Most conventional explicit finite difference schemes, e.g. Euler’s scheme, for solving the parabolic

equation of Schrodinger type u; = tu,, are unconditionally unstable. This difficulty can be over-
come by introducing a dissipative term to the conventional explicit schemes. Based on this ap-
proach, we derive a class of new explicit finite difference schemes which are conditionally stable,
spans two time levels and are O(k, h%) accurate. We also determine the schemes from this class
that have the least restrictive stability requirements. It is interesting to note that the analog of
the Lax- Wendroff scheme is unstable.
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1. Introduction

Equations of the Schrodinger type arise in many disciplines, such as quantum mechanics,
plasma physics and acoustics. Recently, there have been many studies of applying finite difference
methods to solve equations of this type for practical problems that arise in these areas, see for
example(1, 8, 3, 6, 4, 5]. Most of these studies employ some form of implicit schemes. The stability
and convergence properties of these schemes have been thoroughly analyzed and can be found in
(10, 5].

It is well-known[5, 7] that most of the conventional explicit schemes, for example Euler’s
scheme, are unconditionally unstable for this type of equations. It is therefore natural to ask the
question of whether there exist stable explicit schemes for the Schrédinger equation. Not only is
this question of theoretical interest, it is also important for practical applications. Compared to
implicit schemes, explicit schemes are generally easier to implement and take less storage. These
advantages are especially pronounced for multi-dimensional problems. Moreover, it is often easier
to vectorize an explicit scheme on the many pipeline-oriented computers available today, e.g. Crays,
Cyber 205 and the FPS 164.

The purpose of this paper is to present a class of stable explicit schemes for the Schrodinger
equation. It is well-known that in the study of wave phenomena, the addition of dissipative terms
often makes the theoretical development more convenient. Moreover, such terms often improve
the stability properties of the corresponding difference schemes. The famous Lax-Wendroff scheme
for hyperbolic systems is one such example. Unfortunately, as will be shown in Section 3, the
analogous scheme for the Schrodinger equation is unstable. However, we have succeeded in deriving
stable explicit schemes for the Schrodinger equation by introducing appropriately chosen dissipative
terms. In Section 2 and Section 3, we present our results for the simplest equation of the Schrodinger
type:

Uy = tUgg, (1.1)

and discuss the effect of adding different kinds of dissipative terms. Here 1+ = \/=1. Using the
methods in [9], these results can be extended to the more general equation :

uy = 1a(z, t)uze + b(z, t)us + c(z, tju + f(z,t),

as well as to nonlinear equations.

The equation (1.1) admits travelling wave solutions with nondiminishing amplitudes and in
this sense behaves more like a hyperbolic system than a parabolic one. Since the sclutions to
(1.1) have nongrowing amplitudes, correspondingly the definition of stability used in this paper
is the notion of practical stabslity as discussed by [9, 2], which requires the discrete solution to
have a nongrowing norm. Namely, unless stated otherwise explicitly, stability in this paper means
[IG|| £ 1 where G is the characteristic polynomial of the numerical scheme. Note that this definition
of stability is different from other definitions which allow growth in the computed solution and ones
that are insensitive to additions of lower order terms in the equation.

In this paper, we use u} to denote u(z;,t"), k and h to denocte the temporal and spatial mesh

sizes respectively, and r to denote . A uniform spatial mesh is assumed for the stability analysis.
h Y

2. Dissipative Term ¢u,, and the Corresponding Explicit Schemes
The simplest explicit scheme for (1.1) is the Euler scheme

ntl _ gn no— 2yt 4yt
u; ui ; (“:+1 2uJ + “;—1)
- b

- 3 (2.1)
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and the corresponding truncation error is O(k, h?). It is well-known that this scheme is uncondi-
tionally unstable[7].
For deriving stable explicit schemes, we introduce a dissipative term R in (1.1) to obtain

ut ‘ugz + R (2.2)

In this section, we shall take R = eu,,, where € is a small scalar. In the next section, we shall
consider R = €34, In order to preserve the O(k, h*) truncation error of (2.1), we take ¢ = (a+i8)k
or € = (a + 1f)h?, where a and J are real scalars, independent of k and h. We discuss the two
cases separately.

Case 1. R = (a + 18)ku,,
The corresponding explicit scheme for this is

utl — . . u? 2(1 + u?_
L = (i + (a +iB)k) ( 7+l - i ‘) . (2.3)

Theorem 2.1. The scheme (2.3) is stable if and only if « > 0 and

< ak
"=k + (1+ AR)E)

(2.4)

Proof. The characteristic polynomial for (2.3) is
G=1-(t+(a+18)k),
where v = 4rsin? 42 “”' . Therefore, we have
IG? = (1 — ak”)? + (1 + Bk)*~%.

Stability requires |G|* < 1 for 0 < v < 4r. It can be easily verified that the maximum of |G|?
occurs at the boundary of the interval 0 < v < 4r. At y =0, G = 1. At v = 4r, stability requires
that

IG]? = (1 — 4rak)® + (1 + Bk)*16r% < 1,

from which we easily obtain (2.4).
L

We note that when k and h are small enough, (2.4) cannot be satisfied. Therefore while being
conditionally stable, scheme (2.3) is not very practical.

