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Abstract

We introduce monitoring semantics, a non-standard model of program execution that captures
“monitoring activity” as found in debuggers, profilers, tracers, etc. A monitoring semantics is a
conservative extension of a language’s standard denotational semantics, and is parameterized with
respect to specifications of monitoring activity.

Beyond its theoretical interest, monitoring semantics forms a practical basis for building effective
monitors, with standard partial evaluation techniques being used as a key optimization strategy.
In particular, specializing a monitoring semantics with respect to a source program amounts to
removing the interpretive overhead associated with the static aspects of monitoring, yielding an
instrumented program in which the extra code to perform monitoring actions has been automatically
“embedded” into the program. _

A monitoring semantics can be automatically derived for any language for which a continuation
semantics specification has been provided. This is achieved by using functionals to embed non-
standard behavior at all levels of recursion. We illustrate the approach for a higher-order functional
language, showing examples of several different monitor specifications, including benchmarks of
their implementations.

*This is an extended version of the paper to appear in the Proceedings of the ACM SIGPLAN
Conference on Programming Languages Design and Implementation, June 1991




1 Introduction

A program ezecution monitor is a system that monitors the dynamic run-time behavior of a program.
Examples include debuggers, profilers, tracers and demons. Monitors are an obviously important
element in any software development environment. However, as was mentioned in a 1981 survey of the
field, “program execution monitoring has been neglected as a research topic; the available literature
contains mainly case studies, without an adequate discussion of the fundamental concepts, goals and
limitations” [PN81]. The work described in this paper grew out of a perceived need for a more formal
treatment of program execution monitoring, with the hope of developing a formal basis for such
monitors that could easily be related to the standard semantics of a source language, and that could
form a practical basis for building effective monitors for use in the real world.

This paper introduces monitoring semantics, a formal basis for program execution monitors. Mon-
itoring semantics provides a generic semantic model for monitors with the following characteristics:

1. A monitoring semantics can be automatically derived from any denotational semantics specifica-
tion expressed in continuation style. This is achieved by using functionals to embed non-standard
behavior at all levels of recursion such that their fixpoints yield the desired result.

2. The derived monitoring semantics is parameterized with monitor specifications which, once in-
stantiated, are able to capture any sequential, deterministic monitoring activity.

3. Any monitoring semantics derived in this way is consistent with the original standard semantics—
i.e. it is not possible for a monitor to change program behavior.

4. The method is compositional—monitors may be built on top of other monitors to produce com-
posite monitoring behaviors.

5. Using standard partial evaluation techniques, it is possible to build practical monitors using our
methodology; i.e. monitors whose execution speed matches that of conventional interpreters.

Points 1 and 2 indicate the degree of generality of our methodology—it can be used for any
programming language for which a continuation semantics is available, and it is able to capture a very
broad class of program monitoring activities. Points 3 and 4 highlight the safety and modularity of our
approach, respectively, thus easing the processes of specifying and reasoning about monitors. Finally,
point 5 indicates the practicality of our approach, and indeed we have working implementations of
several monitors built using our technique.

A philosophical consequence of our methodology is the raising of “monitoring semantics” to the
same first-class status as “standard semantics”—a consequence that seems eminently desirable, given
the intimate relationship between the programmer and the “non-standard” behaviors that typify the
program development process (it is only the final product whose “black-box” behavior corresponds
most closely with the standard semantics). Perhaps more importantly, we believe that our methodol-
ogy will enable programmers to write their own monitors in an effective, straightforward way (without
fear of changing program behavior), rather than be confined to the limitations and rigidity of most
software development environments. As an example of our methodology in action we will introduce
the monitoring semantics of a higher-order language and provide the specification of several common
monitoring activities for that language (a tracer, a profiler, a demon and a collecting monitor).

Current Methodologies Despite the importance of monitors in any software development environ-

ment, the lack of formal and general treatment of the problem is evident in current research. Current
approaches for constructing monitoring systems are mainly based on instrumenting either the source
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Figure 1: Semantic relations diagram

code [DFH88, HO85, TA90] or an interpreter (or abstract machine) [OH88, SS89, Sha82] to include
monitoring behavior. As general methodologies many of these approaches have limitations: they
may interact adversely with the normal execution of the program (or with other monitoring activi-
ties), they have little formal semantic justification, and they usually rely on hand-crafted techniques.
Our approach attempts to resolve these problems by providing a general framework for specifying,
implementing and reasoning about monitors. Qur work compares most closely with O’Donnell and
Hall’s work [HO85, OH88], which advocates enhancement of program results with debugging data,
and with Safra and Shapiro’s work [SS89], which advocates the use of partial evaluation to instrument
interpreters.

Outline This paper is organized as shown in Figure 1, which also illustrates well the relationships
between the various semantic entities (e.g. standard semantics, monitoring semantics) and concrete
entities (e.g. interpreters, monitors) that our methodology comprises. In Section 2 we present an
overview of our approach. From the standard semantics specification G described in Section 3, we
describe in Section 4 how to automatically derive a parameterized monitoring semantics M(G). Then
in Section 5 we describe how to instantiate such a semantics with particular monitor specifications,
thus yielding a complete monitor. Sections 6 and 7 discuss the compositionality and soundness of mon-
itoring semantics, respectively, and Section 8 presents several examples. Finally, Section 9 addresses
implementation issues.

2 An Overview of Semantic Monitoring

In a nutshell, our approach to monitoring program execution can be intuitively described as follows:

A language’s continuation semantics specifies a linear ordering on program execution, and thus
can be used as the basis for ordering monitoring activity (just as it is used to guide code gener-
ation in “semantics-directed compilers”). But instead of interpreting a program’s meaning as an
element a in a domain Ans of “final answers,” we will interpret it as a function f with type
Ans = MS — (Ans x MS), where MS is a domain of “monitor states”. Given o : MS as an ini-
tial (presumably empty) monitor state, then f ¢ = (o/,0’), where o' is the resulting monitoring




~ information. We construct such an interpretation as a parameterized semantics in such a way that
all instantiations of the semantics (i.e. all possible monitors defined using our approach) have the
property that o’ = a.

