle in the mesh must contain any label an even number of times.

2. Any path in the mesh must contain some label an odd number of times.

For any cycle of length 4 in the mesh, the edge labels form a sequence (p, ¢, p, ¢), where
p # q, Figure 1-(a). By extending this argument, it follows that any vertical or horizontal
cut will only cut edges having the same label, Figure 1-(b). Now consider the labels of any
horizontal path connecting all the £, nodes of a row. Since the corresponding cube nodes
are distinct and the longest node-disjoint path in an n-cube is of length 2 — 1, the number
of distinct labels on the edges forming a row is at least [log, £3]. The same argument
applies to any vertical path. Moreover, the set of labels on the horizontal paths must be
disjoint from the set of labels on the vertical paths; otherwise there exist two adjacent edges
with the same label, Figure 1-(c). Hence, the minimum number of dimensions required is

[logy £1] + [log, £5].

Since the set of cube dimensions used as labels for mesh edges in mesh dimension ¢ is
disjoint from the set of cube dimensions used as labels for mesh edges in dimension j, i # j,
the proof is complete. I

Theorem 3 was independently rediscovered in [3], [8], [14] and [11]. From the theorem
it follows that the expansion is in the range of 1 to 2*.

2.3 Percentage of minimal expansion using Gray code embedding

The percentage of meshes for which Gray code embedding [23], [17], [15], [3], yields minimal
expansion embeddings decreases with the number of axes of the mesh. In this section we

show that, asymptotically, the percentage is about 61% in two dimensions, but only 27% in
three dimensions.

Determining the asymptotic expansion for Gray code embedding is transformed to the
following probability problem. Let a;, ¢ > 1, be a variable uniformly distributed over an
interval (%—, 1], and a; and a; be independent variables for all 7 # j. Then, the probability
that [T%; a; € (1/25+1,1/28] is the asymptotic fraction of embedding k-dimensional meshes
using Gray code embedding with an expansion 2. For minimal expansion 3 = 0.

Let o € (3,1] and fx(e) be the probability that o < [T%; a; < 1. Then,
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Figure 2: The asymptotic fraction of the domain ([€:12/2) < €; < [4]2 for which minimum
expansion is attained by Gray code embedding. The right plot has a logarithmic scale for
the y-axis.

Lemma 4 f,(a)=2"(1-a Y} g'—lg”ﬁﬁ) fori<a<i.

Proof: By induction on n. fi(a) = 2(1 - a), 1<a<l.

1 «a
fat1(a) = 2 I (-—-) dz
o T
1 o (-1)int 2
_ 'n_ n__ ______:L‘
=2/ (2 2"~ ;‘ - dz (2)
1=0
1 n=1 .g (_1)iuz'
= 2"+1/ dx—2"+1a2/ ——du (3)
o i—o /Ina 1.

= ontl _ontl, 2n+1ai (—1)T In*a
4 il
=1
“ (=1)ln’ a
- 2n+1 _ 2n+1 ( - .
a; 3!

;From Equation 2 to 3, we let u = In &. Hence, du = _d_:._ |

Theorem 4 The fraction of all k-dimensional meshes for which a binary-reflected Gray

code embedding yields minimum ezpansion is fe(3) = 281 - 3 ;:01 1—’3:,—2), asymptotically.

Proof: By Lemma 4. |

Figure 2 shows fi(1) as a function of the number of dimensions, k. f2(3) = 2(1-1n2) ~
0.61 and f3(1) = 4(1 - In2 - 22) » 0.27.
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Figure 3: Embedding of a 3 X 9 mesh into a 4 x 8 mesh by step embedding with, (a) dilation
3, (b) dilation 2.

3 Reshaping techniques

With reshaping techniques we mean techniques for which an ¢; X €3 X ... X £, mesh is
embedded in an €] X £5 X ... x £}, mesh. The number of axes is preserved, but the length of
the different axes are changed. We only consider two-dimensional meshes reshaped by step
embedding [1], modified step embedding, folding [20], and line compression [1]. Embedding
rectangular meshes into square meshes is also considered in [9]. Embeddings of a multidi-
mensional mesh into another multidimensional mesh of different shapes and cardinalities
is studied by [18] and [22]. By making the reshaped mesh having axes with lengths being
powers of two, a Gray code embedding can be applied to the reshaped mesh. This technique
was used in [15]

In [1] reshaping techniques were used to square up a rectangular mesh. Given an ¢; X {3
mesh, we wish to find an embedding with small dilation into an N; X N, mesh, where
Ny = 2™ and N; = 2", such that NyN, = [{14;];. The dilation is 3 for step embedding
and modified step embedding, and 2 for folding and line compression. For convenience,
we assume £; < {3 in the following, without loss of generality. The embedding can be
represented by joining £; lines of length £, — 1 in the Ny x N, mesh, such that any two
corresponding nodes on the successive lines are at most a distance 2 (or 3) apart. No node
must be traversed by more than one solid line.

