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ABSTRACT

Editing by Example
Robert Peter Nix

Yale University, 1983

An editing by example system is an automatic program synthesis facility embedded
in a text editor that can be used to solve repetitive text editing problems. The user
provides the editor with a few examples of a text transformation. The system analyzes
the examples and generalizes them into a program that can perform the transformation to
the rest of the user’s text.

This dissertation presents the design, analysis, and implementation of a practical
editing by example system. In particular, we study the problem of synthesizing a text
processing program that generalizes the transformation that is implicitly described by a
small number of input/output examples. We define a class of text processing programs
called gap programs, characterize their computational power, study the problems
associated with synthesizing them from examples, and derive an efficient heuristic that
provably synthesizes a gap program from examples of its input/output behavior.

We evaluate how well the gap program synthesis heuristic performs on the text
encountered in practice. This evaluation inspires the development of several
modifications to the gap program synthesis heuristic that act both to improve the quality
of the hypotheses proposed by the system and to reduce the number of examples required
to converge to a target program. The result is a gap program synthesis heuristic that can
usually synthesize a target gap program from two or three input examples and a single
output example.

The editing by example system derived from this analysis has been embedded in a
production text editor. The system is presented as a group of editor commands that use
the standard interfaces of the editor to collect examples, show synthesized programs, and
run them. By developing an editing by example system that solves a useful class of text
processing problems, we demonstrate that program synthesis is feasible in the domain of

text editing.
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Chapter 1

THE PROBLEM

Text editors are interactive programs that help people compose and edit text on a
computer. They make it easy for people to incrementally modify their text in a free-form
and natural style. Most of the time spent in an interactive computing environment is
spent using a text editor, and interactive editing has come to be an ubiquitous paradigm
for good user interface design.

The bulk of the editor user’s time is spent on fresh, unique, and non-repetitive tasks,
such as dashing off a letter or writing this dissertation; but there are often occasions when
the user finds himself doing something repetitious and dull.

As an extreme example, consider the plight of Professor I. I{. Jones, who over the
course of years has accumulated a large collection of information into a personal database
of considerable magnitude. Professor Jones has painstakingly accreted disks and disks
filled with lists of addresses of his colleagues, scores of American League baseball games,
cross-referenced indices of his many publications, grain futures quotations, and a whole lot
more. His collection of data has grown so vast and chaotic that he cannot find a thing in
it. He knows of only one solution to his crisis: he must reorganize his varied bits of data
so that they can be uniformly manipulated by a database system. This reorganization
process is problematical because each of his personal database files must be converted
from its current idiosyncratic format to a standard format for eventual incorporation into
the database.

Professor Jones has the choice either of writing programs to transform each of his
file formats to the standard one, or of transforming his files manually with his editor. In

his case, the mass of data is so large that he would probably choose to write programs to



perform the conversion. On the other hand, if he were interested only in converting a file
containing the scores of the twenty-odd baseball games played on one weekend in May, he
would probably choose to do it by hand, in his editor. And if Jones were not a facile
programmer, he might even convert an entire year of baseball statistics manually.

Writing a program involves a fair amount of overhead, work that is not directly
connected with solving the particular problem. By far the largest portion of this overhead
lies in learning how to write computer programs in the first place. Even assuming that
the user knows how to program (Jones is an Egyptologist), he still has a lot of work to do.
In order to write a program, he has first to formulate an abstract model of the concrete
problem at hand and then follow through with the mechanics of actually implementing
his abstraction: writing the program, debugging it, running it, checking to see whether it
did the right thing, and then debugging it some more. Of course, the advantage of
programming is that once this development process is completed, the program can convert
his files in seconds.

On the other hand, converting the files by hand within an editor involves almost no
overhead. Professor Jones created and updated his files with his editor, and he uses the
editor every day in the normal course of his work, so he does not have to think at all
about how he would use it to solve this particular problem. But meticulously
transforming large files like these involves a considerable amount of tedious work. This
work is productive, in the sense that every step makes tangible progress towards the

solution of the problem, but it is tedious and repetitious all the same.

1.1 Editing by example

In what follows, we report on a theory, a design, and an implementation of a new
and interesting way of resolving dilemmas like this one. This mechanism has the
advantages of both of Professor Jones's options, and it ameliorates some of their
disadvantages. This mechanism is editing by ezample, or EBE. An EBE system is a
facility embedded in a text editor that can be used to solve repetitive text editing
problems. An EBE system takes a few examples of a text transformation and produces a
program that generalizes a rule governing the examples. Once produced, this program
can be used to perform the generalized transformation to the rest of the user's text.

To demonstrate editing by example, suppose that Jones wants to transform a long



list of baseball scores like these:

Yankees 3, Orioles 1.
Brewers 12, Cardinals 5.
Dodgers 5, Braves 4.
Braves 3, Dodgers 0.
Reds 4, Mets 2.

Pirates 2, Phillies 1.

to a database input format:

GameScore[ winner ’Yankees’; loser ’'Orioles’; scores [ 3, 1] ]
[

GameScore[ winner ’Brewers’; loser *Cardinals’; scores [ 12, 5
GameScore[ winner ’Dodgers’; loser ’Braves’; scores [ 5, 4] ];
GameScore[ winner ’Braves’; loser ’Dodgers’; scores [ 3, 0] ];
GameScore[ winner ’Reds’; loser ’Mets’; scores [ 4, 2] ];
GameScore[ winner ’Pirates’; loser ’Phillies’; scores [ 2, 1] ];

He could write a program to make this transformation, but he decides instead to use
the editing by example facility that has just been introduced into his editor. He enters

the text editor and begins his EBE session by selecting, or marking, his first example:

Yankees 3, Orioles 1.

He then issues a command to the editor that tells it that the selected text is an example
of the sort of thing that he wants to change. That is, this line of text is the sort of tnput
that he wants his transformation to affect. He then manually transforms that text to the
database format, using the editor commands he would normally use to make the change

on a single instance of the text:
GameScore[ winner ’Yankees’; loser 'Orioles’; scores [ 3, 1] J];

Once he has finished changing the line, he selects it and issues another command that
informs the editor that the selected text is the output. That is, this line of text is the sort
of thing he would like the editing by example system to produce. At this point, he could
give a command telling the editor to synthesize a program that generalizes the
transformation expressed by his example. However, he knows that the system'’s
generalization of a single example is a trivial program that transforms all instances of the
literal input text of the example to the literal output text, and since the rest of the scores
are not simple repetitions of Yankees 3, Orioles 1., he gives another example by
selecting and transforming the Brewers score in the same way.

After providing the second example, Jones feels that the system should be able to



make a decent generalization, so he asks to see it. The editor shows him the synthesized
program in a specialized notation for string search and transformation:

bol -1- 4§ -2- 11 -8- U -4- . eol

=)

GameScore [ winner)’ -I- ’losery’ -3- ’;UscoresU[U -2- .U -4- L1U]; eol
This notation defines a simple program with two parts: the part preceding the “=",
which is the input pattern, and the part following the “=", which is the output
replacement. The input pattern is a string matching pattern composed of constants and
variables that describes the format of the fragments of text that the user wants to change.
The constants in the expression above are the characters in the typewriter font, like “,{
and “GameScore[{winner[ ), which match their literal text (L is a visible space
character), along with the special constants bol and eol that match the unprintable text
fragments beginning-of-line and end-of-line. The variables in the input pattern are
signified by the numbers between dashes. A variable matches any sequence of characters
up to the constant string that follows it in the pattern. In this pattern, the variable -1-
matches the characters between the beginning of the line and the first space.

Each of the elements of the output replacement is a constant string or a variable
from the input pattern. Programs in this language execute by searching for some part of
the user’s text that matches the input pattern. When matching text is found, it is
replaced with a concatenation of the constants of the output pattern together with those
parts of the text that are matched by variables used in the output pattern. For example,
when the input pattern fragment “,|| -3- [|” is matched against the text ¢, Qrioles 7,
the variable -3- is bound to the text “Orioles”, and every occurrence of a -3- in the
output replacement expression is replaced with that text. The searching process is
continued after the point of replacement, and the program stops when no matching text is
found.

Jones decides that the synthesized program looks like it will work, so he gives a
command that runs it in single-stepping mode. In this mode, the editor asks the user for
confirmation before transforming the text that matches the pattern. The Dodgers score
is selected as the next part of the file that looks something like the two examples given so
far. Jones confirms that this is a good choice, so the system replaces the “Dodgers..."
line with the appropriate “GameScore[...” line and asks him whether the

transformation was correct. It was, and Jones thinks that the program will work for the



rest of scores, so he finishes the job by telling the system to continue and transfcrm the
rest of the file.

The next problem on Jones's agenda is slightly different. He has a large paper on
unionization among pyramid construction workers that he originally formatted using the
TEX document formatting system [53], and he would like to make the file acceptable to
Scribe [73, 74], another document formatter. This conversion process is rife with small
text transformation problems that can be solved using an EBE system. For example, he

has to change the TEX notation for describing figures:

\figure{

Foreman 10
Brickwright 3
Siave Driver 0
Slave 0

}{Pyramid Construction Wage Scales}

to a different form for Scribe:

@Begin(Figure)
€Begin(Format)

Foreman 10
Brickwright 3
Slave Driver 0
Slave 0

QEnd (Format)
@Caption(Pyramid Construction Wage Scales)
@End(Figure)

As with the baseball scores, Jones gives this example by selecting the input text, giving it
as an input example, changing it to the desired output, and then giving that text as an
output example. After Jones gives a second example of this transformation on a similar
figure entitled “Pyramid Worker’s Life Expectancy (by Occupation)”, the

editing by example system has the following incorrect hypothesis:

3]



bol \figure{ eol
Foreman i tijtit] -1- eol
Brickwright{ L1l -2- eol
StavelDriver il -3- eol
Slavel J1pi1tiity -4- eol
Y{Pyramidy -5- } eol

@Begin(Figure) eol
€Begin(Format) eol

Foreman{djiiiit] -1- eol
Brickwrightidill -2- eol
Siave Driver tl] -3- eol
Stavel 411111} -4- eol

@End (Format) eol

@Caption(Pyramidy -5- ) eol

QEnd(Figure) eol
The system found that the text begins on a line with “\figure{” and ends on a line that
contains the caption notation, and it also discovered a transformation that could map the
input examples to the outputs. However, a great deal of accidental commonality in the
two examples was found as well: the two figures both listed occupations connected with
pyramid construction, so they shared the names of the occupations; and both captions
happened to begin with the word “Pyramid ”. While this program will serve to find and
transform the next figure that shares these traits, it will ignore figures whose caption, for
instance, starts with any word other than “Pyramid ". So Jones provides a third
example that does not share these unintended common features by transforming

\figure{

\include{overrun.graph}
}{Construction Time QOverruns}

in the same way. After this figure is given as an example, the editing by example system
generates a more streamlined program which serves to transform the rest of the figures in

the paper:



~1

bol \figure{ eol
-1- eol
}H -2- } eol

=

CBegin(Figure) eol
€Begin(Format) eol
-1- eol

€End (Format) eol
@Caption( -2- ) eol
@End (Figure) eol

Most of the other transformations involved in converting Jones's paper from TEX to
Scribe can be done in a similar fashion, by giving examples for each particular
transformation and converting all of the other instances of the transformation with one
run of the synthesized program. When the process of conversion from TEX to Scribe is
viewed incrementally, each of the steps is simple, and the exceptions and special cases
that are bound to occur can be handled individually with little effort.

These two scenarios involved massive text processing tasks, the sort of tasks that can
consume hours, and the sort of tasks that are not done every day. An editing by example
system can also be used to solve smaller problems; indeed most of the applications of an
EBE system fall into this category.

For example, suppose that a programmer is involved in debugging some network
software, and has written a program called “chaos_server_creator” which is used to
create network servers. The server creator has a bug which causes it to erroneously create
a large number of “name_server” programs. When the programmer hears about this
bug, he lists out in an editable transcript the processes that are running on the network
server's machine and discovers that there are indeed a large number of runaway name

Servers:



$
$ Id -u //gamma/sys/node_data/proc_dir

Directory "//gamma/sys/node_data/proc_dir":
uid name

16FCFEQ6.EQ00009C chaos_ncp
16FCFE97.7000009C chaos_server_creator
16FCFE95.2000009C display_manager
16FCFES6.A000009C mbx_helper
1704B389.3000009C name_server.102
1704B3EC.6000009C name_server.103
1704B3F1.9000009C name_server.104
1704B3F8.C000009C name_server.105
1704B3FE.F000009C name_server.106
1704B404.2000009C name_server.107
1704B410.5000009C name_server.108
1704B41A.8000009C name_server.109
1704B423.B000009C name_server.110
16FCFE97.4000009C net_mail_daemon
1704E64D.3000009C process_28

15 entries.

$

The runaway name servers are sopping up all of the resources on the network server
computer, so the first step in fixing the bug is to kill them off. To kill processes on a
remote machine, the programmer has to run a special version of the “sigp” program that
he keeps in his “toolbox” directory, supplying it with the unique identifier’s (uid's) of the
processes that he wants to kill (the pair of hexadecimal numbers in the left column). The
programmer can kill off these processes by issuing the following set of commands to the

command interpreter.

“toolbox/sigp -u 1704B389 3000009C
“toolbox/sigp -u 1704B3EC 6000009C
“toolbox/sigp -u 1704B3F1 9000009C
“toolbox/sigp -u 1704B3F8 C000009C
“toolbox/sigp -u 1704B3FE F000009C
“toolbox/sigp -u 17048404 2000009C
“toolbox/sigp -u 17048410 5000009C
“toolbox/sigp -u 1704B41A 8000009C
“toolbox/sigp -u 1704B423 B000009C



To produce this sequence of commands, he selects the line containing
1704B389.3000009C name_server.102

as an input example, changes the line to read
“toolbox/sigp -u 17048389 3000009C

and selects it as an output example. He does the same thing for the line named
“name_server.103”, and asks the system to generalize the two examples, yielding the

following program:

bol 1704B -1- . -2- Clliname_server. -3- eol
=

“toolbox/sigpli-ui17048 -1- || -2- C eol
He then applies the program to the rest of the list, which transforms it to the process
termination commands. He can then give the commands as input to the command
interpreter, which will run the process-killing program for each of the runaway processes.
This entire procedure takes about fifteen seconds, and the pregrammer can go on about
fixing the bug that caused the problem.

In each of these scenarios a text editor user is faced with the problem of changing
the format of some parts of a larger body of text. The EBE system provides a way for
the user to write programs that can perform such transformations. The programs work
by hunting out the text to be transformed, parsing it into its constituent fragments, and

rearranging the fragments as desired.

1.2 Goal and approach of the thesis

This dissertation proposes a practical design for an EBE system. A practical editing
by example system is one that a person like Professor Jones would turn to out of choice
when faced with a text processing problem whose solution demands either programming
or drudgery. The practicality of the system arises out of a combination of several factors:
First, it must be powerful enough to synthesize programs that can solve the text
processing problems that the user encounters. Second, it must be easy and natural to use,
which is determined both by the engineering details of the user interface and the
requirements for information imposed by the system. Third. it must be efficient. both in
computational terms and in the amount of information that it requires of the user.

Fourth and foremost, a practical EBE system must ezfst and work, otherwise practicality
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is not an interesting issue.

The simultaneous satisfaction of these requirements requires compromise. The desire
for a powerful system is the most difficult to satisfy; our ability to efficiently synthesize
useful programs from examples is nowhere near as advanced as our ability to come up
with text processing problems that look like they can be solved by example. What we
present in this thesis are schemes for synthesizing text processing programs that solve
some of the text processing problems a user might face. We would like to think that we
have captured quite a few of them, but we know for certain that there are some that
we've missed.

Since we are not able to solve all of the text processing problems that we would like
to, it is extremely important that we have a clear notion of which problems lie within the
system's range. It is unlikely that a user would be willing to go to the effort of giving
examples to a system that has failed him in the past without explanation. The only way
we know of getting a clear notion of the system’s capabilities, and of having an
explanation ready, is to formulate an analytical model of those capabilities. Thus a large
portion of this dissertation is devoted to a formal analysis of the power of one scheme for
text program synthesis.

In the next chapter, we begin the development of an EBE system by surveying
related research in the areas of programming by example, inductive inference, program
synthesis from examples, and grammatical pattern inference. We then examine the
sequence of decisions that led to the development of the system described in Section
1.1 by considering both the feasibility of various system design alternatives and the
impact that pursuing them would have on the user of the system. As a result of these
considerations, we decide to develop an editing by example system that works by
synthesizing a class of text processing programs called gap programs from examples of
their input/output behavior.

We go on to define gap programs and to examine some of their basic properties. \We
then analyze the computational complexity of the problems associated. with identifying
them from input/output examples. The results of this analysis inspire the development of
a heuristic algorithm for gap program synthesis. We prove that, given adequate data, the
heuristic can be guaranteed to synthesize the user’s intended gap program.

An experimental study of the gap program synthesis heuristic's behavior leads to the
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formulation of several modifications that improve its performance on small amounts of
data. The gap program synthesis algorithm that results can usually synthesize a target
gap program from two or three examples of its input and a single example of its output.
This algorithm has been implemented within the EBE subsystem of the U editor [66]; the
details of U's EBE user interface are presented.

We go on to examine some proposals for extending the EBE system to create more

sophisticated programs, and we close with a brief conclusion.
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Chapter 2

RELATED WORK

Ours is the first work on program synthesis from examples in a text editor; however,
a large body of other research has bearing on the issues that we address in this thesis.
The first step of our survey of this work is to review the approaches that have been taken
to providing facilities for programming by example. In general, programming by example
research has concentrated on developing novel facilities for transcribing programs; the
facilities developed do not generalize their sample data in an interesting way. We want
more ambitious generalizations, so we go on to survey the theory of inductive inference,
which provides a formal framework for viewing the process of generalization from
examples. We then present a short overview of the techniques used by automatic
program synthesis systems. Finally, we survey research on grammatical inference, which

is an approach to the problem of discovering patterns common to a set of strings.

2.1 Programming and program transcription systems

Text processing problems like those posed in Chapter 1 are typically handled
through programming. On the Unix system [50], for example, the user has many ways
available to him for programming a solution to the problem, each with its own difficulties
and demands for expertise: he can write a general purpose tool, which would probably be
a C program that solves this general class of problems; he can write a special purpose
program in a systems programming language, like C, that performs exactly the
transformations needed; he can write the same sort of special purpose program, but in a
string processing language such as SNOBOL, Icon, or awk; or he can piece together a

program from several general purpose file transformation filters using the shell

13
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programming language. If the user’s editor is programmable, he can write a program
within the editor's embedded programming language that composes editor primitives into
a special purpose command for this task. If his editor is not programmable, but the user
is familiar with its internal structure and implementation, then he might add in some
special-purpose editor commands to help him get the job done.

Some of these options require less effort than others, perhaps because the resulting
programs are shorter, or perhaps because they run in an environment that makes writing
and debugging them easier. But all of the options require some knowledge of
programming and the desire to use that knowledge to solve a particular text processing
task. If the user does not know how to program, or does not feel like programming, or
regards the problem facing him as too trivial to program, then he is likely to solve the
problem manually using the basic command set of his editor.

While doing this, the user will probably use a similar set of commands to solve each
instance of the problem. If he uses exactly the same commands to solve each instance,
then the simplest wasr to turn these commands into a program is to record the commands
used to solve one instance of the problem and to “play them back”, or re-execute them,
to solve the next instance of the problem. Such program transcription facilities are
widespread and are usually called the macro language in most text editors, such as
EMACS [85] or Z [98], although this facility is called “programming by example” in the bb
editor described by Meyrowitz and van Dam [62].

A similar sort of programming by example facility, but in a different domain, has
been implemented by Halbert within SmallStar, a Smalltalk prototype of Xerox's Star
office system [38]. In SmallStar, the user specifies a program in CUSP, Xerox's customer
programming language for the Star, by graphically tracing its execution. For example, to
write a program that prints all “documents” in a “file folder,” the user enters “start
recording” mode and goes through the actions he would normally take to pull a document
out of a folder and print it. The system uses a simple heuristic to decide which of the
objects being manipulated stand for variables in the program, but the user must specify
loops and other control structures explicitly.

Several other systems have used the “by example” paradigm to make the process of
programming more natural: Smith's Pygmalion system [83], was an earlier experiment

with developing a system like SmallStar that also included a program transcription



component. Curry [20] implemented a system for programming by abstract
demonstration that is similar in spirit to Smith'’s. Zloof’s Query-By-Example
system {99, 100] provides a template-style interface to a relational database. In QBE, the
user formulates a relational query by filling in the slots of a table portraying this query.
QBE and other related systems (101, 102, 103] are unambiguous programming languages
that take advantage of the tabular nature of their domains to give the act of
programming a “by example” flavor. Lieberman and Hewitt’s Tinker system experiments
with a program development method that interleaves testing and design [57]. In Tinker,
a program is developed by supplying examples of the use of sub-functions and expanding
the definitions of these functions when the computation on the example data demands it.
Hatfield developed a design for an interactive document formatting language in which
formatting styles are specified by demonstrating them on a template [40]. Industrial
robots receive some of their programming by being “led” through the mechanical motions
they are to perform [90]. This same style of programming by example has been used in
Perlman's Tortis system for teaching programming concepts to young children (mentioned
by Smith [83]).

These systems all represent interesting research in user interfaces for programming,

but they do not perform interesting generalizations of the behavior shown them.

2.2 Inductive inference

Inductive in ference is the theoretical foundation for the process of program synthesis
from examples. Researchers in inductive inference have focused on finding and
characterizing solutions to the problem:

Given a set of examples that conform to some unknown rule, how do we choose
the “best” explanation for the behavior shown?

Inductive inference is a familiar task for any student who has taken a standardized test.
These tests often present students with the start of a sequence, such as:

1, 3,7, 15, 31,...
and ask them to select “the” next element of the sequence from the choices provided. To
find this element, the student must divine the rule governing the generation of the
sequence (or be a talented guesser).

Such examinations test the student’s ability to function as an inductive inference
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algorithm with three inputs, two of which are implicit in this case. The explicit input is a
set of examples which are implicitly described in some language. In this case, the example
set is a single numeric sequence and its presentation language is the language of
arithmetic. The other implicit input to the algorithm defines the range of explanations
for the sequences that should be considered by the student in forming his guess. This set
is difficult to define in this case: the examiners probably mean it to encompass all
functions that can be expressed as reasonably simple combinations of the arithmetic
operators familiar to a high school student. The student’s job is to find a function fin
the allowable range of explanations with f(1) equal to 1, f(2) equal to 3, ..., and f(6)
equal to one of the choices provided. Of course there are an infinite number of functions
that have this initial behavior; these tests implicitly ask for the simplest one.

Gold, motivated by the problem of charactenzing the process of language learning,
introduced an abstract setting for studying inductive inference [32]. The inductive
inference problem for languages is the problem of deciding which language L of a set of
languages U is characterized by a set of examples' E. Each example in E shows a string
and indicates whether or not that string is in the target language. For instance, suppose

that U is the set of regular languages over the symbols {0,1}, then

E={<0,in>, <1,0ut>, <0011;:n>, <10101,0ut>,
<101011,in>, <1010111,0ut>, <1010110,in>, ...}

might characterize the regular language L consisting of the binary strings of even parity.
In Gold’s work the process of inductive inference is assumed to take place on an ever
expanding, potentially infinite list of examples in which every possible string occurs at
least once in the list along with an indication of whether or not it is in the target
language. Gold defined an algorithm I to ¢denti fy a language in the limit if, as more
and more examples are provided, I eventually settles on one explanation that fits the facts
and does not subsequently change this explanation. A class of languages U can be
identified in the limit if every LEU can be identified in the limit.

Identi fication by enumeration is a general inference technique introduced by Gold in
which I tries each of the elements of U in some fixed order L, Lg, L3, ... and returns the
first L consistent with the examples seen so far. When this algorithm is presented with a
new fact that is not covered by its current explanation, it switches to the next language in

the enumeration that works. In general, an algorithm cannot decide that it has
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successfully identified a function in the limit because new data may conflict with its
current conjecture.

Identifying functions can be related to identifying languages by viewing a function f
as defining the language consisting of all pairs <z,f(z)> for every z in the domain of f.
Using an enumerative algorithm, Gold showed that a set of functions ' can be identified
in the limit from input/output examples if it is recursively enumerable with a decidable
halting problem. For languages, as opposed to functions, this identification requires
examples both of strings that are in the language and strings that are not. To
demonstrate this, Gold proved that if U contains all finite sets and at least one infinite
set, then it is possible for an adversary to keep an inference algorithm supplied only with
positive examples from converging to a correct answer. This implies, for example, that an
arbitrary element of the regular sets cannot be identified in the limit from positive data.

Gold distinguished two ways of presenting examples to an inductive inference
algorithm: text and in formant. Presentation by text is passive: the ordering of the
infinite list of examples is fixed in advance. An inductive inference algorithm working
from a text presentation is limited to reading the next example from the list and
returning its current conjecture. On the other hand, example presentation via an
informant is active: an inference algcrithm can ask the informant if a particular string is
an element of the target language and use the informant’s answer to formulate ancther
query. In an abstract sense, these two presentation techniques are equivalent {although
there are settings where they are not [45]), because an inference algorithm working from
text can act as if it is working with an informant by reading and remembering examples
until the answer to its question appears in the example list. Cf course, there is a
considerable practical difference between the two techniques.

A great deal of interesting research in inductive inference has been done since Gold’s
initial papers. Blum and Blum [15] extended Gold's work by defining identification in the
limit relative to a complexity bound, thus allowing identification in the limit for classes of
functions that do not have decidable halting problems. Many researchers have designed
algorithms and heuristics that inductively infer various classes of functions and languages:
some of these will be discussed in the following sections. Further discussion of inductive
inference can be found in Angluin and Smith's survey [5].

The theory of inductive inference provides an elegant formal setting for examining
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the problem of generalization from examples, but it does not offer practical techniques for

program synthesis.

2.3 Program synthesis systems

2.3.1 Program synthesis from I/O behavior

Perhaps the earliest program synthesis systems were those of Fredkin, Pivar,
Finkelstein, Persson, and others [29, 68, 69, 70], who did research in the early 60’s on the
problem of extrapolating numerical sequences. Their programs worked by testing the
example sequence for special-case properties, such as a constant difference between every
adjacent pair of numbers. These systems were successful at identifying and extrapolating
the function generating an example sequence because the domain of numerical sequences
was restricted enough so that a small number of special case rules could be composed
together to make a powerful and robust system. This outcome was heartening, but
extrapolating from sequences to programs has proven to be much more difficult.

Artificial Intelligence researchers working on Automatic Programming have
approached the problem of program synthesis by developing knowledge-based systems for
reasoning about programs 8, 59, 60, 61, 89]. Perhaps the most ambitious project in this
area is PS], carried out by Green and his colleagues at Stanford [34, 35, 36, 39, 80]. This
project’s principal focus was on understanding, codifying, and implementing the complex
heuristics that are used by real programmers as they go about their work. Along the way
though. a few systems that synthesized simple list manipulation functions from 1/O
behavior were implemented [34]. These systems were based on schemas — they check the
input/output examples to see if they fit a particular stylized type of program and
synthesize a variation of the stylized program if they do.

Summers presented a more formal approach to this style of Lisp program
synthesis [87, 88] that has since been refined by many other
researchers {47, 48, 49, 54, 55]. Summers’ system, THESYS, takes several examples of the
input/output behavior of a list processing function and tries to construct a simple
recursive function involving the Lisp primitives car, edr, cons, atom, and cond that can
effect the transformation described in the examples. THESYS constructs the program by

transforming the input/output examples to a canonical form that igrores the actual
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atoms being manipulated, and then searching for a recurrence that describes the relations
among the canonicalized examples.

Shapiro approached the problem of program synthesis from the point of view of
program debugging [76, 77, 78, 79]. Shapiro’s Model Inference System fixes a “buggy”
Prolog program fragment when it encounters an example of the input/output behavior of
the program that is incompatible with the current hypothesis. Shapiro’s system works by
accepting facts, generating axioms to explain the known facts, debugging the axioms
when a contradictory or unexplained fact is found, and generating queries to differentiate
between candidate axioms. The Model Inference System depends on an oracle, namely
the user, to provide examples of the target function’s input/output behavior and to
answer questions of the form “is f(z)=y?"; good examples, that cause the system to

revamp its buggy hypotheses, can speed the program synthesis process.

2.3.2 Program synthesis from traces

Analysis based solely on the input/output behavior of a demonstrated function
ignores a great deal of information: the actual operations that were used to produce the
function’s behavior. The record of these operations is called a trace.

Biermann has developed several systems that have explored techniques for program
synthesis from traces. He began by synthesizing formal machines from traces of their
state transitions. He developed algorithms for synthesizing both finite state machines [10]
and Turing Machines [11]. Subsequently, he experimented with the synthesis of programs
written in an Algol-like language [13] and a restricted form of Lisp {14]. The Algol-like
program synthesis system typifies his approach: the user begins an “autoprogramming”
session by declaring the name of the function that he wishes to synthesize, the names of
its parameters, and the names of any intermediate values he requires. Next he simulates
each step of the target program's execution by going through actions of the form
“ ;= [+1”, and “A[J] := A[l]”. The system analyzes this information and tries to infer
the existence of loops and conditionals. The inference process is carried out by looking for
blocks of statements that are equivalent modulo updates to loop induction variables.
Biermann reports the synthesis of a small compiler for an Algol-like language using this
technique [13].

Waterman, Faught, and others {25, 28, 94] coined the name “exemplary
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programming” to describe the function of EP, a programming by example system that
was designed to address the trivial day-to-day programming needs of a user interacting
with a computer. EP examines the text of a user’s interactions with systems programs
(such as a network file transfer program), with the goal of constructing “agents”
(programs) that will subsequently handle the details of this sort of interaction
automatically. For example, EP would synthesize a file transfer agent by analyzing one
example of the dialogue between a user and a network file transfer program. The
synthesized agent is named by the user and stored in a library with other agents, to be
subsequently invoked when the user wants to perform the task again. EP’s agent
synthesis process involves almost no generalization on the part of the system.

Other systems have done some form of program synthesis from traces. Automatic
programming efforts such as Green's PSI have made use of a program
trace [39, 80, 34, 35, 36]. Bauer [9] implemented a system that extended Biermann's by
allowing all program actions to be annotated with a justification. For example, a trace in
Biermann's system might contain the statement “I ;== [+1", while in Bauer's the user
could communicate more intent by saying “Since J<5 then I := I+1". Witten
implemented a scheme for communicating simple programs to a pocket calculator by
giving examples [97].

There has been a great deal of research in the area of program synthesis, and it will
not be surveyed further here. The interested reader should consult Balzer's early
paper (8], Green, et.al.’s report [34], or the survey of Smith {4]. There has also been
considerable research done in the area of machine learning, which is not closely related to
our work in editing by example. Dietterich, London, Clarkson, and Dromey's survey [21]
examines work on machine learning, and a compendium of current research may be found
in the book of Michalski, Carbonell, and Mitchell [83].