The technique used in deriving the monitoring semantics for a language is somewhat unique in
itself, relying not just on standard use of higher-order functions, but on the use of functionals to embed
non-standard behavior at all levels of recursion such that their fixpoints yield the desired result.

Finally, by treating the resulting specification as a program (via transliteration into a functional
language), we have essentially constructed a (non-standard) interpreter. Although inefficient if exe-
cuted directly, partial evaluation can be used to enhance efficiency on a sound basis, just as is done
in work on semantics-directed compilation.

Notation The reader is assumed to be familiar with the concepts and terminology of continuation
semantics as found, for example, in Gordon [Gor79], Schmidt [Sch86], and Stoy [Sto77]. We will use
boldface for domains, and the notations X — A*; = Y and f z a*; y to denote X — A;, — ... —
A;, = Yand fza,...a;, yfor some n respectively. As an aid to the eye, continuations are enclosed
in braces {}. Square brackets are used for environment update, as in p[e — z]; angle brackets are used
for tupling, as in (e,, €2, €3); and domain projection and injection are noted by (z|D) and (z in D)
respectively.

3 Continuation Semantics Framework

As mentioned earlier, we assume that a continuation semantics is used to express the standard seman-
tics. This does not result in any significant loss of expressiveness, since a continuation semantics is
able to capture the behavior of any deterministic sequential language. Languages that don’t require
the extra expressiveness (such as purely functional languages) can still be expressed in a continuation
style.

Definition 3.1 (Standard Continuation Semantics) A standard continua-
tion semantics specification is a triple Den = (Syn, Alg, Val) where:

o Syn denotes the abstract syntax definition of the language in the form of
BNF rules specifying syntactic domains S;.

o Alg defines the set of semantic algebras, which are the semantic domains
A; plus operations over them. In particular Ans denotes the domain of
answers.

o Val denotes the collection of valuation functionals (one for each syntar do-
main). Each valuation functional G; has functionality:

Gi: Ty > Ty
where T; = S;— Ax; - Kont; - Ans
Kont; = A+ — Ans

The fizpoints V; : T; of the functionals G; (i.e. V; = fiz G;) are the valuation
functions that map syntactic terms to their meanings.




Abstract Syntax (Syn):
k € Con Constants
z,f € Ide Identifiers, either bound variables or function names
e € Exp Expressions

ex= k Constant
| z Identifier
| lambda z . e Lambda abstraction
| if e; then e; else €3 Conditional
| e1 ez Application

| letrec f = lambda z . e; in e, Letrec

Semantic Algebras (Alg):

b € Bas=Int+ Bool+... Basic values
Fun =V — Kont — Ans Function values
v € V=Bas+Fun Denotable values
a € Ans Answers
p € Env=Ide—-V Environments
Kk € Kont=V — Ans Expression continuations

Valuation Functionals (Val):

Gr: Ty—> T, Expression valuation functional
where T) = Exp — Env — Kont — Ans Gives meaning to expressions
K: Con-V Gives meaning to constants
G fepk=
case e of

(%] 2k (K [KD)
fa] : % (p2)
[lambda z . €] : Kk ((Av. £[€] p[z — v]) in Fun)
[if e; then e; else €3] : Elea] p {Av. v|Bool — Eez] p &, E[e3] p K}
fe1 e2] 0 Elex] p {Ava. E[eq] p {Av1. (m1|Fun) v, k}}

f[letrec f = lambdaz .e; iney] : Efex] o' &
whererec p’ = p[f — (M. £[e1] p'[z = v]) in Fun]

Figure 2: Standard Continuation semantics for £

The explicit identification of the functionals will allow us to derive new valuation functions that
“inherit” the behavior of the old. The sequence A*; of arguments to V; constitutes the normal semantic
context mecessary to perform an evaluation (e.g. environment, state, etc.), and the sequence Ax;’ of
arguments to Kont; denotes intermediate results.

As an example of this semantic framework, Figure 2 shows the continuation semantics for a higher-
order functional language consisting of conventional constructs such as applications, abstractions,
constants, identifiers, conditionals and letrec clauses. This language, which we will call £y, will be
used throughout the paper to illustrate the discussion; its simplicity will allow us to focus on the




essence of our approach.

3.1 Parameterizing standard continuation semantics with respect to its final an-
swer

Since a continuation represents a program’s complete computation upon some intermediate results,
the continuation may contain some “final processing” that produces the final answer. This allows one
to map a program’s final answer to arbitrary value spaces. For example, consider the answer of a £
program with an initial continuation:

Kinit = {Av. FinalProcessing(v)}

This would map £)’s final answer to whatever is specified by FinalProcessing. As is mentioned
in [Sch86] this generalization makes continuations especially suitable for handling unusual answers.
Later, we will make an extensive use of this property in deriving the monitoring semantics; but first
let us formalize this notion.

Definition 3.2 (Answer Algebra) Let Den be a Standard Continuation Se-
mantics with semantic domains A;, an algebra: Ans = [Ans;{¢;,...,¢,] is an

Answer Algebra for Den iff
o It defines the final answer domain Ans of Den.

e It defines all the operations ¢; mapping values in A; into a final answer in
Ans. That is,
@i it Ax; — Ans i=1...n

By factoring out the answer algebra from the specification, we can essentially parameterize the con-
tinuation semantics with respect to its final answer domain.

Definition 3.3 (Parameterized Continuation Semantics) Let Den be a
Standard Continuation Semantics (Definition 8.1), Den is said to be parameter-
ized with the answer domain iff its answer domain and operations. on this domain
are defined by an algebra (i.e. an answer algebra) which is assumed to be given
as a parameter to the specification.

The explicit identification of the answer algebra will later allow us to redefine the semantics’ final
answer by changing this algebra. For example, consider the £,’s specification shown in Figure 2.
Since £,’s final answer is solely produced by its initial continuation the only answer algebra operation
needed is a mapping from denotable values to final answers. Such mapping, denoted ¢, is assumed
to be provided by an answer algebra which is given as a parameter to the specification. An initial
continuation defined by:

Kinit = {Av. (¢ v)}




will provide the desired parameterization of £5. We can now instantiate ¢ to map £y’s final answer
to the desired domain. Note that in the case of the standard semantics, a typical answer algebra for
L) is given by:
Ansﬁ{,\ = [Bas;{¢:V — Bas}]
where ¢ v = v|Bas

However, we can make the £y’s final answer more interesting by providing a more elaborate answer
algebra, for example:

Ansﬁ;\ = [String; {¢:V — String}]
where ¢:V — String
¢ v= "The result is:" ++ toStr(v)
where toStr : V — String

This algebra maps the results of £) to character strings. Similarly, in the next section we will redefine
the answer algebra to map the semantics’ final answer to the monitoring answer domain.