3.1 Step embeddings

Figure 3-(a) shows the embedding of a 3 X 9 mesh into a 4 x 8 mesh by the step embedding
technique. The dilation is three. For £, = N, + 1, the dilation can be reduced to 2 as
shown in 3-(b). Each row of the guest mesh will “turn” at some point and make a vertical
traversal. Different rows traverse different columns, and it follows that N > 4;. Also, row
¢ of the guest mesh will occupy a part of rows i and i + £, — Ny of the host mesh, and
N1 2 £ — N2 + £;. The number of edges with dilation 3 is (£ — No)(¢; — 1). The average

dilation is 1 + %ﬁ—%ﬁf"—l_—u ~ 1+ -2771—\'1 which is in the range 1 — 1.5 if Ny = |{3],.

Correspondingly, Ny = [£1]s, if Ny > €o — N3 + 4, is satisfied. Figure 16- (b) shows the pairs
(£1,£2) for which the step embedding method attains minimal expansion, while Gray code
embedding cannot. The ratio of the number of these pairs to the total number of pairs is

~ 1

~8.
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Figure 4: Embedding of a 3 X 10 mesh into a 4 X 8 mesh by modified step embedding.
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Figure 5: Embedding of a 5 X 25 mesh into a 8 X 16 mesh by modified step embedding.

3.2 Modified step embeddings

In step embedding, a row of the guest mesh only makes one vertical traversal. In modified
step embedding, several vertical traversals are allowed, Figures 4 and 5. Each vertical
traversal involves £; distinct columns, one for each row, and the maximum number of
vertical traversals by all rows is o = [%1] Since each vertical traversal can save Ny — {;

nodes from £,, the condition Ny > [f?'"TNz] + ¢; must hold. Note that the step embedding
technique cannot be applied if a = 0, i.e., N < £;. If @ = 1 the modified step embedding
technique is the same as the step embedding technique.

The modified step embedding allows minimal expansion for more pairs (¢;,£2) than step
embedding, Figure 16-(c). The additional pairs all satisfy the condition [€3]2/[l1]2 > 4
(assuming ¢y < £3). For example, a 3X 10 mesh is mapped to a 5X 8 mesh by step embedding,
but to a 4 X 8 mesh by modified step embedding, Figure 4. A 5 X 25 mesh is mapped to a
14 X 16 mesh by step embedding, but a 8 x 16 mesh by modified embedding, Figure 5. The
average dilation is the same as in step embedding, i.e., 1 to 1.5. If |27%2| = 1 then the
dilation can be reduced to 2. However, the average dilation will increase.

3.3 Folding

Folding is based on the break-and-fold technique [20] used in [1] in squaring up an £; X £,
mesh with £; < £;. If there exists an n;-cube and an ng-cube such that Ny N2 = [{1]2|42]2

12



Figure 6: Embedding of a 3 x 20 mesh into a 4 x 16 mesh by folding.

S

Figure 7: Embedding of a 5 X 12 mesh into a 4 X 16 mesh by the line compression method.

and I_%‘L_I > (7%], then the folding technique can yield a minimal expansion embedding.
Figure 6 shows the embedding of a 3x 20 mesh into a 4x 16 mesh. The dilation of the folding
embedding is two. Figure 16-(d) shows the pairs (¢;,£;) for which the folding technique
yields minimal expansion, but the Gray code embedding does not. The set of these pairs
is mostly disjoint from the set of pairs for which step embedding yields minimal expansion,
but the Gray code does not. However, folding and the modified step embedding largely
covers the pairs. The average dilation is ~ 1 + 7{}5.

