Abstract

The complexity of a number of selection problems is considered. An
algorithm is given to determine the mode a multiset in a number of
comparisons differing from the lower bound by only a "lower order term."

The problems of finding the kth largest element in a set in minimal and
near minimal space are also discussed. A time space tradeoff is demon-
strated for these problems.

t Portions of this research were supported by the National Research
Council under Grant A8237 and the National Science Foundation under
Grant MCS76-11460.

Time and Space Bounds for Selection Problems+
by
David Dobkin
and

J. Ian Munro*

*University of Waterloo

TR 13¢






(1)

l. Introduction

The inherent complexity of sorting and selection problems is important
both from a practical and theoretical point of view. Certainly the realiza-
tion of an n log n comparison sorting algorithm is fundamental to practical
computing while the O(n) median algorithms ((3) (10)) and lower bounds
(8) strike at the heart of the complexity of "frequently computed functions."
Furthermore, work of the latter type has clearly led to results of both
mathematical and computational interest (9). In this paper we determine
new bounds on the number of comparisons required for several problems, in
particular finding the mode of a multiset, an arbitrary set of k-tiles in
a list, and finding a k-tile in minimum space. While the thrust of the
work is in dealing with worst case behaviour, and with algorithms of pri-
marily mathematical interest, some of our techniques lead to simply

implementable algorithms with near optimal average run time.

The basic operation of our model is the comparison of two inputs. 1In
the next section the comparison is a 3-way (<,=,>) branch, while in the
remainder of the paper the "=" branch can be assumed not to occur. The
precise description of the model for dealing with minimum space is left

until section 4.



(2)

2. Multisets and Modes

In (6) it is shown that given a list of n elements, k of which are

distinct, and m, are of the ith type (hence koo n),

m,
1

i=1

(n logn-1» mi log mi - (n=k) log log k = O(n)

comparisons are necessary to sort the list on the average and
n logn-1% mi log mi + O(n) suffice. Theorem 1 is a minor extension of

this result.

Theorem 1l: n log n - I mi log m, - n log(log n - % z m, log mi) compari-
sons are necessary to sort a multiset of n elements, k of which are dis-

. .t . . .
tinct of mi of the i h type, even if {mi} is given.

While we conjecture that the upper bound noted is within O(n) of
optimal, Theorem 1 prqvides an interesting analogy with binary search
trees. Given a set of distinct elements {ai} and probabilities {pi},
an optimal binary search tree can be constructed. The problem of locating
the elements in the tree (with weight corresponding to the probability
of the element) is then analogous to the sorting problem. Bayer (2)
has shown that the weighted average number of comparisons to find an

element in an optimal binary search tree lies between

I p. log 1 + O(n) and
i P,



(3)

I p, log - - log (I p. log 19 + o(1).
i P. i P.
i i
Rewriting p, as mi/n and multiplying through by n to indicate locating

all n elements in the sorting problem, we have precisely the sorting

bounds .outlined above.

It may well be that these bounds are as tight as éossible given the
set (rather than sequence) {mi}. Our reasoning is based on the fact that
Bayer's bounds are tight in the sense that there exist probability dis-
tributions which achieve his upper bound and others achieving the lower
bound. Allen (1) has observed that a gap of Q(log I pi log %T-) can be

, i
due to the order of the pi.

The problem of determining the mode, or most frequently occurring
element in a list is also discussed in (6). A lower bound of n log n/m -
O(n-k) log log k - O(n) is shown (where m is the number of times tge mode
occurs and k is the number of distinct elements). Since this bound hinges

on the lower bound for the sorting problem, we have a slight improvement.

Corollary 1: n log (n/m) - n log(log n - (mi/n) log mi) - O(n) comparisons

are necessary to determine the mode.

An upper bound of 3n log(n/m) comparisons is given (and a 1.54
n log(n/m) technique is suggested) in (6) for the mode problem. We now show
that it can be reduced to n log(n/m) + o(n log n/m), that is, "lower bound
plus lower order term." The algorithm is fairly complicated and so we

will first sketch the basic idea, then add the tricks which reduce the



(4)

run time.