4 Parameterized Monitoring Semantics

We now wish to enhance the continuation semantics in such a way as to yield a parameterized monitor-
ing semantics which, when instantiated with the appropriate functionality (a monitor specification),
will yield a complete monitor. The necessary changes to the continuation semantics are described in
the following paragraphs.

4.1 Monitoring Annotations

We make only one assumption concerning the syntax of the programming language: that every syn-
tactic category may be “tagged” with auxiliary monitoring information. Technically we could avoid
this assumption by noting that every program point may be uniquely identified by tracing its location
from the root of the program’s syntax tree, and thus one could provide, as a separate specification, a
mapping of these program points to the auxiliary information. However, we find our approach to be
simpler and clearer.

The annotations themselves may contain arbitrary information for use by the monitor. In their
simplest form they might act as labels through which the system may uniquely reference any program
point; in more complex situations, they may involve “directives” to control the monitoring process.
We imagine that in practice the annotations would not be added explicitly by the user, but rather
would be supplied by a suitably engineered programming environment. For example, a user may
invoke a command to trace calls to the function £, and the system would then virtually (or perhaps
literally) add the appropriate annotation to the definition of £. The examples in Section 8 were in fact
generated in this way. Such a mechanism eases the burden on the user and reduces the possibility of
editing errors.

In any case, for technical convenience we assume the presence of annotations. Informally, for each
syntactic domain S;, let y; € Ann; be the set of annotations allowed for that domain, and define the
annotated syntactic domain S; by:

5; € S; = (original BNF clauses) | {u;}:5;
As an example, the enhanced syntax for expressions in £, with 4 € Ann is simply:

e€Exp = k|z|lambdaz.é€|...| {u}e
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It is noteworthy that this enhancement can be expressed formally in a way analogous to the
enhancement to the valuation functionals (to be described in the next section). To do so, we use a
non-conventional method to prescribe the annotated syntax—“syntactic functionals.” Using the £,
syntax to illustrate this method, let H be:

H(Exp) = Con
U Ide
U {[1ambda z . €] | z € Ide, e € Exp}
U {[if e; then e; elsees] | 1, €2, e3 € Exp}
U {[e1 e2] | €1, €2 € Exp}
U {[letrec f = lambdaz . e; iney] | z, f € Ide, e;1,e; € Exp}

We interpret (fiz H) as denoting the set satisfying Exp = H(Exp). The new grammar can then be
defined by (fiz H) where:

H(Exp) = H(Exp) U {{u}& | u € Ann, & € Exp}

This technique will be useful in incrementally enhancing the grammar in the presence of cascaded
monitors.

4.2 Monitoring State

One of the assumed parameters in the new semantics will be the monitoring state MS, which captures
information of interest to the monitoring process, and which will be incrementally modified by the
monitoring functions described below.

4.3 Monitoring Functions

At program points that we wish to monitor, we “probe” the evaluation process just before, and just
after, evaluation. The flow of control necessary to achieve this is already captured by the continuations,
and thus the monitoring semantics to be defined will essentially compose pre- and post-processing
functions before and after each monitored continuation.

More specifically, for each valuation function V; : S; — Ax; — Kont; — Ans, a pair of monitoring

functions MV is defined consisting of two functions MY% and ME,‘S, with functionalities:

pre

M‘{;-', : Ann; — S; —» Ax; » MS — MS

Myt Ann; — S; — Ax; —» Ax' - MS — MS
The pre-monitoring function Mx}i'? gathers information before the evaluation of a program point,
and thus takes as arguments the syntax, the semantic arguments Ax;, and the current monitoring
state; it yields a new monitoring state. The post-monitoring function M},{,‘,, is invoked after the
valuation, and thus takes as an additional argument the “intermediate results” As+;’ normally passed
to the continuation. This behavior characterizes the interaction between the standard behavior and
the monitoring behavior, and we argue that it captures the generic characteristics of any sequential
monitoring behavior.

4.4 Monitoring Answer Algebra

Recall that the meaning of a program in monitoring semantics is a function of type MS — (AnsxMS)
(Section 2), where MS is the monitor state domain and Ans is the original final answer domain. We
define a new answer algebra which will map the semantics’ final answer to the desired domain.




Definition 4.1 (Monitoring Answer Algebra)
Let Ans,;g = [Ans; {¢1,...,Pn}] be the standard continuation semantics’ answer
algebra and let § be an answer transformer defined by:

0:Ans — Ans
0 a=Ao. (a,0)

Then a monitoring semantics answer algebra is derived as follows:

Anspon = [Ans = MS — (Ans x MS); {615+, 0}
where ¢; = 6o ¢;

Finally, the resulting parameterized monitoring semantics is presented in Definition 4.2. In other
words, as stated earlier, the meaning of a program will be a function mapping an initial monitor state
into a pair: the original answer and a final monitoring state.?

To give some intuition behind parameterized monitoring semantics, Figure 3 shows the monitoring
semantics for £y. In particular, consider the valuation functional ) of £ (Figure 2), whose derived
valuation functional Gy is shown in Figure 3. Note first that the functional G has essentially the
same behavior as G, for all expressions except labeled ones. It is the use of the functionals describing
the valuation functions that permits this extension to be carried out in a modular fashion. Since the
valuation function is the fixpoint of the newly derived functional, the new behavior is exhibited at all
levels of recursion, and thus for all subexpressions of the original program.

This technique has also been used to specify a collecting interpretation [HY88] and to give formal
semantics to inheritance in object-oriented languages [CP89, Red88]. The analogy to inheritance is
very interesting since the monitoring semantics Gx can be viewed as “inheriting” the behavior of the
standard semantics G to produce a more complex behavior.