3.4 Line compression

Line compression is also adopted from [1] in which a basic “tile” of size a x b is compressed
into a tile of size b X a. Let b = a + 1, then [Nalj >80 —Nyand Ny > {4, + f%] In order to
satisfy these two constraints, a > 1 and £ < %Ng must be satisfied. One can easily show
that any (2°—1)x (2°+1) mesh can be reshaped into a 2% x 2% mesh by line compression (with
a = 2% —1). The dilation is two and the average dilation is ~ 1+ %aﬂ’%b ~1+ % Minimizing
the average dilation is equivalent to maximizing a. Figure 7 shows the embedding of a
5 X 12 mesh into a 4 X 16 mesh by the line compression method. In this figure solid lines
represent columns of the guest mesh. Figure 16-(e) shows the pairs (£;,€;) for which the
line compression method yields minimal expansion, but the Gray code does not. The set of
these pairs include mostly the set of pairs for which (a) step embedding, (b) modified step
embedding, and (c) folding yields minimal expansion, but Gray code does not.

4 Direct cube embeddings

4.1 Dilation two congestion two embeddings of model meshes

In this section we first give three dilation two, minimal expansion embeddings of two-
dimensional meshes in Boolean cubes, then two dilation two and one dilation three, minimal
expansion embeddings of three-dimensional meshes. The meshes are of shapes 5x 3, 9 X 7,
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Figure 8: Embedding of a 5 X 3 mesh in a 4-cube.

11x11,3Xx3x3,7x3x3and 5x5x 5. Using these direct embeddings together with
graph decomposition allows for minimal expansion, dilation two embedding of 70% of all
two-dimensional meshes for which Gray code does not yield minimal expansion. For three-
dimensional meshes, we use these direct embeddings extended with the two-dimensional
result in [4], and the graph decomposition technique. We achieve dilation two minimal
expansion embeddings for 96% of the three-dimensional meshes contained within, or equal
toa 512 x 512 X 512 mesh. The two-dimensional direct embeddings below appeared in [14].

4.1.1 Two-dimensional direct embeddings

All the three two-dimensional embeddings have the property that the dilation for any edge
of the upper-left [£;]2 X |£2]|, submesh of the £; X £, mesh, is one.

Embedding a 5 X 3 mesh into a 4-cube. To embed a 5 X 3 mesh into a 4-cube, we use
the mapping represented by Figure 8, in which the numbers represent the addresses of the
cube nodes to which the mesh nodes are mapped. For ease of determining the dilation of
edges, we use T to represent the node in subcube one that corresponds to node z in subcube
zero, i.e., T is derived from z by complementing the most significant bit. The ‘e’ sign on
the dashed line means that the Hamming distance between the two adjacent mesh nodes is
two when embedded in the cube. From Figure 8 it is apparent that the dilation is two.

To determine the congestion of the embedding, we first specify all length-two paths as
follows, where the ‘e’ sign above a doubled arrow denotes a cube edge, which is also used
as a dilation-one edge.

=337

9
<-->6.

— 4.

ol Wi

By inspection, one can easily show that the congestion is two; the number of cube edges
with congestion two is 6; the active-degree is 4; and the node-congestion is 6. Embedding
of a 5-2™ X 3-2" mesh was also independently found in [7].

Embedding of a 9 X 7 mesh into a 6-cube. Figure 9 shows the embedding of a 9 x 7
mesh in a 6-cube. The length-two paths in the cube are specified as follows:
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By inspection, the dilation is two; the number of edges with dilation two is 7; the
congestion is two; the number of edges with congestion two is one; the active-degree is 6
(for node 16); and the node-congestion is 6 (since all the intermediate nodes of the length-
two paths are different).

Embedding of an 11 x 11 mesh into a 7-cube. Figure 10 shows the embedding of an
11 x 11 mesh in a 7-cube. The length-two paths are specified as follows:

51 < 55 « 39, 49 « 53 « 37, 48 < 52 < 36
48 = 16 < 0, 031617, 824+ 16
16 < 20 < 22, 22 < 23 « 19, 32 < 32 < 36
323831, 33 & 37 « 37, 334353
35 < 39 < 39, 35 431 o 2, 505182
8 & 26 « 10, 34 — 38 & 38, 12 5428 34
43 < 35 & 35, 41 « 33 « 33, 40 « 40 & 32

The length-two paths are all edge-disjoint with respect to each other. Hence, the con-
gestion is at most two. By inspection, the dilation is two; the number of edges with dilation
two is 21; the congestion is two; the number of edges with congestion two is 8 (marked by

‘e’); the active-degree is 6 (for instance, nodes 33 and 35); and the node-congestion is 8 (for
instance, nodes 33 and 35).
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Figure 10: Embedding of an 11 x 11 mesh in a 7-cube.