First note that if we had a "median oracle," we could, in n-1 com-
parisons, divide a multiset, S, into three segments, those less (L),
equal (E) and greater (G) than the median. Furthermore neither L nor G
could contain more than 1/2 the elements of S. Call L and G hetergeneeous,
since we do not know that all elements in either are the same, and E homo-
geneous, since we have ascertaiﬂed this fact. By repeatedly applying this
splitting to the largest remaining heterogeneous one, the mode is found in
at most n log(n/m) comparisons. Note that the fact that m is not known at

the beginning of the computation does not cause any problems.

From this scheme, the 3n log(n/m) algorithm should be clear. Of more
practical interest is the fact that by sampling, say O(s%), elements to
estimate the mediaﬁ of a segment containing s elements (in the style of (8))
we can find the mode in n log n/m + o(n log(n/m)) not only on the average,

but if we assume random sampling, over all inputs with probability 1.

While this simple algorithm is the way in which we could be inclined
to actually compute the mode, it is nonetheless interesting to debelop a

"lower bound plus lower order" worst case method.

Suppose now that we know the value of m, we will return to the more

realistic case in which it is not known.



(5)

Algorithm M for finding the mode of a set:

Step 1. Break the list into sublists (columns) of £ = (log(n/m)
elements each. Sort each column.
Step 2. While the largest heterogeneous segment H is larger than the

largest homogeneous one,

do begin
a) find two medians of columns of H such that at most

(1/2 + o(1)) of the elements of H exceed both, precede both
or lie between both;

b) use these medians to split H into 3 heterogeneous and o
homogeneous segments and merge the short columns of the seg-
ments resulting from this split so that all columns are of

length between £ and 2%.
end
It is clear from the construction of this algorithm that it halts and re-
turns the value of the mode when the while loop of step 2b is no longer exe-
cuted. It remains to analyze its complexity. We observe first that since
as many as 1/2 of the original elements may lie between two consecutive
column medians, ho better split is possible. To find an appropriate pair
of medians, we do what may be called a truncated binary search. To begin,
we find the median of the medians and determine its relation to each element
of each column by performing a set of binary searches on the columns. The
cost of this operation on a set of s elements broken into columns of size
between £ and 2% is O(s/%) operations to find the median median and
O((s log 2)/%) operations to do the binary searches for a total of
O((s log %)/4%) operations. We continue the binary search by finding the
median of the medians of the larger segment and continue this operation
for a total of — Steps. We stop at this point and observe that going
(log 2)
any further would be too costly but at this stage of the computation we

are guaranteed that at most (1/2 + o(l))s elements lie between our two



(6)

L

remaining medians. The total cost of our search has been >
(log &)

steps at a cost of O((s log &)/%) operations per step for a total cost

of O(s/log L) = o(s) operations.

The run time of the algorithm is dominated by the operations of
Step 2b in which the smaller columns are reconstructed into larger
columns for the recursion. If the above partitioning were to divide
the original segment into 2 segments of roughly half its size, with the
third (homogeneous) segment being small, then s comparisons would suffice
for the reconstruction, even if all ns columns were cut in half. However,
it is possible for the heterogeneous segments to be such that reconstruc-

tion in s comparisons is not possible.

We may use the Hwang-Lin merge algorithm (5) and revise our book-
keeping to look at the total merging cost up to the point where the maximum
segment size is r. We now show this cost to be n log %-+ o(n log %)

which for r = m yields the desired result.