Recall that the valuation process communicates its dynamic state to the monitor before and after
valuation of a labeled expression. This communication is carried out by the updPre and updPost

auxiliary functions, which apply the corresponding pre- and post-monitoring functions (i.e. Mfre and

Mfm) to the dynamic information needed to produce an updated monitor state. Note how the
updated monitor state is propagated throughout the evaluation process (just as would be the store in
an imperative language). As described earlier, an initial continuation defined by

Kinit = {Av. (¢ v)}

will return the desired result.

5 Denotational Specification of a Monitor

In the last section the structure of parameterized monitoring semantics was formally defined. This
section describes how to instantiate a parameterized monitoring semantics with a monitor specification,
thus yielding a complete monitor. The format that we use is very similar to that of a conventional

1These three components will be packaged into a monitor in Definition 5.1.

2It is worth pointing out that there is a relationship between this transformation and monads as reported in [Mog89,
Wad90].




Definition 4.2 (Parameterized Monitoring Semantics) Let Den be a con-
tinuation semantics (see Definition 3.1) parameterized with the answer domain

(see Definition 3.3),
A monitoring semantics for Den parameterized with:!

e annotation syntar u; € Ann; (Section 4.1).

e domain 0 € MS of monitor states (Section 4.2)

¢ a monitoring function pair MYi for each valuation function V; in Den (Sec-
tion 4.3).

ts defined as follows:

. Abs_fract Syntax: For each syntactic category S; define an annotated syn-
taz S; (see Section 4.1).

o Semantic Algebras: Define a monitoring answer algebra to map Den’s
final answer to domain Ans = MS — (Ans x MS) (see Definition 4.1).
All other algebras are the same as in Den.

¢ Valuation Functionals: For each valuation functional G; in Den, define
G; as follows:

rj.' N T" bnd T,‘ )
where T; = S; — Ax; » Kont; —» Ans
GiVisiaxi ki =
case §; of
[{m:}3]: (Vil8] a%i Kpost) o updPre
where
updPre : MS — MS
updPre = MY: [ui] [5]] av:
Kpost = {Atxi. (K t¥;) o updPost}
where
updPost : MS — MS
updPost = MY, [u] [5] as; ox;
else : G: Vi 3; ax; K;
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Abstract Syntax (Syn):
€ € Exp annotated expressions
# € Ann monitor annotations

H(Exp) = H(Exp) U {{u}€|p € Ann, ec Exp} (M is defined in Section 4.1)

Semantic Algebras (Alg):

b € Bas=Int+Bool+... Basic values
Fun=V — Kont — Ans Function values
v € V =DBas+ Fun Denotable values
@ € Ans=MS — (Ans x MS) Monitoring Answers
p € Env=Ide—-V Environments
k € Kont=V - Ans Expression continuations

Valuation Functionals (Val):
Gr: Ty— T,
‘where Ty = Exp — Env — Kont — Ans
G .féepkr= case€of 3
[{#}&] : (€ [€] p Kpost) o updPre
where updPre : MS — MS
updPre = ME, [u] [€]
Kpost = {Av. (K v) o updPost}
where updPost : MS — MS
updPost = ME,,, [u] [€] p v
else : G\Eepk (G» is defined in Figure 2)

Figure 3: Parameterized Monitoring Semantics for £,

language specification—it consists of three parts: the monitor syntaz, the monitor algebras, and the
monitoring functions. :

Definition 5.1 (Monitor Specification) A monitor specification for a stan-
dard continuation semantics Den is a triple Mon = (MSyn, MAlg, MFun), where:

¢ MSyn denotes the monitor syntax which defines the syntactic domain of
monitor annotations.

o MAIg is the set of monitor algebras which includes the monitor state domain.

e MFun denotes the set of pairs of monitoring functions, one pair for each
valuation function in Den.

11




Monitor syntax (MSyn): Monitoring functions (MFun):

‘:GA““ Mf,,:Ann—rExp—vEnv—»MS—vMS
iu=4]B M,{’:.e [A]l [e] po =inc Ao
Monitor Algebras (MAlg): Mf’ c[Blledpo=incBo
I. Monitor state £
o € MS = (N x NN) Mg,s : Ann = Exp = Env — V - MS — MS
Operations Mfo,, [llelpve=0c

inc.A : MS —- MS
inc A (nl’n2> = (nl + 1,112)

inc.B : MS —» MS
inc_B (ny,n2) = (ny,n2 + 1)

init_state : MS
init_state = (0,0)

Figure 4: Specification of a simple profiler

The similarity between the monitor semantics and a standard language semantics is not surprising.
Indeed, monitor semantics consists of a language (monitor syntax) to specify monitoring operations,
monitor domains as value spaces in monitoring semantics, and monitoring functions to map a language
abstract syntax annotated with monitor syntax to its “monitoring meaning” drawn from semantic and
monitor domains.

As an example of a complete monitor specification, Figure 4 shows the specification of a profiler
which performs the simple chore of counting the number of times an expression with either annotation
“A” or “B” is evaluated. The first component of the specification is the annotation syntax, defined
in the same way as the abstract syntax of any programming language—i.e. using conventional BNF
notation. The state algebra is shown next, consisting of a pair of counters together with operations
that increment those counters. Last is the specification of the monitoring functions which perform
the obvious tasks: the pre-monitoring function increments the appropriate counter, and the post-
monitoring function does nothing.

The following program illustrates the use of the profiler:

letrec fac = lambda z . if (z =0)
then {A}:1
else {B}:(x * fac(x — 1))
in fac s

Each branch of the conditional has been labeled with a different monitoring annotation. The profiling
information gathered by monitoring this program with the above monitor would be ¢ = (1,5).

12
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6 Monitors May be Composed

With the simple constraint that the annotation syntaxes are disjoint, monitors may be composed in
such a way that they are guaranteed not to interfere with each other. The method is simple: construct
the first monitor from the original continuation semantics as described earlier, then treat the result
as a new continuation semantics, and repeat the same procedure in constructing the second monitor.
The new answer domain would then be:

Ans = Ans X MS; = MS; — ((Ans x MS;) x MS;)

This process may be repeated an arbitrary number of times. Furthermore, this technique could be
used for building extensible programming development environment (a collection of monitors, that is)
in an effective, safe and straightforward way. Another interesting consequence of cascading monitors
is that a monitor could monitor the behavior of the monitors before it in the cascade by providing its
monitoring functions with the monitor states.