4.1.2 Three-dimensional direct embeddings

All three embeddings in this section have the property that the Gray code embedding will
not yield minimal expansion. The direct embedding of the 3 X 3x 3 and 7 X 3 x 3 meshes have
a dilation of two, and the embedding of the 5 x 5 X 5 mesh has a dilation of three. All three
embeddings have minimal expansion. Applying the reshaping technique, the direct two-
dimensional embedding to any pair of the three dimensions, or the decomposition technique
does not result in dilation two, minimal expansion embeddings.

Embedding of a 3 X 3 X 3 mesh in a 5-cube. Figure 11 shows the embedding of a
3 X3 x3 mesh in a 5-cube with dilation two. The number in the figure is the cube address in
octal representation to which the mesh node is mapped. The sign “+” marks a dilation-two
edge between the marked node and the corresponding node in the plane immediately to the
left. The number of dilation-two edges is 15.

Embedding of a 7 x 3 x 3 mesh in a 6-cube. Figure 12 shows the embedding of a
7 X 3 x 3 mesh in a 6-cube with dilation two. The number of dilation-two edges is 45.

Embedding of a 5 X 5 x 5 mesh in a 7-cube. Figure 13 shows the embedding of a
5 X 5 X 5 mesh in a 7-cube with dilation three.
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Figure 13: Embedding of a 5 X 5 X 5 mesh in a 7-cube with dilation three. The number is
the cube address in octal representation to which the mesh node is mapped.
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£y x £y Dilation | Average | Congestion | Average | Active- | Node-

embedding dilation congestion | degree | load
5x%x3 2 1.27 2 1.27 4 6
Ix7 2 1.06 2 1.01 6 6
11x11 2 1.10 2 1.04 6 8

Table 1: Summary of embeddings for various aspect ratios.

4.1.3 Summary of direct embeddings

The characteristics of the two-dimensional direct embeddings are summarized in Table 1.

For the three-dimensional meshes of 128 nodes or less, the 5 X 5 x 5 mesh is the only
mesh for which we do not know of a minimal expansion dilation two embedding, if it exists.
For three-dimensional meshes with up to 256 nodes, there are four additional meshes for
which the same statement applies: 5X 7x 7,3 X 9% 9,5x%x5x 10 and 3 x 5 x 17.

4.2 Modified line compression

Recently, Chan [4] presented a dilation-two embedding for all two-dimensional meshes. The
technique is based on a modification of the line compression technique directly applied to
Boolean cubes. An intermediate mesh of the form ;]2 X [£5]; is embedded in the guest
mesh £y X £3 by the line compression technique. The intermediate mesh can be embedded in
the Boolean cube by a binary-reflected Gray code. The intermediate mesh consists of |41]2
rows of length [{3];. For each row a chain of length at least £, and at most [£5] is formed.
Each such chain covers all the nodes of a row of the guest mesh. Nodes of the guest mesh
that are neighbors on the same chain are at most distance two apart. Successive chains
are embedded in the guest mesh by cyclic rotation. The starting position of a row of the
intermediate mesh is not the same for all chains, but depends on its rank. With a binary-
reflected Gray code encoding of the chains, dilation three is achieved. To reduce the dilation
to two, each row of the intermediate mesh is split and embedded into two symmetrical
subcubes. The embedding is done such that every two successive nodes in the same row
of the intermediate mesh are assigned to corresponding positions of the two symmetrical
subcubes. The order in which successive nodes are assigned to these two subcubes is based
on a coloring technique (on a derived bipartite graph) such that the distance between any
two corresponding nodes of adjacent rows is at most two. Though both the dilation and
expansion are minimal, the technique does not necessarily guarantee minimal congestion,
node-congestion, or average dilation, for instance. Hence, the techniques described above
may still be competitive.

5 Embedding by graph decomposition

Embedding by graph decomposition is based on the results in Section 2.1. We list the

general strategy below followed by the strategy specialized to the embeddings of two- and
three-dimensional meshes.
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1. If the number of nodes along any axis is a power of two then no factoring of the
number of nodes along that axis is performed. The embedding is by a binary-reflected
Gray code. For instance, by this, embedding a 12 X 16 X 20 x 32 mesh is reduced to
the problem of embedding 12 x 20 and 16 X 32 meshes.