Most of the work in program synthesis has concentrated on synthesizing general
purpose programs from examples. Such programs can vary widely in their structure and
behavior, and it is thus not surprising that a small amount of example data does not serve
to describe very many interesting programs. All of this research is experimental; none of

these systems have been put to production use as a method of writing programs.
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2.4 Finding patterns common to a set of strings

The programs described in Chapter 1 consist of two parts: a pattern expression that
describes the format of the text that is to be transformed, and a replacement expression
that computes the transformation. In this section we survey some of the work relevant to
the problem of sy.nthesizing the pattern expressions from examples; a broader overview
may be gathered from the surveys of Biermann and Feldman {12], Fu and Booth [30], or
Angluin and Smith [5].

Pattern expressions are used to describe the syntactic structure of the text that is to
be transformed; perhaps the two best known formalisms for describing the syntactic
structure of text are regular expressions and context free grammars.

A well known result of Gold shows that if a class of languages includes all finite
languages and at least one infinite language, then no algorithm can identify arbitrary
elements of this class in the limit from positive data [32]. Regular expressions define a set
of languages that satisfy these criteria, so no algorithm can converge to an arbitrary
regular expression without some added information. However, several different forms of
additional information make identification possitle.

One form of additional information is negative data; an inference algorithm that is
provided with negative data as well as positive data can identify regular expressions from
examples. For example, an algorithm could work by successively drawing hypotheses
from a complete list of all regular expressions and testing its current hypothesis drawn
from the list against the positive and negative samples provided. If the hypothesis either
does not match some positive sample or successfully matches some negative sample, then
the algorithm can change its guess to the next expression in the enumeration. This
algorithm is guaranteed to converge to a correct expression because such an expression
occurs at some earliest location in the enumeration, and all of the preceding expressions
will eventually demonstrate that they match some negative sample or fail to match a
positive one.

Regular expressions can be identified solely from positive data if an inference
algorithm is provided with some extra piece of information about the samples that
restricts the number of times that an adversary can force the algorithm to change its
current hypothesis. For example, if it is known that the target regular expression is, say.

less than 1,000 characters long, then the algorithm could work by guessing the regular
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expression that generates the minimal enclosing language containing the current set of
samples, and changing its guess when it is provided with a sample that is not in the
language generated by its current hypothesis. This algorithm converges for two reasons:
it guesses an expression generating a minimal language, which either is equal to the target
language or fails to contain strings that are in the target language; and there are a finite
number of candidate expressions that are less than 1,000 characters in length, so the
algorithm can change its hypothesis only a finite number of times before converging. The
bound on the size of the target expression does not have to be given explicitly. For
example, the algorithm could assume that some initial set of samples restricts the search
space; e.g. an initial sample set of {abad,ababad,abababad} might be assumed to imply
that the target expression is no longer than (abad|ababad|abababad).

Although it is possible to identify regular expressions from examples, efficient
algorithms for this task have not been developed. Angluin [3] showed that the problem of
finding a minimal length regular expression that matches a given set of positive and
negative samples is NP-hard. The problem remains NP-hard even when the class of
regular expressions considered does not use union, or when it disallows the use of closure.

There has been somewhat more success in synthesizing finite automata from
examples, although Gold showed that the corresponding problem of finding minimal finite
automata from positive and negative examples is NP-hard [33]. Feldman [27] formulated
a general strategy for enumerating automata that structures the search space so that
unworkable solutions can be quickly pruned. Pao and Carr [67] presented an enumerative
algorithm based on a variation of this strategy that identifies finite automata from a
combination of input/output behavior and queries about the acceptability of strings.
Biermann and Feldman [10] applied a similar idea to the identification of sequential
machines from input/output information.

Trakhtenbrot and Barzdin [92] showed that if the sample set includes positive and
negative data that classifies all strings not exceeding a given length, then there is a
polynomial time algorithm which finds a deterministic finite automaton with the minimal
number of states compatible with the sample. Their algorithm runs in polynomial time
because its input has been padded; if the size of the alphabet is 2, and samples up to
length 20 are required to express the intricacies of the target automaton, then the

algorithm needs more than 2,000,000 samples. Angluin [3] presents results that
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characterize how much this padding can be reduced and retain the polynomial running
time.

Angluin found a polynomial time algorithm for inferring a deterministic finite state
machine from positive data and a polynomially bounded number of queries [6], which is
related to the problem for which Pao and Carr developed an enumerative algorithm [67].
This algorithm starts with an initial set of strings that are accepted by some target finite
automaton. The sample set is assumed to exercise the automaton completely in the sense
that the machine passes through every one of its states while accepting the strings in the
set. The algorithm then makes a polynomial number of queries concerning the
acceptability of other strings derived from the initial set, and it uses the answers to these
queries to synthesize the target machine in polynomial time.

Finite automata are a cumbersome notation for describing the structure of text, and
thus regular expressions would be a more desirable target for a text processing system. A
regular expression synthesis algorithm could work by using a finite automata
identification procedure to synthesize an automaton that recognizes the samples and then
transforming the automaton to a regular expression. But the process of converting
deterministic finite automata to regular expressions can create regular expressions that are
exponentially larger than the input automata [22], and regular expression minimization is
an intractable problem [86]. Even if the finite automaton is the minimum state
automaton that accepts the samples, the resulting regular expression may not be the
minimal expression that generates a language that contains the samples.

The synthesis of context-free grammars has also been studied by many researchers,
but it appears to be more difficult than regular expression synthesis. Feldman {27] and
Feldman, Gips, Herning, and Reder (28] considered enumerative schemes for identifying
context-free grammars from examples that make use of Feldman's scheme for trimming
the search space. Wharton [95] also presents an enumerative algorithm for identifying
context-free grammars from examples.

Crespi-Reghizzi, Melkanoff, and Lichten [18], and Crespi-Reghizzi, Guida, and
Mandrioli {19} have developed efficient techniques for synthesizing subclasses of context-
free grammars. [n these systems the user is required to specify the unlabeled parse tree of
each sample by bracketing the parts of the samples that are produced by each subtree.

The task of the system is to find a good way of labeling the interior nodes of the parse
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tree with the names of the productions that they represent.

Angluin developed polynomial time algorithms for two special classes of languages:
the reversible languages [7] and the pattern languages [4]. The reversible languages are a
subclass of the regular languages [7]; a regular language L is k-reversible for a nonnegative
integer k if whenever u,vw and u,vw are in L and |v] =k, then for every z, u,vzisin L if
and only if uyvz isin L. For example, the language describing the set of binary strings of
even parity is a zero-reversible language. Angluin presents an algorithm for finding the
smallest k-reversible language containing a positive sample that runs in polynomial time
for each fixed k. Reversible languages do not appear to be applicable to describing the
patterns encountered in text.

The pattern languages are generated from patterns, which are a concatenation of
constants and variables, for example, 122z or 32zy52zy. The language generated by a
pattern is the set of strings obtained by substituting non-null constant strings for the
variables of the pattern. The language of 45222 includes the strings 45112 and
451221222, but not the strings 452, 45132, or 666. Angluin presents an algorithm for
finding a smallest pattern language containing a given set of positive samples and shows
that this algorithm runs in polynomial time if the pattern contains only one distinct
variable [4].

Shinohara's extended regular pattern languages [81, 82| are related to Angluin’s
pattern languages, except that the variables in each pattern can occur only once, and the
variables are permitted to match the null string. For example, 3522 and 1x3y4:2 are
extended regular patterns, but 42522 is not. Shinohara presents an algorithm for
identifying extended regular pattern languages in the limit from positive data, and he has
applied the algorithm in a domain that bears an interesting resemblance to editing by
example. Shinohara's idea is to use the algorithm to provide “a data entry facility with a

learning function”. If the user were entering, for example, a bibliographic database, then

he would begin his session by typing in the first few entries:
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$

Author:  Angluin, D.

Title: Inductive Inference of Formal Languages from Positive Data

Journal: Inform. Contr. 45

Year: 1980

$

Author: Maier, D.

Title: The Complexity of Some Problems on Subsequences and
Supersequences

Journal: JACM 25

Year: 1978

$

where “$” is a special symbol that delimits the records. After a few records have been

entered, the system would infer the structure of the records in the form:
Author: wTitle: zJournal: yYear: z

It would then emit the constant parts of the form, such as “Author: 7, wait for the
user to enter the field w, and go on to the next ficld when the user is done entering the
author.

Shinohara's work was performed independently of ours, but extended regular
patterns bear a close resemblance to the pattern matching notation introduced in Chapter
1 and developed in Chapter 4, which we call gap patterns (we call the variables “gaps”).
There are two important differences between the notations: variables may not occur at
the end of a gap pattern; and the text matched by a variable is not allowed to contain the
string that follows the variable in the gap pattern. These restrictions arise from the
application: gap patterns are used to search through large pieces of text for fragments
that resemble the examples given, while extended regular patterns are used in a more
controlled environment to synthesize a data entry form.

With the exception of Shinohara's work, the techniques for synthesizing patterns
from examples have not seen practical application. Tkis dissertation presents both an
algorithm that performs an interesting kind of pattern synthesis from positive data and
the complete design of a practical system that makes use of the algorithm to provide a

facility for editing by example.
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Chapter 3

DESIGN ISSUES IN EBE

There are an enormous number of different ways to design and build an EBE system.
Our first stab at reducing the scope of the problem is to form a simple and not too

restrictive model of the process carried out by an editing by example system:

Sample Synthesis Runm

Data Procedure Program

The goal of the EBE system is to find a target program that will solve the user’s text
processing problems. Towards this end, the EBE system collects sample data that
describes the desired behavior of the target program and uses its synthesis procedure to
map from the sample data to a runnable program. If the user is completely satisfied with
the synthesized program, he can run it over and over again until he is through with his
editing task. On the other hand, if the program does not satisfy him, he can cause the
system to create a better program by supplying more data to the synthesis procedure and
beginning the process anew.

This view of editing by example raises several questions: What sort of programs
does the EBE system synthesize? What sort of information deces the user provide the EBE
system? How does the system synthesize the programs from the information? What sort
of interface does the user see? The answers to these four questions are closely
interrelated, but we will attempt to treat them one at a time. The remainder of the
chapter will discuss the first two questions, the answers to which will determine the

structure of the system to a great degree. The third question will be dealt with in
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Chapter 4, which contains the detailed development of a particular algorithm for text
program synthesis. The user interface will be presented along with the rest of the

implementation in Chapter 5.

3.1 What sort of programs does the system synthesize?

The goal of an EBE system is to synthesize programs that help a user transform his
text in some regular manner. Text is a ubiquitous data structure that can be used in a
natural way to represent almost anything, so it is possible that these programs could be
called on to perform arbitrary computation. But we do not know how to effectively
synthesize arbitrary programs, so instead we will restrict our attention to some of the
typical applications for text processing programs inside a text editor.

Many applications come to mind. The user might be performing a pattern directed
scan and edit as was shown in the examples in Chapter 1. The user might be performing
some knowledge-based function on his text, such as renumbering a list or changing digits
like “9” to names of months like “September”. The user might be performing a
specialized procedure on his text: sorting some lines, adding up columns of numbers,
filling and justifying paragraphs, or performing the join of a database relation. Or the
user might be manipulating the text as if it represented a more complicated data
structure such as a program parse tree.

Many applications come to mind, but if we are to make progress on a practical
editing by example system, then we must concentrate on one of them. We have chosen to
concentrate on synthesizing programs that scan and edit text.

A typical sort of task handled by a text scanning and editing program is that of

transforming a large file containing many Lisp function definitions:

(defun factorial (n)
(cond ((¢=n 1) 1)
(t (* n (factorial (= n 1))N)N

(defun sort (1)
)

(defun halts (f)
)

to be in a different form:



(define (factorial n)
(cond ((<=n 1) 1)
(t (* n (factorial (- n 1IN

(define (sort 1)
)

(define (halts f)
)

The process of changing one of these definitions can be viewed as consisting of two
distinct phases: looking for the next function definition that should be changed, and

changing that definition once it is found.

3.1.1 Pattern matching

The first phase can be handled by a fragment of the synthesized program that
searches for a distinct configuration of text. There are a variety of well-known styles in
which the target of the search could be specified: formal language notations such as
regular expressions or context free grammars [42], procedural string matching code as in
SNOBOL [37], ad hoc string scanning code such as that implemented in the runtime
libraries of many programming languages such as C [51] or Bliss [23], and recursive
symbol scanning code as is commonly written in Lisp. There are two criteria on which we
could decide to prefer one notation to another: the first is how well the notation
expresses the patterns that appear in text; the second is whether a program synthesis
system can effectively synthesize the text scanning patterns that the notation expresses.

The conclusion to be drawn from the survey of program synthesis systems in
Chapter 2 is that research into program synthesis has not yet yielded a practical method
for reliably, robustly, and efficiently synthesizing general purpose programs from example
information. The approach of adapting a general purpose program synthesis strategy to
the synthesis of general purpose programs that just happen to be scanning text would
probably not yield a practical system. The approach that we will take instead is to
consider synthesizing programs of limited power that are specialized to string scanning.

Context free grammars are often used to describe the syntactic structure of
programming languages, and there have been a number of systems that use variants of

context free grammars to specify programming language parsers, the best known of which
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is probably Johnson's yacc [48]. Context free grammars can represent all of the structures
expressible by regular expressions, and so one might expect them to be preferred to
regular expressions for text processing problems. However, this extra power comes at
considerable cost; context free grammars are a verbose and clumsy notation for expressing
the structures that commonly occur in text and have not been widely used in this
application. They are also difficult to synthesize from examples: only enumerative
algorithms have been proposed.

Regular expressions represent text structures more concisely, and they and some of
their subclasses have been widely applied to text scanning and editing [2, 91]. The text
editor ed [50] uses regular expressions to specify the target text of an edit. The well-
known Unix programs grep, egrep, and fgrep [75, 50] search a collection of files for lines
that match a pattern that is specified by a regular expression. The Unix file processing
tool awk [1] uses a subclass of regular expressions to filter out the lines to be processed;
the programming language POPLAR [64, 65] has a similar text scanning language. Lesk’s
lexical analyzer generator lex [56] uses regular expressions to specify the token-level
syntax of programming languages. Many systems implement a wildcard syntax for
specifying file names that is a subclass of regular expressions, e.g. in the Unix shell “x_ ¢”
names all files ending in “.c”.

Regular expressions seem to be powerful enough for many text processing
applications, but it is difficult to synthesize them from examples. As we saw in the
survey in Section 2.4, finite automata can be identified from positive data if it is assumed,
for example, that a sample set exercises all of the states of the automaton. Finding a
minimal finite automaton from positive and negative data is NP-hard [33, 3], and perhaps
more importantly can require quite a few samples [3]. If the algorithm is allowed to ask
the user if some particular string would be acceptable, then it can converge to an answer
after making a number of queries that is polynomial in the number of states in the target
machine [68], but O(n2) queries are too many to realistically impose on a user.

These are algorithms for finding finite automata, not regular expressions. The finite
automaton can be converted to a regular expression, but the resulting regular expression
can be very large, and is unlikely to be the one that the user had in mind. The finite
automaton itself could be used as the hypothesis, but finite automata are large and

cumbersome objects that are not suitable for showing to a text editor user (in Section
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5.14, we will discuss why we want to show the program to the user).

Another problem with regular expressions is that they are a little too expressive. A
given set of strings can be matched by an infinite number of regular expressions, and even
if the strings are assumed to exercise all of the features of the target regular expression,
the number of regular expressions that still could be the pattern common to the strings is
very large. Regular expressions are not tailor-made for the text processing application;
they are more general than is normally required, and are not ideally suited to expressing
the standard structures of text. The subclasses of regular expressions that express
commonly encountered text structures are difficult to characterize, and because of this, it
is hard to come up with preference criteria that can enable a synthesis algorithm to
choose the most “natural® explanation from among several candidate regular expressions.

Regular expressions are not fully supported by most of the systems mentioned above
— of those mentioned, only egrep and lex support the full regular expression notation, the
others support restricted subclasses. A common restriction allows only those expressions
with single-character alternation and closure: this class contains patterns like (a{blc¢)
and a*b(3]|blc)*d but not patterns like (ablcd), (ab)*, and ((alb)c)*. Another
common restriction allows only constant strings and wildcards. A wildcard is a symbol,

often “

*” that is used to match any sequence of characters. For example. the pattern
a*b matches strings starting with 8 and ending with b, and the pattern *command*. ¢
matches strings that contain the substring command and end in “.t".

These restricted subclasses of regular expressions seem to be adequate for their
applications, and the right subclass of regular expressions can go a long way towards
expressing the surface-level syntactic structures commonly encountered in text. While
text is a ubiquitous medium that can be used to express arbitrarily complicated data
structures, the structures that are commonly encountered are not very complicated.
When text does have some structure, then that structure is usually “flat” and does not
require a complicated pattern notation to be described.

SNOBOL presents a different point of view on text scanning constructs. SNOBOL's
string matching facilities come in two parts: an automatic backtracking control structure
that turns SNOBOL patterns into a universal computation engine, and a large set of

pattern matching primitives that are used to conveniently match text. The pattern

matching primitives work relative to a pattern matching cursor, and include facilities like:
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a constant ’string’ matches if that particular string is at the current cursor location,
LEN(n) matches any n characters, BREAK(’string’) matches all characters up to one of
those in the string, and SPAN(’string’) matches runs of characters contained in the
string. Programs can often be written using the primitive pattern matching language
without recourse to backtracking.

We cannot expect to have much success with synthesizing programs that can employ
all of the variations of SNOBOL's backtracking pattern matching control structure,
because that mechanism is as powerful as a general-purpose programming language, and
the world has not been able to build systems that effectively synthesize general purpose
programs from éxample information. But it may be feasible to fix on one particular
control structure, and to leave the program synthesis algorithm with the problem of
deciding how to conjoin primitives similar to SNOBOL’s within that fixed control
structure.

We have adopted this strategy. The control structure that we have fixed on is one
that performs a sequential scan through a file, matching a pattern against the text as it
goes, and transforming the text that matches the pattern. Within that fixed control
structure we have experimented with the synthesis of patterns formed out of specific
primitives. The class of patterns that we have been most successful in synthesizing are
called gap patterns, which are the patterns presented in the scenarios in Section 1.1. Gap
patterns will be defined formally in Chapter 4, but as an example of a gap pattern, the

first line of the Lisp function definition
(defun factorial (n)
could be matched by the gap pattern

bOl L] (defun [ | (n - ||)u 601

This pattern defines a class of strings that contains the constants bol, “(defun ”, ¢ (",
“)”, and eol, interspersed with two gaps, which can be filled with any sequence of
characters that does not contain the constant string that follows the gap. When this gap
pattern is interpreted within the framework of the fixed control structure that we have

"

adopted, it defines a string scanning procedure that looks for the string “(defun ™ at the
beginning of a line, followed by the string “ (" next on that line, and ending in a “)” at

the end of the line.



3.1.2 Output generation

The gap pattern will help us locate the text; we must then transform the text to the
form specified by the examples. As we saw from the scenarios presented in Section 1.1,
this transformation can require the synthesized program to copy and replicate substrings
of the input, and to introduce new constant strings into the output. The only difficult
part of this process is that of parsing the input into named substrings, or fields. This
parsing problem is similar to the pattern matching problem; indeed, the pattern shown
above can be augmented with a field labeling mechanism to yield a pattern that names
the strings that match the gaps:

bol " (defun * -1-* (" -2- ")" eol
The pattern matches the text in the same way, but the pattern matching routine that
interprets it has the added task of recording the bounds of the text that matches the gaps
labeled -1- and -2-. Once some matching text is found and parsed, the function definition
form can be edited to conform to its new syntax by specifying the text that should replace
the text matched by the pattern. If the operations of copying gaps and inserting new
constants are the only ones involved, then the replacement text can be specified using a

notation similar to that used to specify gap patterns:
bol "(define (" -1- " " 2. ")* eol

This notation defines a string that is equal to the replacement pattern with each gap
symbol replaced by the text that matched the corresponding gap symbol in the gap
pattern. The text processing program that consists of the input scanning pattern and the
output replacement expression is called a gap program. We write gap programs as

pattern/replacement pairs separated by a =.

bol "(defun " -1- " (" -2- ")" eol =
bol "(define (" -1- " " -2- ")" eol

When this gap program is applied to the line of text:
(defun factorial (n)

it transforms it to the line:
(define (factorial n)

Chapter 4 presents an in-depth discussion of gap program properties and the problems

associated with efficiently synthesizing them from example information. Chapter
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6 discusses some extensions to the gap pattern and gap replacement notations.

3.2 What sort of information does the user provide the EBE system?

A fundamental aspect of the design of an editing by example system is the sort of
information that the system requires from the user. Many types of information could be
required: input/output behavior, traces, declarations, answers to questions, negative data.
Traces and input/output behavior can be collected most naturally, so we will first
consider which of these would be most appropriate for our applications, and postpone

consideration of the others until Chapter 6.

3.2.1 Traces or I/O behavior?

There are two types of information about the target program that are easy for an
EBE system user to provide: one is the sequence of commands that the user employed
while editing an example, and the other is the appearance of the example text before and
after the edit. The sequence of commands is called a trace of the target program, and the
change in appearance is called the program’s tnput/output behavior.

The information contained in the command trace can be made to include everything
contained in the input/output samples, and more besides, so at first glance it seems
obvious that an editing by example system should use traces as its principal source of
information. The program transcription systems discussed in Section 2.1 (e.g. keystroke
macros) are examples of trace-oriented systems that do not perform generalization. A
trace-oriented EBE system that generalizes the command traces could be implemented to
keep track of the commands used during several sample edits with the goal of generalizing
the structure of these command sequences into a program that can perform the change.
However, we would like to point out several problems with using traces as the source of
information, and make the claim that the extra evidence contained in a trace is often
useless.

One problem with traces is that the user's intent is often masked by the cditor
commands that he employs. Suppose that the user wanted to carry out the
transformation described in Section 3.1 and change the form of every function definition
in a file containing many Lisp function definitions. An essential step in this process is to

locate the next function definition form to be changed. One way of doing this, which



communicates some of the user's intent, is to search for the next occurrence of the word
defun, but most editors provide a large variety of movement commands that do not.
correspond so simply with the user’s intent. For example, the user could advance to the
next function definition by giving several “move down to the next line” commands, or by
“moving forward over words” until he gets to the right place, or by pointing at the
definition with a pointing device, and so on. In most editors there are a large number of
ways of moving around in the text, and very few of them impart any measure of the
reason why the user chose to focus on one piece of text while ignoring others.

The structure of the text to be changed is not the only thing that can be masked by
a trace. Once the user gets to the function definition that he wants to modify, he has a
large variety of ways of changing it at his disposal. The Yale editor Z [{98], for example.
implements nearly a dozen simple commands for deleting a piece of text, and the
extensible editor EMACS [85] provides even more deletion commands. If several
commands are required, there is often nothing that gonstrains the order in which they can
be given, and the user may well give them in a different order in each of his examples.
An EBE system could deal with this difficulty by requiring the user to use a similar set of
commands in a similar order when editing each example given to the system, but sach a
requirement goes against the grain of good user interface design. In a well designed
editor, the user’s interactions are free-form; he can jump willy-nilly around the text.
making changes at the bottom line first and changing the top line somewhere in the
middle. This freedom of action is a fundamental part of the user interface, and any EBE
system must take it into account. An EBE system based on traces would restrict this
freedom.

Another problem with traces is that an EBE system that uses them can make an
editor more difficult to extend. Many editors are extensible, in that they have internal
interfaces that allow programmers‘to add new facilities to the editor. Allowing for editor
extensibility in a trace-oriented system is a problem, because the EBE system must have
some knowledge of the meaning of every new command. Setting aside the difficult
problem of representing the meaning of a new command, the sheer overhead involved in
communicating knowledge of every new command to the EBE system could make it a
bottleneck for editor development; such bottlenecks are often their own demise.

Requiring the EBE system to know the semantics of every editor command could
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also be a barrier to portability. Different editors have different ideas about the detailed
semantics of their command sets, and embedding the semantics in the EBE system could
make it difficult to transfer the system to a different editor.

One way around some of these problems is to design a trace-oriented system that
works with a fixed set of primitive editing operations. For example, all of the current and
future editor commands that delete various numbers of characters, lines, and words can
be implemented in terms of a single, low-level, deletion primitive. The haphazardness of
the user’s interactions can be reduced by pre-processing them into a canonical order
before analysis. The operations can be sorted so that they appear to happen from top to
bottom, and redundant operations can be removed. However, once this ié done, it is not
clear that the remaining problem greatly differs from synthesis on the basis of
input/output behavior — a great deal of the added information that separates traces
from input/output behavior has been lost.

The problems associated with using traces as the principal source of information in
the EBE system led us to concentrate our efforts on algorithms that work from
input/output examples. Although input/output examples contain less information, they

have none of the problems that traces do.

3.2.2 How much data is needed?

Given that we are going to use input/output examples, how many should be required
of the user to specify a function? The obvious answer to this question is, “As few as
possible.” In fact, we would have an ideal system if we could follow the lead of Green,
Shaw, and Swartout's EXAMPLE system [30] and base our program synthesis on the
evidence of a single input/output example.

Unfortunately, a single example cannot impart the pattern that describes the text
that the user would like to transform, and so it is unreasonable to expect synthesis from a
single example to yield useful programs. An essential function of text processing
programs is to locate the next subpart of the file that is to be transformed and to skip
over the parts that are not of interest. There is no basis for guessing the general rule
governing the appearance of the interesting text from the evidence of one example. The
only reasonable pattern would seem to be the pattern that matches the literal input text

of the single example, and more examples must be provided in order to specify more
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interesting patterns.

There is also not much of a basis for deciding on a non-trivial transformation that
maps the input string of the single example to the output. One might choose to find the
shortest or simplest program that can effect the transformation, perhaps by making use of
algorithms that find the least-cost edit distance of two strings [93], but there is no good
reason to prefer this program to the trivial program that replaces all of the occurences of
the literal input with the literal output.

While the amount of example data that a user can be imposed upon to provide is
subject to many factors, such as the smoothness of the user interface, his knowledge of
programming, and his mood, we suspect that people’s tolerances are small. We suspect
that five is too many examples to have to provide, that four is too many, that three is
probably too many, and that two may well be too many (but there's no such thing as a
free lunch). The program synthesis algorithms presented in Chapter 4 can often converge
to the target gap program after the user provides two or three examples of the target
function's input, and we introduce a heuristic in Section 5.9 that results in a singie output
example being all that is usually required.

Now that we have decided on the sort of programs that we are going to synthesize,
and the data that we will use to synthesize them, it is time to embark on a detailed study

of the techniques for doing the synthesis.
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Chapter 4

GAP PROGRAMS

Gap programs are the class of pattern = replacement programs introduced in
Chapter 1. Here we formalize the definition of gap programs and examine some of their
basic properties. We then study the problems associated with identifying gap programs
from input/output examples by defining what we mean by the best gap program that fits
a set of data, characterizing how much and what sort of data is needed to make the user’s
target program be the best one, and classifying the computational complexity of various
aspects of synthesizing such a gap program. The complexity analysis motivates the
development of an efficient algorithm that computes an approximation to the best gap
program for the given data, and we prove that this algorithm will converge in the limit to

the target program.

4.1 Gap patterns

A gap pattcrnhG over an alphabet T is a sequence of alternating strings and gaps,
84919195859, 8,- The strings s; are drawn from £* (although 3, may be the null string,
except when n=0), the gaps g; are distinct symbols drawn from a gap alphabet T, that
is disjoint from T, and the number of gaps n is greater than or equal to 0. The constant
subsequence of a gap pattern, denoted ¢(G), is the string s,s,3,...s,. Similarly, the gap
subsequence of a gap pattern, denoted ¢{G), is the string 9,959,

Our first sample gap pattern is made up from a single constant string:
thisijis_a_gapLpattern

This gap pattern matches the constant string “this is a gap pattern™. Our notation

39
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“I el

for constant strings will be those strings appearing in a font like “this,”, where “ is
meant to be a visible representation of the space character. The second sample gap
pattern contains a gap:

thisl --- Ugaplipattern

¢

The characters “---" together make up a single gap symbol. This pattern will match
strings that begin with “this_” and end in “_gapipattern”, with the gap spanning over
those characters in between. The next gap pattern does not have a leading constant
string:

--- Jpattern

This pattern will match strings ending in “{jpattern”. The following gap pattern
matches quoted strings:

wo_g.
The symbol “-1-" is also a gap symbol. Our convention is to use gap symbols like -1- and
-2- when there is some reason to assign a specific name to a gap, and to use the

anonymous gap symbol --- for those gaps that we have no reason to name. Another

example,

Dearl) -1- , eol
Congratulations| -2- ! LiYouthave|beeniselected

denotes a gap pattern that uses two gaps to match the first few lines of a form letter.
Each gap symbol must be distinct. For example, the symbol -1- can occur once in the
gap pattern. An exception to this rule is made for the anonymous gap symbol ---; the

following gap pattern matches the same strings as the previous one:

Dearl] --- , eol
Congratulationsf --- ! { Youlthave(|beenselected

Although the anonymous gap symbol --- appears twice, this appearance is not meant to
constrain both of its occurrences to match the same strings. Our final example gap
pattern,

(-1- )y -2- - -3- .
matches telephone numbers.

This is not a gap pattern

thisUisinotaligap_pattern ---
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because all gap symbols must be followed by a constant string. This is also not a gap
pattern

this -I1- -2- notllaligaplipattern
for the same reason.

We now formally define the set of strings matched by a particular gap pattern. The
definition closely parallels the intuitive descriptions given above, but it has the added
restriction that the text that is matched by a gap must not contain the string that follows
the gap in the pattern. Define the set of legal substitutes for a gap g, that is followed by
the string s, to be the set of all strings a €L’ in which the leftmost occurrence of s;as a
substring in the string s, is at the end of @s.. Then the language L(G) defined by a gap
pattern G = 3,9,8,058,...9, 8, is the set of all strings of the form 3008 0o85...0x 8, Where
each a; is a legal substitute for g.. A string s is matched or spanned by a gap pattern G
if s€ {G). Similarly, G matches or spans a sct of strings S if SCL{G). We say that
two gap patterns G and H are equal, written G = H, if I{G)=L{H). We define G to be
equivalent to H, written G =H, if the text of the gap patterns are equal when all of tke

n

gap symbols have been replaced by “---". The following lemma demonstrates that
equality and equivalence are the same.

Lemma 1: If G and H are gap patterns over the same alphabet I, where [£] >3,

then G=H if and only if G=H.

Proof: If G=H, then {G)= L{H) because gap substitutes are defined independently of
the gap symbol invoived; the converse is the interesting question.

Suppose that L{G)= L(H) but that Gs#H. The unique shortest element of L{G) is
¢(G), and the unique shortest element of L(H) is_¢(H), so L{G)=L{H) implies that
e(G)=c(H). If G$H, then G and H must have a different number of gaps, or have the
same number of gaps but in different places. Suppose, without loss of generality, that

|9(G)| > |g( H)| and let ¢ be the index of the leftmost gap in G that is in a different place
in H:

G = 8,0,8,-9;_1%_19;5;-9,5,
H = 509,8--9; 18,198 9m5m

Case 1 <m: The t'th gaps of G and H are in different places, so one of $;_yors._,

must be shorter; suppose that s,_, is shorter than s;/_,. For concreteness, suppose that

1 1
the last character of s;_, is an a and the first character of s.is a b. This means that the
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ls,_,I'th and |s;_,[+1'st characters of s;_, are also an a and a b. If ¢ is some character

1
in T different from a and b, then when gap g, is filled with a c:

805181585,
The resulting string cannot be matched by H because H has a b at that position, H has
no gap at that position, and if H matched some other character with a previous gap it
would leave the a matching the ¢ at that position. But this string is a member of L(G),
which is equal to L{H), which is a contradiction.