As an example of this technique, Figure 5 shows the result of starting with the parameterized
monitoring semantics in Figure 3, treating it as a standard continuation semantics, and deriving a
new parameterized monitoring semantics. The new monitor is assumed to have monitor annotations

g2 and monitoring functions: Mgf,, and Mgﬁ,,t.

7 Soundness

This section discusses the consistency of the monitoring semantics with the original standard semantics.
It is shown that monitoring semantics is a meaning preserving enhancement to the standard semantics.
For the simplicity of the presentation we will consider a standard semantics that has only one valuation
functional.

We begin by defining some properties of the standard continuation semantics which we will take
as assumptions in the main theorem.

Since our approach is based on continuation semantics it is important to precisely articulate the
characteristics of continuation semantics which are relevant to our framework. Obviously, the val-
uation functionals should be specified as a standard continuation semantics as defined earlier. In
particular, all calls to functions which return a final answer (e.g. valuation functions, continuations)
- must be “tail-recursive”: values are only passed forward. In other words, we require that final answers
must not be used as an argument to other calls. As can be seen, this implies that each call to a
valuation function or a continuation is expected to return the final answer of the semantics (no further
evaluation is expected after the call). Indeed, these characteristics correspond to Reynolds’ definition
of continuations [Rey72], in particular to his notion of serious functions. Note that we consider the
monitoring functions to be trivial (this is the reason why they are not expressed in continuation style).

The following definition ensures that the standard semantics is oblivious to monitor annotations.

13




Abstract Syntax (Syn):
€ € Exp doubly annotated expressions
#2 € Ann monitor annotations of second monitor

ﬁ(Exp) =H(Exp) U {{p2}:# | p2 € Anng, &€ Exp} (H is defined in Figure 3)

Semantic Algebras (Alg):

b € Bas=Int+ Bool+... Basic values
Fun =V — Kont - MS§; — Ans Function values
v € V=Bas+ Fun Denotable values
a € Ans=MS; - ((Ans x MS;) x MS;) Monitoring Answers
p € Env=Ide—-V Environments
& € Kont=V - MS, — Ans Expression continuations

Valuation Functionals (Val):
Q:_ T) — T) where T) = Exp —» Env — Kont - MS; — Ans
GrEEpkoy= caseéof _
[{u2}:€] : (€ [€] p Kpost 01) 0 updPre
where updPre : MS; — MS,
updPre = Ma,, [ua] [¥]
Kpost = {Av o1. (k v 0}) o updPost}
where updPost : MS; — MS;
_ updPost = Mgﬁ';,t (e [E] p v
else : GhEepKko (G is defined in Figure 3)

Figure 5: Derived monitoring semantics for £y

Definition 7.1 Let Den be a denotational specification with valuation functional
G and syntaz S. Given any program s € S and § € S, such that § is s augmented
with monitor annotations, then G is said to be oblivious to monitor annotations

iff:
(fiz G) [s] = (fiz Gow) [3]
where Gopy V 5§ = case 5 of
[{p}3] = V[5]
else : GVs

In other words, if G is oblivious to monitor annotations then it is guaranteed to disregard monitor
annotations provided that it is enhanced according to the above construction of G ;.

14




Assumption 7.2 A denotational specification Den is said to be well-specified
with respect to monitoring semantics iff:

1. Den is specified in continuation style (as described above).
2. Den is parameterized with the final answer (Definition 3.3).

3. Den’s valuation functionals are oblivious to monitor annotations (Defini-
tion 7.1).

Note that Assumption 7.2 does not result in any significant loss of generality since it closely
corresponds to the conventional style of specifying continuation semantics (see Figure 2 as an example).
We now state and prove several lemmas which lead to our main result.

Notation we write “v / Ans” to denote that v is parameterized with an answer algebra Ans. Also,
we use Ans,qg and the corresponding Ans,,on (Definition 4.1) to denote the standard and monitoring
answer algebras respectively. Finally, we define an inverse function for the answer transformer 8 (see
Definition 4.1):

0-'a=(ao): (ois arbitrary)

such that (6= 0 6) = Id
Recall that a well specified semantics is parameterized with respect to the final answer. We make
the following observation:

Lemma 7.3 Let Den be a well-specified semantics with valuation functional G and syntar S. Then
Jor alls €S, aj € Aj (i.e. the semantic contezt: environment, store etc. ), k € Kont:

(fiz G) [s] ax k / Ansyg = 67'((fiz G) [s] a* &) / Anspmon

Proof: Let a € Ans be the result of ((fiz G) [s] a* & / Ans,g) then according to Definition 4.1 of
the monitoring answer algebra the result of ((fiz G) [s] ax x / Anspmon) is (6 o) € Ans. Consequently

(fiz G) [s] a* k / Ansgyq 6~1((fiz G) [s] a* k) [ Ansmon
a [/ Ansgyg (671 (8 ) / Anspon
= a [ Anspon

At this point we are still have to prove that the last line is true; that is, to show to what extent standard
values are equal to monitored values. To do so, let us first notice that in the equation of Lemma 7.3,
the left hand side is parameterized with respect to answer algebra different from the right hand side.
Consequently, if a is an element of a domain which depends on the answer domain then the results of
both sides of the equation are of different domains. To give some intuition behind this let us consider
Ans = Bas+Fun the standard answer domain for £). A domain like Fun = V — Kont — Ans does
change when the answer algebra of the standard semantics is enriched in the monitoring semantics,
that is, Fun = V — Kont — Ans. This can be easily verified by the domain equations in Figures 2
and Figures 3. However, a domain like the basic values domain Bas is the same domain in both
the standard and the monitoring semantics. Indeed, all domains that are not defined in terms of
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the answer domain do not change as a result of replacing the answer algebra. For simplicity we will
consider only an answer domain which is not recursive (e.g. first order values)3. O

The next lemma proves the correspondence between the standard semantics and the monitoring
semantics both parameterized with the monitoring answer algebra. But first, we define a logical
relation and introduce a lemma to facilitate the proof. We define a relation to equate two monitoring
semantics answers &; : Ans

Definition 7.4
& Ra; = Vo, €MSoo,eMS. (d] 0’1)11= (a2 0'2)11

The relation above is invariant to a certain kind of operations. The invariance is captured by the
following lemma.