2. For the axes with lengths not being powers of two, a decomposition is sought into
meshes for which good embeddings are known, and the products of the expansions for
the decomposed meshes is minimized. For instance, the embedding of a 12 x 20 mesh
can be reduced to the embedding of a 3 x 5 and a 4 X 4 mesh. Embedding a 3 X 25 x 3
mesh can be reduced to the embedding of two 3 X 5 meshes.

3. If the axes lengths are not powers of two, but can be increased slightly without in-
creasing the size of the cube for a minimal expansion of the original mesh, then the
mesh might be extended, and the procedure just mentioned applied to the extended
mesh. For instance, a 3 x 3 x 23 mesh can be extended to a 3 X 3 X 25 mesh, which
is treated with the scheme above.

Note that the choice between the last two schemes depends on the configuration of the
considered mesh and the existing embeddings.

5.1 Two-dimensional Meshes
5.1.1 Decomposition and direct embedding

Any of the existing two-dimensional embeddings, such as the reshaping techniques [15], the
direct embeddings [14], and other methods such as those described in [7], [11], [4] and [2] can
be used in combination with the decomposition technique to reduce the average dilation and
average congestion, in general. The number of edges with dilation two are approximately
proportional to the size of the mesh for most known embeddings. For an #; X £, mesh,
the maximum of n; + ny is determined such that £ < €/2™ and [£10;]; = [£j£,2m+na],,
Then, the problem is reduced to embedding an ¢} x £, mesh, which can always be done with
minimal expansion and dilation two by the method in [4], or possibly any other method.
For instance, a 17 x 17 mesh can be extended to 24 x 20 and then decomposed intoa 3 x 5
mesh and a 2% x 22 mesh. The congestion for our three direct embeddings is two.

Figure 14 shows the embedding of meshes of the form 5-2™ x 3.2, In the figure,
‘r” and ‘c’ denote the local addresses within a block (subcube). The local addresses are
determined by a binary-reflected Gray code é’(wi, ¥;) as defined in Equation 1. Figure 15
shows a specific case: the embedding of a 10 x 6 mesh into a 6-cube. The orientation of the
blocks within each subcube is important for the dilation of the edges. A block is reflected
along axis ¢ compared to the individual block embedding, if the rank of the block along axis
¢ is an odd number.

Table 2 gives the average dilation for two-dimensional meshes decomposed into a Boolean
cube graph and a mesh for which a direct embedding is given above. The average dilation
decreases as the size of the mesh increases.

Figure 16-(f) shows the set of pairs ({1, £2) for which the decomposition of a mesh into
a Boolean cube graph and a mesh with direct embedding given above yields lower, possibly
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Figure 15: Embedding of a 10 X 6 mesh into a 6-cube.

ly X £y # of edges Average W]z | 4]z [4:]2
embedding w. dil. 2 dilation =16 | =128 | =1024
1 2 120, 3107
5.2™ x 3.2m §£1 + Ezg 1+ WW 1.03 | 1.004 | 1.0005
9.2M x 7.2m 5§€1 + 742 1+ m 1.02 | 1.003 | 1.0003
11-2™ X 11-2" | gl + 154 | 14 o 0%~ | 1.04 | 1.005 | 1.0007

Table 2: The average dilation for meshes embedded by graph decomposition into a Boolean
cube graph and a mesh embedded by direct mesh embedding.
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(b): Step embedding
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(c): Modified step embedding
T ‘ T I T
60 |— _
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(e): Line compression
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Figure 16: The pairs (£1,£) for which minimal expansion is attained using (a) Gray code
embedding, (b) step embedding, (c) modified step embedding, (d) folding, (e) line com-
pression, and (f) direct embedding. For (b) to (f), only the regions for which Gray code
embedding can not achieve minimal expansion are considered.
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minimal, expansion than a Gray code embedding. The ratio of the number of these pairs
to the total number of pairs is ~ ;11-, independent of the range of 2" x 2".