Case 1 >m: In this case, there is at least one extra gap in G past the last gap in H,
and actually { would equal m. The same argument given in the previous case can be
applied with s, _, playing the role of the short string and s playing the role of the longer
one. 4

Thus if L(G)=L(H), then G=H. O

In all that follows we will assume that |Z|>3, and we will write G = H instead of
G=H.

Gap patterns break the strings of their language up into fields in a natural way.
Define a parse of a string s€ [{G) relative to a gap pattern G = 8091%19285--9,,8,,, denoted
parse(G s), to be a sequence of n strings p,.p,,...,p,, such that s =s,p s p,s,...p s and p,
is a legal substitute for g.. For example, if ¥ = {1,2,(,),L} and
G="%( -1- )J -2- - -8- .7, then L(G) includes the following strings (white space has
been inserted in the strings to separate the portions generated by the different

components of the gap pattern):

( 212 )y 222 - 1212 .
( 21212 )y 2121212 - 12212 .
(u - .

C CONMNN HU 0OOOO - -=--12121

The first two strings are obviously in the language; the third, in which all of the gaps
match the null string, is also in L(G); and although the fourth string is not beautiful, it

too is in the language. Some examples of strings that are not included in L(G):
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(212)222-1212.
(122)1121-1222

(212)11212-1212.14(212)J121-1211.

The first string fails to be in L{G) because it is missing the “_” after the “)”, the second
is missing the closing “.”, and the third string includes extraneous text after the first “.7.
Note that the third string could be in the language if, for example, the definition of
match allowed the pattern to match the second “)|” rather than the first.

Why do we impose the restriction that the text that a gap can match must not
include the following string? The reason is that we want the gap program’s actions to be
determinate. We use gap patterns as the parsing component of text processing programs
that run without human intervention, and if these programs are not deterministic, then
we will have less confidence in the correctness of their unmonitored behavior. The
following result shows that the gap pattern matching process is deterministic:

Property 2: If s€(G), then parsé(G,s) is unique.

Proof: This property is a simple consequence of the definition of legal substitute.
Suppose that there were two ways of parsing a string 8 using G. If there are two different
parses, then they must differ in some leftmost position, say position i. So the two parses
are p,.poy.-P;_1:P;P; 4 o-eiP,, a0d pl,p,“,,...p‘._l,p‘.’,p‘.'ﬂ,...,p"z. If p; is the shorter of p. and
p;, then p/s. is a strict prefix of p s, which implies that s; occurs in ps; before the end,
which in turn implies that p; is not a legal substitute for g,. And so, by contradiction,
parse(G,s8) is unique. [

Gap patterns may be efficiently matched against their text. -

Property 3: A gap pattern G may be matched against a string F in time

O(IG|+|FY).

Proof: Gap pattern parsing is deterministic, so a matching algorithm has only to find
the locations of G's sequence of constant strings 80138y, in F. There are several well
known algorithms suitable for finding the next s, in F in linear time: Wiener's
algorithm [96], Boyer and Moore's algorithm [16], or Knuth, Morris, and Pratt’s
algorithm [52]. A scanning procedure that uses one of these algorithms will run in linear

time. O

The gap pattern notation is weak; it cannot illuminate the structural complexities
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expressible by context free grammars, or even by regular expressions. The following three
results categorize this weakness:
Property 4: Gap patterns define sub-regular languages.
Proof: The regular expression denoting the language generated by the gap pattern
fragment g.s; over an alphabet I is:

s . E'sz-E'*'
The fragment £* denotes all strings; E'si denotes all strings ending in s; Tt denotes all
non-null strings; E's‘.‘z"' denotes all strings where s; occurs before the end; and the
difference 2‘3‘. - E‘3£E+ generates all strings with s; at the end but without an
occurrence of s, before the end. Note that the representation of the regular expression in
terms of the standard primitives (closure, alternation, and concatenation) may be
exponentially larger than the text written above. The regular expression denoting the
language generated by an entire gap pattern is the concatenation of the languages
generated by each of the fragments:

s4(L*s; — &% T¥)(Z%s, — T*3,57)..(T%, — T*s, T7)
and so gap patterns define sub-regular languages. O

Gap patterns are strictly sub-regular; their patterns cannot define all of the
languages definable with regular expressions. For example, the following property shows
that no gap pattern can generate the regular language {x,y}.

Property 5: If G is a gap pattern then L(G) either is composed of one string or is
infinite.

Proof: If there are no gaps in G, or if the alphabet £ consists of a single character, then
L{G) consists of the single string composed of the constants of G. If there is a gap in G,
say g,, and |Z[ 22, then let a be an element of L that is not equal to the first character of
the string s, that follows g; in G. Then 3*={2,23,33a,...} forms an infinite set of valid

substitutes for g;, and thus L(G) is infinite. O

Property 8: Gap patterns are not closed under union, intersection, or complement.

Proof: Let T be {a,b,c} and let G be the gap pattern --- b --- a and H be --- ¢ --- a.

We will demonstrate each of these properties using these two gap patterns as examples.
Union: L{G)UL(H) includes the two strings “ba” and “ca”. The only gap pattern

that can match both of these is --- a, but this matches “a” as well, which is matched
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neither by G nor by H. (Note that the fact that all gap languages are either singletons or
infinite also shows that they are not closed under union.)

Intersection: L(G)NL{H) includes the two strings “bca” and “cba”. There are only
three gap patterns that match both of these strings: G, H, and --- 3. None of these gap
patterns capture the requirement that all strings in the intersection must contain both a
“b” and a “¢” before the final “a”, e.g. L(--- a) contains “ba”, which is not contained in
L(H).

Complement: L(G)’ includes the two strings “b” and “c”. No gap pattern can

match both of these strings simultaneously. OO

This ends our discussion of the elementary properties of gap patterns. Now we will
discuss gap programs, by first introducing their output-producing compornent, the gap

replacement expressions.

4.2 Gap replacements and programs

A gap replacement R for a gap pattern G over an alphabet ¥ with gap symbols
{91'92""’971} is a string from (Eu{gl,gz,...,gn})'. By convention, the anonymous gap
symbol “---" never appears in a replacement expression. Gap replacements are not
interesting objects in isolation, they are only of interest when they have been combined
with a gap pattern G into a gap program. A gap program P is a pair consisting of a gap
pattern G and a gap replacement R for G; the program is denoted G= R. Gap programs
bear an interesting resemblance to the string processing language based on Labeled
Markov Algorithms proposed by Galler and Perlis [31].

Here is an example of a gap program that will change the phone number

“(203) 436-0715." to “203-436-0715.7:
(203) 436-0715. = 203-436-0715.

This gap program generalizes the transformation to apply to all phone numbers of that

form:
(-1-)J4 -2- = -3 . = -I- - -2- - -3 .

This gap program replaces an area code with the word “Cal|”:
(-1- ) -2- - -3 . = Cally -2- - -3 .

This gap program will delete a phone number entirely:
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(-1-)4y -2- - -3 . =
This one will interchange the area code with the first three digits:
(<2- ) -2 = -8 . = (-2 -1~ - -8~ .
This program performs another nonsensical transformation, duplicating the digits of the

number in a pleasant pattern:

( <1-)4 -2- - -8 . = -[- -2- -3- -3 -2- -1-

This gap program matches phone numbers in the “(203)" area code, and deletes the area
code:

(203)y -1- - -2- . = -1- - -2- .

And this last changes numbers from area code “(211)” to “(203)":

211y -1- - -2- . = (203)y -1- - -2- .

The intuitive descriptions of the effects of these gap programs may be formalized as
follows. If z and y are strings in £* and P=G =R is a gap program, then P(z)=y if and
only if G matches z yielding the parse p,,p,,...,p, and if y is equal to R with p,
substituted for each occurrence of g,. If S is a set of pairs of strings
{<i},0,>,<15,0,>,..,<t_,0 >}, then we say that a gap program P is concomitant
with S if P(i].)= o for every pair <i],oj> in S.

We do not use gap programs on isolated strings; rather, we use them to search for
and modify subparts of a larger file. This process of repetitively applying the text
transformation defined by a gap program to the text of a file is captured by a definition
of the search and replacement operation. When a gap program P being interpreted under
the search and replacement operation is applied to a string F'=axb then the result is the
string ayb if and only if z is the leftmost substring of azb that is matched by G and
P(z)=y. Repetitive applications of this program are made to the suffix 5.

For example, if the gap program

bol -1- |J -2- ,U -8- L -4- eol =

bel -3- |llostjtojthell -1- U -2- toll -4- . eol

were applied to the input data
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Yankees 10, Baltimore 3
00201007010
1100001003

Mets 6, Chicago
300000
004010

o
0

Angels 2, Detroi

5
0
0
t
0000100
0

then it would modify the text to be:

Baitimore lost to the Yankees, 10 to 3.
00201007010
1100001003

Chicago lost to the Mets, 6 to 5.
3000000036
0040100005

Detroit lost to the Angels, 2 to 0.
0000100102
0000000000

The power of gap programs is limited by the expressive power of gap patterns. Onpe
consequence of this is the following result, which shows that more can be computed by
taking another pass over the text.

Property 7: Gap programs are not closed under composition; there are
transformations computable by the composition of two gap programs that are not
computable by a single gap program.

Proof: There is no single gap program that can transform these strings as shown:

cab$ = ¢
dba$ = d

The proof is by an exhaustive analysis of the possible gap programs. First observe that
the only gap patterns that can match both input strings are the patterns “--- $,

4ees g --- $", and “--- b --- §”. This is the case because all gap patterns matching the
strings must end in $; the only other constants that can be in a matching pattern are a
and b; and they cannot both be in a matching pattern because they occur in the crder ab
in the first sample and ba in second. The output strings are composed of different
characters, so the replacement expression must not contain any constants, but only gaps.

None of the programs leaves the output characters isolated in a gap: *--- $” leaves both
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the ¢ and the d sharing the gap with the string ab; the first gap in “--- 3 --- $” matches
db; and the first gap in “--- b --- $” matches ca. So no gap program exists that can
make this transformation in a single pass.
The transformation can be effected by the composition of these two gap programs:
-1-a -2-8¢ = -1--2-%
-1- b = -I-
The first program deletes the a from each sample, and then the second program

completes the transformation. O

Angluin pointed out that two gap programs can be composed together to compute
any finitely specified function on sets of strings.
Property 8: (Angluin) Given a set of pairs of n strings
S= {<il,ol>,<i2,02>,...,<in,on>} such that :'J.?é i, for j#k, and such that there
is some gap pattern G that matches all of the iJ, there exist two gap programs P,
and P, such that Pz(Pl(iJ.)) =o; for all pairsin S.
Proof: Let {x,y,#} be three symbols not in T, then the first program P is:

G = xGyxo,yxi yxyx#xGyxo yxt,yxyx#xGyxo yxiyxyx#. . . xGyxo yxi yxyx#
XGyxo,yxi, yxyx#XGyxo Y xt,yxyx#xGyxo,yxizyxyx#. . . xGyxo,yxi yxyx#
XGyxoayxt yxyxBXGyxoayxi ) Xy x#XGyxaoyxizyxyx#. . . xGyxo,yxi yxyx#
XGyxo,yxt yxyx#xGyxo,yxi,y xyx#xGyxo,yxtyxyx#. . xGyxo,yxi yxyx#

The gap pattern of P, is any gap pattern G that matches all of the input samples in S.
The replacement expression is a ¢ by n matrix of fragments of symbols where fragment
[k.0] is:

xGyxo yxiyxyx#
The G in the replacement expression is a shorthand for the direct substitution of the
symbols of G, which has the effect of copying the input string over into the output. The
i, in the replacement expression fragment stands for a substitution of the text of the I'th
input string.

The idea behind the construction of P, is to parse the output of P, in such a way
that there are tn different gaps, each labeled -[,{]- for 1 <k <t and 1 <!/ <n, that match
the symbol o, when applied to sample P|(1)), but match the empty string everywhere else.

For each k and [, the [£,!] gap fragment in the gap pattern of P, is:
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== xi)yx [kl yx - #
When this fragment is matched against the corresponding fragment in the string P (i)):

XEyXO yxtyxyx#
the gap -[k,!]- matches the symbol 0, When the fragment is matched against the

corresponding fragment in the strings Pl(im), for m##1:

ximyxakyxil_yxyx#
the gap -[k,!]- matches the null string. An arbitrary output can be constructed given gaps
with these properties. If 0= oklokzoka...ok', then the gap fragments
-lk,d]- -lkgdl- -[kg.5]- ... -[k_,J]- can be concatenated together to yield output 0; without
producing any of the characters of the other outputs.

The composition P2(Pl(ij))= 0, for1<5<n. O

This finishes our development of the basic properties of gap programs; the rest of

this chapter concentrates on the problem of identifying gap programs from examples.

4.3 The longest common subsequence problem

This section is an aside that discusses the Longest Common Subsequence problem, a
problem that will be of value in our study of the identification of gap programs from
examples. The Longest Common Subsequence (LCS) problem is that of finding a
common subsequence of maximal length that occurs in every string of a set of n strings

Q= {ql,qz,...,qn}. For example, the LCS of these two strings:

ThelYankees| beat{Baltimore,yi0Lto3.
The_ Metsibeat_ Chicago, S itol5.

is this sequence:
ThelleslUbeatilio,Uuuytoy.
The LCS is not always unique. For example, when we add another string to the pair

above:

ThelYankees_ 'beatBaltimore, 110U to. 3.
The Mets_beat_Chicago, SUtol5.
TheUAnge IsibeatiDetroit,12Utol0.

then an LCS is either this sequence:

ThelJeslUbeat lo,Uudltoy.
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or this one:

Thelesbeat i ,Uyutol.

Researchers have viewed the problem of finding a LCS for two strings as an
abstraction of the file comparison problem, and thus have given it a fair amount of
attention. The problem was mentioned as being solvable in polynomial time by Chvatal,
Klarner, and Knuth in 1972 [17]. In 1974, Wagner and Fischer [93] presented the first
published algorithm that found the LCS of two strings; their algorithm is a special case of
a more general dynamic programming algorithm for solving the least-cost edit distance
problem. The LCS algorithm has a running time of O(mn) when applied to two strings
of size m and n; unfortunately, it also requires O(mn) space. More efficient solutions to
this problem have since been found: Hirschberg showed how to implement the algorithm
to run in O(m+n) space [41]; and Hunt and Szymanski [43] developed an algorithm that
usually beats the O(n?) time bound. The latter algorithm runs in time O((r+n) log n),
where r is the number of ordered pairs of positions in which the two strings have a
character in common.

These algorithms can be adapted to find the Longest Common Subsequence of more
than two strings. This adaptation leads to an algorithm that solves the problem in time
and space proportional to the product of the lengths of the strings. Such an algorithm is
polynomial for a fixed number of strings, but has an exponential running time when the
number of strings grows without bound. This running time is to be expected, because
Maier [58] has shown that the general problem of finding the Longest Common
Subsequence of an unbounded number of strings is NP-hard.

PROBLEM: Longest Common Subsequence (LCS)
INSTANCE: An alphabet T, a set of strings @ = {q,,4,,--.9,,} drawn from I'*, and
a positive integer k.

QUESTION: Does there exist a subsequence common to the g; in Q of size k?
Theorem 9: (Maier) The Longest Common Subsequence problem is
NP-complete {58].
Theorem 10: (Maier) The Longest Common Subsequence problem remains NP-
complete even when the alphabet I' has only two symbols [58].
In what follows, we will use these two results of Maier's to show the computational
intractability of many aspects of the identification of gap programs from examples, and

we will also use a heuristic for finding the LCS of a set of strings as part of a practical
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gap program synthesis procedure.

4.4 Finding gap programs from examples
A procedure for identifying gap programs from examples might look something like
Algorithm 1 below. The algorithm starts with one sample input/output pair and has as
its initial hypothesis the gap program that replaces all occurrences of that particular input
string by the output string. It then enters a loop in which it accepts new input/output
pairs that further describe the behavior of the target gap program. The current program
hypothesis is retained as long as it agrees with the behavior described by the new
input/output example; when the hypothesis fails to agree with the evidence, then the
procedure tries to find a “good” replacement program that does agree. The algorithm
resembles an enumerative algorithm; indeed, setting aside for the moment the stated goal
of choosing a good new P, an enumerative search for any P consistent with the evidence
may be used to find a new gap program when the current one stops working. The
algorithm differs from an enumerative one in its insistence on replacing a failed
hypothesis with a good one — not just any one will do; it wants one that will serve as
good intermediate behavior for the system.
S — {< first input, first output>};
P — first input = first output;
loop
use P as the current guess;
s +~ <new input, new output>;
S~ SU {s}
if P(s ) # s then

tnput output
P — a “good” new P concomitant with S,

forever;

Algorithm 1: Iterative synthesis of gap programs

What are some reasonable definitions of “good™? A good program could be the
shortest, simplest, most concise gap program that works. Or we might actually want the
most complex gap program, the one that finds as tricky a transformation as possible.
Another plausible definition is the gap program that corrects the flaws of the previous

hypothesis, but with as few changes to the previous bypothesis as possible. Each of these
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criteria for “goodness” has something to recommend it, as do many others that could be
proposed.

But leaving aside our desire for a good gap program, how hard is it to find any gap
program at all that will work? In the following theorem, we show that the general
problem of finding a gap program that fits a set of sample data is intractable. Not only
is it NP-hard, but it is still NP-hard even when the set of sample data contains only three
input/output pairs. The Gap Program Existence decision problem captures the essence of
the problem of finding a gap program that fits a set of sample data:

PROBLEM: Gap Program Ezistence

INSTANCE: An alphabet L, and a set of pairs of strings

S={ <il.al>,<i2,02>,...,<in,on>} from T* describing the input/output
behavior of a text transformation.

QUESTION: Does there exist a gap program P such that P(iJ.) =0, for all

<iJ,oJ.> in S?
This problem is NP-complete, even when S contains a bounded number of samples.
Theorem 11: The Gap Program Existence problem is NP-complete when n, the
number of input/output samples, is greater than or equal to three.
Proof: A nondeterministic procedure to determine Gap Program Existence would simply
guess P and verify that P(ij)= 0 for all of the input/output pairs in S. The verification
procedure runs in polynomial time, so this problem is in NP.

We prove that this problem is NP-complete by reduction from the Longest Common
Subsequence problem over an alphabet of size two, a problem that was proven NP-
complete by Maier [58] (see Section 4.3). Suppose that we have an instance of the
Longest Common Subsequence problem over an alphabet [' = {x,y} that consists of a set
of n strings @ ={q,,9,.---.q,} from I'* and a positive integer k. We outline the
construction of an instance of the Gap Program Existence problem over a set of three
input/output samples S such that there is a common subsequence of size &k in @ if and
only if there a gap program P computing the transformation described by S. The
alphabet T consists of the symbols {x,y}U{a, a,,...a, }U{3$,,..8 Ju{#%}. The
constructed sample set S consists of three input/output pairs. The three input strings

are:



x#y#a xa,a,ya #a,xa,a,ya,%...a,xa,a,ya,#
##a 8, 0,0,8,0,#a,3,0,0,8,0,%...0, 80,0, 8,0,
##a1“1“1#02“2‘12#'“%“1:“1:#
After the initial input string fragments, <x#y#, ##, ##>, the input consists of k
repetitions of the fragment <a xa.a.ya#, ai$iaiai$iai#, a;a;a.#>, where i ranges from 1

to k. The output strings corresponding to these inputs in S are:
9,%9.%...q,%
3132...$k%$1$2...$k%...$1$2...$k%
%%...%

These output strings consist of n repetitions of the fragment <g¢%, $,3,..$,%, %>, for i
ranging between 1 and n.

We show that if there is a common subsequence of size k in @ then there is a gap
program that will transform the inputs to the corresponding outputs. A common
subsequence of size k in @ is a sequence of k symbols z,z,...z, where each z; is either an x
or a y. This common subsequence can be used to construct the gap program to transform
the inputs of S to the corresponding outputs. The pattern used in the gap program is of
the form:

-z-#-y-# 9y 9o - G
where the g; are pattern fragments that we will specify below. The gap -z- matches the
string x in the first sample, and the null string in the second and third. Similarly, the gap
-y- matches the string y in the first sample and the null string in the other two. The gap
fragments substituted for g; differ depending upon whether symbol jin the common
subsequence is an x or a y. If 3 is an x, then the gap pattern fragment a;-Z-a;-- #is
used. In the other case, if 2; isa y then g is the fragment --- aa.-y- a]#. In the case of
the former, the gap named -z matches the symbol x in the first sample, the symbol $J. in
the second sample, and a null string in the last sample. Similarly, in the latter case -y
matches a y, a $], and the null string, respectively.

The replacement expression is constructed in pieces, one piece to account for each of
the output fragments <qu7, $,%,..8,% %>. All three strings in this fragment end in a %
symbol, and so the replacement expression yielding the fragment also ends in the constant

%. The primary constraint on this construction is finding a way to account for the $i
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symbols in the second fragment — the $z. symbols do not occur in the other two
fragments, so they must be the product of a copy of a gap matched in the input. When
one or the other of the gaps -z;- and -y;- match the symbol $£ in the second sample, it
also matches either an x or a y, respectively, in the first sample. When this gap is used
to copy the $, to the second output, it also copies the z or y to the first one. This
parallel copying is valid because the symbols matched by each of the gaps -z;- or -y.- in
the first input form a common subsequence z,2,...z, of each q; in the first output. The
rest of the replacement expression may be formed from the gaps -z- and -y-. These two
gaps match either an x or a y, respectively, in the first sample and the null string in the
other two samples, and so they may be used to fill in those parts of q; that are not part of
the common subsequence. The constructed gap program performs the transformation
from each input string to the corresponding output string.

To illustrate this construction, let @ = {xxyx, xyyx, xyxyx} and k be 3. Then the

set of input samples constructed is:
x#y#alxalalyal#ana a,ya, #agxa3 L #
##a1$1a1a1§1a1#a2$2a2a2$2a2#a3$3a3a3$3a3#
##alalal#a2 2a2#a3 3a3#
and the corresponding set of output samples is:
xxyxByxyxy%xyxyx%
$1$2$3%$1$2$3%$1$2$3%
%%R
then the program constructed from the common subsequence xyx would be:
-z-#-y- # ay -T,-a, - # .- a5 Yo~ a2# Qg ~Tg- Ay === ¥ =
“Ty- T Ygu Ty B Y- Ty Yor Ty Y T Ty Yy Tgm Y- -2
One can verify that this program maps the inputs to the outputs as indicated.
Conversely, if there is a program P= G = R that maps the inputs of S to the outputs,
then we will show that there must be a common subsequence of size k in @. This will be
derived from the following collection of facts:
1. The n % symbols in each of the output strings do not occur in the input, so

the replacement expression R must contain the % symbols as constants. So R

may be broken up at each of these constants into pieces that account for
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each of the output fragments <qJ%, $,8,..3.%, %> separately.
2. Each of the $i symbols in the second output arises from a gap copied from
the input, because the $; do not occur in the other two output strings.

3. Adjacent $, and $,_; symbols must come from different gaps because they

i+1
do not occur next to each other in the input. So each particular Si must be
tsolated as the sole symbol matched by some gap in the second input; call
this gap -g,-.
4. In order to isolate a $i in the input, the gap pattern G must contain as
constants each of the symbols to either side of the $; matched. That is, G
must contain the fragment a, -g.- a,.
5. There are two $, symbols in the second input string, and each of the two $;
symbols is surrounded by two distinct a;, so any gap pattern that isolates
both of the $i symbols must contain four a; symbols as constants.
6. The third input string contains only three a; symbols, so a pattern with four
a; could not match this input, and thus any gap pattern that matches the
input can isolate at most one of the $..
The choice of which $,; is isolated amounts to choosing whether x or y is the i"th member
of the common subsequence spanning @, because any gap pattern that isolates a $i in a
gap also isolates either an x or a y in the same gap in the first input. When the n
instances of the symbols $,3,...$, are inserted in the second output, a corresponding
sequence of k x or y symbols will be inserted in each of the n strings ¢,,¢,,...q,. And thus
there is a common subsequence of size k in @ if there is a gap program performing the
mapping specified by S.
The sample set S may be constructed in polynomial time, so the Gap Program

Existence problem is NP-complete even when the sample set is of size three. O

4.5 Complexity of finding a gap pattern

This section considers the problem of finding a gap pattern to match a set of strings.
It does not consider the problem of finding a “good” gap pattern — any gap pattern at
all will do. This is not a very important problem for gap program synthesis from positive
data, because when working from positive data, any gap pattern at all will not do, a good

one is required. Nevertheless, the problem is interesting because it seems easy at first
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glance, but turns out to be intractable. It is surprising, but true, that in general it is hard
to find a gap pattern to match a set of strings.

PROBLEM: Gap Pattern Ezistence

INSTANCE: An alphabet T, a set of strings S= {31,32,....9"} drawn from &*.

QUESTION: Does there exist a gap pattern G such that SCI(G)?
Theorem 12: Gap Pattern Existence is NP-complete.
Now that the result has been stated, it would be best to skip on to the next section, and
forego the proof. In Section 4.8 we will point out that this problem can be solved in
polynomial time when the number of strings in S is bounded.
Proof: This problem is in NP, as one can verify in linear time that a
nondeterministically chosen gap pattern matches a set of strings. We show that this
problem is NP-complete via a reduction from the Longest Common Subsequence problem.
An instance of LCS is a set of strings @ = {ql,qz,...,qn} over an alphabet I', and a positive
integer k, along with the question of whether the strings in @ have a common
subsequence of length k. We construct an instance of the Gap Pattern Existence problem
with an alphabet S=TU{$,#,&}. The set of strings S consists of n+1 strings, with the
first n being based on the corresponding strings in Q. 1f g, = 4;,9;0---9;; » then

8; = ‘1;'1#‘1{2#“‘#‘1:‘1'.”

String 3nt1 in S will be called the lock string. If ['= {71,72,...,7t}, and m is a positive
integer equal to one greater than the length of the longest string in @, then the lock
string is formed from & repetitions of the string ###...###$ (containing m # symbols)
concatenated with the string N Ve In addition, every character in the lock string is
preceded by the & character. This is a representation of the lock string that uses an

exponentiation notation in which (z)" signifies a string consisting of n consecutive copies
of z:
_ m k
8,41 = ((&#)7a847y 2y,..&7,)7E$
This completes the construction of S.
If 7117’2'"711& forms a subsequence common to @ of size k, then the following gap
pattern will match all elements of S:
G = -- Ny By By - # S
1 2 k
Conversely, if there is a gap pattern G that matches the strings in S, then we will

show that there must be a subsequence of size k common to the strings in Q. First, some
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properties that must hold true of any gap pattern G that matches S.
1. G must end in $, because that is the last symbol of each string in S.
2. The constants of G can contain no $ before the end, because the first n
samples of S contain only the one $.
3. No constant string in G is longer than one symbol, because the & symbol
separates every pair of symbols in the lock string, but does not occur in any
other string in S.
4. G is of the form “---a; -8y ... =g, - $" for a,€TU{#}.
5. Fewer than m of the a; symbols are a #, because the first n strings in S
contain fewer than m # symbols.
We claim that at least k of the a; in G must be symbols from I'. If G contains fewer
than & symbols from T, then G can be broken at each occurrence of an a; from T' into no

more than k—1 pieces:

G = -ttt

L e B

2

L ot
I I L

Each of the fragments terminating in a symbol from ' can span no more than one
occurrence of the substring (&#)"4$&~,&7,...&7, in the lock string. The lock string
contains k occurrences of this substring, and thus the {inal fragment from G, --- # --- # ...
--- $, can be absorbed by the initial (£#)™&$ fragment in the k'th occurrence of the
substring, and G cannot match the final $. And so G cannot match all of S without
containing at least k constants from ['. These constants form a common subsequence of
@, and thus if there is a G matching S then there must be a common subsequence of size
kin Q.

This transformation may be computed in polynomial time, and so the Gap Pattern

Existence problem is NP-complete. O

4.8 Decomposing the problem
We have shown that it is difficult to find a gap program that performs the actions
specified by a set of input/output samples. The problem is NP-hard, even when the

number of input/output samples is bounded. But we would like to be able to construct a
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system that can solve this problem efficiently enough to be a viable component of an
interactive text editor.

Towards this end, we finesse the problem by dividing and conquering, and
decompose the problem of synthesizing a gap program into two steps. The first step finds
the “best” gap pattern G that matches all of the input strings in the sample set. This
gap pattern yields a parse of the the input samples of S, and the second step of the
algorithm attempts to find a replacement expression R that rearranges the parsed inputs
to yield the output samples.

This decomposed process differs from the process of finding a gap program as a
whole in two respects. The first is that the decomposed process can be done more
efficiently. The problem as a whole is NP-hard even when there are only three samples;
however we will show that although each of the two steps of the decomposed process are
also NP-hard, they can be solved in time polynomial in the size of the input when the
number of samples is bounded.

The second way that the decomposed process differs is that the first step, that of
finding a gap pattern, is performed independently of the second step of finding a gap
replacement. It may be that the gap pattern found in the first step parses the input
strings in such a way that it is impossible for any replacement expression to rearrange the
parsed fields to form the output. In this case, the algorithm terminates with the answer
“more data required”. We will show that the addition of new relevant data can make the
decomposed process work, by making it find a gap pattern that parses the input so that a
replacement expression can be found. The decomposed process gains efficiency by
sometimes requiring the user to supply more data than a monolithic gap program
synthesis process would require; in practice, this penalty is rarely paid.

In the following sections, we define what we mean by a “best” gap pattern, present a
heuristic algorithm for synthesizing that pattern from a set of strings, and give an
algorithm for synthesizing a replacement expression from the parse yielded by the gap
pattern. We argue that this procedure identifies a gap program in the limit from positive

data; and perhaps more importantly, that it has good intermediate behavior as well.



4.7 Descriptive gap patterns
Our definition of a “best” gap pattern that matches a set of strings S is that the
“best” gap pattern is one that finds the greatest number of common distinctive features
in the set. We call such a pattern descriptive; a gap pattern G is a descriptive gap
pattern for a set of strings S if:
1. G matches all of the strings in S;
2. G has the greatest number of constant symbols of any gap pattern that
spans S
3. of the patterns that satisfy the previous two constraints, G has the fewest
number of gaps.
The first two criteria form the core of the definition: we want gap patterns that find the
largest number of common constants in the sample data. The third criterion is intended
to remove from consideration those gap patterns that find all of the common constants,

but contain extraneous gaps. As an example, if S is the following string:
The Yankees beat Baltimore, 10 to 3.

then the following gap pattern is the unique descriptive gap pattern for the set:
The{/Yankees| beat| Baltimore,/10Uto3.

When we add a second string to S:

The Yankees beat Baltimore, 10 to 3.
The Mets beat Chicago, 6 to 5.

there is still just one descriptive gap pattern, namely:
Thel} -1- e -2- si'beat|} -3- i -4- o -5- U -6- Ltoy -7- .
When a third sample is included:

The Yankees beat Baltimore, 10 to 3.
The Mets beat Chicago, 6 to 5.
The Angels beat Detroit, 2 to C.

then there are two descriptive gap patterns:

The] -1- e -2- s_beatl! -3- o -4- .U -5- {toly -6- .
Thelj -1- e -£2- si_beat -3- i -4- ,ij -5- L'tol! -6- .