Lemma 7.5 Let v be a monitor state transformer, i.e., v: MS — MS. Then

o R&2<=>a172(&20v)

Proof:
a R a;
(@ o))l = (&2 02)1 (by Definition 7.4)
(@1 o)1 = (a2 (ve)h (0 is universally quantified in Definition 7.4)
(&1 01)li = ((@2 o v)oa)l1 (by definition of composition)

a1 R (&g ov)
In other words, the R relation is invariant to composition of monitor state updates. O

Lemma 7.6 Let Den be a well-specified semantics with valuation functional G and syntaz S and let
the derived monitoring semantics for Den be with valuation functional G and annotated syntar S.
Given any s € S and 5 € S, such that 5 is s augmented with the appropriate monitor annotations,
then for alla; € A;, k € Kont and 0 € MS:

((fiz G) [s] a* & / Ansmon) R ((fiz G) [3] a* & / Ansmon)
Proof: Since Den is well-specified then according to Assumption 7.1
- (fiz G) [s] = (fiz Gour) [3]

Consequently, we can use G, instead of G for the proof. The proof is a fixpoint induction over G and
Gon functionals. (Note that we will not mention the parameterization by the answer algebras in the
derivation since both sides are parameterized with the same answer algebra.)

Induction Basis Let G,5 =1 and G =L then (L) R (L) trivially follows.

Induction Assumption Let (V = fiz G.y) and (V = fiz G). Then,

v |[§]| a* k) R (V [5] a* &)

Induction Step (by structural induction over the syntax)
Annotated syntaz. For the annotated syntax we have:

3The proof can be generalized to cover a recursive answer domain by using a recursive congruence relation rather
than equality.
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(Gott V [{s}:3) ax k) R (CV [{u}:3] a* &) _
(V3] ax k) R (V[3] a* {X c. (k ¢x) o updPost}) o updPre (by definition of G and G, )
(VIsl ax k) R (V[3] ax {A tx. (k 1¥)}) (by Lemma 7.5)
(VIs] ax k) R (V[3] a* k) (n-reduction)

The reader can verify that updPre and updPost are monitor state transformers (see Definition 4.2).
Furthermore, since both functionals are specified in continuation style, we know that every call to
either the valuation function or a continuation returns the final answer (no further evaluation is
expected). Therefore, by composing the updPre or updPost with the continuation or the valuation
function we essentially compose a monitor state update to the final answer. By Lemma 7.5 we know
that the composition of such updates are invariant to the relation, therefore we can safely discard
these updates. Finally, we can use the induction assumption to establish the relation.

Non annotated syntaz. Notice that the valuation equations of G and G, for non-annotated syntax
are derived from the same functional G:

(Gobt V[3]axk) R (?? [3] a* &)
(GVI[slaxk) R (GV[3]ax k) (bydefinition of C and Gop)

The only difference between the valuation equations of G and the valuation equations of Gy is that V
is used in G,y equations and V is used in G equations. We consider two cases: atomic syntactic terms
(e.g. constants, identifiers) and compound syntactic constructs (e.g. conditional, application).

Atomic terms. The basis cases are the valuation equations for syntactic terms without sub-
components. Since there are no sub-components then there are no recursive calls to the valuation
functions. Consequently, whether we provide G with V or V is irrelevant. Thus:

(GV[s]ax k) = (GV [3] a* k)

Note that we assume that basis cases do exist. This is a valid assumption since we are not interested
in non-terminating valuation functionals.

Compound terms. In this case the equations are for syntactic terms with sub-components Con-
sequently, we expect these semantic equations to include recursive calls to the valuation functional
V and V. The subtle point to notice is that using the inductive assumption we can replace all V
occurrences on the right hand side with V (or vice versa) making both sides equal.

We have exhausted all cases thus Lemma 7.6 is true. O

Finally, we can now state the soundness theorem:

Theorem 7.7 (Soundness) Let Den be a well-specified semantics with valuation functional G and
syntaz S. Also, let the derived monitoring semantics for Den have a valuation functional G and
annotated syntaz S. Given any s € S and 5 € S, such that 5 is s augmented with the appropriate
monilor annotations, then for all values a; € A; (i.e. the semantic contezt: environment, store etc. ),
& € Kont and 0 € MS:

(fiz G) [s] ax & [/ Ansyy = ((fiz G) [3] a* & 0)|1 / Ansmon
Proof: According to Lemma 7.3:

(fiz G) [s] ax k [ Ansyg = 67 ((fiz G) [s] a* &) / Ansmon
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Also, according to Lemma 7.6:

0-1((fiz g) [SB a* k) [ Anspon = 0-1((.ﬁz 3) I‘E]' a* K) [ Ansmon
Then, by transitivity:

(fiz G) [s] a* k / Ansgg = 67((fiz G) [3] a* K) / Anspon

a

8 Examples: a Tracer, a Profiler, a Demon and a collecting moni-
tor for £,

In this section we study four monitor specifications for £3—a tracer, a profiler, a demon and a collecting
monitor. The specifications follow the format of a monitor specification discussed in Section 5. In
addition, we have implemented all the examples in Haskell, and provide running output to demonstrate
the results.

It is important to note that this framework can also support interactive monitors (e.g. symbolic
debuggers, steppers) by providing an input as well as an output stream to and from the monitor. The
implementation of interactive tools is discussed in [Kis91].

Profiler. The specification of a program ezecution profiler is shown in Figure 6. The profiler counts
the number of times that all named functions are called. An environment domain is introduced
that maps a function name to its corresponding counter value: p. € CEnv = Ide — IN. The
eperations for this domain include usual environment operations: environment lookup, denoted by
pc(f); environment update, denoted by p.[f — n); and initial environment—initEnv. Also, incCtr
increments the corresponding counter for a given function name (or initializes it to 1 if the function
was never used.) The only algebra needed for the profiler is the counter environment algebra (notice
that it can also serve as the result of the profiler). This suggests that the state of this monitor is the
domain CEnv.