By simply combining the three direct embeddings with Gray code embedding by Equa-
tion (1), we have provided minimal expansion, dilation two and congestion two embeddings
for about 70% of the meshes for which the (pure) Gray code embedding has an expansion > 2
[14]. The graph decomposition technique together with direct embedding, and Gray code
encoding yields dilation-two, congestion-two, minimal-expansion embeddings for 87% of all
two-dimensional meshes. The average dilation is 1, asymptotically. The expansion is at
most & 2.4 in the worst-case for all two-dimensional meshes. The percentage can actually
be increased further by various combinations of the reshaping and direct embeddings and
Gray code, by Theorem 2. For instance, a (2% + 1)2™ x (2% — 1)2™ mesh is covered by line
compression (or combined with Gray code); a 9 X 25 mesh is embedded by combining two
3 X 5 meshes.

5.2 Three-dimensional meshes
5.2.1 Decomposition and direct embedding

We have provided two dilation-two embeddings, and one dilation-three embedding for
the three-dimensional case. Together with the decomposition technique, and the two-
dimensional embedding techniques the majority of three-dimensional meshes are covered.
The decomposition and direct embedding may yield minimal-expansion dilation-two em-
beddings, where the previously mentioned techniques may not. For instance, a 6 x 11 X 7
mesh can be embedded with minimal expansion using this technique, but not Gray code,
or a combination of the technique in [4] and Gray code.

Another example where graph decomposition is effective is in the case of embedding a
21 X 9 X 5 mesh. It can be embedded with minimal expansion by combining the 7 x 9 x 1
direct embedding with the 3 x 1 x 5 direct embedding. Another effective decomposition is
the product of a 21 X 3 X 1 mesh and a 1 X 3 X 5 mesh.

For three-dimensional meshes it is also possible to perform a dilation two embedding

to any pair of axes, and apply Gray code to the third axis. The relative expansion for the
three possible choices are

[£1€2]2[€3]2 [Lal3]2[t1]2 and [€361]2[La]2
[€10283]2 ° [l1lals]s [€1€203]2

The relative expansions are either equal to one or two. Note that more than one relative
expansion may be one, such as for a 5 x 10 X 11 mesh, or no relative expansion may be
one, such as for a 3 X 3 x 25 mesh. Choosing the two axes that have the lowest values of
£1/[t]2, £2/[€2]2, and £3/[€3]3, for the two-dimensional embedding according to [4] results
in the smallest relative expansion of the three choices. For instance, for a 5 x 6 x 7 mesh, the
first two axes (of length five and six respectively) should be chosen for the two-dimensional
embedding.

, respectively.

23



Percentage of dilation two, minimal expansion
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Figure 17: The cumulated percentage of the £; X £, X ¢3 meshes where 1 < {¢; <27 for
1<n<9.

5.2.2 The effectiveness of graph decomposition

The fraction of meshes for which the decomposition technique combined with the two-
and three-dimensional embedding techniques yield minimal expansion embeddings with a
dilation of at most two is given in Figure 17. In the figure, S;(¢) is the cumulative percentage
of meshes that have a relative expansion ¢ by applying the embedding methods with an
index less than or equal to ¢ below:

1. Apply Gray code embedding,.
Apply the result in [4] to any pair of axes and apply Gray code to the third axis.
Apply the 7x 3 x 3 (or 3x 3 x 3) embedding combined with Gray code by Corollary 2.

Ll A

For an £, X {3 X £3 mesh, find €,¢4 > £, such that [€1€5]2[€5¢5], = [€1£2¢3]2, Theorem 2
and [4]. The procedure is repeated for decomposing ¢; and £s.

For a mesh of size less than or equal to 512 x 512 X 512, the cumulated percentages grows
as the sequence: 28.5%, 81.5%, 82.9%, 96.1%. Applying the method in [4] to any pair of
axes, only allows about 81.5% of the meshes to achieve minimal expansion.

The general combining mechanism plays a very important role in achieving an embed-
ding of minimal expansion based on previously known results. Moreover, congestion is
preserved through the combining mechanism. Therefore, any mapping combined from the
mappings that fall in the 87% domain of the two-dimensional meshes described before have
a congestion of one or two.

6 Embeddings for wrap-around meshes

Lemma 5 [22] Let ¢; = (/4] and ¢; be even for all 1 < i < k. Then, the €y X €y X + -+ X £,
wrap-around mesh is a subgraph of the product graph of the £y X €y X -+ x £}, mesh and the
& X €3 X -+ x £} mesh (both without wrap-around).
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Proof: Since every £; x ¢! mesh contains a ring of the same size as a subgraph, if £,£/ is
even [22], the lemma follows from Theorem 1 and Lemma 1. I

Let dil,(e) be the dilation of the edge e under the mapping ¢.