One might wonder why a gap pattern like “--- .7 does not serve to describe the

structure of the input strings just as well as one of the descriptive gap patterns. The
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reason that we prefer the descriptive gap patterns is that we want be able to identify a
particular gap pattern quickly, with a small number of positive examples. To keep the
number of examples required low, we prefer to have a criterion that jumps to conclusions
based on slim evidence to one that chooses to ignore evidence that is there. Such
behavior also seems preferable if we are to do synthesis from positive data: an algorithm
that chooses to ignore what could be a significant feature common to the samples would
probably continue to ignore the feature when more positive data is given.

We would like to find an algorithm that will always identify the gap program that
will solve the user’s problems. But, the output of any program synthesis system is
determined by its input, so instead we will characterize the kind and number of inputs
that will be required by our algorithms to identify a particular gap program. The
characterization given here results from a worst-case analysis; something closer to an
average case analysis may be found in Chapter 5.

We characterize the convergence properties of algorithms that identify descriptive
gap patterns by making use of a set of strings called the ezpanded once strings of G, or
eo(G). The set of strings eo(G) generated from a gap pattern G over an alphabet T are
exactly those strings from L{G) that are of length |¢(G)| and [¢(G)|+1. For example, if
£ ={a,b,c}, then eo(a --- bc --- c) is the set:

{abee,
aabce, abbee, acbece,
abcac, abcbe}

Lemma 13: If G and H are gap patterns over the same alphabet I, where |[Z|2>3,
then G = H if and only if eo(G ) =eo( H).
Proof: Lemma 1 on page 41 states that G =H if and only if L(G)= L{H), but all of the
strings constructed in the proof are of length |¢(G)| or |¢(G)|+1, and are thus members of
eo(G). O

In practice, the input strings are tokenized (see Section 5.11), and the alphabet size
can be regarded as unbounded. When the alphabet is of unbounded size the gap pattern
G =349,3,99%5---9,,8,, can be characterized by two samples with the aid of two symbols $
and # that do not occur in the constants of G. That is, G is the unique descriptive gap

pattern that matches this set of strings:

30$$1$$2$“'$3n
30#31#32#“'#31;
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These two samples make the underlying gap pattern easy to identify, not because they
each contain many repetitions of the same character, but because their gaps are filled
with symbols in such a way that they cannot be mistaken. The second sample does not
contain a $ symbol, and the first does not contain a #, so neither of these characters can
be part of any constant string in a gap pattern that matches the two strings, but all of
the other characters in the sample can. So the two strings pin down the underlying
descriptive gap pattern unambiguously. For similar reasons, these two strings also
identify the pattern:

808182“.8n

S8 #e .. #s
The user can uniquely identify a gap pattern by giving two similar samples that do not
contain inessential features in common. In practice, the system cannot count on the user
to give examples that are quite as noise-free as these. And a formal treatment that
assumes a finite alphabet demands that we restrict our ability to conjure up symbols like
$ and #. In this case, a more technical result applies:
Lemma 14: If |[T| >3, then any gap pattern G is the unique descriptive gap pattern
of a certain sample set of size {f{G)|+1 each of whose strings has length < |¢(G}|+1.
Proof: If G is s49,9,993,...9,,8,,, and a; are symbols from T differing from the first
symbol of s; and the last symbol of s, _,, 1<1<mn, then G is the unique descriptive gap
pattern for the following subset S of eo(G):

SOSISQN.Sn

80018182“.8n

80510282u.8n

8051890, 5,
One of the samples in S is ¢(G), so ¢(G) is of maximum length for any gap pattern
matching S, and is the unique such sequence of constants. The argument given in Lemma
1 suffices to show that a gap pattern H that matches S with ¢(H}=¢(G) must contain a
gap at every point that G contains a gap, and so G is the unique pattern with the

maximal number of constants and the minimal number of gaps. O

The following theorem provides something of a formal justification for the use of the
term “descriptive”. It shows that a descriptive gap pattern defines a language that

tightly encloses the sample strings that were used in its derivation.
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Theorem 15: Let G be a descriptive gap pattern G for a sample set S. Then L(G)

is a minimal gap pattern language containing S. That is, if H is a gap pattern, and
SCL(H)CL(G), then H=G.

Proof: Suppose that there is another gap pattern H with SC L{H)C L{G); we show that
H must equal G. First, we know that |[¢( H)| <|¢(G)|, because |¢(G)| is maximal for all gap
patterns that span S. Also, the shortest string in L{(G) is ¢(G), and there is no other
string of that length in I{G), so ¢(H) must be equal to ¢(G), and thus G and H could
differ only in the number and placement of their gaps. H cannot have fewer gaps,
because G is descriptive. If H has more gaps, or gaps that occur in different places, then
the construction of Lemma 1 shows that there must be a member of eo( H) that is not in

eo(G), which contradicts L{H)C L{G). O

4.8 Synthesizing descriptive gap patterns from examples

This section discusses ways of synthesizing a descriptive gap pattern that matches a
set of samples. It turns out that this task is computationally difficult, so we present
several progressively more efficient algorithms that are successively more heuristic and
approximate,

Our first algorithm, Algorithm 2, is an existential algorithm that starts by
considering the set of all gap patterns that match a set of strings and then winnows that
set down until only the descriptive patterns are left. This algorithm will obviously find a
descriptive gap pattern if the set can be matched by any gap pattern at all, and no proof
of this fact will be supplied.

Input. A set of strings S.
Output: A descriptive gap pattern for S;

Consider the set of all gap patterns G matching S;

Discard all but the patterns with the largest number of constants;
Discard all but the patterns with the fewest number of gaps;
return one of the remaining gap patterns;

Algorithm 2: Finding a descriptive gap pattern.

An existential algorithm like Algorithm 2 will obviously not do; it will be too slow.

We need something constructive, like Algorithm 3. This algorithm does not require
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knowledge of all the gap patterns matching a set. It works by first finding the constants
of the pattern, and then inserting a minimal number of gaps into this string to make it
into a gap pattern that matches the set. Setting questions of implementation aside for
the moment, it is easy to see that this algorithm works, and that it will correctly identify

a descriptive gap pattern for a set of strings.

Input. A set of strings S.
Output: A descriptive gap pattern for S;

Find ¢(G), the constants of a descriplive gap pattern matching S;
Insert the minimal number of gaps into ¢(G) to trans form

it to a gap pattern G that matches S;
return G;

Algorithm 3: Finding a descriptive gap pattern.

4.8.1 Complexity of descriptive gap pattern synthesis

The following theorem characterizes the inherent computational difficulty of the
approach taken by these two algorithms. The theorem and its proof may seem to be
redundant, in that Theorem 12 shows that finding any sort of gap pattern at all to match
a set is NP-hard, but we reproduce it here because the reduction in the proof is more
natural than that in Theorem 12. The problem of finding any gap pattern that matches
a set of strings is usually easy in practice, because the set of strings is usually simple in
structure; however, the simplicity of the reduction contained in the following proof hints
that descriptive gap patterns are more difficult to find in practice. While we could
usually solve the former problem using an exact algorithm, we should consider heuristic
algorithms for finding descriptive gap patterns.

PROBLEM: Finding a Descriptive Gap Pattern
INSTANCE: An alphabet T, a set of strings S={s,,s,,...s, } drawn from $*, and

two non-negative integers ¢ and g.

QUESTION: Is there a gap pattern G matching S with |¢{(G)|2¢ and | G)| < ¢?
Theorem 18: The problem of Finding a Descriptive Gap Pattern is NP-complete.
Proof: By reduction from the Longest Common Subsequence problem. An instance of
LCS is a set of strings @ = {ql,qz,..‘,qn} over an alphabet I" and a positive integer k. The

Descriptive Gap Pattern problem constructed from this has an alphabet
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C=ru{a a,,..a, }U{8}, c=k+1, g=k+1, and the set of strings S of size n. Each s, in
S is constructed from the corresponding q‘.=qilq£2...q“i in @ as follows:

5 = qil“;‘qm“i"-qaiaﬁ
There is a common subsequence of size k in @ if and only if there is a gap pattern
matching S with at least k+1 constants and no more than k+1 gaps. If there is a
common subsequence of size k, say ¥ Yo Yys then the gap pattern
e T P $ matches all of the samples and satisfies the bounds.
Conversely, if there is a gap pattern containing k+1 constants matching S, then we know
that none of the constants in the pattern are a;, and thus at least & of these constants are

symbols from I'. These k symbols form a common subsequence of size kin Q. O

A descriptive gap pattern can be found in polynomial time when there are a bounded
number of strings in the sample set. For example, if S has n members, each of length
bounded by {, then there is an algorithm running in time 0(13"+l log !) that will find a
descriptive gap pattern matching S.

This algorithm works by constructing a concise representation of all possible gap
patterns matching the sample set, and then winnowing out a descriptive; gap pattern from
that representation. The first step in constructing the representation of all possible gap
patterns matching the set is to construct a concise representation of all possible gap
patterns that match a particular sample. This representation is a finite automaton [42]
that recognizes, or generates, all possible gap patterns that match the sample. The finite
automaton M, constructed for sample s,€S has [s |+1 major states, named with the
integers from O to |s |, where state 0 is the start state, and state |s.| is the sole accepting
state. M recognizes strings formed from the alphabet Tu{---}, where --- is the
anonymous gap symbol. One class of state transitions in the automaton are those that go
from state j—1 to state 7 on the symbol 35 the jth character of s ; these transitions are
used to generate some of the constant portions of the gap pattern. There is also a
transition through a sequence of / auxiliary states from state j—1 to state £ in A on the

string --- 0,0,...0, if the substring 8,9 8, can be matched by the gap pattern

i+l
--- 0,0,...0; but the substring 8 Bii1Sik=1 cannot be matched by the gap pattern

--= 0,0,...0;_,. These two kinds of state tramsitions are the only non-failure transitions in

M. For example, if 8, were aba, then ,‘.Il would be the antomaton:



This automaton accepts the following set of twelve strings which, not coincidentally, are

all the gap patterns that match the string aba.

aba --- aba --- ba
ab --- 2 -== ab --- 2 == b --- 3
a --- ba --- 2 --- b3 a ---2
a2 --- b -2 “es @ esa D == @ - 3 --- 23

If the second sample s, were the string aabba then M, would be an automaton

recognizing a language consisting of 73 distinct strings:

The algorithm computes a finite automaton of this kind for each of the samples in the
set, yielding # finite automata M ,M,,...M . Each of these finite automata encodes the
set of all of gap patterns that match a particular string; the intersection of these sets is
the set of gap patterns that simultaneously match all of the sample strings. The
intersection can be computed efficiently by forming the intersection of the machines using
the classical finite state machine intersection algorithm that constructs an intersection
machine containing a state for each pair of states in the two machines being
intersected {42]. Intersection is associative, so this process can be done pairwise by first
forming M, N M, yielding M’ and then forming M’ N A, etc.. The resulting machine
M=(M _n(M,_,n(...n(M,NM,)))) recognizes those gap patterns that match all strings
in the sample set.

The running time of the algorithm that constructs A is polynomial if the number of
samples in S is assumed to be bounded. If s, is of length /, then there are no more than

[—j+1 transitions leaving each major state 7, and each of these transitions is labeled with
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a string of length at most {—j+1, so there are no more than 0(13) states in M, including
the auxiliaries. Each of the M; can be constructed in time O(#3), and so the total running
time of the machine construction phase is O(nls). The intersection of two finite automata
M; and M can be implemented to run in time O(| M| ]MJ{), and it yields a finite
automaton of size O(| M| IMJ{) Thus, the entire intersection phase runs in time O(>")
and yields a machine M with 0(13") states.

The machine M can be used to solve the Gap Pattern Existence problem. To solve
the problem, simply minimize the number of states in M, which may be done in 0(13")
time using an algorithm that takes advantage of the acyclic nature of the machines. If M
has any states left at all after the minimization process is complete, then a gap pattern
exists that matches all of the strings of S. A particular gap pattern that matches the
samples may be generated by finding some path from AM's start state to M's accepting
state and returning the strings encountered along the traversal. Thus we have shown:
Theorem 17: A gap pattern to match a set of n strings of length bounded by [ may
be synthesized in time 0(13"). Thus, the Gap Pattern Existence problem may be
solved in polynomial time for a bounded number of strings.

We still have not found a descriptive gap pattern; M encodes all gap patterns that
match the set, and we wish to find the one that does so with the greatest number of
constants and the fewest number of gaps. We would like to find such a pattern in
polynomial time; however, there may be an exponentially growing number of accepting
paths through M, so a brute-force search through all of the strings accepted by M is out
of the question.

To find a descriptive gap pattern using M, we have to find the strings accepted by
M that contain the greatest number of constants, and among those, isolate the ones with
the fewest number of gaps. One can test to see if the language accepted by Af contains
any gap patterns with at least k constants by intersecting M with an automaton that
generates all gap patterns that contain at least k constants. Here is an exampie of a finite
state automaton that generates all gap patterns containing at least three constants over

the alphabet {a,b} with gap symbol ---:




This automaton has O(k) states, and its intersection with M can be constructed in time
O(k*™). Thus one can discover in O(k*") time whether S can be matched by a gap
pattern with at least k constants. The number of constants in any gap pattern that can
match S is bounded by the length of the shortest string in S, which is bounded by /. And
so the gap patterns with the maximum number of constants in them that are recognized
by M can be found in log ! applications of the intersection algorithm using a binary

3%+1 log I) time. A similar technique can

searching process. The whole process takes O(
then be used to further reduce the gap patterns to those that contain the minimal number
of gaps.

Theorem 18: A descriptive gap pattern for a sample set S consisting of n samples

(27*! log 1) time. The Descriptive Gap

of length at most ! can be synthesized in O
Pattera Synthesis problem can be solved in polynomial time for bounded n.

This algorithm for descriptive gap program synthesis is not practical, and while its
performance can probably be improved somewhat, we have chosen to develop a heuristic

to solve this problem.

4.8.2 A heuristic approach

The algorithms that we have described for finding a descriptive gap pattern are not
efficient enough to be practical; our first serious crack at solving this problem is encoded
in Algorithm 4. This algorithm is heuristic; it starts by computing an approximation to
¢(G) by finding the Longest Common Subsequence of the sample strings. The next step is
to attempt to convert this common subsequence to a gap pattern matching the set by
inserting the minimal number of gaps required to make the gap pattern match S. If this
step succeeds, then the gap pattern synthesized is returned; if it does not, then the
algorithm reports that it failed to find a pattern.

The first step of the algorithm is to find the constants that are to go into the gap
pattern; the second step is to find the places in that constant string that require gaps.

We will consider how to perform each of these two steps in turn.
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Input: A set of strings S.
Output: A pseudo—descriptive gap pattern for S;

Find an approzimation to ¢(G) by finding the LCS of S;
Try to insert the mintmal number of gaps into the LCS to

transform it into a gap pattern G that matches S;
return G or signal failure,

Algorithm 4: Approximating a descriptive gap pattern.

4.8.3 Finding the constants

Our first approximation for finding the constants of the gap pattern is to find the
Longest Common Subsequence of the strings. This way of computing the constants of a
gap pattern is not completely reliable, because the longest common subsequence of a set
of strings is not always related to a descriptive gap pattern matching the set. For
example, if S= {ccaba,bcca}, the longest common subsequence of S is cca, but the only
gap pattern that matches S is --- b --- a. So an algorithm that tries to convert the LCS
of the strings into a gap pattern matching the strings cannot always succeed. However,
we will show that the algorithm will eventually converge to a correct descriptive gap
pattern as more examples are added to the set. For example, if the string aba is added to
S, then the LCS becomes ba and a gap pattern based on this string can be found.

The LCS of a set of strings is also hard to compute, so a further layer of heuristic
approximation is required. Algorithm 5 gives our heuristic for the LCS. The algorithm
considers the samples from shortest to longest and takes its initial hypothesis for a
common subsequence to be the shortest sample. It then refines its hypothesis by
computing the exact longest common subsequence of its current guess with each of the
strings 8g1 831 -e 8, in turn.

Sort the inputs by increasing length, yielding I}, I,, ..., I .
¢+~ Il;
for j — 2to n do
¢ ~ LCY(e, [j);
return c;

Algorithm 5: Approximating the LCS of a set of strings

The longest common subsequence operation is not associative, so this algorithm will not
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necessarily find the exact longest common subsequence of a set of strings. But it will do
pretty well in practice, and indeed will converge to ¢(G) in the limit.

Theorem 19: Algorithm 5 computes ¢(G) in the limit.

Proof: One property of the LCS is that if ¢ is a subsequence of a string I, then LCS(e,])
is equal to ¢. If G is the gap pattern generating the set of samples, then in the limit all
strings in L{G) will be processed by the algorithm. The unique shortest string in L{G) is
¢(G), and the strings are considered in order of increasing length, so eventually 7, will be
equal to ¢(G). Once this happens, ¢ will be initially set to I}, which is ¢(G), which is a
subsequence of all strings in I{G), and the successive refinements of setting ¢ to LCS(c,IJ-)

will leave ¢ equal to ¢(G). O

If the input strings are all of length {, then this algorithm can be implemented to run
in time O(n!*) using Hirschberg’s algorithm for computing the LCS of two strings [41].
Alternatively, if r is a bound on the number of ordered pairs of positions in the input
strings that contain equal characters, then this could be implemented to run in time

O(n(l+r) log !) using Hunt and Szymanski’s algorithm [43].

4.8.4 Inserting the gaps

The next step of the algorithm is to take the string of constants returned by the first
step and to find a way to insert the minimal number of gaps into that constant string to
get a gap pattern that matches the samples.

We have attempted, without success, to classify the complexity of the problem of
transforming a longest common subsequence of a set of strings into a gap pattern that
can match the set. We suspect that the problem is NP-hard, but we have not been able
to prove it.

On the other hand, we do have an algorithm that solves the problem in time that is
polynomial in the total length of the strings when the number of strings in the sample set
is bounded. The algorithm uses the descriptive gap pattern synthesis algorithm of
Theorem 18 as a subroutine. It adds the common subsequence ¢ to the sample set, and
then performs the descriptive gap pattern synthesis algorithm on this new set. If pattern
synthesis yields a descriptive gap pattern G with ¢(G)=¢, then it mimics G's way of
inserting the gaps into ¢. If the algorithm returns a descriptive gap pattern that has

fewer constants than ¢, or if it cannot find a gap pattern to match S at all, then there is
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no way to insert gaps into ¢ to transform it into a gap pattern matching .S, for if there
were then the gap pattern based on ¢ would have been the descriptive gap pattern
matching S.

If lis a bound on the length of each string in S, the descriptive gap pattern synthesis

I3n+l

algorithm runs in time O( log 1), so this algorithm for gap insertion runs in time

O(137*4 log 1), since it increases the size of S by one string.

Theorem 20: The Gap Insertion problem can be solved in 0(13"'*'4 log 1) time,
which is polynomial for a bounded number of samples.

In practice, the problem of finding 2 way of inserting gaps into a constant string to
get a gap pattern that matches the samples can be adequately solved using simple
heuristics. The heuristic shown in Algorithm 6 treats the string returned by the constant-
finding step as a gap pattern with zero gaps and tries that pattern against each of the
strings in the sample set. If the pattern does not match some string, then the algorithm
tries to make some local modifications to the gap pattern to make it match the string. If
the modifications are successful, then it continues processing the rest of the strings; if the
modifications fail, then it gives up.

Input: II, 12, ...In, a set of strings,;
¢, a subsequence common to the IJ,'

Output: A gap pattern G with ¢(G)=c that matches the IJ., or
an tndication that no pattern could be found,

The initial gap pattern ts a common subsequence without gaps, and
the inputs are considered sorted from shortest to longest.
G+~ ¢
loop for j — 1 to n do
if G does not match IJ. then
make local modi fications to G to make it match IJ,'
if G cannot be modi fied to match Ij then fail;
endloop;
delete extraneous gaps from G;
return G or a signal of failure;

Algorithm 8: Heuristic gap insertion algorithm

The heuristics used to modify G to make it match a sample are the core of the
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algorithm, and have been broken out as Algorithm 7. We have two heuristics: one that
inserts gaps, and one that deletes or moves them. The gap pattern starts out without any
gaps, so we prefer to insert gaps as long as that leads to a gap pattern that matches the
string being considered. If the gap insertion heuristic cannot insert gaps into G' to make
it match a particular I], then it will delete gaps from G and try inserting gaps again. If
the second gap insertion fails, then the algorithm will give up and return an indication

that G could not be modified to make it match the samples.

insert gaps in G to make it match IJ-;
if gap insertion fails to make G match Ij then
move and delete the gaps in G, such that G

still matches 11,1 ""’Ij—l;
tnsert gaps in G to make it match IJ;
if gap insertion fails to make G match Ij then

stgnal failure;
Algorithm 7: Performing local modifications to a gap pattern.

The gap deletion heuristic is also run at the end of the gap insertion process in an
effort to reduce the number of gaps in the gap pattern.

Our heuristic approach to inserting gaps into the gap pattern is called
le ftmost-match gap insertion and is implemented by Algorithm 8. The algorithm takes
as input a sample string I and a gap pattern G encoded as a common subsequence ¢
together with a boolean vector g that indicates where the gaps in ¢ lie. Its output is a
new gap pattern G’ that subsumes GG; G has the same constants and gaps as G, except
that it may have some additional gaps as well. We call this algorithm leftmost-match
gap insertion because it tends to match the constants of the subsequence as far to the left
as it can, which is to say that it tends to insert the gaps as far to the right in the
constant subsequence as it can.

The leftmost-match gap insertion algorithm works by scanning G and I in parallel
from left to right, considering suffixes of the gap pattern and input string as it goes. It
terminates either when the gap pattern suffix under ccnsideration matches the current
input string suffix, or if it runs out of input string to match before running out of gap
pattern. The former kind of termination yields a gap pattern that matches the string,
while the latter is a signal that this particular heuristic has failed and that another must

be tried. Two kinds of action are taken to make one of these eventualities come to pass.



72

Inputs: I, a sample input string of length I;
G, a gap pattern encoded as:
¢, a common subsequence of length n;
g, a boolean vector of length n in which g[j] is
true i ff there is a gap before c[j] in G.

J- 5
k +~ 1,
loop while k < |I};
until G[j..n] matches I[k..|1]];
if ¢[j] = I[k] then
J=J+L k—k+1
else
gly] «~ true; k ~ k + 1;
endloop;
if k> |I| then the gap insertion process failed,
Algorithm 8: Leftmost-match gap insertion

In the first case, if the leading constant character of the pattern suffix is equal to the first
character of the string suffix, then the algorithm assumes that these two characters would
match in the target gap pattern, and so it goes on to consider the trailing suffixes of both
the pattern and the string. In the second case, if the two leading characters are different,
then the algorithm modifies the gap pattern to contain a gap before the leading character
of the pattern suffix, and immediately uses the new gap to skip over the leading character
of the string suffix.

As an example of this algorithm’s behavior, if the input string I is the string:

The Mets beat Chicago, 6 to 5.
And G is the constant gap pattern “Thelieslibeat|]io, i to.”, then this algorithm will
insert six gaps in order to make the pattern match the string:

Thei| -1- e -2- s/ beaty -8 i -4- o,i} -5- to -6- .
When a second input string is considered:

The Yankees beat Baltimore, 10 to 3.

w v

Then the gap pattern must have one more gap inserted between the “0” and the to

match the string:



They -1- e -2- sibeaty -3- i -4- o -5- |4 -6- Ltoly -7 .

We say that the gaps of a gap pattern G are a superset of the gaps of a gap pattern
H if ¢(G)=c(H) and at every point in ¢(H) that H has a gap, G also has a gap. The
following lemma shows that, with the proper input, the leftmost-match gap insertion
heuristic will find a gap pattern whose gaps are a superset of the target pattern’s gaps.
Lemma 21: If H is a gap pattern, and leftmost-match gap insertion is applied to the
string ¢(H) with a sample set equal to eo(H), then the algorithm will successfully
insert gaps into the string to transform it to a gap pattern G that matches the
samples, and the gaps of G will be a superset of the gaps of H.
Proof: Any gap pattern G with ¢(G)=c¢(H) will match the string ¢(H), so the only
strings in eo{ H) that might require gap insertion are those of length {¢{(H)|+1. All of the
strings of length |c( H)|+1 have one gap expanded and are either of the form
808,.-8;_1X8;...8,,, Where X is some symbol that is not equal to the first character in s, or
are of the form s.s,...s;_,ys,...s, where y is the same as the first symbol in 5. Let
eo,,(H) be that subset of eo( H) that has the i'th gap expanded with a symbol that is not
equal to the first symbol of s, and let eoiy(H) be that subset of eo( H) that has the i'th
gap expanded with the same symbol as the first symbol of s,. Note that coiy(H) is either
empty or contains one string.

If the i'th gap has already been inserted into G, then one can verify that Algorithm
8 will not be invoked on any member of eo, (H) or coz.y(H), because G will already match
that string. If the i"th gap has not yet been inserted into G and the current input sample
is a member of eo, (H) then Algorithm 8 will be invoked. The algorithm will find that
the first character of s; does not equal x, and it will then insert a gap into G preceding s,
which will make G match the input and all other members of eo, (H) or wiy(H)‘ If the
current input sample is a member of coiy(H), then the y will be equal to the first symbol
in s, but will differ from some other symbol in s; if y were equal to all members of s_.
then it would not be a valid substitute for the gap 1. In these circumstances, Algorithm
8 will insert a gap before the first member of s; that is not equal to y; this gap will be
useful only in matching that single element of eo H).

Thus, on input eo{ H), the gap insertion algorithm will transform ¢(H) into a gap

pattern G whose gaps are a superset of the gaps of H. O

Note that this lemma also shows that the gap insertion heuristic will insert no more
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than 2|g( H)| gaps into ¢(H) on the input data eo( H).

The extraneous gaps inserted by the leftmost-match gap insertion heuristic may
cause problems. For example, if the algorithm is given as input a gap pattern G = abc
and a first sample string /, =aabc, then it will modify G to be “a --- be”. If the second
input I, is babc, then G will be modified again to be “--- a --- be”. If the third input
I, is abbcabc, then there is no way for gaps to be tnserted into G to allow it to mateh I,;

'3

the only gap pattern with constants abc that matches abbcabe is “--- abe”, and a gap
must be deleted from G to transform it thus.

Some of these extraneous gaps can be removed by the gap deletion heuristic given in
Algorithm 9. This algorithm scans the gaps in G starting from the left. [t removes a gap
from G, yielding a new gap pattern G’, and then tests if G still matches all of the
samples that it used to. If G’ matches the samples, then the change is made permanent
in G, otherwise the modifications are undone.

Inputs: S, a set of strings;
G, a gap pattern that matches S;
Output. G, perhaps with some gaps deleted,

Scan the gaps -j- of G from the left:
G’ +~ G with i1 -7 8; changed to $i_157
if G* matches S then
G - G
return G,

Algorithm 9: Gap deletion heuristic

This heuristic is invoked whenever the leftmost-match gap insertion algorithm fails
to be able to modify G to match a particular string. If the heuristic is able to remove
some gaps from G, then the leftmost-match gap insertion heuristic is attempted again.
For example, the first few steps of the scenario given above proceed in the same way: if
the gap insertion algorithm is given as input a gap pattern G =abc, and a first sample
string I, = aabc, then leftmost-match gap insertion will successfully modify G to be
“a --- bc”. If the second input I, is babc, then a gap will be inserted again to make G
be %--- 3 --- bc”. However, if the third input I is abbcabce, then there is no way for
gaps to be inserted into G to allow it to match ;. In this case, though, the second gap

“

can be deleted to yield the pattern “--- abc” which matches the previous two inputs, and
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also happens to match I,.

Lemma 22: If the set of strings S is equal to eo( H), and G is a gap pattern that
matches § whose gaps are a superset of those of H, then after running Algorithm

9 on G and S, G will be equal to H.

Proof: Each of the gaps in G that are not in H can be removed, one at a time, and G
will still match all strings in eo H). On the other hand, suppose that the i’th gap that G
shares with H is removed. In this case, if x is a character different from the first
character of s, (assuming |T|2>2), then G will not be able to match sys,...s;_xs;...5,,
which is a member of eo(H). O

The running time of the gap deletion heuristic on a gap pattern G and a string of
length ! is O(l|¢(G)|), which is dominated by O({?). Leftmost-match gap insertion also
runs in O(12). On = inputs, the gap insertion heuristic might invoke leftmost-match gap
insertion twice per input, and the deletion heuristic once per input, so the running time is
bounded by O(nlz). In practice, the actual running time is considerably better.

The gap insertion algorithm is not guaranteed to find a way to insert gaps into a
constant sequence to make it match a set of strings. Even if it can find some sort of gap
insertion, it is not guaranteed to be a good one. However, it seems to perform pretty well
in practice, and we show in the next section that in the limit it correctly inserts the gaps

into the constants returned by the constant-finding heuristics.

4.8.5 A heuristic descriptive gap pattern synthesis algorithm
Algorithm 6 can be combined with Algorithm 5 to yield an algorithm that is a
worthwhile heuristic for approximating a descriptive gap pattern.
Input: A set of strings S={I. I, ..., I }
sorted in order of increasing length.

Output: G, a pseudo—descriptive gap pattern for S.

G « result of Algorithm 5 on S;
G « result of Algorithm 6 on G and S;
return G;

Algorithm 10: Heuristic for approximating a descriptive gap pattern

One can show that this algorithm identifies a descriptive gap pattern in the limit:
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Theorem 23: Algorithm 10 identifies a descriptive gap pattern in the limit.

Proof: We have already shown in Theorem 19 that Algorithm 5 will identify the
constants of the descriptive gap pattern in the limit. So assuming that the algorithm has
correctly identified ¢(G), we need only show that the repeated applications of Algorithm
8 from within Algorithm 6 will place the minimal number of gaps into their required
positions. The input strings I}, I,, ..., I are presented in order of increasing length, so
after some point the initial part of the sequence is ¢o(G). Lemma 21 shows that on this
input Algorithm 8 will insert gaps into the right locations in the constants, although it
may insert extra gaps as well. Lemma 22 shows that Algorithm 9 will remove the
extraneous gaps as soon as it is invoked, and it will be invoked at least cnce every time

Algorithm 6 is called. O

4.9 Synthesizing gap replacements from examples
Once a descriptive gap pattern is found that describes the structure of the input
strings, we must then find a way to produce the corresponding output strings using that

structure. For example, if these three lines were our input samples:

The Yankees beat Baltimore, 10 to 3.
The Mets beat Chicago, 6 to 5.
The Angels beat Detroit, 2 to 0.

Algorithm 10 would find the following descriptive gap pattern to describe the structure of
the input set:

Thely -1- e -2- s beat]] -3- o -4- ,U -5- Litol} -6-
The first gap in the pattern matches the string “Yank™ in the first sample, “M” in the

second, and “Ang” in the third. The second matches “e”, “t”, and “!”, and so on:

-1- -2- -3- -4- -5- -6-
Yank e Baltim re 10 3
M t Chicag 6 5
Ang | Detr it 2 0

The problem addressed in this section is that of taking the fragments of text matched by
gaps from the input, and a collection of output samples:
Yankees 10, Baitimore 3.