We profile by incrementing the counter associated with a function whenever the function body is
evaluated. We therefore annotate each function body with its function name. The annotation will
trigger the profiler semantics whenever the function body is evaluated and the annotation syntax will
provide the profiler with the name of the function. All named functions should be labeled this way.

For an example of the implemented profiler in action, consider the annotated program (assuming
-,* and = are primitives): '

letrec mul = lambda x. lambda y. {mul}:(x*y) in
letrec fac = lambda x. {fac}:if (x=0) then 1 else mul x (fac (x-1))
in fac 3

The profiler semantics would provide the following information in the counter environment:

[fac — 4, mul — 3]

Tracer. The specification of a program ezecution tracer is shown in Figure 7. Note that the tracer
state consists of an output channel and a trace level indicator. We treat the output channel as an
abstract datatype with operations addStream to add a new string to a given stream, and initStream
which provides the initial stream. The trace level indicator is simply an integer. The tracer is designed
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Monitor Syntax (MSyn):
f € Ide Function name (defined in Fig. 2)

Monitor Algebras:
I. Monitor State: Counter Environment
Domain MS = CEnv
II. Counter Environment
Domain p. € CEnv = Ide - IN
Operations :
incCtr : Ide - CEnv — CEnv

incCtr [f] pc = pc[f = 7]
where n = [f] € dom(p.) = p.(f)+1, 1

initEnv : CEnv
initEnv = Az. Lyg:

Monitoring functions:
ME., : 1de - Exp — Env —» MS — MS
MG LS el p pe = incCtr [f] pe
Mfo_,, :Ide - Exp — Env - V - MS — MS

Mfo,:ﬂfll lel p v pc = pc

Figure 6: Profiler specification

to print tracing information before and after evaluating any function body annotated with an element
from the syntax domain Fh (this provides the tracer with the name of the function and its arguments).
As an example of the implemented tracer in action, consider the annotated program:

letrec mul = lambda x. lambda y. {mul(z,y)}:(x*y) in
letrec fac = lambda x. {fac(z)}:if (x=0) then 1 else mul x (fac (x-1))
in fac 3

The tracer provides the following information on the output channel:

[FAC receives (3)]
[FAC receives (2)]
| [FAC receives (1)]
| [FAC receives (0)]
| [FAC returns 1]
| [MUL receives (1 1)]
| [MUL returns 1]
[FAC returns 1]
[MUL receives (2 1)]
| [MUL returns 2]
[FAC returns 2]
[MUL receives (3 2)]
[MUL returns 6]
FAC returns 6]

I
I
|
|
|
I
|
|
|
|
|
|
C
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Monitor syntax:
fh € Fh Function header, where fh ::= f(z1,...,2,)
z,f € Ide (defined by the language abstract syntax)

Monitor Algebras:
1. State
Domain ¢ € MS = OutChan x N
Operations
tnitState : MS
initState = (initStream, 0)
II.. OQutput channel
Domain o € OutChan = Stream
Operations
printChan : String - IN — OutChan — OutChan
printChan z n 0 = addStream z (indent n o)

indent : IN — OutChan — OutChan

indent n o = spaces n (addStream "Lg” o)
where spaces 0 o=o
spaces n o = spaces (n — 1) (addStream "| " o)

III. Streams
Domain s € Stream
Operations
addStream : String — Stream — Stream
initStream : Stream

Monitoring functions:
Ms‘;, :Fh — Exp — Env — MS — MS
MG (1, z0)] [e] p (o,m) =
(printChan ("[" ++[f] ++"receives (" ++ToStr(p(z1))++...++ToStr(p(zn))++")1") n o, n+ 1)
Mﬁ,,, :Fh - Exp — Env -V — MS —- MS

Mfo,t[f(zl,...,z,,)] [el pv (o,n) =
(printChan ("[" ++[f] ++"returns" ++ToStr(v) ++"1") (n=1) 0, n = 1)

Figure 7: Fancy tracer specification

Event Monitoring—Demons Often a programmer wants to invoke monitoring actions if a specific
execution event (such as an assignment to a variable) occurs. A simple mechanism called a demon is
proposed in [DMS84] for event monitoring. This section discusses specifying demons in monitoring
semantics.

Magpie [DMS84], an interactive environment for Pascal, supports an event monitoring mechanism
that monitors events associated with a particular identifier. Our approach improves on Magpie in that
it provides a mechanism to specify demons for any semantic event. In particular, the specification of a
demon in monitoring semantics follows quite naturally: first we need to identify all the program points
where the event might occur and label their corresponding syntactic term with a demon annotation.
Second, knowing that the monitor will be called at these points, we need to specify the criteria (based
on the semantic context provided) for the events to trigger an action. Finally, we need to specify
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Monitor Syntax (MSyn):
p € Ide Program Point Label

Monitor Algebras:
I. Name set
Domain o0 € MS = {Ide}
Operations (usual set operations)

Monitoring functions:
ME,, :1de — Exp — Env — MS — MS
Me el po=0
ME,,, : 1de = Exp — Env — V — MS — MS
Mf,’;,,[[p] [elpvo= sorted? v — o, {[p]}Uc

where
sorted? (z :zs) =
case zs of
(y:ys) : (z <y) & (sorted? zs)
Nil : True

sorted? Nil = True

Figure 8: Simple demon

the actions to be taken when a demon event occurs. These three steps correspond directly to the

specification of a monitor.