Case 2. R = (a + 18)h%u,,
The corresponding explicit scheme is

u?ltl — yn u? . — 2u? + u?
o E A 2 j+1 3 j—1
T (¢ + (@ +18)h%) ( 2 ) . (2.5)
Theorem 2.2. The scheme (2.5) is stable if and only if @ > 0 and
2
ah (2.6)

TS S(aRE ¥ (1 AR
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Proof. The characteristic polynomial for (2.5) is
G =1-(i+ (a+iB8)h?)n.

Analogous to the proof of Theorem 2.1, the condition |G|* < 1 gives (2.6).
:

Note that the stability condition for this scheme is of the form k¥ < O(h*) which is too severe
for small h, again making this scheme impractical.

3. Dissipative Term ¢u,,,, and the Corresponding Explicit Schemes

From the last section, we see that the schemes (2.1), (2.3) and (2.5) are either unstable or
have too severe a restriction on k. Therefore, we turn our attention to the introduction of the
dissipative term et;;7;. Again there are two separate cases.

Case 1. R = (a +18)kuzz22.

The corresponding explicit scheme for this is

uttl — yn u®, — 2u” + u?_ u®,, —4u? .+ 6u”? — 4u?_, + u?
W (ST ) o iy (SR TR B TR

Theorem 3.1. The scheme (3.1) is stable if and only if

a < —%, except for the half line {a = —%,ﬂ < 0} ,

and
—a(2a2 z
rS('B+\/ a(2a2 + 28 +a))' (3.2)
2+ 57
The least restrictive stability constraint is
1
< - .
r<; (3.3)

and is obtained when a = —3,8 = 1.

Proof. The characteristic polynomial for the scheme (3.1) is
G =1-i7+ (a+i8)?,

where 4 = 4r sin? “’T" Thus we have

IGI* = (1 + av?)? + (8% — )
=1+ (1+ 2a)y - 287 + (a® + AE)*.

The condition |G|? < 1 reduces to

f(7) = (1+2a) - 287+ (® + #*)4* < 0. (3.4)



&

Page 4

N ('%’ ’%)

Scheme With Least

Restrictive Stability
Requirement

: St:abie I:{eg:ion: D: Unstable Region

.. 0 a
\ ('%’0)
" Lax Wendroff Analog
Unstable

Figure 1: Stability Region for u; = tuz, + (@ + i8)kuzz22.

Now f(~) has two roots given by
_ B£ VB - (1+2e)(a® + £?)

T @2+ £%).
Condition (3.4) requires that v4 be real and that y_ < v < v4. Now =4 are real if and only if
A% — (1 +2a)(a® + A%) > 0. (3.5)
Since 0 < 4, the condition y- < ~ gives
B -8 - (1+2a)(a®+pB%) <0. (3.6)
On the other hand, v+ must be positive, so
B+ VB2 - (1+2a)(aZ+ %) > 0. (3.7)

From (3.6), we obtain a < —% for # > 0, and from (3.7), we obtain a < ——% for # < 0. Hence the
stability region D is as depicted in Figure 1. Note that condition (3.6) and (3.7) subsume (3.5).
Since v < 4r, the condition 4 < v4 is exactly (3.2).
To find the scheme with the least restrictive stability condition, we seek the maximum of the
right hand side of (3.2) in D. Let

—-a(2a®2+ 28+ a
9(a,B) = (ﬂ+\/4(£2+;2)ﬂ +a)),

From the equation ;% = 0, it can be deduced that g reaches its largest value when 8 = \/-3.

iV o
condition (3.3) follows from this.

Since g(a,\/=3) = 1\/—2, we have that g is maximized in D at @ = —1,8 = }. The stability
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It is interesting to note that the special case a = —%, g =0, or equivalently R = —%ku,,,z, is
a scheme that is analogous to the Lax-Wendroff scheme for the system u; = u,. It can be derived
from the Taylor series expansion

k2
u;.‘"’l = u;-' + k(u;);-' + ?(utt)}‘ + O(ks)

k2
= u;" + k(u;pz);! + —é’(u;zzz);‘. + O(ks),
and is therefore O(k?, h%) accurate. Unfortunately, from Theorem 3.1, it is unstable.

Case 2. R = (a + $8)h%uzzzz.

The corresponding explicit scheme is

u?tl —yn u?, = 2u” +u?t_ u? , —4u? 4+ 6u” - 4u_, +u”
J - J =‘-( J+1 hz: f] l)+(a+iﬁ)h2( J+2 J+1 h: j—1 .1-2). (3.8)

Theorem 8.2. The scheme (3.8) is stable if and only if & < 0 and

—2a

r < min(-2a, 1607 7 (45 < 1) ).