Mets 6, Chicago 5.
Angels 2, Detroit 0.
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and finding some way of explaining how the outputs could be produced by copying gaps
from the input strings and inserting new constant strings as required. That is, how do we
synthesize a replacement expression that can construct the set of output strings from the
sample inputs? What sort of processing is required to be able to generate this
replacement expression?

-1- e -2- s -5- U -83- 0 -4- U4 -6- .

That this problem is at all challenging is not evident from this example. If we
examine the output strings and the gaps matched by the input, we can easily see how to
construct a replacement expression. It takes only a glance to see which parts of the
output are produced from gaps -1-, -3-, -4-, -5- and -6-. The first gap, for example,
matches “Yank”, “M”, and “Ang” in the input, and it is the only available source for these
strings in the output. The second gap presents only a slightly more difficult problem. It
matches an “e” in the first input string, and one might have to pause for moment to
decide which, if any, of the three “e”’s in the first output result from copies of that gap.
But only for a moment, for the second gap simultaneously matches a “t” in the second
input sample, and there is only one possible destination for that “t” in the second output.
So the problem does not appear to be very difficult.

In the following, we show that the problem of creating a replacement expression is
theoretically intractable. We then present an algorithm that solves the problem in
polynomial time for a bounded number of sample strings, and we point out that the

running time of this algorithm is reasonable on the sort of data encountered in practice.

4.9.1 Complexity of gap replacement synthesis

The essence of the problem of constructing a gap replacement is to solve the problem
of finding a way of building several large pieces of text out of a given set of smaller ones.
The Gap Replacement Synthesis decision problem formalizes this question:

PROBLEM: Gap Replacement Synthests

INSTANCE: An alphabet L, a set of vectors of strings S called the input parse,
and a single vector of strings X called the output. S is the set {.91,32,....3”},
where each of the s is a vector of strings <s,,.8.5,...,; >, and each 3;; is
a string from £*. X is a single vector of strings <z,%5..7,> where each
z, is a string from T*.

QUESTION: Can X be expressed as a componentwise concatenation of the



78

vectors of strings in S? That is, does there exist a sequence of indices
jl,jz,...jl, {20, such that each z; in X is equal to the concatenation of the
strings 31.1531.2 z‘""’j,i?
While this statement of the problem does not mention the possibility of inserting new
constant characters, that added operation can be viewed as simply having an input parse
that includes all strings of the form <a,3,...,a> for each a€ZL.
Theorem 24: Gap Replacement Synthesis is NP-complete.
Proof: This problem can be solved in nondeterministic polynomial time by an algorithm
that guesses the sequence of indices -7‘1’-7.2”"-7‘1 and then confirms that the concatenation of
85 %585 is equal to z; for each of the z, in X.
We will show that this problem is NP-complete by reduction from the Longest
Common Subsequence problem (LCS). Given an instance of LCS = <T',Q,k>, we
construct an instance of Gap Replacement Synthesis= <¥,5,X> as follows: The

alphabet T will be T'u{$}, where § is some character not in I". If T contains ¢ symbols

{71’72"“’7:}’ then the set of vectors S will consist of ¢t vectors of length m+1:

<A1 3> <o Vg0V 8> <V Ve Tp$>
along with tm other m-+1-vectors:

<74 A4> <7p4,.,44> <4 4,4>

<47, 4,4> <A,'72,...,A,A> <47-4,4>

<AA4;...7,4> <,v'1,A,...,72,A> <4.4,..7,4>

And the output vector X will be the m+1-vector:

<q1,q2,...,qk,$$$...$$$>

The first m components of X are simply copies of the strings in the LCS sample set, and
the last component is a string composed of k consecutive $ symbols. Now we will show
that there is a common subsequence of size & in our instance of LCS if and only if there is
a replacement expression in the instance of Gap Replacement Synthesis that we have
constructed.

Suppose that there is a common subsequence of size ¥ in @. This means that there is
a scheme for threading the strings of @ so that there are k strands of non-overlapping

thread passing through identical symbols in each of the g
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The components z, through z of X are exactly the strings in @, so this diagram reveals
a simple way of constructing each of the z; in X from the parts in S. The pieces of these
strings that do not lie on threads can be built character by character cut of the members
of S that have one non-empty slot containing a single character. The particular order
that this is done in does not matter — the unthreaded portions of z, can be added before
those in z,, or vice-versa. Once all of the characters to the left of a thread have been
assembled into X, that entire thread can be laid in at once by adding in the member of S
that contains the character in the thread in positions 1 through m. This member of S
also contains a $ in component m+1. [t is correct to add it in because component m-+1
of X contains a string consisting of k $'s, each of $'s is added exactly when a thread is
encountered, and there are exactly k threads.

Suppose that there is a sequence of indices j;.J,,...J;, {20, such that each z; in X'is

.. In particular z , which consists

Nt ; 1 jlz
of k£ $ symbols, must be constructed from members of S corresponding to & cf these

equal to the concatenation of the strings s . mtl
indices. All of the members of S that contain the $ symbol in position m+1 are of the
form <#,%,...7,$> for some vEI'. The k symbols of I' occurring in each of these 8 form
a subsequence common to the members of @ of size .

Thus, there is a common subsequence of size & in @ if and only if there is a
replacement expression X drawn from the parts in S. This construction can be done in

polynomial time. O
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4.9.2 A gap replacement synthesis procedure
In practice, finding a gap replacement given a gap program is not quite so hard as
this NP-completeness result would imply. Indeed, in practice we can solve this problem
exactly because our data does not seem to exercise the features that make it intractable.
The gap pattern found by the algorithms in Section 4.8 yields a particular parse of
the input strings into constants and gaps. For example, suppose that we have the

following two input/output pairs as examples:

abxbay = ababa
cddxddcy = addcddc

The descriptive gap pattern matching the inputs is -1- x -2- y. In the first example, the
first gap matches the string ab and the second matches ba. These two gaps and some
auxiliary constants can be arranged to form the output 2baba using any one of eight

replacement expressions:

ababa a -2--2-
aba -2- -1- aba

ab -1-a -1- a2 -2-
a-2-ba -1- -1- 2

Similarly, in the second example, the first gap matches the string cdd and the second gap

matches ddc, and there are five ways of writing the output addeddc:

addcddc a -2- ddc
addc -2- 3 -2- -2-
add -1- ¢

The task of the algorithm described in this section is to find a single replacement
expression that will simultaneously transform both of the input examples parsed by a gap
pattern to the corresponding output examples.

The algorithm we use for finding a replacement expression has two phases. The first
phase constructs a finite automaton for each input/output example that describes all of
the different replacement expressions that yield the output example. For input/output
pair <iJ,oj> the corresponding finite state machine .Mj has Iojl-'r-l states numbered 1
through {oj|+1. State 1 is the start state, and state [ojl-'rl is the sole accepting state.
There are two classes of transitions in ;\[J: those arising from the constants in any
matching replacement expression and those arising from the gaps. There is a transition

from state k to state k+1 on the symbol oj[k]; and there is a transition from state & to
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state k+/ on gap symbol g _ if the substring oj[k..k+l—1] is equal to the text matched by
gap ¢, in iJ. The following is a picture of the finite state machine that captures all of the

ways that the output ababa can be written in terms of constants and gaps when gap -1-

matches ab and gap -2- matches ba:

-1- -2- -1- -2-

And the following is the finite state machine for the second sample in which the output

string is addcddc, the first gap matches cdd, and the second gap matches ddc:

Notice that each of the machines recognize the languages given above.

The next step of the algorithm is to find some replacement expression that produces
all of the output strings by intersecting the machines derived in the first step. The
classical finite state machine intersection algorithms can be used [42], and in this case the
intersection would be the following machine:

-0- )

~

In this case the replacement expression is unique. The only string recognized by this
automaton corresponds to the replacement expression a -2- -2-, and so the resulting
program Is:

Il-x-2-y = a-2--2-
The replacement synthesis algorithm is given in Algorithm 11.

The finite state machines of the first phase can be built in time proportional to the
lengths of the output strings multiplied by the number of gaps in the input pattern. If /
is a bound on the length of the output strings, then a particular gap from the input can
occur at no more than ! different points in the output. Thus the machines constructed in
the first phase of the algorithm have no more than / states and O(|g{G)|!) transitions.

The worst case running time of the second phase can be proportional to the product of



82

Inputs: A set of strings O= <o0,,0,,...,0,> and
a parse of the inputs S

Output. A replacement expression R that produces O from
the components in S and any necessary constants, or an
indication that no R could be found;

if all 0; in O are the empty string then
return the empty replacement expression;

loop for each o, in O do
M, ~ finite automaton representing all replacement
expressions yielding o from S;
endloop;

M~ M,
loop step : from 2 to n do
M~ MnM;
if M is the empty automaton then
return failure;
endloop;

return a replacement expression consisting of the symbols
encountered along one accepting path through M,

Algorithm 11: Replacement synthesis algorithm

the sizes of the machines constructed in the first phase, and so we have shown:
Theorem 25: Given a set of n input/output samples
§={<t,,0,>,<1,,0,>,...,<¢,,0 >}, and a gap pattern G that matches the input
samples, Algorithm 11 will find a replacement expression R if one exists in time
oG ™).

The NP-completeness result in Theorem 24 implies that we should not expect to
improve on this worst case performance by very much, but the algorithm seems to
perform well in practice. In practice, the machines constructed in the first phase are long
and thin — the string contained in a particular gap usually does not occur in the output
in very many places. The intersection of two of these skinny machines ;\[jand M, can be

implemented to run in time roughly proportional to the size of the resulting machine
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MJ.n M,, and the intersection is a machine that is usually skinnier than either A[J. or M,
So this algorithm performs well in practice, running in time closer to O(n!) than
O(]g(G)|™I"), and in fact is exactly the replacement expression computation algorithm that
is implemented in the running system.

The algorithm can be shown to converge to the target replacement expression once
the pattern synthesis algorithm has found the target:

Theorem 28: Assuming that the gap pattern G used to parse the inputs is the

correct one, Algorithm 11 will identify the replacement expression component of a

gap program in the limit from positive data.

Proof: The intersection machine M encodes all possible replacement expressions that
can construct a set of output strings from a parsed set of inputs, so if G is the target gap
pattern then the target replacement expression R must be one of the replacement
expressions represented in M. By definition, all of the possible sample input/output pairs
<iJ,oj> can be transformed by the program P= G = R; we will show that every other
replacement expression R’ results in a gap program P’ =G =R’ that will fail to
transform some input/output pair in the same way that P does. Adding these
input/output pairs to the sample set will cause R’ to be eliminated from Af; eventually,
only R will be represented in M.

The target expression R is of the form z,7,...z; where each of the z. is either a gap
symbol from G or a symbol from the alphabet. Let R’ be some other replacement
expression that can transform the input/output pairs presented so far. R’ differs from R
in some leftmost position s; that is, R’ is of the form z,z,...z;,_,z/..z/with z, %z If z;
and z; are both symbols from the alphabet, then P’(¢(G)) will not equal P(¢(G)), because
both of these output strings are made up solely of the constants of the replacement
expressions. If z; and z are different gap symbols, then an input that binds the two gaps
to strings starting with different symbols will result in a corresponding difference in the
outputs. Similarly, if z; is a constant and z. is a gap, or vice-versa, then an input that
binds the leading character of the gap to something other than the constant will cause a
corresponding difference in the outputs. If R is a strict prefix of R’, or vice-versa, then
an input that binds the gaps that occur in the suffix of R” will produce a different, longer

output. O
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4.10 Summary of results

This chapter presented a study of the problem of synthesizing gap programs from
examples of their input/output behavior. In an effort to understand how to formulate an
efficient solution to this problem, we investigated the complexity of various subproblems
related to gap program synthesis. We considered the complexity of both the general
problem, where the number and length of the input/output pairs is not bounded, and a
more restricted problem in which the number of input/output pairs is bounded, although
the length is not. The following table summarizes our results; the entries are either NPC,
if the problem is NP-complete, or an upper bound for solving the particular problem for n

strings each no longer than ! characters.

Problem General Fized n
Gap program synthesis NPC (Thm.11) NPC (Thm. 11)
Gap pattern synthesis NPC (Thm.12) O(£") (Thm. 17)
Descriptive gap pattern synthesis NPC (Thm. 186) O3+ log /) (Thm. 18)
Longest Common Subsequence NPC (Thm.9) O(")
Gap insertion ? O(l"** log 1) (Thm. 20)
Replacement synthesis NPC (Thm.24) O(™«G)|") (Thm. 25)

An algorithm that is guaranteed to find a gap program exhibiting some sample
behavior must solve an NP-complete problem, and this problem remains NP-complete
even when the number of input/output pairs is bounded. This complexity result led us to
decompose the problem into more tractable pieces and to find the gap pattern and the
replacement expression independently of each other. The independence of the two
computations implies that a gap pattern is no longer constrained to parse the input
samples in such a way that a replacement expression exists that maps the parsed inputs
to the output samples.

In order to get a gap pattern that parses the inputs in a potentially useful way, the
“best” gap pattern matching a set of input samples is defined to be a descriptive gap
pattern matching the set, that is, a gap pattern matching the set with the largest number
of constants and the fewest number of gaps. We showed that descriptive gap pattern
synthesis is NP-hard, and although algorithms for finding a descriptive gap pattern for a
fixed number of samples run in polynomial time, they do not seem to be practical, and so
we developed heuristics for approximating descriptive gap patterns.

The heuristic approximation is computed by Algorithm 10, which first computes a
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plausible candidate for thé constants of the descriptive gap pattern, and then inserts gaps
into that string to make it match all of the samples. The constants are approximated by
a heuristic for the longest common subsequence of the set of input strings, Algorithm 5,
which runs in time O(nl’g). Theorem 19 shows that this heuristic approximation converges
in the limit to the constants of the descriptive gap pattern for the sample set. The
algorithm then uses the gap insertion heuristic implemented by Algorithm 6 to insert gaps
into this constant seqﬁence in O(nlz) time to make it into a gap pattern matching the
input samples. Theorem 23 shows that this entire process converges in the limit to the
descriptive gap pattern matching the input samples.

The descriptive gap pattern yields a parse of the input strings, and the task of the
replacement expression is to rearrange that parse and introduce new constants to form the
output strings. Finding a replacement expression given a parse is NP-hard, although the
problem can be solved by Algorithm 11 in O({"*|¢(G)|") time for a bounded number of
output samples. However, in contrast to gap pattern synthesis, it does not appear to be
hard in practice to find an exact replacement expression. In practice, the O({"|g(G){™)
algorithm seems to run in time closer to O(n!), and so we actually use this algorithm to
find a replacement expression in the running system.

Input: a set of input/output pairs S={<il,ol>,<i2,02>,...,<in,on>1;
Output: a gap program P or an indication of failure.

1
f

Approzimate a descriptive gap pattern G common to {il’i‘”'“"’n'

using Algorithm 10;
Use G to parse {il,im...,in};
Compute a replacement ezpression R that maps the parsed i\ to o,

using Algorithm 11;

Return P = G = R;
Algorithm 12: A gap program synthesis algorithm

The descriptive gap pattern heuristics and the replacement expression algorithm
make up a gap program synthesis procedure that can identify gap programs in the limit
from positive data.

Theorem 27: Algorithm 12 identifies gap programs in the limit from positive data.

Proof: Theorem 23 proves that the approximate descriptive gap pattern synthesis
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algorithm identifies gap patterns in the limit from positive data. Theorem 26 shows that
once the target gap pattern has been identified, the identification of the replacement

expression will surely follow. Thus Algorithm 12 converges to the target program. [J

We have presented an algorithm that will identify gap programs in the limit from
positive data. In the next chapter, we analyze its short-term performance, present
heuristics that help it to function effectively on text, and describe its implementation and

user interface within a text editor.



Chapter 5

.

IMPLEMENTATION

In Chapter 4 we developed a gap program synthesis algorithm and showed that it
could identify gap programs in the limit from positive data. While identification in the
limit is certainly a property to be desired, one would like the further assurance that the
algorithm will perform within the limit of the user’s patience. In an attempt to gain an
understanding of how well the algorithm performs on a small amount of data, say two or
three examples, this chapter starts by presenting a study of the algorithm’s performance
on several different sets of randomly generated test data. This study brings out some of
the aspects of both the input data and the target program that affect the gap program
synthesis process.

The chapter also presents four heuristics that help to make the gap program
synthesis algorithm into a useful tool for editing by example. Three of these heuristics,
pattern reduction, tokenization, and gap bounding, are used to transform the synthesized
descriptive gap pattern to a more natural gap pattern. The fourth heuristic reduces the
number of output examples that are normally required.

The complete gap program synthesis algorithm has been integrated into the editing
by example subsystem of the U editor {66]. The last portion of this chapter discusses
some of the issues pertaining to user interfaces to EBE systems, and presents the details of

the user interface to U"s EBE subsystem.

87
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5.1 Good data; the simple answer

An EBE system user wants to apply a transformation to a piece of text that can,
hopefully, be performed by a gap program P=G = R. The identification of G is the part
of the EBE process that is most susceptible to variations in the quality of sample data,
since Algorithm 11 computes the gap replacement R exactly, so we will begin our study of
the performance of the gap program synthesis algorithm by concentrating exclusively on
evaluating the sort of data that Algorithm 10 needs to identify a gap pattern.

The simple answer for what constitutes good data to identify a gap pattern
G =8,9,8,99%---9,9, is a set of input strings that unambiguously identifies G. For
example, if # is a symbol that is not contained in any of the constant strings of G, then
these two strings will pin G down:

5051505,

30#31#32#...#sn
Or if # and % are two symbols that are not in ¢(G), then these strings might be
convenient:

50#31#32#...#sn

o8 hsoh.. s,
It is not necessary that the gap-filling strings be the same character, or that they be a
single character; if the gaps are filled with strings that are easy to distinguish from each
other and from the intended constants of the gap pattern, then it is easy identify the gap
pattern.

However, the EBE system cannot count on the user to provide data that is this
unambiguous; if it did, the user of our system would undoubtedly have been better off if
we instead had concentrated on enhancing the facilities for writing gap programs
manually. The question that concerns us is characterizing how well the system works on
ambiguous data. We have already shown that the system will identify gap programs in

the limit; we would like to study its performance when the number of samples is small.
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5.2 Gap pattern synthesis experiment design

Experiments were run in order to gain a qualitative understanding of the average-
case performance of Algorithm 10, the gap pattern synthesis algorithm. The goal of the
experiments was to determine the impact that properties of the target gap pattern and
the input data have on the algorithm's ability to identify gap patterns from examples. In
each experimental trial a random gap pattern G was generated and the algorithm was set
to identifying G from randomly generated elements of L(G). The number of elements of
L(G) needed to identify G was recorded, as was a quantity, that we will define in Section
5.4, that measures the number of intermediate hypotheses that were similar to G. One
should keep in mind that the quantitative results based on random data that are reported
here should not be taken to be a basis for predicting the system's performance on text;
the purpose of these experiments is to gain a qualitative understanding of the problems
encountered in gap pattern synthesis.

There are many properties of the target gap pattern and of the sample data that can
affect the algorithm's performance; in this study, we examined five of these properties:

e the distribution of elements of the constant strings of G;

o the lengths of the constant strings of G;

e the number of gaps in G;

o the distribution of the gap substitutes in members of L(G); and
e the lengths of the gap substitutes in members of L(G).

Three sets of experiments were performed to measure the effects of various
combinations of these parameters. In the first set, the results of which are presented in
Section 5.3, the symbols that filled both the constant strings of G and the gaps of the
members of I{G) were chosen from an alphabet of 100 equiprobable symbols. The second
set explored the system's performance when the size of the alphabet was changed from
100 to 25, and the third set used a distribution that attempted to approximate that of
text. The results of these tests are presented in Sections 5.5 and 5.8.

All three sets of experiments had the same structure. The number of gaps in the
target gap pattern G was chosen, and then the length of the constant strings in the gap
pattern was decided upon. For a particular number of gaps n and a particular size of
constant strings |, G was created by randomly choosing [(n+1) symbols from the alphabet

to generate ¢(G) and then inserting the n gaps at uniform intervals in the constant string.
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For example, if the alphabet consisted of the 28 symbols a through z, ! was 4, and n was

2, then any of these gap patterns could be one of those generated:

wbeb --- etvs --- ijso

asji --- sadj --- skfa

spbm --- qldy --- gpav

For each random G, random members of L(G) were produced by choosing a
particular number to be the length of the gap substitute strings and then randomly
generating legal substitutes of that length for each gap in G. For example, if G was the
pattern wbeb --- etvs --- ijso and the chosen gap substitute length was 8, then the
algorithm might be asked to try to identify G from the following set of strings of length
28:

wbebdwohbgrletvsmfxnljvqijso
wbebpfjjqvgmetvscgdhtpjyijso
wbebmpoozvgqetvsftxmgcvbi jso
wbebgxzkktcsetvsdqoybvkhi jso
wbebrsxpfvhzetvsyvljhqvqgijso
wbebiyobntigetvsvswreyphi jso
wbebuwdyzpsuetvszslxhoetijso
wbebwmdysgjxetvskfrmptibijso
wbebvbsztpfketvsdmkksbvvijso
wbebtctmupiketvsxfomraxzi jso

Once the random gap pattern G and random members of L{G) have been produced,
the experimental trial proceeds by computing an approximation to the descriptive gap
pattern for the first two strings in the set using Algorithm 10. If the synthesized pattern
is equal to G, then the experiment is terminated. If the pattern is not equal to the target,
then the algorithm is re-run with the first three samples, and then the first four, and so

on until it manages to synthesize G. In this case, an analysis of the first two strings

wbebdwohbgrietvsmfxnljvqgijso
wbebpfjjqvgmetvscgdhtpjyijso

yields the descriptive gap pattern
wbeb --- g --- etvs --- j --- ijsO
When the synthesis procedure is re-run with the first three samples

wbebdwohbgrietvsmfxnljvqijso
wbebpfjjqvgmetvscgdhtpjyijso
wbebmpoozvggetvsftxmgevbi jso
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it synthesizes the pattern
wbeb --- g --- etvs --- ijso

When the fourth example is added, the system successfully synthesizes the target gap
pattern. This test run would have supplied one piece of data concerning random gap
patterns with 2 gaps and with constants of length 4 generated uniformly from the 26
symbols a through z being identified by samples generated by filling the gaps with strings
of length 8 generated uniformly from the 26 symbols a through z.

5.3 Experiment on (1,100]

The results of the experiments in which the gap and constant strings were both
drawn from an equiprobable alphabet of size 100 are summarized in Table 1. The table is
organized in four sections, one each for results pertaining to gap patterns with 1, 2, 4, and
8 gaps; each section has four rows, one each for data pertaining to the constant lengths 1,
2, 4, and 8; each row has 7 entries, one each for data pertaining to the gap substitute
lengths 1, 2, 4, 8, 16, 32, and 64. For example, the entry in the 8 gap section in the row
for constant length 8 and the column for gap substitute length 64 gives the average
number of strings of length 584 that were needed to identify a random gap pattern with
72 constants and 8 gaps. Four runs were taken to compute each average. and the entry
** appears if any of the four runs could not identify G within 15 samples.

The trends in the table may be simply summarized: fewer gaps, longer constants,
and shorter gap substitutes make gap patterns easier to identify; more gaps, shorter
constants, and longer gap substitutes make them harder. To help provide a more detailed
explanation of the algorithm’s performance, we introduce the notion of compatible gap

patterns.

5.4 Compatibility

Suppose that the current hypothesis of the gap pattern synthesis algorithm is a gap
pattern G ’, and for the sake of concreteness, suppose that this hypothesis is based on a
sample set consisting of two strings {a,8}. We distinguish two ways in which G’ can
differ from the target gap pattern G: G~ can be compatible with G on this sample set by

parsing o and 3 in such a way that the algorithm can still find a replacement expression
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R’ that can transform the inputs to the outputs; or G’ can be incompatible in that it
parses the inputs in such a way that is different enough from G's parse so that no such
replacement expression can be found.

A compatible G’ is only a minor nuisance to the user, because the system will be
able to synthesize a complete gap program using a compatible G’. Given a complete gap
program, it is easy for the user to provide examples that can erase the differences between
the synthesized program and the target, and in Section 5.8 we present a heuristic that
often allows the system to do this without requiring the user to give more examples. On
the other hand, an incompatible G’ will cause the system to be unable to synthesize a
complete gap program, and will leave the user wondering whether he should give up or
provide more data.

The definition of compatibility is not constrained enough for our purposes, in that a
compatible G’ for some sample set S may bear little resemblance to the target gap
pattern. In practice, we are interested only in those compatible patterns that are similar
to the target. To define such patterns, suppose that the gap pattern
G =cqh e hotq. b c matches a string a and parses it into the fields ¢;, g5, ..., g,
That is, o is equal to the concatenation of the strings ¢;g,¢,95¢,5...,.c, , and each of the g,
is a legal substitute for gap A in the pattern fragment h.c;. If the target pattern G
parses a into fields p,, p,, ..., P, then we say that G’ is strongly compatible with G on a
string a if the bounds of the text matched by each gap g, in parse(G’,a) are contained
within the bounds of the text matched by some P; in parse(G,a). Thatis, G’ is strongly
compatible with G on « if that part of @ matched by the fragment g.s; in G is matched
by heh. h

PR S LS R
that G’ is not strongly compatible with G on a if G’ is not strongly compatible with G

PLELE in G’, where k20, and hj and €ipp DAY be missing. We say
on a. To extend the definition to sets of strings, we say that G’ is strongly compatible
with G on a set of strings S if it is strongly compatible with G on every element of S, and
that G’ is not strongly compatible with G on S if G’ is not strongly compatible with G
on any element of S.

If the target gap pattern G is equal to 3,9,3,953,...9,8 . then, by definition, all of
the input samples can be parsed by this pattern. In general, if the inputs are the strings

a and 3, the target G parses them as
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A gap pattern G’ that is strongly compatible with G on {e,3} may find additional
common constants inside each of the fields parsed by a gap of G, but does not find
common constants in fields that are parsed by different gaps of G. That is, a strongly
compatible G’ respects the gap/constant columnar partitioning imposed by G. For
example, a strongly compatible G’ can notice that the strings p_, and Pse both contain
an X, and can thus break that single field in G up into two fields separated by an x in
G’.

As an example of a not strongly compatible gap pattern, if the target G is

“a --- b --- ¢", and these two samples are analyzed

accbaac
aaabbbe

Then “a --- ag --- ¢”, the descriptive gap pattern for the set, is not strongly compatible
with G.

Strong compatibility implies compatibility. If G is the gap pattern of the target gap
program, and G’ is strongly compatible with G, then the gap program synthesis system
will be able to construct a gap program to effect the mapping described by the samples.
Theorem 28: If the program P=G = R computes the transformation described by a
sample set §={<¢,,0,>,<1,,0,>, ..,<i ,0 >} and G’ is strongly compatible with
G on all i, in S, then there is a replacement expression R’ such that the program
P=G'’=R’ computes the transformation in S.

Proof: R’ can be constructed from R be replacing each of the gap symbols in R by the
sequence of constants and gaps in G that match the same text as the gap symbol in G.

For example, if the text matched by the fragment g;s; in G is matched by

hfjhj-f-lcj-f-1"'h_7'-+-lcc_7'+k’5i in G’, then every occurence of g; in R can be replaced by
hfjhj-t-lcj-f-l“‘hj-f-lccj+lc to yield the same text. O

We have stated that compatible patterns are desirable because they lead to workable
programs, and so strongly compatible patterns must also be desirable, but what are the
chances that the descriptive gap pattern synthesis algorithm will find gap patterns that
are strongly compatible with the target gap pattern? The experimentally determined

chances are summarized in Table 2. Each entry in the table gives the average of the
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percentage of strongly compatible hypotheses generated during each 4 trials. For
example, if one trial took 6 input samples, and made 5 proposals of which 3 were strongly
compatible, then it would contribute a 80% compatibility percentage to the average. If
the other 3 runs had compatiblity percentages of 75%, 83%, and 100%%, then the figure
reported for that class of gap patterns would be 79%. Note that the final, correct,
proposal was counted as a strongly compatible hypothesis, and that sample sets of size 1
were neither analyzed nor counted.

This table has the same trends as Table 1: fewer gaps, longer constants, and shorter
gap substitutes mean that more of the intermediate hypotheses are strongly compatible;
more gaps, shorter constants, and longer gap substitutes make a larger percentage not
strongly compatible. In Section 5.10 we show that the system will often converge to the
target gap program as soon as it finds one strongly compatible gap pattern; thus a strong
compatibility percentage above 25% probably means that the system performs tolerably
well on such input.

The gap pattern synthesis process performs poorly when there are unintended
features common to the text of the gap substitutes. Strong compatibility is a way of
distinguishing between two classes of unintended common features found by the
descriptive gap pattern synthesis algorithm: intra-gap features that occur within the
same gap of the target gap pattern, and inter-gap features that occur between different
gaps of the target. If all unintended features are intra-gap, then the gap pattern is
strongly compatible with the target on the samples; if any of the unintended features are

inter-gap, then the gap pattern is not strongly compatible with the target on the samples.

5.4.1 Intra-gap features

Intra-gap features occur in those parts of the strings a and 4 which are parsed by G

as
Pai
%0 1
P3;
that are instead parsed by G* as
Pay , Pai
S0 51

P3 Pa1
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G’ found that the gap substitutes p _, and P had the additional constant s, in common.

For the purposes of simplifying the discussion contained in this section, we will
assume that the algorithm has correctly found the constants of the target gap pattern,
and that intra-gap features are found only among the strings that are serving as gap
substitutes. In this setting, how many intra-gap features should one expect there to be?

The descriptive gap pattern synthesis algorithm finds the common symbols by
computing the longest common subsequence {LCS) of the strings. The average length of
the LCS of a pair of randomly chosen strings is an indication of the number of intra-gap
features that will be normally found.

For example, if both strings are of length 32 over an equiprobable alphabet of size
100, then the empirically determined average LCS is 0.75 symbols long. If the strings are
of length 64, then the empirically determined average length is 1.2. The average LCS
does not tend to be very long until the two input strings get to be longer than the number
of characters in the alphabet: the average LCS of two strings of length 64 over an
alphabet of size 26 has length 5.3, and when the alphabet is of size 5, the average length
rises to 21.

The gap pattern synthesis algorithm finds the features common to more than two
samples by iteratively computing the LCS of the samples. For example, for three strings
X, Yand Z, it computes LCS(LCS(XY),Z). The average length of the LCS cf two strings
of size 84 over an alphabet of size 100 is 1.25 symbols. The experimentally determined
average for three strings of this length is around 0.8 symbols, which is only a small
decrease from 1.25. When a fourth sample is added, the decrease is even less dramatic,
with an experimentally determined average of 0.5 symbols. The reason for small
decreases in average size is that once a string gets to be a single character leng, the
chances that its single character occurs somewhere within a much longer string are high.

The performance of the gap pattern synthesis algorithm when trying to identify a
gap pattern with {g(G)| different gaps can be modeled by treating each of the gaps
independently. The total average number of intra-gap features found is equal to the sum
of the average lengths of the LCS of each gap. As an example, if the system is processing
four samples that describe a target gap pattern with four gaps in which each gap has been
filled with a string of size 64, the experimentally determined average of the number of

intra-gap features found is around 2.0 symbols.