Figure 8 presents the specification of a demon that checks for unsorted lists. For simplicity the
monitor will only return the name of the functions where unsorted lists were encountered. The monitor
and the example that follows are self explanatory. For the following program

letrec inclist = lambda 1. lambda acc. if (1=[]) then acc else inclist (tl 1) ((hd 1)+1):acc in
letrec 11 = {I1}:(inclist [1,10,100] [J) in
letrec 12 = {I2}:(inclist 11 []) in
letrec 13 = {I3}:(inclist 12 [])
in 13

The demon returns the following information in its state:

o ={11,13}

Collecting Monitor A collecting interpretation of expressions is an interpretation of a program
that allows one to answer questions of the sort: “What are all possible values to which an expression
might evaluate during program execution?”[HY88]. A collecting monitor d la collecting interpretation
is defined in Figure 9. Each expression that we want to monitor is tagged with an identifier. The post
monitoring function updates the environment which keeps the set of values for each tagged expression.
For the following program:

letrec fac = lambda n. if {test}:(n=0) then 1 else {n}:n * (fac (n-1))
in fac 3
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Monitor Syntax (MSyn):
z € Ide Name tags

Monitor Algebras:
I. State: Interpretations Environment
Domain 0 € MS = Ide — {V}
Operations (usual)

Monitoring functions:
M, : 1de — Exp — Env — MS — MS
Mzl [l po=0
Mﬁ,,t :Ide — Exp - Env —» V - MS - MS
MLzl [e] p v o = olz = o(z) U {v}]

Figure 9: Collecting Interpretation Monitor

The collecting monitor provides the following information in its final state:

[test — {True, False}, n— {1,2,3}]

9 Implementation Issues

9.1 Partial Evaluation

A functional implementation of the monitored semantics can be obtained by straightforward translit-
eration into a functional program. The resulting program is essentially an enhanced definitional
interpreter which is passed a set of monitor specifications (representing the monitoring activities) and
yields a value together with monitoring information. Thus, it has functionality:

P : Mon” x Prog x Input®* — (Ans x MS)

This monitoring process can clearly be optimized using partial evaluation [BEJ88] by three levels of
specialization:

1. Specializing the program representing P with respect to a fixed set of monitor specifications
would automatically yield a concrete monitor; i.e. an interpreter instrumented with monitoring
actions.

2. Specializing the monitor itself (from the previous step) with respect to a source program would
produce an instrumented program [SS89]; i.e. a program including extra code to perform the
monitoring actions.

3. Specializing the instrumented program (from the previous step) with respect to some partial
input would produce a specialized program.

These levels of optimizations are illustrated in Figure 10.
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Figure 10: Opportunities for Partial Evaluation in monitoring semantics

Note that these instrumentations are achieved uniformly using partial evaluation. This should be
contrasted with the usual ad hoc techniques of instrumentation.

As a preliminary evaluation of our approach we have implemented a standard interpreter for £y
as well as the parameterized monitored interpreter whose semantics is given in Section 4. We have
optimized that interpreter according to the levels of specialization suggested above and compared the
results to the conventional approaches for monitoring described in Section 1.

At the first level of specialization, we have instrumented the parameterized interpreter with the
tracer specification described in Section 8. The specialization yields an instrumented interpreter
similar to the first conventional approach; i.e. monitoring by instrumenting an interpreter. For a
given program, our tracer is about 11% slower than the standard interpreter—this slowdown is caused
by the extra tracing activity. However (in contrast with the conventional approach) using partial
evaluation we can go beyond interpretation by specializing the monitored interpreter with respect to a
source program (the second level of specialization). This yields a program instrumented with tracing
operations which is 85% faster than the monitored interpreter and 83% faster than the standard
interpreter.

Interestingly, the second specialization yields instrumented code similar to the code expected from
the second conventional approach: monitoring by program instrumentation. However as mentioned
above, the instrumentation is achieved uniformly using partial evaluation rather than by using ad hoc
code instrumentation.

These preliminary results suggest that, like a standard semantics, a monitor semantics possesses
both static and dynamic computations. The static computations depend on the program text, includ-
ing monitoring annotations; and the dynamic computations manipulate run-time values. Thus, the
degree of optimization, obtained by partial evaluation, will depend on how much static computation
is defined by the monitor. For example, the tracer of Section 8 has static environment lookup but
dynamic stream operations.

Figure 11 compares the performances of the £ standard interpreter and its tracer for a simple
test program. Notice that the monitor performance approaches the standard interpreter performance
(the z axis) as the monitoring activity decreases (i.e. as the number of requested trace printouts
decreases). This suggests that essentially the only overhead in using the monitored interpreter is the
extra computation performed by the monitoring activity. Consequently, the monitored interpreter
performance graph in Figure 11 corresponds to the linear complexity of the tracer dynamic behavior.
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Figure 11: Performance graph

These experiments v?ere achieved using Schism[{Con89, Con90], a partial evaluator for pure Scheme.

9.2 Haskell implementation

We have implemented the framework presented in this paper. The implementation provides a generic
programming environment which allows automatic integration of monitoring tools with several lan-
guage modules (lazy, strict and imperative languages). The system is written in Haskell [HW+90].
Currently the environment has a toolbox of predefined monitor specifications which includes: an inter-
active debugger d la dbx, a stepper, a tracer, a profiler, a collecting monitor and other specific monitors
for each language. Furthermore, the user can compose several monitors from the existing toolbox with
one of the existing language modules. For example: to profile and use a symbolic debugger for a strict
interpretation of prog, the user simply types:

evaluate (profile & debug & strict) prog

where & is a composition operator defined for monitors. Similarly, the user can compose his own
defined tools with the existing languages and monitors; Haskell’s static type system ensures that new
specifications of monitors are well-defined (this can be easily verified by inspecting the type of the
monitor). Moreover, since a monitor can only modify its own state, we maintain a high-degree of
safety such that new monitors can not change the behaviors of other elements in the environment.
For details of this implementation, the reader is referred to [Kis91).

10 Conclusion

We have introduced a semantic framework for run-time monitors. This framework is general in that
a monitoring semantics can be automatically obtained from any denotational continuation semantics.
Furthermore, a monitoring semantics can capture any sequential, deterministic monitoring activity.
Finally, monitoring semantics is compositional and preserves the standard semantics.
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On the practical side, just as denotational semantics of programming languages can be viewed as
interpreters, monitoring semantics can be seen as executable specifications of monitors. As such, not
only does monitoring semantics provide a formal framework to reason about monitoring activities,
but it also enables practical implementation of monitors. Using partial evaluation, instrumented
interpreters as well as instrumented programs can be derived from a monitored semantics on a uniform
basis.

Finally, as was mentioned in Section 9.2, the framework presented in this paper has actually been
implemented in Haskell [HW+90]. The implementation provides a programming environment that al-
lows automatic integration of several language modules with an extendable toolbox of monitors [Kis91).
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