Since thé Hwang-Lin algorithm is within a lower order term of the
information theoretic lower bound, we are guaranteed that the revision
can be done in this bound. Now, we consider the cost of all revisions
done throughout the entire execution of the algorithm and observe that
they number the information theoretic bound for constructing an output
in form we obtain plus other lower order terms resulting from the gap
between the performance of the Hwang-Lin algorithm and the information
theoretic lower bound and from the information lost when columns are

divided by the operations of Step 2a. For each column, this last quantity




(7)

is bounded by its number of elements. Hence the total amount of infor-
mation lost in terms of comparison is no more than the total number of
elements considered in all stages of the algorithm and this can be shown

to be o(n log i?.

There now remains only the problem of not knowing m, the cardinality

of the mode. We will "assume" m is _—ZE_—__ starting with i = 1 (though

another starting choice for i would work as well). This implies that the
minimum column length will be log(n/(assumed m)) which is roughly 2i - 1.
The value of i is incremented (column length doubled) when thg maximum
heterogeneous segment size has been reduced by a factor of 221, which

in the ideal case would correspond to 2i halvings in half. We see then
that the work done when i is at its ultimate (penultimate) value will
dominate that of the rest of the computation. That means that most of

the computation is performed when the "assumed" value of m is within a

factor of 2 of the actual value. Hence we have

Theorem 2: The mode of a muliset containing n elements including m

copies of the mode can be found in
n log n/m + o(n log n/m) + O(n)

comparisons.



(8)

3. Multiple Selection

Consider the problem of performing multiple selections from a set.

In particular, we will consider the problem of selecting the il'iZ""'ik

largest elements in a set of n elements. Denoting the complexity of this
problem by ms(n; il'i2""'ik)' By appealing to results on the complexity

of sorting we may establish the lower bound

Theorem 3: To determine the i_,i_,...,1

113, K largest elements in a set of

n elements requires

k
nlogn- I (i

- i.) log (i. -1i.) - O(n)
i=0 3 i+l 73

3+l

comparisons where 10 = 0 and lk+l =n+ 1.

Proof: We observe that having determined, by performing comparisons alone,
the i.st,i nd,...ikth elements in the set, we must know which elements lie

1 2

between elements ij and i, If we then sort each of these sets, we

j+1°
will have found the sorted order of the entire list. Since k log k- O(k)
comparisons are both necessary and sufficient for sorting a set of k
elements, we observe that our bound follows since we can transform the out-
put of our multiple selection algorithm into a sorted set of n elements in
a total of

- i,) log (i, .
j 9 M4

- i) + O(max (i, - i ))
1 J

k k-1

comparisons.



(9)

Next we turn to the problem of finding an algorithm which approaches

this bound.

Theorem 4: The i_,i_,...,1

111, K largest elements of a set may be determined

in

k

Q(n logn- I (i, - 1i.) log (i.
J J J Jj+

-1i.)) .
i=0 j+l 1 j

Proof: We propose the following algorithm for the process:

Algorithm ms(n:i,i,...,i) for finding the i_,i_,...,1i

pri, X largest elements

of a set of n elements.
Ifk=1
then
find the ilst largest element of the set
else
for the ij closest to n/2 find the ijth largest element of the set
and solve ms(ij - 1; li,...,ij_l) on the i1 - 1 lafgest elements of the

set and ms(n-ij - 1;i -i,...,1, - ij) on the n—ij—l smallest

j+l1 k

elements.

It is clear that the run time of this algorithm satisfies the recurrence

ms(n;ll,lz,...,lk) = ms(1j - 1;11,12,...,1j_l) +

ms(n - ij - l;ij+l - lj""'lk - lj) + M(n)



(10)

where M(n) is the number of comparisons necessary to do a selection

from a set of n elements. At present the best known value of M(n) is

3n + o(n) (10). We prove the theorem by induction on k, the number of

selections to be done. For k = 1, the algorithm requires M(n) operations

and this is certainly
Q(n logn -1

log i, - (n - il) log (n - il)).