This model of the likelihood of intra-gap features indicates that the probability of
having no intra-gap features goes to zero fairly slowly. This property is apparent to the
user — with the algorithm as it stands, the user will either have to give a large number of
input examples or explicitly supply input examples that have the unintended common
features removed. Section 5.8 proposes a general-purpose heuristic that can help to solve
this problem by removing portions of the gap pattern that are not needed to perform the

transformation.

5.4.2 Inter-gap features

Inter-gap common features result in incompatible gap patterns, and are thus more
serious. What are the chances of having inter-gap common features that are large enough
to make a descriptive gap pattern not be strongly compatible? To get an idea, consider
the neighborhood surrounding the text matched by the constant string s, of the target

gap pattern G when matching two strings a and 3,
Pa1 Paa
s
Pﬂl Pﬁg

If there are inter-gap features common to p_, and Pgo in the gap pattern G ', then its

parse of the same text might look something like

’

Pu Py151Pa2

~

Pg1%1P 52 Pso
Of course, the situation could be considerably more complicated. For example, G’ could
have found inter-gap common features between the first and third gaps, even though they
are not adjacent. G’ could also have found features common to p_, and pm.slpﬂ'?:3 or
common to p_s,P . and pﬁ,2 To simplify matters, we will ignore these complications,
although the second has a sigrificant impact on the problem.

By choosing to match a pertion of p, with a portion of P gos G’ has decided not to
use the common feature s,. If G is descriptive, then ¢(G ") has the largest number of
constants of any gap pattern matching a and 4, and thus this choice means that s/ must
be longer than s,. The probability that there is such an s/ long enough to override s, is
roughly related to the probability that the LCS of p_; and P is longer than s;. The

chances of this event decrease as the length of s increases; this can be seen in Table 2,
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where the percentage of strongly compatible hypotheses increases as the length of the
constant strings in the target gap pattern increases.

There is also an informal argument for why there should not be very many inter-gap
features. It is reasonable to suppose that the same field taken from two different
examples might contain features that are unintentionally in common, so intra-gap
features are to be expected. On the other hand, the chances that two different fields
taken from two different examples have features in common is smaller. And this, taken
with the fact that the unintentional common features have to be large enough to override
consideration of the common constants that lie between the two fields, implies that a

descriptive gap pattern is rarely not strongly compatible with the target gap pattern.

5.5 Experiment on [1,25]

The same experiment was repeated with the distribution of constant strings and gap
substitute strings changed from random strings over an equiprobable alphabet of size 100
to random strings over an equiprobable alphabet of size 25. The results are summarized
in Tables 3 and 4. Each of the entries in the tables are an average of four trials; the
symbol ** occupies slots in which any of the four trials could not identify the target
pattern within 15 samples.

These tables exhibit the same trends as Tables 1 and 2: fewer gaps, longer
constants, and shorter gap substitutes make gap patterns easier to identify; more gaps,
shorter constants, and longer gap substitutes make them harder. Reducing the size of the
alphabet from 100 to 25 increased the likelihood of both inter-gap and intra-gap features
(notice how the numbers jump when the size of the gap substitutes is greater than the
size of the alphabet). This resulted in an increase in the number of samples required to
identify a random gap pattern, and a decrease in the percentage of intermediate

hypotheses that were strongly compatible with the target pattern.

5.6 Experiment on pseudo-text

The experimental studies just presented use sample data made up from equiprobable
symbols drawn from alphabets of size 100 and size 25. Such data makes the study of the
performance of the algorithm easier, but such data bears little resemblance to the kind of

data that is normally processed by the EBE system. The EBE system processes text.
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While nothing hard and fast can be said about the structure of text, it is safe to say that
an equiprobable set of 100 symbols does not capture its properties.

We ran a second set of experiments using random data that was generated using a
distribution that bears a closer resemblance to text. The properties of text that it
captures are:

¢ A small number of tokens dominate the constants of the gap pattern. These
tokens include the punctation characters, such as “.” and “,”, and delimiting
characters like eol.
e Over a third of the tokens in the gaps are space characters, and space
characters do not occur very often in the constants. The majority of the rest
of the tokens in the gaps are distinct tokens representing individual words,
although there is a significant sprinkling of the punctuation characters.
Most of the short examples that have been given seem to contradict the second property;
space characters are used as delimiters and play an important role in parsing the text.
But while this is true for short examples, the system’s performance on short examples is
not at issue. In longer examples, space characters do not play a significant role in the
constants of the target gap pattern simply because there are usually many spaces in every

example, and there are probably not a like number of gaps in the target pattern. The

actual pseudo-text distribution used was the following:

class constant filler gap filler
space character 5% 35%
4 punctuation characters 209 each 5% each
“words” from (1,500} 15% 45%

Random gap patterns and sample strings were generated in the same way as in the
previous test, although 40 samples were used in these tests rather than 15. Table 5 gives
the average number of samples spent trying to identify a pattern; a ** occupies those
slots where more than 40 samples were analyzed without finding a G.

Note that the performance is horrible; the problem is simply that in order to
converge to the target G the samples must contain no intra-gap features, and space
characters are just too likely for this to ever happen when computing the LCS of the
longer gap substitutions. For example, the probability that there are no spaces in a gap
substitute of length 8 is 0.65%, which is around 0.03, so there is less than a one in thirty

chance that any one sample will contain no spaces, and only about a 0.72 chance that one
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of 40 samples will be without spaces. The compatibility figures are a little more
encouraging; many of them are over 25%, and in the next section we will introduce a
heuristic that will take advantage of this fact.

The gap pattern synthesis system seems to perform better in practice than this last
experiment indicates. Gap programs are typically used to manipulate text that is in some
sort of tabular form, and this statistical model does not capture such text’s properties of
regularity and orderliness. These experiments also do not capture the fact that the user
of an EBE system wants to help the system to converge to a working program, and wants
to provide data that makes this possible. On the other hand, these tests do indicate that
the system cannot deal well with long and noisy input samples. We have found that
when a short input is added to such sample sets, the spurious intra-gap and inter-gap

features vanish, and the target gap pattern is quickly synthesized.

5.7 Summary of gap pattern synthesis experiments

These tests and the resulting analysis may be easily summarized. Long gap
constants, a small number of gaps, and short gap substitutes make gap patterns easier to
identify; short gap constants, a large number of gaps, and long gap substitutes make gap
patterns harder to identify.

There are two ways in which the gap pattern synthesis algorithm fails to find a
hypothesis. The algorithm may find unintended intra-gap features in the samples, or it
may find unintended inter-gap features. If all of the extraneous common features that it
finds are intra-gap, then it will synthesize a gap pattern that is strongly compatible with
the target pattern, and it will be able to produce a program, albeit a noisy one, that can
map the input samples to the outputs. If any of the extraneous features are inter-gap,
then the synthesized pattern will not be strongly compatible with the target, and the
system will probably not be able to create a gap program that can effect the
transformation.

The tests indicate that intra-gap features are prevalent in random samples, and that
inter-gap features occur less often; our experience with the system indicates that these
observations both hold true in practice. The next section proposes a heuristic called

pattern reduction that attempts to remove intra-gap features.
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5.8 Pattern reduction

The first heuristic extension to the gap program synthesis algorithm that we shall
consider is one that tends to transform a strongly compatible gap pattern to the target
pattern.

The virtue of the descriptive gap pattern synthesis algorithm is that it finds the
largest number of constants common to the input samples; this is also one of its greatest

flaws. For example, if the user is trying to convert Scribe italic notation:

A long and grungy passage, some of @ilwhich is in italic], and
@i [some of which is not] in italic, and some of which just happens
to @ifend up in] italic.

to the corresponding TEX notation:

A long and grungy passage, some of {\s!| which is in italic}, and
{\s! some of which is not} in italic, and some of which just happens
to {\s! end up in} italic.

and he selects the first two italicized phrases as examples, then a descriptive gap pattern
will net him the following gap program:

@il -1-uy-2-u-3-Uu-4-1 = {Nsly-1-y-2-U-3-U -4}
The three space characters are probably not an intended feature; noticing them leads to a
gap pattern that is strongly compatible with the target, but it would be better not to
notice them.

One way of handling this problem is to have a heuristic that knows that space
characters are not often significant, and that adjusts the gap pattern so that all of the

hed

“oee || ---" sequences are reduced to a single gap “---". This approach will work for all
those cases in which the spaces happen to be an insignificant feature that just happened
to be common to the input samples. However one of the functions of the gaps and
constants that are in the gap pattern is to carve the matched text up into fields that can
be manipulated separately. If the space that is removed happens to be a significant
separator between two gaps that have widely separated destinations in the replacement
expression, then this heuristic will result in a gap pattern that parses the inputs in such a
way that they cannot be mapped to the outputs. We do not use this heuristic.

Pattern reduction is a more general heuristic for reducing the number of extraneous

constants found in a gap pattern. The idea is to examine the descriptive gap pattern &

and the replacement expression R for those blocks of G' that are copied en masse into R.
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In the example above, all of the constituents, including the constants, of the contiguous
block

-1- U -2- U -3~ U -4
of the gap pattern occur within the same contiguous block in the replacement expression

{\siU -1- 4 -2- U -3- U -4- }

If this block of gaps and constants were reduced to a single gap, then the resulting gap
program

@i -1-]1 = {\siy-1-}
would still transform the examples in the same way, and would be more likely to
successfully transform the next occurrence of the Scribe italic notation in the way that
was intended. The heuristic treats runs of gaps that do not occur in the replacement
expression, i.e. those whose text is being deleted from the input, as belonging to
contiguous blocks.

The pattern reduction heuristic is applied only insofar as it leaves the general sense
of the pattern the same. Pattern reduction is not performed if the reduced pattern does
not match the inputs (which is possible), and it is not performed if it matches them in
such a way that they cannot be transformed to the outputs, And in order to not
drastically change the general sense of the pattern, the heuristic will not reduce away the
leading and trailing constants of the pattern.

The pattern reduction heuristic can be applied only if the gap program synthesis
algorithm has been able to find a replacement expression that can map the text parsed by
the unreduced G’ to the output. In other words, about the only time that this heuristic
can be applied is when the pattern synthesis procedure has been able to find a gap
pattern G° that is strongly compatible with the target pattern.

There is a problem with applying the gap reduction heuristic. One of the roles
played by the gap pattern in a gap program is to distinguish the text that is supposed to
be transformed from the text that is supposed to be skipped. The pattern reduction
heuristic works from positive data, and has no knowledge of the text that the program's
gap pattern is not supposed to match. For example, if the user wants to insert the text

”

“phone: " in front of every phone number in an address list, he might have the following

gap program in mind
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bol ( -1- ) -2- - -3- eol = bol phone:y( -1- Jy -2- - -3- eol
After being given a few examples of what the program should do, the EBE system will
probably come up with exactly the target program, and will then proceed to perform
pattern reduction and get

bol -1- eol = phone:|] -1- eol

bd

This gap program will insert “phone: " at the beginning of every line of the list, even
those that have nothing to do with phone numbers.

The problem, in a nutshell, is that the system using the pattern reduction heuristic
no longer identifies gap programs in the limit from positive data. We are not sure how to
deal with this. We have had enough experience with situations in which pattern
reduction does the right thing to know that we want something like it; on the other hand,
we have not had enough experience with situations in which it does the wrong thing to

have had the need to come up with user interface facilities for getting around the

problem.

5.9 One output example will do

The gap program synthesis algorithm developed in Chapter 4 can be modified so
that it often requires a small number of input examples and only one output example.

The program synthesis algorithm has two phases: a gap pattern synthesis phase that
finds an approximation to the descriptive gap pattern common to the inputs, and a gap
replacement synthesis phase that finds a way of constructing a gap replacement that can
yield the outputs. The pattern synthesis phase works from input examples; the
replacement synthesis phase works from output examples and the parse of the input
examples.

The program synthesis algorithm can be modified so as to not require matched pairs
of inputs and outputs. The modified algorithm has two classes of data: input/output
example pairs as before, and unpaired input examples without a corresponding output.
The pattern synthesis algorithm is run on both the paired and unpaired inputs, and
approximates a descriptive gap pattern that can match all of the strings in both sets.

The replacement synthesis algorithm is modified to consider only the paired examples: the

paired inputs are parsed using the gap pattern synthesized from both the paired and
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unpaired inputs, and then the replacement synthesis algorithm is applied to the paired
outputs to find a replacement expression that can construct them from the corresponding
inputs.

For example, suppose that the user wants to compute a transformation that will
map the input “@i [italicized]” to the output “{\s! italicized}”, and also
perform the analogous transformation to the input “@i [slanted]”. The descriptive gap
pattern common to the two inputs “@i[italicized]” and “@i[slanted]” is
“@i [ -1- 17, and this pattern matches the first example binding the string
“italicized” to -1-. The replacement synthesis algorithm then constructs a
representation of all replacement expressions that yield the output “{\sl| italicized}”
using the gap -1- along with any necessary constants. In this case, it comes up with two
replacement expressions: “{\sl{jitalicized}” and “{\s!{l -1- }”. The replaccment
synthesis algorithm is modified to prefer using the shortest expression, and where there
are two of the same length it prefers the one that uses the largest number of gap symbols.
In this case, the algorithm decides to use the replacement expression “{\si|| -1- }".

Using this algorithm instead of one that requires paired input/output examples
greatly reduces the effort required of the EBE system user. Supplying input examples
usually requires little effort because they are almost always already present in the user's
text; on the other hand, supplying output examples requires considerably more effort on
the part of the user because they are usually not already prescat in the text and must be
created.

To make this concrete, suppose that it takes 3 seconds of the user's time to locate
and give an input example, 15 seconds to manually transform the input text to the
desired output text, and an additional 2 seconds to give the output text as an example. If
the user has to give 2 input examples and make up and give the 2 corresponding output
examples, then it takes a total of 40 seconds. On the other hand, if the user gives two
input examples and only one output example, then the process takes only 23 seconds, and
the user is spared the task of making a redundant edit to the sccond example. If a third
example is required, then the system that needs pairs takes 60 seconds (and two
redundant edits), while the system that needs only one output takes 26 seconds.

The modified algorithm performs well; statistics to support this contention are

presented in Section 5.10. In practice, the greatest source of ambiguity lies in finding the
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gap pattern, and once a workable gap pattern is found the shortest replacement

expression that produces the outputs is almost always the desired one.

5.10 Gap program synthesis performance

This section presents test results that describe the performance of the gap program
synthesis algorithm, Algorithm 12, with the addition of the pattern reduction heuristic
and the heuristic for reducing the number of output examples required. The first step in
each experiment was to generate a random gap pattern G using the method developed in
Section 5.2. The next step was to produce a random replacement expression R to go
along with G. An exact algorithm is used in the gap program synthesis process to
construct the replacement expression, and we observed that the system’s performance did
not seem to be particularly sensitive to the actual replacement expression used, so the
replacement expressions in the tests reported here were all sequences of length ten in
which half of the symbols were randomly chosen from ¢(G) and the other half were
randomly chosen characters from the alphabet. For example, a random gap program with
2 gaps and constants of length 4 might be

wbeb -1- etvs -2- ijso = -2- -2- av -1- bwe -I- -2-

Once a random gap program P=G =R is produced, the next step is to synthesize a
collection of sample data from which the synthesis algorithm will try to synthesize a
program. In these tests the generated data consisted of 50 input/output pairs in which
each input was a random element of L{G) generated in the same way as in Section 5.2,
and each output was the result of applying P to that input.

The goal of each experimental trial was to synthesize a gap program that could
transform each of the 50 input samples to their corresponding output. Each trial was
terminated as soon as the system had created such a program, even if the synthesized
program was not equal to the program P that generated all of the data.

Tables 7 and 8 summarize the results of the experiment run on text made from a
random selection of 100 equiprobable characters. Each entry in the tables records the
average number of input samples and output samples used as evidence in the course of
developing a gap program that could compute the transformation described by the 50
input/output pairs. As in Section 5.1, the entries are grouped by the characteristics of

the target gap pattern: four major sections for the number of gaps in the target pattern,
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4 rows for the length of the constant strings in the target, and 7 columns for the length of
the strings used as gap substitutes in the random input samples. An entry of ** appears
if the synthesis procedure could not converge within 15 input and output samples.

The algorithm performs very well. When given fairly short data to analyze, it
usually needed two or three input samples and a single output sample to find a
transformation that could map all 50 inputs to their outputs. Even with longer samples,
the algorithm usually required between two to four input samples and one output sample.

The algorithm's good performance can be explained by examining the compatiblity
percentage figures shown in Table 2 on page 92. That table shows the average percentage
of the synthesized gap patterns that are strongly compatible with the target gap pattern.
The pattern reduction heuristic has the tendency of mapping a strongly compatible gap
pattern to the target gap pattern, or at least to a gap pattern that is as good as the
target on the samples analyzed. The algorithm is likely to converge to a workable gap
program as soon as it is able to synthesize a single strongly compatible gap pattern. A
class of data that has a non-negligible compatibility percentage, say one that is over 255¢,
is thus likely to be easy to identify.

A second set of tests was performed for the distribution of the equiprobable alphabet
of size 25; these tests are summarized in Tables 9 and 10. The algorithm performed well,
but not quite as well as for an alphabet size of 100 because the probability of synthesizing
gap patterns that are not strongly compatible with the target is higher when the alphabet
is smaller.

The third set of tests performed used the pseudo-text distribution presented in
Section 5.8; these tests are summarized in Tables 11 and 12. Those classes of gap
patterns that had a strong compatility percentage over 25% were fairly easily identified,

but the input samples were much too noisy in the other cases.

5.11 Tokenization and gap bounding heuristics

This section presents two heuristics, tokenization and gap bounding, that while
unimportant to the theoretical treatment of the problem of identifying gap programs from
examples, are of essential importance to the practical application of the formal
techniques.

The problem addressed by tokenization is very simple. The “natural” gap program
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to transform this set of strings:

The Yankees beat Baltimore, 10 to 3.
The Mets beat Chicago, 6 to 5.
The Angels beat Detroit, 2 to 0.

to this set:

Yankees 10, Baltimore 3.
Mets 6, Chicago 5.
Angels 2, Detroit 0.

is this one:

Thel -1- |Jbeatl] -2- ,U -3 [Jtol -4- . =

-1- (] -8- L -2- U -4- .

Yet the system that we have described thus far would produce this program:

They -1- e -2- s|beat|] -3- o -4- .U -5- UtolJ -6- . =

-1- e -2- s|] -5- |l -3- 0 -4- U -6- .

This program seems wrong. Why does this program seem wrong? It is noisy, and while it
can correctly transform each of the input samples to each of the output samples, it will be
unable to transform the first baseball score in which the name of the winning team does
not contain the letter “e”. It seems wrong because one would not normally notice the
fact that all of the baseball teams had the letter “e” in them, and one would not
appreciate having this pointed out. On the other hand, if the system had found a shared
“." in this spot, instead of an “e”, then we would have been quite pleased, because we
would have noticed the same thing ourselves.

In order to wean the system from this objectionable performance, we will give the
system “knowledge” of the standard lexical conventions for reading text, so that it can
avoid violating them. The implementation of a straightforward version of this embedded
knowledge is simple. The system reads tokenized text and performs its analysis in terms
of the tokens, rather than doing it character by character. For example, the 98 characters

in the three input samples above are read and analyzed as the following set of 45 tokens.

The U Yankees || beat || Baltimore , [J 10 [ to | 3 .
The || Mets || beat [ Chicago , 6 1) toly 5 .
The || Angels ! beat Ui Detroit , 42 toy O .

The descriptive gap pattern found for the tokenized set is:

Thel -1- |Jbeat] -2- ,U -3- _tol -4- .
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which is exactly the sort of gap pattern that we want. The standard analysis is then done
to create a gap replacement.

AT SNTRC NIV,

The tokenization heuristic can be viewed formally as an expansion of the alphabet.
Before we had a small fixed alphabet, such as the ASCII character set, and now we have
one of unbounded size that has as its members all of the lexemes that our tokenization
heuristics allow. One of the ramifications of the decision to use tokenization is that the
formal results proven relative to a bounded-size alphabet become less relevant. In a sense,
this is all for the better, because most of the time the existence of 2 bound on the size of
the alphabet was working against us — making our results clumsier to state and harder
to prove.

The second heuristic is gap bounding, which is a simple bit of post-processing done
on the synthesized gap programs. In our definition of the gap pattern matching process
the only constraint imposed on a gap is that it cannot match any text that contains the
constant string following the gap in the pattern. We do not constrain the amount of text
that can be matched by a gap, and S0 a single gap can merrily match 10,000 lines of text,
even if it matched less than two lines in the examples in all of the examples given.

Gap bounding is a way of dealing with the problem of gap programs running berserk
in this manncs. After the gap pattern is synthesized, we impose an a priori bound on the
number of characters or lines that can be matched by the gap. For example, if a gap
matched at most 3 lines in the examples given, we restrict it to matching no more than 4
lines of text when it is searching the text. The exact gap bounding function that we
employ is to restrict a gap that matches text that crosses at most [ end-of-line boundaries
in any example to crossing no more than [1.5{] end-of-line boundaries when scanning the
file. Although this changes the expressive capabilities of the gap programs, it does so in
an uninteresting way, because the gap bound can be arbitrarily extended by adding more

samples involving longer gaps.
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5.12 A practical algorithm for gap program synthesis
Algorithm 13 encodes a practical gap program synthesis process that is used to

create a new gap program when the EBE system’s current hypothesis does not work.
gap prog Yp

Inputs: a set of input/output pairs S= {<i1,ol>,<z’2,02>,...,<in,on>};
a set of unpaired inputs I={i i o1 1}
and a tokenization function T.

Oultput: a gap program P or an indication of failure.

Tokenize the samples in S and I using T,

Approzimate a descriptive gap pattern G common to
{il’i‘.”“"in’in+l""in+m} using Algorithm 10;

Use G to parse {i i,,...,t };

Compute the shortest replacement expression R that maps i to o,
for k=1,2,...,n using Algorithm 11,

Perform pattern reduction on G and R;

Bound the gaps of G

return P= G = R;

Algorithm 13: A practical gap program synthesis algorithm

To demonstrate each of the phases of the algorithm, we will follow the
transformation of the address list shown in Figure 1 to a series of form letters like the one
shown in Figure 2. To demonstrate the transformation, the user selects the input

example

Mr. John Doe
136 Lenape Lane
Sioux Falls, North Dakota

transforms it the form letter of Figure 2, and selects that text as an output example. He

then gives the second address as another input example

Dr. Penelope Wise
7213 Central Park West
New York, New York

and the system begins its analysis. The first step of the analysis is to tokenize the two

input samples



Mr. John Doe
136 Lenape Lane
Sioux Falls, North Dakota

Dr. Penelope Wise
7213 Central Park West
New York, New York

Ms. Candice Barr
5565 Cormorant Avenue
Ewa Beach, Hawaii

Mr. James Jones
711 Hamilton Road
Arlington, Virginia

Figure 1: An address list.

Mr. John Doe
136 Lenape Lane
Sioux Falls, North Dakota

Dear Mr. Doe,

Over twenty years ago, our genealogical research organization
began a far-reaching investigation of the history of the
distinguished families of North Dakota. We found the Doe Family
to play a prominent role in this history, beginning with Ichabod
Doe, one of the founding fathers of the village that went on to
become Sioux Falls, and continuing up to present day times.

The complete collected history of the Doe Family, bound in

rich naugahyde and destined to become a family heirloom, can

be yours by sending only $117.98 along with postage and handling
to the North Dakota Heritage Foundation.

Sincerely yours,
Ezra K. Steriing, Ph.D.

PS: For a {imited time only, additional copies, ideal for
library bequests, are available at the reduced rate of just
$47.98 each.

Figure 2: A sample output form letter.
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bol Mr . |1 John {J Doe eol

136 || Lenape | Lane eol

Sioux {J Falls , | North i) Dakota eol
eol

bol Dr . || Penelope || Wise eol
7213 | Central | Park | West eol
New || York , U New U York eol
eol

It then computes an approximation to the Longest Common Subsequence of the two
tokenized samples

bol . || | eol

Ut eol
U. UU eol
eol

The next step is to insert gaps into the common subsequence to transform it to a gap
pattern that matches both input samples

bol -1- .1y -2- || -3- eol

-4- U -5- | -6- eol

-7-U -8 U -9- U -10- eol

eol
This gap pattern yields a unique parse of the two input samples, although the system
actually parses only the single input sample that happens to be paired with an output.

-1- -2- -3- -4- -5- -6- -7- -8- -9- -10-

Mr John Doe 136 LenapelLane Sioux Falls North Dakota
The replacement expression synthesis algorithm finds the shortest replacement expression
that can produce the output example using these text fragments and any needed constant
strings. The requirement that the expression be short, and that it use gap fragments
wherever possible, leads to a replacement expression other than the literal text of the

single output sample.
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-1- .Y -2- |J -3- eol

-4- U -5- U -6- eol

-7- U -8 .U -9- U -10- eol

eol

Deary -1- .U -3- , eol

eol

Overtwentyllyearsljago,lourlgenealogicallresearchlorganization eol
beganUalifar-reachingllinvestigationof ithehistoryllofthe eol
distinguishedifamilieslofy -9- U -10- .LLiWeUfoundlthel -3- LFamily eol
toUplayliallprominentroleljinlithislhistory,libeginning withlIchabod eol
-3- ,Lonellofjthelfoundingfathersiofthellvil lage ithatiwent jon_to eol
becomely -7- || -8 ,UandlicontinuinglupUtollpresentidaylitimes. eol

eol

Thelicompleteljcol lectedihistoryliofijthel] -3- UFamily,bcundlin eol
richUnaugahydeljandlidestined_itoljbecomeljalifami Iyl lheirloom,ican eol
bellyoursiibylisendingoniy/$117.98jalongliwithlipostageljandLhand!ing eol
tothel] -9- [ -10- | Heritagel[Foundation. eol

eol

Sincerelylyours, eol

Ezra K.USterling,Ph.D. eol

eol

PS:|Forijaljlimited timelonly,ladditionallicopies,fideallifor eol
libraryLbequests,|iareljavailablellatithe jreducedjratelofjjust eol
$47.98 each. eol

The system then performs pattern reduction on this pattern/replacement pair, which
notices that the pattern fragments “-4- 1| -5- || -6-", “-7- | -&7, and “-9- || -10-" are
treated as blocks in the replacement expression and reduces them to single gaps. The
final phase of the gap program synthesis process is gap bounding, which in this case
restricts all of the gaps of the program'’s pattern to matching text within a single line.
The result of this process is a program that will serve to produce the rest of the form

letters.

bol -1- .|} -2- | -8- eol

-4- eol
-5- ., -6- eol
eol
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-1- .y -2- | -8- eol

-4- eol

-5- ,U -6- eol

eol

Deary -1- .lJ -8- , eol
eol

Overltwenty|lyearsljago,llourligenealogicalresearchiorganization eol
beganliaifar-reachingjinvestigationUofUthelhistoryofUthe eol
distinguishedufamiliesyofly -6- .1 Welfoundiithel -3- Family eol
tolplaylalprominentrolelinUthisyuhistory,beginning withlIchabod eol
-3- ,UonelofUthefounding fathersiofUthelvil lageUthat_ went{Jon_ito eol
becomely -5- ,UandlUcontinuingiupUtolpresent_daytimes. eol

eol

Thelicompletelicol lected historyoflithel| -3- UFamily,(boundljin eol
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tolithey -6- Heritagel/Foundation. eol
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Sincerelylyours, eol

Ezra K. Sterling,UPh.D. eol

eol

PS:Forla!imitedJtimellonly,Jadditionallicopies,|/idealfor eol
library|/bequests,(areJavailablelatjtheljreducedjratejofUjust eol
$47.98each. eol

5.13 Failure

We have talked at great length about how the gap program synthesis algorithm can
succeed, now we discuss how it fails.

One way in which the proéram synthesis process can fail is to successfully synthesize
a gap program that transforms the inputs to the outputs, but to not produce the program
that the user had in mind. This failure can be remedied by having the user provide more
examples of the desired function’s behavior; the results of the experimental performance
analysis indicate that not very many more examples need to be provided, and in practice
these examples are usually easy to come by.

The other way that the process can fail is that it can be unable to find any gap
program at all that can perform the transformation shown in the examples. There are
several causes for this problem: more examples might be required to steer the algorithm'’s

heuristics to the target gap program, the ad hoc tokenization performed by the algorithm
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might be faulty, the transformation might not be expressible by a gap program, or the
sample data might contain typographic errors.

The program synthesis algorithm may require more examples either when
synthesizing an approximation to the descriptive gap pattern or when trying to produce
the replacement expression. The pattern synthesis process fails if the common
subsequence found does not lead to a gap pattern that matches the inputs; Theorem
23 shows that the user can eventually provide examples to make the pattern synthesis
succeed. The replacement synthesis process fails if the synthesized gap pattern parses the
examples in such a way that the parsed pieces cannot be rearranged to form the output
strings. This can happens when the gap pattern found by the pattern synthesis process is
not the pattern of the target gap program. Theorem 23 shows that the pattern synthesis
process does converge to the correct pattern, and thus the user can recover from this
problem by supplying more examples.

Another cause of failure is the tokenization heuristic. The tokenization heuristic
imposes an ad hoc grouping on the characters of the examples which may preclude any
gap program from transforming them. For example, if the goal was to transform all
words like “spineless” and “numberless” to “without spine” and
“yithout number”, then the tokenization heuristic will cause the synthesis process to fail
because it treats “spineless” as an atomic token whose internal structure is not
manipulable. Our approach to dealing with this problem is to start the program synthesis
process over again after a failure, but this time with a character-at-a-time tokenization.
If the character-at-a-time analysis fails, then it fails for one of the other reasons that we
discuss here. If it succeeds, then the program might be noisier than we would like, but it
is better than nothing, and the pattern reduction heuristic might whisk away some of the
objectionable features that are found.

The third kind of failure arises from limitations of gap programs. Gap programs are
not very powerful, and there are a number of situations in which the transformation that
the user wants to perform cannot be expressed as one. If a transformation cannot be
expressed as a gap program, then no algorithm for gap program synthesis will ever be
able to find a program to effect it. The question is how to deal with this eventuality. It
would be nice if the system were able to authoritatively tell the user that no gap program

exists to perform the transformation that he desires; unfortunately, Theorem 11 shows
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that discovering this piece of information is computationally difficult.

A typographic error in the examples is difficult to distinguish from a set of data that
cannot be transformed by a gap program. The system could try to automatically perform
something akin to spelling correction on the examples given, but this seems to be
inappropriate, not to mention ill defined and slow. It seems better to provide the user
with facilities for examining and modifying the examples he has given.

The approach that we have taken to these last two problems is to educate the user
about the capabilities of the system, and to provide him with as much information as
possible about the current state of the system. Gap programs are simple, and we would
like the user to have a good idea about whether the transformation he desires can be

handled by a gap program.

5.14 Editing by example in U

The program synthesis algorithm that we have developed is embedded inside of the
EBE subsystem of a screen editor called U [88]. U is a full function screen editor
implemented within the T programming system (71, 72]. The user interface of the editor
is similar to that of Wood's Z [98], which in turn was inspired by many screen editors
implemented at Yale and elsewhere, all originating in the work of Irons [44]. We will
describe the details of the user interface only as they pertain to the EBE subsystem.