Lemma 6 Let ¢ be an embedding G — I and ¢, be an embedding I — H. Then, there
exists an embedding function ¢ : G — H such that

dily(e) = Z dil,,(e;).

ei€p1(e)

The lemma gives a much tighter upper bound for the dilation than the bound obtained
by simply multiplying the two dilations under ¢; and ¢,.

Lemma 7 An {; x €3 X -+ X £y, wrap-around mesh M can be embedded into a minimal
hypercube with dilation < d + 1, if there exists an embedding ¢ that maps the [€1/2] x
[€2/2] X « -+ X [€x/2] mesh M’ into a minimal hypercube with dilation d and Mk, 42 =
2k [T151[€:/2112. (The dilation is d, if all £;’s are even.)

Proof: Consider the embedding of a 2[¢;/2] x 2[£3/2] X - - X 2[€;/2] wrap-around mesh
M. Since the mesh M’ can be embedded into a minimal hypercube with dilation d, and a
k-cube can be embedded into a k-cube with expansion one and dilation one, it follows from
Corollary 1 that the product graph of M’ and a k-cube can be embedded into a minimal
hypercube with dilation d. Since a k-cube is the same as a k-dimensional mesh of the form
2X2X:--X 2, the product graph of M’ and a k-cube contains the wrap-around mesh M
as a subgraph, by Lemma 5. Therefore, the wrap-around mesh M can be embedded into a
minimal hypercube with dilation d.

We now embed the wrap-around mesh M in the wrap-around mesh M by removing one
hyperplane for each coordinate ¢ with £; being odd. While a hyperplane of mesh nodes is
removed from M to become M , the edge in M that passes through the removed hyperplane
is simulated by the length-two path in M. The hyperplane to be removed is chosen such
that the length-two path is mapped to a hypercube with the dilation of edges being one
and d, respectively. For instance, the hyperplane to be removed for the ith coordinate can
be 0, |£4;/2], [£;/2] or £;. Since the hyperplane of mesh nodes removed connects to two
neighboring hyperplanes through two sets of edges of dilation ‘one and d, respectively, in
mapping to a hypercube, the edge of M which is a path of length two in M has a dilation
of edges of d + 1, according to Lemma 6. 1

Figure 18-(a) demonstrates the ith coordinate of the product graph of the mesh M and
the k-cube for which [¢;/2] = 5. All the vertical edges have a dilation < d, and all the
horizontal edges have a dilation of one. It is easy to see from Figure 18-(b) that if ¢, = 9,
then the node o is removed and the dilations of the two edges incident to the removed node
are < d and one, respectively. So, the dilation for the new “logical edge” (the dashed edge
in the figure) is d + 1.

Intuitively, the mesh M is partitioned into 2* blocks of submeshes of the form [¢; /2] x
[€2/2] X +-- X [€x/2]. The submeshes are labeled M;, 0 < i < 2% such that submesh i and
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(a) (b)

Figure 18: A linear array of size {; and ¢; being odd, embedded in the product graph of a
linear array of size [¢{;/2] and a 1-cube, where the latter linear array has a dilation d and
the 1-cube has a dilation one in another embedding.

My M,

M, M;

Figure 19: Partitioning for the embedding of an wrap-around mesh.

submesh j are adjacent if Hamming(i, j) = 1. The submesh ¢ = (ix—18k—2 . ..%0) is reflected
with respect to coordinate 7 for all 2, = 1 and for all s’s. Then, the same embedding function
® is applied to all submeshes for their embeddings in their respective k-cube. Figure 19
shows the four submeshes for a two-dimensional case, in which the submeshes M; and M;
are reflected horizontally and the submeshes M, and Mj are reflected vertically before the
embedding function is applied.

Clearly, if all the £;’s are even, then the condition [[I5, &2 = 2F[[T5,[€:/2]]: is
satisfied. If this condition holds, then the expansion remains minimal by using a mesh with
wrap-around of a slightly larger size (or of the same size) as an intermediate graph.

Lemma 8 An{y x£y XX £ wrap-around mesh can be embedded into a minimal hypercube
with dilation max(d,2), if there exists an embedding that maps the [£1/4] X [€2/4] X -+ X
[£x/4] mesh into a minimal hypercube with dilation d and [[]f=; £;]2 = 4F[T15, [4:/4]]2.