1 1

Now assume that the result is true for all K < k. Then we may apply

the above recurrence to state that there is a constant t such that

i i) € o .
ms(n.l,lz. ,1k) 1:({(1j 1) log (1j 1) +

1
k
(n—lj'l) log (n-lj-l)}+{2 (i -1 log (i -1) +
m=0
k
T (n+1-41i)log(n+1-41i) +Mmn)}H <
. m n
m=j+1
k -
t(n log n + Z (n+1- im) log (n + 1 - im)) and hence
m=0

the theorem holds.



(11)

3. Selection in Minimum Space

In this section we are concerned with the problem of finding the
kth largest element of a set in minimal space as well as time. Our model
of computation will be essentially that outlined in section 1. The
basic operation is the element comparison and we do not charge for "over-
head." The input, however, is presented on a one-way read only tape.
Inputs are read into any of c cells of memory and comparisons may be made

between the contents of any pair of cells.

Under this model, it is clear that k + 1 storage locations are
necessary to find the kth largest (k<n/2) element in a set (6). We wish
to consider here whether this number of storage locations is sufficient
for doing this computation in linear time. None of the standard linear
time algorithms can be implemented to run in this space bound and linear
time. However, it is possible to use a heap of k + 1 elements as a priority
queue, throwing away the smallest remaining element as each new term is
read (after a steady state of k + 1 inputs have been reached). This
algorithm leads to an algorithm to solve the problem in n log k + O(n)

comparisons.

We have previously (4) given a method equivalent to the following

linear time algorithm for finding the median in minimal space.



(12)

Read |n/2J] elements into the unordered set U. -
For i = 0 until |llog nl] - 3 do

Find by a standard linear selection algorithm, the leog nt-3-i

largest and smallest elements remaining in U. Logically remove

these elements from U and place them respectively in the sets

and S Lj and Sj will, then, contain

LLlog nl -3-i llog nl] -3-i°

respectively the 2j-1 elements which are not in the Zj-l largest
or smallest but are among the 2j largest and smallest of the Ln/2].
Clearly each iteration of this step takes time linear in the number
of elements actually considered. Since this number is effectively
halved on each iteration the total run time is also linear.

An unordered "residue" set, R, will be maintained in the remainder of

the algorithm. Initially, R contains 0 = 20 - 1 elements.

For i = 0 until llog([n/27+ 1)J - 1 do
Read 2i elements adding them to R which now contains 2i+l elements.
By a linear selection algorithm, discover and discard (as being too
large or small to be the median) the largest and smallest 2i ele-
ments of the 2i+2 - 1 elements in Li' Si' and R. Logically transfer
the remaining 2i+1 - 1 to R. Note the run time of iteration, and
hence the entire step is proportional to the number of elements dis-
carded.
end

Read in the rest of the elements and find the median of those remaining by

. a linear algorithm.

The corrections of the above method are based on the observation that
elements are discarded when (and only after) |Ln/2]) elements are known to
be larger and |n/2J), smaller. The linear run time is a consequence of the

analysis contained within the algorithm, as is the space bound. The



(13)

diagram below shows a typical configuration during the second iteration

step:

Ln/2J + 1 locations

i—| i+l S i B0 S B £t I

R is logically separate from the S-L storage, but can physically occupy

the space vacated by discarded Lj and sj.
This is somewhat of an anomalous situation in light of the following:

Theorem 5: For every O<p<l/2 there exists a constant cp > 0 such that
cP n log n - O(n) comparisons are necessary to determine the pnth largest

element of a set of n elements in minimal storage.

Proof: The proof is by the construction of an adversary which forces any
algorithm to sort min(p, 1-2p)n elements smaller than it. Now suppose that
the input is arranged in such a manner that the first 2pn inputs are the
2pn smallest elements of the original set. Then in the first pn steps

of elimination, we will either have to eliminate the smallest of pn + 1
elements resulting in the sorting of the smallest pn elements of the set,
or we will have to eliminate the largest of pn + 1 elements resulting

in the sorting of a set of (1 - 2p)n elements.

Surprisingly, only a small increase in storage is necessary in order

to make this problem feasible as the following theorem shows.