The gap program synthesis algorithm accepts pairs of strings as inputs and returns
either a gap program that can transform the input strings to the outputs or an indication
that no such gap program could be found. The objects in such a system are input
samples, output samples, gap programs, and indications of failure; the user interface is
responsible for presenting these objects and supplying usable and coherent mechanisms for
manipulating them. In this section, we enumerate the kinds of interactions that a user
might want to have with an EBE system, and describe the specifics of the U editor's
implementation of these interactions.

The U user interacts with the EBE system using five U commands: start-ebe-session,
add-input-ezample, add-output-ezample, run-gap-program, and modi fy-ebe-state. The
first is an initialization command, the second two perform the basic operations on
input/output examples, the fourth performs the basic operation on programs, and the last

is an entry into a facility that provides a wide range of other operations on the objects of
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the system.
We will describe these commands by showing how they can be used to to change a

file that makes use of Scribe’s notation for italicizing text:

* A paragraph filled with @i[italicized] words that flow
trippingly over the page. @i[This is an entire sentence
in italics that spans several lines, and so the gap program
must contain a gap that can cross line boundaries.] @i[All
sorts of italic phrases.] @i[Even more italic phrases.]
@i [The author goes for cheap effects.] @i[Remember, gap
patterns cannot match parenthesis @i[so forget about nested
expressions.]] Check out the previous sentence after we’re
done.

to a file that uses TEX’s italic notation:

A paragraph filled with {\s! italicized} words that flow
trippingly over the page. {\s! This is an entire sentence

in italics that spans several lines, and so the gap program
must contain a gap that can cross line boundaries.} {\s!| All
sorts of italic phrases.} {\s! Even more italic phrases.}
{\s! The author goes for cheap effects.} {\s! Remember, gap
patterns cannot match parenthesis {\s! so forget about nested
expressions.}} Check out the previous sentence after we’re
done.

5.14.1 Interacting with the EBE subsystem

The first editor command associated with EBE is starf-ebe-session, an initialization
command that clears the system’s database of examples and displays a window that
contains a succinct representation of the state of the EBE system called the

EBE-state-window.

Inputs:
Outputs:
no program

The window has a line each for the input and output examples and some space for
displaying the current program hypothesis. Since the start-ebe-session command has just
been given, there are no examples, and thus no program.

From the synthesis algorithm’s point of view, the principal operaticn on

input/output samples is that of collection; the user's point of view is different. To the
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user, each string in the sample must first be created. Making the creation operation easy
and convenient is the reason for embedding the EBE system within a text editor. If the
EBE system were not embedded in a text editor, but rather existed as an independent text
transformation system, it would probably not be of much use.

Once the sample strings exist, some way must be found to bring them to the
attention of the EBE system. The exact mechanism used for this depends on the editor,
but in most text editors example collection can be implemented in a natural way. Most
editors support some sort of selectton mechanism that allows the user to specify a piece of
text to be a parameter to an editing command. Example specification could be
implemented via an editing command that accepts a string as a parameter and presents it
as the next input or output example to the EBE system. Alternatively, if the editor
supports the graphical object-oriented style of interaction, then one might instead specify
an example by using a general purpose copying command to move the selected text to a
place beside the other examples in an “example bin”. The more naturally this operation
can be made to fit within a particular editor’s editing paradigm, the better.

In U, an input example is specified by selecting the text that contains the example
and invoking the add-input-ezample command. For instance, the first input example
might be the string “@i [italicized]”. Once the text has been given as an example, a

concise representation of it is registered in the EBE-state window:

Inputs: "Qifitali...®
Qutputs:
no program

There is no program because the system needs at least one piece of output data in order
to produce a program.

Output samples can often be easily produced by editing the text that had been
selected as an input example. In this case, our hypothetical user would probably delete
the characters “@i [", insert the characters “\s{{ 7, and then change the “]” to a “}".
Of course, he is free to do something more perverse; this is one of the advantages of
having an EBE system that works from input/output behavior. No matter how the user
produces it, once the output sample text exists in some form, the user can select it and
bring it to the EBE system’s attention by invoking the add-output-exzample command.
This command adds the text to the system’s example database paired with the last input

example given, and triggers the process that analyzes the data to produce a gap program.
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The EBE-state window is updated to reflect the system’s new example and new program
hypothesis:
Inputs: "@ilitali..."

Qutputs: “{\sl ita..."
u@ilitalicized]®* = "{\sl| italicized}*®

Notice that the program synthesis operation was invoked implicitly. In U, program
synthesis is performed every time the user provides a new example or modifies the
example set in any way. This style of interaction allows the system to propose a sample
program as soon as it can possibly find one. Gap program synthesis is cheap enough so
that this is a viable way of structuring the user’s interactions with the program synthesis
operation. If we were using a more expensive program synthesis procedure, it would
probably have been best to give the user the option of invoking the program synthesis
operation manually.

The user could ezecute this gap program now, but he happens to want a more
general program, so he selects the text beginning

”

“@i[This is an entire sentence...” and gives the add-input-ezample command
again. The addition of a new sample triggers the process of synthesizing a gap program
that can simultaneously match both inputs and transform the first input to the
corresponding output. The synthesis process is successful, and the EBE system is able to

create the target program from two input examples and one output example:

Inputs: "@iflitali..." "@i[This ..."
Outputs: "{\sl ita..."
Il@i[ll _1_ ll]ll = "{\s' ] _1... Il}ll

The run-gap-program command instigates a search forward from the current cursor
location for the next piece of the text that matches the gap pattern. If it cannot find any
text matching the pattern, then it tells the user that no such text can be found. If it can
find such a piece of text, then it will highlight it, and ask the user:

Transform, Proceed, Skip, or Quit (t/p/s/q)?

If the user answers “t” for “Transform”, then he is electing to stay in the EBE system's
single-stepping mode. In this mode, the system replaces the highlighted text with the

result of the replacement expression, and asks the user:

Try again (y/n)?
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An answer of “n” for “No” would cause the system to exit this searching mode, and would
leave the user at the location of the text last transformed. If the user answers “y” for
“Yes”, then the system searches for the next occurrence of text matching the gap pattern
and continues the single-stepping process from there.

If the user had answered “p” for “Proceed” to the first question, then the gap
program would have been iteratively applied to the rest of the file without further user
intervention. In the current scenario, the program would successfully transform to TEX
all of the the Scribe italicize commands that follow the highlighted text in the file (except
the nested one). If the user had answered “s” for “Skip”, then the highlighted text
would not have been transformed, and the system would continue on to find the next
piece of text that matches the gap pattern. If the user had answered “q” for “Quit”, or
given the standard U editor cancel command, then the gap program execution process
would have been halted, and the user would have been returned to editing the file at the
point where he halted the program execution.

The EBE system can produce a program that computes the wrong transformation. If
the user executes the program anyway, then there is a chance that it will run amok and
destroy the user's text. If this destruction is not reversible, then you can be sure that that
will be the last time this particular user trusts anything to the EBE system. The U editor
provides an undo facility, that can restore the text to a previous state; the undo facility is

essential for the acceptance of the EBE system.

5.14.2 Other operations

The four commands start-ebe-session, add-input-example, add-output-example, and
run-gap-program provide the core facilities for interacting with the editing by example
system. These commands provide the essentials, but there are many other operations
that the user might like to perform on the objects of the system.

For example, if the user has made a mistake in entering an example he has given to
the system, then the only way that he could recover from this mistake using the four
basic commands is to start over from scratch. Rather than that, the user might want to
view the text of the examples that he has given, and retract the one containing the error,
or perhaps edit it and ask the system to redo its analysis.

The user should also be able to view the synthesized programs. One might argue
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that the user should not see the programs, because he should not be bothered with this
inessential detail. But the system that we are considering will not work until the user has
provided adequate examples, and will work only if the user’s target program is a gap
program. If the user is able to see and understand the hypothesized gap program, then it
can give him confidence that he has given enough examples to capture the general rule
governing the transformation. Even if the user knows nothing about programming, and
does not fully understand the displayed code, it is worth showing it to him because he
might learn something. The purpose of the system is not to provide a crutch that
prolongs ignorance of programming, but to provide a tool for helping people to solve their
text processing problems; teaching the user about programming is probably the best way
of helping him.

For this same reason, the user should be able to modify the system’s synthesized
programs, and write his own programs using the same notation.

The language that the system uses to express its synthesized programs should be able
to express more programs than the system can synthesize. This is not critical in our
implementation, since the system is written in T (71, 72}, a dialect of Lisp, and the user
has access to the power and notational elegance of T at all times. If the user has
something that requires real programming, then he can write a program in a real
programming language. But if the user has something that fits nicely into the concise
sublanguage implemented by the EBE system, then he can either write that program
himself or have the EBE system write it for him. Chapter 6 presents several approaches
to extending the programming power of the gap program synthesis system.

All of these facilities, and others, are provided by the U editor’s mods fy-ebe-state
command. This command takes advantage of the editor’s facilities to naturally (in terms
of editor’s standard interfaces) and cheaply (in terms of implementation) provide a
superset of these operations.

The mods fy-ebe-state command creates a textual representation of the state of the
EBE system, places the text into a window, and allows the user to edit it at will. Figure
3 shows how the EBE system's state would be represented for the current scenario.

The text displayed in the window contains executable expressions written in T: lines
beginning with a “;**x” are non-executable comments. There are two T expressions in

the text, one that specifies the examples and one that specifies the gap program
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;%% Current sample set:
(define-EBE-examples

Jk%kx Example 1.

(
"@iflitalicized]"® =>
"{\s! italicized}"

)

k%% Example 2.

(
"@i[This is an entire sentence” eol
"in italics that spans several lines, and so the gap program" eol
"must contain a gap that can cross line boundaries.]"
J¥*¥% No output for example 2 was supplied.

)

)

;¥%x% Current gap program hypothesis:
(define-gap-program

wgi[" (-1- 3) "I => w{\g] " -1- "}
)

Figure 3: Textual representation of EBE system state.

hypothesis. The first, the parenthesized expression beginning “(define-EBE-examples”,
defines the one-and-a-half example pairs that have been given so far in the EBE session.
The first full set of examples consists of a pair of input and output strings separated by a
“=>" and contained within a pair of parentheses. The second half-example consists of
three strings and two “eol” symbols; it does not contain a “=>", and thus it has no
output example.

The second T expression in the file defines the synthesized gap program using a
notation that is similar to that used in Chapter 4. The only difference is the unfamiliar
“(-1- 3)" contained in the gap pattern. This notation is used to specify the gap bound,
which is the number of end-of-line boundaries that can be crossed in matching the
pattern. In this case, “-1-" is the name of the gap, and the “3” specifies that the gap
can skip over at most three end-of-lines in its search for a closing “]”. An

unparenthesized “-1-" would have been a shorthand for “(-1- 0)”, a gap that is



127

restricted to staying within a single line.

These two expressions make up a representation of the system’s state which can be
used for many purposes: The user can examine and modify the examples, perhaps with
the aim of discovering and fixing a typographic error that is keeping the system from
successfully synthesizing a program. A buggy example can be retracted simply by
deleting it. The user can also modify the gap program, for example to change “(-1- 3)”
to “(-1- 10)” to allow the gap to span ten lines rather than three. New gap programs
or examples can be added from scratch. Gap programs and examples can be filed away
for later use (perhaps for a bug report) by copying them to another file using standard
editor commands.

When the user is finished viewing and modifying the state of the system, he commits
his changes by giving the standard close-window command. The act of closing the
window brings the modified textual representation of the state to the attention of the
EBE system. The system incorporates the modifications by first clearing its internal
databases and then reading and evaluating the text of the file as a set of executable T
expressions. The observant Lisp-er will note that the arguments to both
“define-EBE-session™ and “define-gap-program” do not obey the standard syntax
for evaluable forms; these two functions are both macros that provide special syntax. The
side-effect of evaluating a “define-EBE-session” form is to add the examples in the
form to the system’s example database. The evaluation of the “define-gap-program”
form has the side-effect of overriding the system’s current gap program hypothesis with
the defined gap program.

Our current implementation of the mods fy-ebe-state command is a cheap and
efficacious hack, and there is certainly room for improving the interface that it provides.
It is not very robust; the text is read and evaluated as T forms, and since the user is free
to destroy the syntactic and semantic correctness of the forms, it is possible for him to
end up chatting about his mistakes with the debugger for the underlying T system. Even
if such drastic flaws can be corrected, such a system is also not set up to give timely
context-dependent help to the user. For example, if the user incorrectly modifies the
textual representation of the state, he won't find out about his mistake until he saves the

text.
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Chapter 6

EXTENSIONS

This chapter enumerates proposals for extensions to the editing by example system.
To view the proposals in the proper setting, it is worthwhile to review the sequence of
decisions that we made along the way to creating the EBE system that we described in
the last five chapters. These decisions, in order of importaﬁce, were:

e to try to develop a useful and practical system for automating repetitive text
processing tasks;

e to automate the tasks through a program synthesis system, rather than
through a novel user interface to a program transcription system;

e to take a formal approach to solving this problem, rather than, for instance, a
knowledge-based approach;

e to concentrate on automating the solution to problems solvable by simple text
scanning and replacement programs;

e to develop a system that would base its hypotheses on positive data, rather
than taking advantage of negative data as well;

e to base the system’s analyses on the input/output behavior of the target
function, rather than on traces or other sources of information:

e to require more than one example of the target function’s behavior in order to
form interesting generalizations, rather than trying to intuit interesting
generalizations from a single example;

e to use formal language style patterns in the text scanning programs, rather
than using control-structure oriented pattern matching as in SNOBOL;

e to use gap patterns to describe the structure of the text to transform;

129
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e to use gap replacement expressions to describe how to perform the
transformation;

e and to use a heuristic gap program synthesis procedure, rather than one that
always guarantees to find a gap program concomitant with the demonstrated
behavior.

Although the gap program synthesis procedure and the user interface presented in
Chapters 4 and 5 are critical to the implementation and use of the EBE system that we
have described, their general form was determined by the decisions just enumerated, and
their development did not require making other decisions of comparable importance.

The rest of this chapter will discuss ways in which some of these decisions could be
made differently. The discussion is not intended to be exhaustive, but simply to indicate
some reasonable avenues for expanding the capabilities of the system. These proposals
have not been implemented within a working EBE system, although some of them were
explored within an earlier test system. All of the proposals made are tempered by the
desire that they be practical and implementable.

Four classes of extensions are proposed: extensions to gap patterns that expand their
ability to find and parse text; extensions to gap replacement expressions that allow them
to compute a wider range of useful functions; extensions that allow the system to take
advantage of data other than input/output behavior; and user interface extensions that

allow more powerful control structures to be specified.

6.1 Extending gap patterns

Gap patterns are a deterministic, sub-regular string matching notation. They consist
of constants and gaps; the constants match only equal text, and the gaps match any text
that does not contain the constants that follow them in the pattern. In this section we
propose some extensions to the gap pattern notation and sketch how a program synthesis
heuristic could produce programs that take advantage of the extensions. The extensions
proposed are all conservative, in that we expect that an EBE system that incorporates
them would still have practical behavior and performance.

Gap patterns may be extended by making the gaps of the pattern more selective
about the text that they will match. We have already seen one example of such a

restriction in the gap bounding heuristic that limits the number of end-of-line characters
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that a particular gap is allowed to match. This heuristic may be generalized by
introducing the notion of a gap substitute grammar.

A gap substitute grammar is a grammar associated with each gap in the pattern that
defines the class of strings that may serve as substitutes for that gap. For example, the
end-of-line restriction could be implemented by having a gap substitute grammar that
generates all strings except for those that contain more than the maximum number of
end-of-line characters, and except for those that contain the constant string that follows
the gap. This particular class of gap substitute grammars happens to be expressible using
regular expressions, and so gap patterns that are augmented with such gap substitute
grammars are also sub-regular. In general, gap substitute grammars can define arbitrary
classes of strings; however, since we do not know how to synthesize arbitrary grammars
from examples, we will concentrate instead on considering various special case gap
substitute grammars that play a useful role in text processing programs.

In the rest of this section we present five useful classes of gap substitute grammars:
the first three classes are all sub-regular, the fourth is context-free, and the fifth is a

context-sensitive extension.

8.1.1 Character class patterns

The grammars that correspond to the character class notation that is provided by
many pattern matchers [23, 24, 50] form a useful class of sub-regular gap substitute
grammars. Character classes are regular expressions that use a restricted form of
alternation to define a pattern that matches a single character drawn from a particular
set. A common notation used to express character classes is to enclose a list of the
characters in the class within a pair of square brackets, e.g. “[0123456783]" defines a
pattern that will match any decimal digit. Character subranges are usually specified
using “-"; for example, “{a-z]" will match any lowercase alphabetic character and
“[a-zA-Z20-9]" will match any alphanumeric character.

Gap patterns may be extended to use character classes by allowing a character c¢lass
gap to take the place of any gap in the pattern. A character class gap is a gap that is
restricted to matching runs of the characters that occur in the character class, and the
matching process is defined so that character class gaps must not overlap with the string

that follows them. Gap patterns can be viewed as a subclass of character class patterns
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in which the character classes used match any character in the alphabet. The notation
we adopt for character class gaps is a conglomeration of the gap notation and the
character class notation: for example, we denote an anonymous character class gap that
matches all alphabetic characters by -[a~zA-Z]-; the gap would be given a distinguishing
name, say the name 1, using the notation -I1:[a~zA-Z]-.

Character class programs are formed from character class gap patterns and the
standard replacement expressions. A character class program that can change telephone

numbers of the form “203 228 6750 " to “203-228-6750 " is

-1:[0-9]- 4 -2:[0-9]- U -3:[0-9)- U = -I---2---3-1.

The virtue of this character class program is that the corresponding gap program

Iy -2- 8- = -l- - -2- - -3 (]
will match any group of three non-blank strings separated by a blank. Although the gap
program will correctly transform “203 228 6750 " to “203~228-6750 ", it will change
“New Haven, CT " to “New-Haven,-CT ” as well. The character class pattern imposes
a tighter filter on the text transformed by the program.

The EBE system can synthesize gap programs that make use of the character class
notation in much the same way that it performs the gap bounding heuristic: by
synthesizing a standard gap pattern and transforming that pattern to a character class
pattern through a post-processing step. For example, if all of the characters matched by
a gap are digits, then the gap could be changed to -{0-9]-. On the other hand, if the two
strings that match the gap are “fo0” and “bar”, then while the system could adopt
-[abfor]- as its hypothesis for the text filling the gap, this is probably not the restriction
that the user had in mind. The most useful character class that contains these characters
would probably be found with reference to a fixed heterarchy of character class notations

something like
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-[a-zA-20-9,;:?.]-

[a-2A-70-9]- qo-3:7 -

-la-zA-Z]- -[0-9]- .::?.]- -

//\ /1\ / ;\ YARN

...spect fic tokens...

The generalization best fitting the text occupying a gap would be the most restrictive
class in the heterarchy that matches the text. In the case of “foo” and “bar”, this would
be -[a-zA-Z]-, and if a particular gap matched “375.23" and “3,264.44" in two input
samples, then the system could reclassify that gap as -[0-9,;:? .]-. Such a character
class program synthesis procedure is purely heuristic; it is not guaranteed to find a
character class gap program if one exists, and the ones that it finds do not satisfy any

interesting optimality conditions. Still, it seems to be a useful heuristic.

6.1.2 Generalizing tokenization
Character class patterns can be viewed as an extension of tke tokerization heuristic
presented in Section 5.11. The tokenization heuristic groups the characters of the samples

into tokens in an ad hoc fashion; that is, it reads two samples

212 779 5061
415 494 4000

and decides to arbitrarily group them as the tokens

bol 212 1 779 i; 5081 eol
bol 415 i; 494 1 4000 eol

When analyzing these tokens, the pattern synthesis algorithm views two tokens as equal
only if they are composed of the same basic characters, which allows it to come up with
the descriptive gap pattern

bol --- _ === ii --- eol

rather than the descriptive gap pattern



134

Bol wo= 1 wem [ === § == [] === 0 - eol

that would have been yielded by a character-at-a-time analysis.

The tokenization heuristic can be extended by introducing the idea of generic tokens
that define whole classes of strings. For example, the generic token <integer> can be
defined to match any integer; it would match the same strings as the character class gap
-[0~9]-. Many other generic tokens would be useful: <number>, <word>, <non-blank>,
<whitespace>, <line>, <paragraph>, <time>, <date>, <phone-number>, <zip-code>,
<dollars>, <human-name>, <user-id>, < filename>, <town-in-Connecticut>. The
generic tokens also form a heterarchy; for example, <zip-code> is a subclass of <integer>,
which is a subclass of <number>.

The system can synthesize a generic token program in the same way that it creates
character class programs: it first finds a standard gap pattern, and then applies a
heuristic that transforms each gap to the most specific generic token in the token
heterarchy that matches all of the text matched by the gap. An analysis of the phone

number example above would yield the generic token program:

bol <integer > U <integer,> U <inlegerg> U = -1- - -2- - -3-

8.1.3 Multi-token programs

It is easy for a program synthesis system to synthesize a program in which each gap
is changed to a single character class expression or a token; all it does is apply a post-
processing step that examines the text that fills each gap and changes that gap to the
most specific character class or token in the heterarchy that can match the same text.
The function of this kind of post-processing is to make the program’s pattern be more
selective about the text that it matches; the resulting patterns do not expand the
transformational capabilities of their programs in any way.

However, these capabilities can be expanded if patterns that contain more than one
character class or generic token between every pair of constants are permitted. For
example, there is no gap pattern that will serve to isolate two words that are separated by
a variable number of blanks, and so there is no gap program that can make the

transformation
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John Ellis = Ellis, John
Nat Mishkin = Mishkin, Nat
Steve Wood = Wood, Steve

in one step. This transformation can be effected by a character class program:

<word > <whitespace,> <wordg> = -3- ,l-I-

Note that there is no trailing constant in the pattern; the token <wordg> is defined to
match as many alphabetic characters as it can, and thus no terminating constant is
needed to make the text matched by the pattern be well defined.

A scheme for synthesizing such programs could work by analyzing the samples in the
standard way, and then re-analyzing the text matched by the gaps at a different, more
generic, level of tokenization. This reanalysis of the text within the gaps would continue
until either a program that can transform the inputs to the outputs is found, or until the
process runs out of different tokenizations to try. For example, the first phase of analysis
of the examples yields the pseudo-gap pattern

-1- 1 -2-
which is not a legal gap pattern because of the trailing gap. The text matching the first
gap can be re-tokenized at a more generic level, which views all of the strings as

<word>s. The pattern synthesis algorithm has no trouble finding the pattern <word>

common to all of them. The text matching the second gap can be retokenized as

<whitespace> <word>
<word>
<whitespace> <word>

Which is analyzed to yield the gap pattern
--- <word>

The gap pattern matching the entire set of strings is now
<word> | --- <word>

Which parses the input samples so that they may be formed into the output. A post-
processing step with special knowledge of space characters could turn the “J ---’
fragment into a single <whitespace> token.

One of the problems with this scheme is that it generates a large number of low-
quality hypotheses. For example, the <non-blank> and <whitespace> tokens are

ubiquitous, and an analysis of a gap might conclude that it is composed of at least 14
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<non-blank>s and 13 occurrences of <whitespace>; not an interesting pattern. The
problem is that there are just too many ways of fleshing out the internal structure of each
gap, and there is not enough of a reason for preferring one way to another. The root of
the problem is that the technique of synthesizing the pattern independent of the
replacement breaks down as the pattern language becomes more expressive. Gap patterns
that allow several generic tokens to fit into each gap are expressive enough that many
different patterns can fit the same set of samples, and thus the chances of choosing one of
the few that happens to lead to a replacement expression is small. It is probably best to
consider synthesizing such gap programs using an algorithm that unifies the synthesis of
the pattern and replacement expressions. We rejected this technique for gap programs
because we showed that an algorithm that always promised to create a gap program if
one existed would be too inefficient; for this same reason, we would probably do well to
develop an algorithm that does not try to deliver on such promises.

Section 6.2.1 presents an extension to gap replacement expressions that results in a

related extension to gap programs.

6.1.4 Context-free gap substitute grammars

Gap substitute grammars that are more powerful than regular expressions are useful
when the user is manipulating text that contains embedded recursive structures, such as a
Lisp program, or a Pascal program, or even just text with matched sets of parentheses.
In this section we propose a scheme for synthesizing gap programs that manipulate such
text.

We describe the needs of such a system using an example that manipulates a T

program [71, 72]. In this example, all occurrences of the IF construct
(IF predicate consequent alternate)
are to be changed to COND:

(COND (predicate
consequent)
(T
alternate))

This transformation cannot be performed by gap programs because each of the predicate,

consequent, and alternate expressions may be arbitrary symbolic expressions (s-
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expressions) that may be parenthesized to arbitrary depth. A program to perform such a
transformation must be able to match and skip over s-expressions, and a gap program
that searches for the next “)” will fail miserably.

Given knowledge of T's syntax, or in other words, given knowledge of the fixed gap
substitute grammar describing s-expression syntax, the gap pattern synthesis algorithm
can be modified to compute a class of s-expression transformations that includes this one.

The idea is that given the input samples

(IF («<= X 1) 1 (* X (FACTORIAL (- X 1))))
(IF (NULL? XD (O (APPEND (REVERSE X) (CONS X NIL)))

and the corresponding output samples

(COND ((«=X 1)
1)
(T
(* X (FACTORIAL (- X 1))))
(COND ((NULL? X)
1)
(T
(APPEND (REVERSE X) (CONS X NIL))))

the s-expression program synthesis algorithm analyzes the parse tree representation level-

by-level, starting with a zeroth level view of the input samples in which each of the s-

expressions is viewed as being a single token.
(TFU(<=UXUL) UL (kXU (FACTORIALL (-UXL1) D))
(TFY(NULL?UX) U QU CAPPENDL (REVERSELX) L (CONSUXUNIL) D)

This tokenization does not yield a gap pattern that can match both of the samples, so the

samples are tokenized, or holophrasted, one level deeper

(: IF @ (<=Xu1) ¢ 1 0 CeXU(FACTORIALU(-UXLLIND) &)
(¢ IF : (NULL?LX) @ (O : (APPENDLI(REVERSELX)L(CONSLXUNIL)) @)

In these tokenized samples the symbol *;” is used to denote an s-expression boundary.
There is a gap pattern common to these two samples, and it yields the gap program
(0 IF : <1- 1 -2- 1 -3 : ) =
(COND (-1-
-2-)
(T
-3-))

which can compute the transformation (although it cannot handle the change of
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indentation). If the procedure had not been able to find a program at this level of
holophrasting, it would have tried one level deeper, and so on until the full depth of the
examples had been plumbed.

This program is defined to search for an s-expression that begins with an IF and is
followed by exactly three other s-expressions, when it finds such an expression, it replaces
it with the desired COND. If this function were scanning text, then it would resume its
search after the closing parenthesis of the IF; however, programs are recursively
structured, and it would be more useful to have the default control structure conduct a
depth-first search that visits the s-expressions contained in the gaps -1-, -2-, and -3- before
continuing on to search the rest of the program.

This analysis would be most easily performed if the editor had already gone to the
trouble of maintaining the code in parse-tree form. On the other hand, there are many
other transformations in which the view of the code as a string of ASCII text would be
more natural. The engineering tradeoffs involved in the design of program-oriented
editors are not yet clear [98].

The s-expression gap programs that we have just described are not very powerful,
and do not serve to describe the full range of manipulations that might usefully be
performed on a parse tree. Gap programs were designed for manipulations carried out on
the “flat” structures common in text, and thus the s-expression gap programs suffice only
for expressing “flat” s-expression manipulations. A serious attempt at a program-oriented
EBE system would probably do well to expand on the techniques used by the list

processing program synthesis systems mentioned in Chapter 2.

6.1.5 Testing for equality among fields

As soon as we assigned names to the gaps in a pattern, there was probably an
inclination on the reader’s part to write patterns that used the same name more than
once, with the intent of requiring that each of the instances of the gap so named match
the same text. Adding an equality test to gap programs is certainly an interesting
extension from the point of view of defining a vehicle for computation. On the other
hand, this extension would probably not be widely used in text processing programs;
about the only use that comes to mind is in computing the join of some textually

represented database relations.
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Angluin [4] studied a similar problem for a slightly different class of patterns, and
found that finding a maximal length pattern that makes use of equality tests is NP-hard.
The obvious heuristic for creating gap patterns that use an equality test is to examine the
pattern for all pairs of gaps that match equal text on the input samples, and to give all
such pairs the same name. This heuristic is probably adequate for the limited use that we

would make of this construct.

6.2 Replacement expression extensions

The role of the replacement expression of a gap program is to produce a replacement
for the text that matches the program’s pattern. The replacement expressions that we
have considered so far produce simple concatenations of constant strings together with the
text matching the gaps of the program’s gap pattern. In this section, we propose four
other classes of replacement expressions that do not stray far from this framework. The
first class is an extension that allows replacement expressions to insert fixed substrings of
the text matching the gaps of the gap pattern; the second two allow the replacement
expressions to compute special-case functions on the text matching the gaps, and the

fourth adds a facility for formatting the output text in columns.

6.2.1 Substrings of gaps
The administrators of one of our favorite timesharing systems form user-ids by
concatenating the first three letters of the user’s last name with the first three letters of

their first name and their middle initial.

ELLIS, JOHN R. = ELLJOHR
MUSHLEUT, MAT W. = MUSMATW
WO0D, STEVEN R. = WOOSTER

This transformation cannot be performed by a gap program because there is no gap
pattern that will isolate ELL, MUS, and WQO from the characters that follow them.

An extension that makes this transformation expressible is to allow gap replacement
expressions to select the first £ characters of the text matched by a gap. For example,
the notation -1{1..3})- defines a substring selector, or prefiz expression. that when used in
a replacement expression will insert the first three characters of the text that matches the

first gap. Using this notation, the program
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-1- U -2- U -3- . = -1{1..3)- -2(1..3)- -3-
would suffice to create the user-ids from the list of names.

This extension turns out to be easy to implement. The first phase of the gap
replacement synthesis algorithm (Algorithm 11) computes a representation of all possible
ways that the text of a gap in a particular input can occur in the corresponding output;
the second phase intersects these representations to find those replacement expressions
that work simultaneously for all of the sample pairs. To find prefix expressions, the first
phase is modified so that it instead computes a representation of all possible ways that
every prefix of the text of a gap can occur in the output; the second phase remains the
same. If each of the n output samples has ! symbols, and there are |g{G)| gaps in the gap
pattern that matches the input, then the algorithm has a worst case running time
bounded by O(|g{G)|*{*"). In practice, the actual running time would be much better, for
the same reason that Algorithm 11 performs well in practice.

The prefix-extracting algorithm can be modified to extract suffixes as well, with the
same order-of-magnitude cost in running time. Arbitrary fixed-range substrings may be

found at a greater cost bounded by O(|g(G)|"I3").