(3.9)
The least restrictive stability constraint is

r< 1, (3.10)

2
and is obtained when o = -§,8 = 1.
Proof. The characteristic polynomial for (3.8) is
G=1-1irn+ (a+1i8)rm?,
where n = 4 sin® —“'—2—’! Thus we have
IGI? = (1 + arn®)? + (Brn® — rn)?
=1+ (r? + 2ra)n® - 2r28n3 + r3(a® + £%)n*.
The condition |G|? < 1 reduces to
(r +2a) = 2r8n + r(a® + A%)n* <0,

from which it follows directly that the condition on r is

—2a
a’n? + (fn —1)%

First we must have a < 0. By differentiating g(n), it can be verified that g(n) cannot achieve its
minimum within the interval 0 < n < 4. Thus the condition on r reduces to

r < min(g(0}, g(4)),

r<g(n) =
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Dissipative term R Error Stability Remarks
0 O(k, h?) unstable Euler
(a + iB)kuz, O(k, h?) 2(a®k® + (1 + Bk)?) < ah? unstable for small k and A
(o +$8)h2u,, O(k, 1?) k < s f(';;ﬁﬁz),) a>0
(c + iB)kttgzzs O(k, h?) k < h2EY ) e<-1,8>0a<-1,8<0
— 3 ktizgz, O(k%, h?) unstable Lax-Wendroff Analog
(=1 + 1) kttpzz, O(k, h?) k< B Least Restrictive Stability
(a +18)h%uzyze O(k, h?) k < h?min (—2a, W_f&%_—l)—,) a<0
— 5 h?Usas O(k, h?) unstable 4th order in h
(=1 + i) hPusyp,, O(k, h?) k< B Least Restrictive Stability

Table 1: Stability of Explicit Schemes for u; = tu,, + R.

which is exactly condition (3.9).

To make the right hand side of (3.9) as large as possible, one should take g = % Condition
(3.9) then reduces to

. 1
r < min(-2a, —g).

From —2a = — L, we obtain a = —1 and hence (3.10).
|
When a < 0, the truncation error of (3.8) is O(k, h?). It is interesting to note that if & = 0
and f = —{, the truncation error becomes O{k, h*) because the right hand side of (3.8) becomes

a fourth order approximation to tu,,. Unfortunately, by Theorem 3.2, this higher order scheme is
unstable.

4. Comparison and Extensions
We summarize our results in Table 1 from which we can draw the following conclusions.

1. Schemes derived from the addition of dissipative terms of the form
(a+iB)ku;,  and  (a+iB)h u,,
are impractical, whereas schemes derived from the addition of dissipative terms of the form

(a +18)kuzzzy and (@ +$8)h%uzzss
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are practical.
2. The schemes with the least restrictive stability requirements are

utt! — yn u®, . — 2u” + u_ 1 1 u?,, — 4u” .6u —4u_ +u_
i : =;( cas b M| ‘)+(—§+a’§)k( R : 2), (4.1)

k h? h4
and
u;.'+l - “J ey J+1 2u + “;-1 + (-1 + i-l—)hz u;-'+2 - 4“;"+1 +6u;-' -- 4“;"—1 + u;-‘_2
k h2 4 4 ht
' (4.2)
The stability criterion for both is
b2
k< 2 (4.3)

It is interesting to note that when &k = L‘;—, then the two schemes are the same. However, if
k< ﬁ, then the dissipative term R for scheme (4.1) is smaller than that for scheme {4.2).
2 p

3. Stable schemes derived from (a+18)ktzzz. and (a+58)h%uz,,, have truncation error O(k, h?).
Higher order schemes are necessarily unstable.

Using the techniques in ([9], Sec. 5.3 and 8.4), the above conclusions can be extended to the
more general equation

uy = sa(z, t)uz, + b(z,t)u, + oz, t)u + fz,t), (4.4)
and more generally to the nonlinear equation
u; = fa(z, t)u + g(z,t, u, uz).

Here the functions b(z,t),c(z,t) f(z,t) and g(z,t) may be complex valued functions and a(z, t) is
a real valued function. We list here the scheme for (4.4) corresponding to (4.2)

n+l __ . .n —-
u; uj g J+1 2u + u? -1
k - h2

(4.5)

4u” Tt 6u 4(13-‘_1 + “?—2
h‘

1 n - n\1L2 u;'.+2
+ Z(——Iaj| +1a})h
u?, . —u?
+1 -1
+ 67 (———-———" oh J )+c;-'u;-'+f;'.

Under a slightly weaker stability definition, namely that ||G|| < 1+ O(k) [9], a sufficient condition

for the stability of (4.5) is
K2
kS ——mMm ——, .
S maxs [a(z,0)] (46)
Finally, since the dissipative terms in (4.1), (4.2) and (4.5) have five point stencils, we briefly
comment on the choice of boundary conditions for these terms. The term

T = ujy, — 4ujy, +6u] —dul | + 4],
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can be written as
=ot . — 2" + o
where

7=y . - 24" T
Vi = Uiy —2uf +ujy.

For initial boundary value problems with y = 0,1,---, J, it can be shown that the stability condition
(4.6) is not affected if we use as boundary condition for T

vy =vj =0.
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