(14)

Theorem 6: For all € < 0, the pnth largest element of a set may be

found in linear time and (p + €)n space.

Proof: The bound is achieved by using the extra space to enable us to
eliminate en elements at a time by having (p + €)n elements in the storage
locations and using a linear selection algorithm to find the en smallest.
Since the linear selection algorithm requires only M((p + €)n) operations
to do the necessary elimination, in a total of at most %‘M((p + €)n)
comparisons we are left with pn + 1 elements of which the smallest is

the desired result. It is obvious why this result does not generalize to

satisfy the constraints of the previous theorem.

These two results may be combined to result in a continuous space
tradeoff whereby we may measure the effects of added storage according

to the following.

Theorem 7: If e(n) = o(n), then for every 0<p<l/2 there exists a constant

n
€(n)

cp > 0 such that cpn log - O(n) comparisons are necessary to determine

t .
the pn h largest element of a set of n elements in storage pn + t£(n).

Proof: The argument is similar to that used in proving Theorem 5. We
observe that we must output a structure consisting of min(p, 1 - 2p)n
elements divided into sets of elements. Within this structure, we know
the relative sizes of differing sets of elements. A total of

1 - 1
(pn) ! ‘ e 2p)n) ! } such structures exist from which an informa-
(E')pn/ 11 - 2p)n/e

min (
tion theoretic argument generates the given bound. From this result we

observe that if e(n) = n/k(n) extra space is available, then Q(n log k(n))

extra time is required, providing an interesting time space tradeoff.



(15)

5. Conclusion

A number of selectionbproblems have been considered and solved. 1In
particular we have sharpened bounds on the problem of finding.the mode
of a multiset and rélated an algorithm for multiset selection, as well as
demonstrating an interesting instance of time space tradeoffs in the
consideration of space limited selection algorithms. The general form of
our algorithms have been to deal with worst case behaviour. While most
of the algorithms presented here are not recommended for practical imple-
mentations, it should be clear that drastic simplifications can be made to
these algorithms such that the expected number of comparisons is close to

the lower bound.



6.

(16)

References

B. Allen, "On Binary Search Trees," Research Report CS-77-27, Depart-
ment of Computer Science, University of Waterloo.

Bayer, P. J., "Improved Bounds of the Costs of Optimal and Balanced
Binary Search Trees," Project MAC Technical Memorandum 69, M. I. T.,
November 1975.

Blum, M,, Floyd, R., Pratt, V., Rivest, R., and Tarjan, R., "Time
Bounds for Selection," JCSS 7(1973), pp. 448-461.

Dobkin, D., and Munro, I., "A Minimal Space Selection Algorithm that
Runs in Linear Time," Proceedings of the Johns Hopkins CISS Conference,
April 1977. Also appears as Yale Department of Computer Science
Technical Report #106.

Hwang, F. K., and Lin S., "A Simple Algorithm for Merging Two Dis-
joint Linearly Ordered Sets," SICOMP 1,1 (March 1972), pp. 31-39.
Munro, I., and Spira, P., "Sorting and Searching in Multisets,"
SICOMP, 5,1 (March 1976), pp. 1-9.

Pohl, I.,"A Minimum Storage Algorithm for Computing the Median,"

IBM Technical Report RC2701, November 1969.

Pratt, V., and Yao, F., "On Lower Bounds for Computing the ith
Largest Element," Proceedings of the 14th Annual IEEE Symposium

on SWAT, October 1973, pp. 70-8l.

Rivest, R., and Floyd, R., "Bounds of the Expected Time for Median
Computations," in Combinatorial Algorithms, ed. R. Rustin, Courant
C. S. Symposium 9, Algorithmics Press 1973, see also Rivest and

Floyd "Algorithm 488 (Select) CACM 18(1975), p. 173.




(17)

10. Schonage, A., Paterson, M., and Pippenger, N., "Finding the

Median," JCSS 13 (1976), pp. 184-199.