Proof: Consider the embedding of 4[¢; /4] x 4[£5/2] X - - - X 4[), /4] wrap-around mesh M.
Apply an argument similar to the one in the proof of Lemma 7.

Figure 20-(a) and (c) shows one axis of the product graph of the mesh M and the k-cube
with [£;/4] = 5 and 4, respectively. All the vertical edges have a dilation < d, and all the
horizontal edges have a dilation of one. Figure 20-(b) and (d) show an embedded linear
array of size 4[¢;/4] (by ignoring the dashed edges). Consider the case where £; mod 4 # 0.
We wish to show that by removing one, two and three nodes, respectively, the newly formed
“logical edges” have a dilation of < max(d,2). When ¢; mod 4 = 1, remove node o. When
¢; mod 4 = 2, remove nodes 3 and y (but keep node ). When £; mod 4 = 3, remove all the
three nodes @, § and 7. The newly-formed “logical edges” are marked by the dashed edges
in the figure. Clearly, all the dashed edges preserve the property of the dilation < max(d, 2).

Since the above proof requires that [¢;/4] > 3, it remains to be proved that if [£;/4] = 2
or 1, the lemma still holds. Figure 20-(e) shows for £; = 5,6, 7 and 8. For 1 < ¢; < 4, the
lemma can be derived easily. 1l
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Figure 20: A linear array of size {;, embedded in the product graph of a linear array of size
[€;/4] and a 2-cube, where the latter linear array has a dilation d and the 2-cube has a
dilation one in another embedding.

Note that there exist several ways to embed a ring for Figure 20-(a) and (b) that preserve
the dilation of the edges. The selected embedding minimizes the number of horizontal edges
used and therefore minimizes the average dilation, in general.

Corollary 4 Any two-dimensional wrap-around mesh £, X £y can be embedded into a min-
imal hypercube with dilation at most two, if [{143]y = 16[[€1/4][€2/4]]2 or both £, and £,
are even. Any two-dimensional end-around mesh £ X €y can be embedded into a minimal
hypercube with dilation at most three, if [£143]2 = 4[[€1/2][€2/2]]2.

Proof: The former follows from [4], Lemmas 8 and 7. The latter follows from [4] and
Lemma 7. 1

7 Summary

The approach to the mesh embedding problem taken here is that of graph decomposition.
The dilation (congestion) of the embedded mesh is the maximum of the dilation (congestion)
for the smaller decomposed graphs. Specifically, we show that if an £y X £3 X - - - mesh
can be embedded in an ny-cube with dilation d; and congestion ¢;, and an O xlyx--x

» mesh can be embedded into an ny-cube with dilation dy and congestion ¢y, then the
£1£7 X Lol X -+ X £rf}, can be embedded into an (n; + n3)-cube with dilation max(d, d3)
and congestion max(cy, ¢z). The graph decomposition technique is likely to yield a smaller
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average dilation and average congestion than a direct embedding of the original mesh. Using
graph decomposition the average dilation and average congestion are asymptotically one for
all two-dimensional meshes.

In particular, we have demonstrated the capability of the graph decomposition tech-
nique:

e By applying the graph decomposition technique to the mappings of 3 x 5, 9 x 7
and 11 X 11 meshes and Gray code embedding, 87% of the two-dimensional meshes,
asymptotically, can be embedded into a minimal Boolean cube with dilation two and
congestion two.

e By applying the graph decomposition technique to the known embeddings for two-
dimensional meshes [14, 4] and two three-dimensional meshes presented in the paper,
we have attained dilation-two minimal-expansion embeddings into a Boolean cube for
96% of all three-dimensional meshes of a size less than, or equal to, 512 x 512 x 512.

The same approach can be applied to even higher dimensional meshes, and is expected to
contain a majority of the domain with dilation two based on the existing two-dimensional
and derived three-dimensional mesh embeddings.

The embeddings of wrap-around meshes can be easily constructed out of the embeddings
for meshes without wrap-around using the graph decomposition technique. As a special
case, for all two-dimensional wrap-around meshes £; X £, we have a minimal expansion
embedding with dilation two if [£1£3]2 = 16[[€1/4][€2/4]]2 or both £; and £; are even; and
with dilation three if [€1£5] = 4[[€1/2][€2/2]]2 (where [z], = 2Mo&: =),
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