6.2.2 Fixed functions of gaps

Users of text editors often apply functions to their text that transform it in a way
that does not involve copying. Most of these functions are completely domain specific,
and a subclass of those will be considered in the next section. However, there is a small
set of functions that are commonly applied to text that are not domain specific, or rather
are specific to the domain of text. These functions involve manipulations on text that
change its attributes: capitalization, conversion to lower case, capitalizing the first letter
of each word, and other changes of formatting style.

For example, a certain programmer has many fetishes about the format of his T

code; one particular fetish is apparent in the form of each function definition

(define (choose n m)

)

which must begin with a peculiar style of comment
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;k%x (CHOOSE N M)

o k%X

;¥%x Computes the number of ways of choosing M things from N.
o Rk kK

(define (choose n m)

D

Automatically generating the comments themselves is beyond the scope of this thesis, but
the synthesis of the comment template, which consists of the comments beginning
“;%xx” the capitalized function call form, and the line of “===...", does lie within the
framework. The only aspect of generating this template that cannot be handled by the
standard replacement expressions is producing the text “(CHOOSE N M)” from the text
“(choose n m)”. If a capitalization function were in the gap program’s repetoire, then
the following program could perform the transformation:

bol (define ( -1- ) eol =

;xxx [ capitalize(-1-) ) eol

; kKoK | - eol

k%% jeol
(define( -1- ) eol

It is easy to extend the gap program synthesis procedure to accomodate a limited set
of such transformation functions as capitalize, lowercase, or capitalize- first-letter. To
implement this extension, the replacement synthesis algorithm is modified so that the first
phase of the algorithm finds all of those places in each output sample that are equal to
the image of one of the transformation functions applied to the text of one of the gaps in
the corresponding input sample. If all of the sample pairs account for the text in this

same way, then that will be the transformation performed in the synthesized program.

6.2.3 Tabularly specified functions

Many functions on text are completely idiosyncratic; for example, in the

transformation
5/2/58 = May 2, 1958
8/19/59 = August 19, 1959
6/14/80 = June 14, 1880

the month name produced from 5 is May, from 8 is August, and so on. Any algorithm
that generalizes this transformation must simply know, in some way, that the fifth month

is May. Whenever it sees 5 in the input, and May magically appears in the cutput. then it
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should know that the user is making use of the month-number-to-name function. We call
such functions tabularly specs fied functions.

If the system already knows of the table representing a particular tabularly specified
function, then it can synthesize such functions in the same way as in the previous section.
That is, whenever some gap matches text that is a valid input, or index, for one of the
tables, then the system scans the corresponding output sample for the occurence of the
table entry corresponding to that text. If the output of the function appears somewhere,
then it is tagged as possibly being a result of the tabular function performed on the input
gap; if all of the input/output samples account for the text in this same way, then that is
the transformation being performed.

If the table is not known to the system, then the user could specify its contents by
giving examples. Such a user interface would be basically the same as for the editing by
example system, with the user selecting input examples and the corresponding outputs. It
would differ in that the system would not try to generalize the samples, but would simply

record them for later use.

6.2.4 Layout functions

Another important class of commonly applied functions are those that perform
manual text formatting, particularly arranging data in columns. For example, the ragged
list

Nat Mishkin, Judy Mishkin, 777-5562

John Levine, Lydia Spitzer, 864-3650
John Ellis, Ann Ambassador, 865-6438

might be easier to read if it were aligned in columns

Nat Mishkin 777-5562
Judy Mishkin 777-5562
John Levine 864-39650
Lydia Spitzer 864-3650
John Ellis 865-6438
Ann Ambassador 865-6438

Such tabular layout functions are not expressible as gap programs because the amount of
whitespace between the entries in each row varies among the rows. For example.
assuming that the layout is produced by inserting a certain number of spaces, there are 9

spaces between Nat Mishkin and his phone number, but only 7 spaces between
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Lydia Spitzer and hers. The transformation could be performed by a program that
makes use of an absolute column positioning function called tab:

-1- ) -2- ,U -8-eol =

-1- tab(21) -3- eol

-2- tab(21) -3- eol

Synthesizing such functions could proceed as follows. First, the standard gap
replacement synthesis algorithms are applied, but to an output in which all sequences of
blanks have been replaced by a generic <whitespace>, or <w>, token. In this case the

input and output above would be tokenized as:

Nat <w> Mishkin , <w> Judy <w> Mishkin , <w> 777 - 5562 eol
John <w> Levine , <w> Lydia <w> Spitzer , <w> 864 - 9650 eol
John <w> Ellis , <w> Ann <w> Ambassador , <w> 865 - 6438 eol

and

Nat <w> Mishkin <w> 777 - 5562 eol
Judy <w> Mishkin <w> 777 - 5562 eol
John <w> Levine <w> 864 - 9650 eol
Lydia <w> Spitzer <w> 864 - 9650 eol
John <w> Eilis <w> 865 - 6438 eol
Ann <w> Ambassador <w> 865 - 6438 eol

A program is then found to transform this “unaligned” text:

-1- <w> -2-, <w> -3- <w> -4- , <w> -5- - -6- el =
-1- <w> -2- <w> -5- - -6- eol
-3- <w> -4- <w> -5- - -6- eol

In the next step, the system replaces all of those <w> tokens that contain the same
number of space characters in all samples with that particular number of spaces
-1- 4 -2- U -8 U -4- .U -5-- -6-el =

-1- { -2- <w> -5- - -6- eol
-8- | -4- <w> -5- - -6- eol

The system then examines the numerical relationships that hold among the columnar
positions of the text following the remaining <w> tokens. In this case, it finds that the
text following both <w> tokens in the output string starts in column 21 in all output
samples, yielding the following gap program:

-1- -2, 8- -4, U -5 - -6- el =

-1- ) -2- tab(21) -5- - -6- eol
-3- | -4- tab(21) -5- - -6- eol
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Which after pattern reduction becomes

d- U -2 U -3 eol =
-1- tab(21) -3- eol
-2- tab(21) -3- eol

6.3 Extensions to the data collected

The systems that we have proposed and developed in this thesis base their
hypotheses on positive examples of the input/output behavior of the target function.
There are many other sources of information that would be naturally available in the
system, and in this section we consider schemes for taking advantage of traces, negative

data, queries, assertions, and other sources of information.

6.3.1 Traces

In Section 3.2.1 we argued that traces, which are the record of the commands that
the user employed while finding and transforming his example text, were too unreliable a
source of information about the user's target program to serve as the principal basis for
generalization in the EBE system. We also pointed out that a system that used traces
would have to have some knowledge of the semantics of each editor command if it
wanted to generalize the trace. It was for these reasons that we rejected traces in favor of
making use of the sample inpnt/output behavior.

On the other hand, traces are an effectively useable source of information in those
situations in which the trace is simple, but the input/output behavior is not. For
example, suppose that the user wants to fill and justify the ragged margins of every
paragraph in a long document. His editor has a command that will perform this
operation on one paragraph, and he would like to apply the command to all of the
paragraphs in the document. This function’s input/output behavior is inscrutable, and
trying to synthesize such a function from input/output behavior is out of tke question.

However, it is not too difficult to envision a hybrid EBE system that uses the
appearance of a few input samples to synthesize a pattern that can locate the next piece
of text to transform, but that replays the user’s commands to actually transform the text
that it finds. For example, if each paragraph is defined to be a sequence of lines ending

in a blank line, the hybrid program



bol -1- eol eol =  fill-and-justify(bol -1- eol eol)
might be the result of the system’s analysis.

It is not necessary that such a hybrid system generalize the sequence of commands;
the system would still be useful if it simply replayed the literal sequence of commands
given by the user in transforming one instance. If the user discovers a new class of
transformations that he would like to perform by example, but cannot because they are
not expressible with a fixed sequence of commands, then he might be able to extend the
system'’s capabilities by adding the necessary command or commands to his editor. For
example, if the user finds himself always wanting to sort some text, he would do well to

add a sort function to his editor.

6.3.2 Negative data

Gold’s work showed that inductive inference systems that work from positive and
negative data are more powerful than systems that restrict their attention to positive
data [32].

There are two relevant kinds of negative data available for gap programs: negative
data that shows shortcomings in the pattern, and negative data that shows that the
transformation has been incorrectly done. The negative data that shows shortcomings in
the pattern can be further divided into two classes: text that the pattern should have
matched, but did not, and text that the pattern should not have matched, but did. The
negative data imposes constraints on the programs synthesized by the system by
prohibiting the synthesized programs from exhibiting behavior that has been disallowed.

The exact gap pattern synthesis algorithm developed for Theorem 17, the one that
runs in O({*") time, can be adapted so that it finds a gap pattern that will match the
strings in a positive sample set without matching any of the strings in a negative sample
set. That algorithm works by first constructing representations of all possible gap
patterns that match each sample, and then intersecting these representations together to
find all of the gap patterns that match all samples simultaneously. The algorithm can be
extended to handle negative samples by having it first construct a representation of all
possible gap patterns that match each negative sample, and then intersect the
complement of each of these sets with the intersection of the positive samples. This

construction would yield a representation of all possible gap patterns that can match all
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of the positive samples without matching any of the negative samples. The most
descriptive such pattern can be recovered by applying the technique described in Theorem
18.

37+1 {og 1) time, and it is not clear how

This algorithm is not practical. It runs in O(
to formulate a heuristic that makes it practical. The descriptive gap pattern synthesis
heunstic already does pretty well for negative data, in that it tries to find the pattern
that maximally differentiates the strings in the positive sample set from all other strings.
But if the descriptive gap pattern matches a negative sample, then it is unlikely that the
pattern could be patched to not match the sample. The reason for this is that a
descriptive pattern matches a minimal set containing the positive samples, and all
changes to the pattern will probably either make the set of strings that it matches larger,
or will result in it no longer matching one of the positive samples that it should.
However, negative data would be useful in restricting the application of the pattern
reduction heuristic, which tends to turn descriptive gap patterns into less-than-descriptive
gap patterns.

The problem with extending the system to handle negative data is that gap patterns
are not powerful enough to draw subtle distinctions between positive and negative
samples. The control structure extensions presented in Section 6.4 offer a more
appropriate mechanism for keeping the synthesized programs from matching a particular

class of samples.

8.3.3 Queries, assertions, and other user interactions

The EBE system could ask the user questions about the program that it is trying to
synthesize, perhaps as Shapiro’s Algorithmic Debugging System queries the user about the
validity of steps in the computation of the target function [78, 79]. The problem is to
find the right things to ask about; a system that asks the user about the validity of
internal steps of its computation would probably not be well received. We have not yet
found an algorithmic use for queries in the synthesis of text processing programs.

Another source of information could be the user’s assertions about the kind of
editing program that he would like the EBE system to synthesize. For example, the user
might be manipulating a Lisp program, and he could tell the system that his

manipulations are in terms of the Lisp program’s parse tree. Such an assertion could



147

allow the system to narrow in on a particular class of programs that have special
knowledge of the syntactic structure of Lisp. The user could also provide more specific
information about his target program, perhaps by providing the system with code

fragments that could be incorporated into the program.

6.4 Control structure extensions

One of the obvious flaws of gap programs is that they do not provide general-
purpose control structures. There are two reasons for this oversight: control structure
generalization from examples is very hard, and the rigid set of control structures provided
by the EBE system user interface work well enough in practice that solving this hard
problem was not a requirement for building a useful EBE system. However, expanding
the system'’s repetoire of control structures is a requirement for any real expansion in its
capabilities.

One approach to providing a full range of control structures is to provide the EBE
system user with an entry into a full-fledged programming language. For example, the
user might want to write something like the following program to apply two different

search-and-transform rules to some text:

(define (apply-transformation context)
(cond ((end-of-context? context)

O)
((matches? pattern, context)
(trans form  context)
(apply-transformation (rest-of context)))
((matches? pattern, context)
(trans form, context)
(apply-transformation (rest-of context)))
(t
(apply-transformation (rest-of context)))))

The program sketched searches a context for parts of the context that match one of two
patterns, pattern, or pattern,, and applies either transform  or transform, to the parts
of the context that match one of the patterns.

We have not developed facilities that can automatically synthesize such complicated
control structures from examples, and judging by the experience gained from research on

program synthesis, it is unlikely that we would be able to come up with a system that
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would be able to reliably synthesize a wide range of control structures from example
information. However, while the user could write this entire program manually, we have
developed facilities that can automatically synthesize the components pattern,

trans form,, pattern,, and trans form, from examples. To take advantage of these
facilities, we could provide an interface that allows the user to manually create the
control structures of the program, but provides him with facilities for writing the pattern
matching and transformation components through examples.

Even the control structures would not have to specified in a completely manual
fashion. For example, certain various special case control structures schemas, such as the
recursive conditional expression in the example above, could be available through menus.
The user could select one of these program schemas, and then fill in the details of the
patterns and transformations by giving examples for each.

The system just sketched bears a resemblance to Lieberman and Hewitt's Tinker
system [57]. Perhaps the difference in domain, text processing vs. list processing, will be

enough to make the text processing version of such a system be useful.

8.5 Future work

In this chapter we have sketched extensions to the EBE system that increase its
power. We intend these extensions to be incorporated into a user interface to writing text
processing programs that allows some program fragments to arise as the result of the
system'’s analysis of examples, some to come from transcripts of the actions carried out by
the user, and others to be written manually or specified through menus. The realization

of such a user interface is a subject for further research.



Chapter 7

CONCLUSION

This dissertation presented the design of a system for specifying text processing
programs by example. As a first stab at building the system, we decided to concentrate
on synthesizing a class of text processing programs called gap programs, and we decided
to base the synthesis on examples of the program’s input/output behavior. Guided by
results characterizing the computational complexity of various aspects of gap program
synthesis, we developed an efficient heuristic procedure for synthesizing gap programs
from examples. We showed that this procedure, even though it used heuristics, was still
guaranteed to find gap programs in the limit from positive data.

We went on to evaluate how well the gap program synthesis heuristic performed on
the text encountered in practice. This evaluation led to the development of several
heuristics that act both to improve the quality of the hypotheses proposed by the system
and to reduce the number of examples required to converge to a target program. The
result is a gap program synthesis heuristic that can usually synthesize a target gap
program from two or three input examples and a single output example. The heuristic
has been implemented within a working text editor as the core of an editing by example
system.

The primary contribution of this dissertation lies in demonstrating the feasibility of
program synthesis in the domain of text editing. We developed, analyzed, and
implemented an editing by example system and embedded it in a production text editor.
The system seems to be an effective aid in automating the solution of a useful class of
text processing problems.

Most of the credit for this success should go to the choice of the domain. Text

149
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editing is an interactive activity that is oriented around the incremental and (usually)
unstructured manipulation of a large collection of data. Small-scale text processing
problems constantly crop up during the course of these manipulations, and many of these
problems can be solved by simple, syntactically-oriented text processing programs. A few
examples suffice to specify a good fraction of these programs, and the text editing
environment makes these examples easy to produce and provide. The text editing domain
is ideal for programming by example research; as a result, this thesis presents one of the
few instances of a programming by example system that performs interesting
generalizations of its examples.

Another contribution of this dissertation lies in providing an application for the
techniques of inductive inference, an area of research that has seen a great deal of
theoretical development but heretofore Las had very few applications. This application,
and the others that hopefully will follow, may help to focus inductive inference research
on addressing problems of practical importance.

This work indicates a direction for program synthesis research: to find and develop
applications for the programs that lie within the range of the program synthesis
techniques that have been developed. If such research proves fruitful, it may spur further
development in this area, which may help the field to evolve towards the eventual goal of
automating the programming process.

The greatest weakness of this work is that the EBE system has not been used by a
large community, because the U editor did not become generally useable until this project
was nearly complete. The design and evaluation of the system is based on the author’s
personal experience with building, using, and supporting text processing tools; while this
experience is not inconsequential, it still represents only one man’s view. It would have
been better to have had more feedback on the system, both from knowledgeable
programmers and from naive word-processors.

Another weakness is that gap programs are not powerful enough to express the
solution of many text processing problems. While the extensions proposed in Chapter
6 increase the capabilities of the system, it is clear that more sophisticated programs
cannot be derived from a few input/output examples. Different approaches must be
taken. The future of this research lies in studying other ways in which the power of

programming can be brought smoothly out into the user interface.



Appendix I. Gap program synthesis code

This section presents the code for the system described in Chapters 4 and 5, in hopes
that it will serve as a starting point for the implementation of editing by example systems
in other text editors. Only the code for the gap program synthesis heuristic is reproduced
here, the code that implements the user interface and the gap program interpreter has not
been included. The system is written in T, a dialect of Lisp; the interested reader should
consult the T manual for definitions of the programming constructs used here [71, 72].

This part of the system is organized into 6 parts:

1. Routines for approximating the LCS of a set of samples.

2. Routines for inserting gaps into the LCS to make a gap pattern.

3. Utilities for replacement expression synthesis.
4

. A replacement expression synthesis algorithm.

(V4]

. The gap bounding heuristic.
6. The pattern reduction heuristic.
The various structures manipulated by the gap program synthesis code have the following

representations:

Tokens:
Tokens are atomic items; in U, tokens are either characters, strings, or numbers.
For efficiency, a pair of tokens are treated as being equal if and only if they
answer true to T's pointer equality test (€q?). A tokenization package, not
reproduced here, makes sure that all equal tokens are referenced by equal pointers.
Gaps:
Individual gaps, like -1-, are represented by data structures that contain room for
recording gap bounds as well as starting and stopping positions for gap matching.

The accessors for these gap structures are the procedures beginning EBE-Gap-.

Samples:
Each input or output sample is represented as a vector of tokens. Groups cf

input/output samples are represented as a pair of parallel lists of input samples
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and of output samples.

Gap patlerns:
A gap pattern is represented by a pair of vectors. One vector, usually C or CS, is
a vector of tokens that gives the constants of the pattern. The other vector,
usually G, is of the same length as C and has a gap in slot 1 if there is a gap

preceding the i'th constant in C, and () in all of the other slots of G.

Replacement expressions:

A replacement expression is a list of tokens and gaps.

Replacement automata:
A replacement automaton is a finite state machine that is the working
representation of a replacement expression. These finite state machines are
acyclic. They are represented by a vector of lists, where each list is an A-list in
which each member is a pair whose car is a token and whose cdr is a state to
proceed to after producing that token. The zeroth entry in the vector is the start

state, and the last is the sole accepting state. For example, the vector
#O(G2- 01D (1- . 2)) (e . 2)) (d. 3)) O)
defines an automaton that accepts the two strings “-2- c¢d” and “-1- d”.

The system described in this paper should be fairly easy to port to other editors. I
would be very pleased to hear reports of experience with EBE system implementation and

use.



s RRE
xEX
;#*%x An algorithm for approximating the longest common subsequence of a list
;*%x of samples.

e 2 2 3
b2 2 2

;xxx (LCS SS)
SRR
;#%% LCS computes an approximation to the longest common subsequence of the
;**%% yectors in the tist SS. The first step of the approximation is to sort the
;#xx members of SS in order of increasing length. Then, the exact LCS of the
;#%x first two (shortest two) vectors is computed, and then the exact LCS of
;%%% that with the third vector is computed, and then the LCS of that with the
;*%x fourth, ... and so on.

ckkk

idefine (lcs ss)
(et ((slen (length ss)))
(cond ((fx= sien 0)

nit)

((fx= slen 1)

(copy~vector (car ss)))

(t

;*#*x Sort in increasing order of length.
(set ss

(sort ss (lambda (x y) (fx< (vector-length x) (vector-iength y)))))
(loop (initial (I1 (make-vector (vector-iength (car ss))))

(12 (copy-vector 11))

(scr (copy-vector i1))

(xles (list=>vector

(lcs-2 (cadr ss) (car ss) 11 12 scr))))
(for x in (cddr ss))
(do (or (common-subsequence? xlcs x)
(set xlcs (list->vector (ics-2 x xles i1 12 ser)))))

(resutt xics))))))

;##x (LCS-2 A B L1 L2 SCR)
S ¥E%
;**% Sets up Hirschberg’s linear space aigorithm for computing the longest

;*%x common subsequence of a pair of strings. A and B are the two vectors for

;**x which you’'re computing the LCS. L1, L2, and SCR are scratch vectors of

;*%% |length at least |A]. This returns a list giving the exact longest common
;%%* sybsequence of A and B.
i 2 2

»

(define (lcs-2 a b 11 12 scr)
(les-c a 0 (fx- (vector-length a) 1) b 0 (fx- (vector-fength b) 1)
11 12 scr))

cxxx (LCS-C A ML MR B NL NR L1 L2 SCR)
;***

;xxx | CS-C, LCS-B, and LCS-B-REY implement Hirschberg’s linear space algorithm
;*** for computing the longest common subsequence of a pair of vectors.




;¥*%* The running time of this impiementation is:

;¥¥x 100 micro-seconds * n * m, where n and m are the lengths of the vectors.
,¥*x  This timing applies on a 10MHz Apoilo DN40O MC68000, with cache.

;¥¥*  Compiled under an eariy version of the T compiier.

(define (lcs=c a ml mr b nl nr 11 12 scr)
(cond ((or (x> nl nr) (fx> ml mr))
nil)
((tx= ml mr)
(loop (initial (the-a (vref a mi)))
(step j from ni to nr)
(until (eq? the-a (vref b j)))
(result
(if (fx<= j nr) (cons (vref b j) nil) nil))))
((eq? (vref a mi) (vref b ni))
(toop (initial (I (cons (vref a mi) nil)))
(step i from (fx+ m! 1) to mr)
(step j from (fx+ nl 1) to nr)
(while (eq? (vref a i) (vref b j)))
(do (set ! (cons (vref a i) 1)))
(result
(append! (reverse! I)
(les=¢a i mr b jnr 11 12 ser)))))
((eq? (vref a mr) (vref b nr))
(loop (initial (I (cons (vref a mr) nil)))
(decr i from (fx- mr 1) to m})
(decr j from (fx- nr 1) to ni)
(vhite (eq? (vref a i) (vref b j)))
(do (set | (cons (vref a i) 1)))
(resuit
(append! (lcs-c a ml i bnl j il 12 scr)
1))
(t
(tet ((i (fx+ ml (fx= (fx\/ (fx+ (fx- mr m1) 1) 2) 1))
(tes=b aml i b nl nr il 11 scr)
(les-b-rev a (fx+ i 1) mr b nl nr 12 12 scr)
(tet ((m (vref 12 ni))
(m-index (fx- ni 1)))
(loop (step j \.in ni to nr)
(do (tet ((tm (fx+ (vref 11 j) (vref 12 (fx+ j LI
(cond ((fx> tm m)
(set m tm)
(set m-index j))))))
(if (fx> (vref i1 nr) m)
(set m-index nr))
(append!
(les=c ami i b ni m-index i1 {2 scr)
(les-c a (fx+ i 1) mr b (fx+ m-index 1) nr {1 (2 scr)})))))

;*#x (LCS-B A ML MR B8 NL NR LL KO K1)
; Rk

;*x* Implements procedure B of Hirschberg’s linear space LCS algorithm.




, *EX
(define (lcs-b a mi mr b ni nr !l kO k1)
(toop (step j from nl to nr)
(do (vset k1 j 0)))
(toop (initial (the-a nil))
(step i from m! to mr)
(do (set the-a (vref a i))
(tet ((tk k0))
(set kO k1)
(set k1 tk))
(if (eq? the-a (vref b nl))
(vset k1 nl 1)
(vset k1 ni (vref kO nli)))
(loop (step j from (fx+ ni 1) to nr)
(do (if (eq? the-a (vref b j))
(vset k1 j (fx+ (vref kO (fx- | 1)) 1))
(let ((x1 (vref k1 (fx- j 1)))
(x2 (vref k0 j)))
(it (fx< x1 x2)
(vset k1 j x2)
(vset k1 j x1))))N)N
(or (eq? 1! k1)
(loop (step j from nl to nr)
(do (vset Il j (vref k1 j))))))

;#xx (LCS-B-REV A ML MR B NL NR LL KO K1)
S *EX
;**x Implements procedure B of Hirschberg’s linear space LCS aigorithm,
;*¥** only does it for reversed strings.
S R%x%
(define (lcs-b-rev a ml mr b nl nr 11 kO k1)
(loop (decr j from nr to nl)
(do (vset k1 j 0)))
(loop (initiai (the-a nil))
(decr i from mr to mi)
(do (set the-a (vref a i))
(let ((tk k0))
(set kO k1)
(set k1 tk))
(if (eq? the-a (vref b nr))
(vset k1 nr 1)
(vset k1 nr (vref k0 nr)))
(toop (decr j from (fx- nr 1) to nli)
(do (if (eq? the-a (vref b j))
(vset k1 j (fx+ (vref kO (fx+ j 1)) 1))
(let ((x1 (vref k1 (fx+ j 1))
(x2 (vref k0 })))
(if (fx< x1 x2)
(vset k1 j x2)
(vset k1 j x1))))1))

(or (eq? 1! k1)
(loop (decr j from nr to nl)
(do (vset 11 j (vref k1 j))))))



156

x kXK
s kEkk
;¥*x Routines for inserting gaps into a common subsequence to make a gap pattern.
SRRk
s RkK

;#%% (COMMON-SUBSEQUENCE? C S)
S REE
;¥%x Returns T if the vector C occurs as a subsequence of the vector S.
SRk
(define (common-subsequence? c s)
(loop (initiat (j 0) (endj (vector-iength ¢)))

(step i \.in 0 to (vector-length s))

(until (fx= j endj))

(do (cond ((eq? (vref c j) (vref s i))

(set j (fx+ j 1)))))
(resutt (fx= j endj))))

;e%% (GAP-CONSTANTS-MATCH? SAMPLE S-FROM C C-FROM C-TQ)
S EEE
;#%¥*x Returns T if the vector slice starting at S-FROM in SAMPLE
;#*x is equal to the constants C[C-FROM..C-TD).
S ¥Ek
(define (gap-constants-match? sample s-from ¢ c-from c-to)
(loop (step i \.in s-from to (vector-length sample))
(step j \.in c-from to c-to)
(white (eq? (vref sampte i) (vref ¢ j)))

(result (fx= j ¢-to))))

;¥%% (FIND-END-OF-GAP G C-FROM)
; REK

’

;¥** Returns the index of the next gap in G at or after C-FROM.
s EEK

(define (find-end-of-gap g c-from)
(toop (step i \.in c-from to (vector-iength g))
(until (vref g i)
(result i)))

;#%xx (GAP-MATCHES? SAMPLE S-FROM C G C-FROM)
;X
;**x Returns T iff the suffix of the gap pattern represented by C and G
;*%x starting at C-FROM matches the vector SAMPLE starting at S-FROM.

;xR
(define (gap-matches? sample s-from ¢ g c-from)
(and (fx< c-from (vector-length g))
(tet ((eofg (find-end-of-gap g c-from)))
(cond ((and (not (vref g c-from))
(not (gap-constants-match? sample s-from ¢ c-from eofg)))
nil)
(t
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(set s-from (fx+ s-from (fx- eofg c-from)))
(ioop (initial (ci eofg)
(ce ci)
(clen (vector-iength ¢)))
(while (fx< ci clen))
(do (set ce (find-end-of-gap g (fx+ ci 1)))
(toop (initial (first~c (vref ¢ ci)))
(step | \.in s-from to (vector-!ength sample))
(until (and (eq? first-c (vref sample j))
(gap-constants-match?
sample (fx+ j 1) ¢ (fx+ ci 1) ce)))
(result (set s-from j))))
(while (fx< s-from (vector-length sample)))
(do (set s-from (fx+ s-from (fx- ce ci)))
(set ci ce))
(result (and (fx>= s-from (vector-iength sample))
(fx>= ¢i {vector-length ¢))))))))))

;x%x (LEFTMOST-GAP-INSERTION SAMPLE C G)
S ¥Rk
;#*x Implements the leftmost match gap insertion heuristic.
L1
(define (leftmost-gap-insertion sampie ¢ g)
(1oop (initial (j 0)
(k 0)
(endgaps (vector-length g))
(endsample (vector-iength sample)))
(white (fx< k endsample))
(vhile (fx< | endgaps))
{until (gap-matches? sample k ¢ g j))
(do (cond ((eq? (vref ¢ j) (vref sample k))
(set j (fx+ j 1))
(set k (fx+ k 1))
(t
(vset g | (Make-EBE-Gap))
(set k (fx+ k 1)))))
(resuit (and (fx< k endsample) (fx< j endgaps)))))

;*%x  (INSERT-GAPS-IN-COMMON-SUBSEQUENCE SAMPLES C)
, ¥k%
;#%%x The driver for the leftmost match gap insertion heuristic.
; *%%
(define (insert-gaps-in-common-subsequence samples c)
(let ((g (vector-fill (make-vector (vector-length c)) nil}))
(loop (step i \.in 0 to (length samples))
(for x in samples)
(while (leftmost-gap-insertion x c g))

(result (if (fx= i (length samplies)) g nil)))))

;xx% (GAP-MATCHES-ALL? SAMPLES C G)
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;kkk

’

;¥¥x Returns T if the gap pattern represented by C and G matches al{ of
;¥¥x the samples in the list SAMPLES.
s KEE
(define (gap-matches-all? samples ¢ g)
(loop (initial (failed? nil))
(for x in samples)
(do (set failed? (not (gap-matches? x 0 ¢ g 0))))
(until failed?)
(result (not failed?))))

;*#*x (REDUCE-GAPS-IN-PATTERN SAMPLES C G)

s kEX

;*¥*x Deletes gaps from the pattern represetned by C and G as long as the
,*¥** samples still match.
S XEk
(define (reduce-gaps-in-pattern samples ¢ g)
(loop (decr i from (fx- (vector-length g) 1) to 0)
(do (cond ((vref g i)
(1et ((gp (vref g i)))
(vset g i nil)
(cond ((not (gap-matches-a!i? samples ¢ g))
(loop (initial (i) i))
(decr j from (fx- i 1) to 0)
(untit (vref g j))
(do (vset g j t)
(it (gap-matches-aii? samples ¢ g)
(set 1] j))
(vset g j nil))
(result (vset g 1j gp))))))))N))

;¥%x (WORKING-C-G->GAP-PATTERN € G)

; kkk

;*¥** A representation conversion utility that converts the gap pattern
,*¥*x represented by the vectors C and G to a list in which the gaps and
;*** constants are interspersed.
S kEE
(define (working-c-g->gap-pattern ¢ g)
(loop (initial (i naii))
(step i \.in 0 to (vector-length ¢))
(do (if (vref g i)
(set | (cons (vref g i) 1)))
(set | (cons (vref ¢ i) 1)))
(result (reverse! 1))))
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xkxk
; kKX
;%*xx Utilities for the gap replacement synthesis algorithm.
*kX
; kKK

;%% (GAP-SKIP-TO-VECTOR V FROM END FIND FFROM FEND)

»

; kKK

’

;x¥x Locates the first occurrence of FIND[FFROM..FEND) in V{FROM..END) .

.

;**x Returns the index if it finds that slice of FIND, othervwise returns ().

; Xkk
(define (gap-skip-to-vector v from end find ffrom fend)
(it (fx= (fx~ fend ffrom) 0)
(and (fx< from end) from)
(loop (initial (found? nil)
(first (vref find ffrom)))
(step i \.in from to end)
(do (if (eq? (vref v i) first)
(loop (step j \.in (fx+ ffrom 1) to fend)
(step k \.in (fx+ i 1) to end)
(while (eq? (vref find j) (vref v k)))
(after (if (fx= j fend)
(set found? t))))))

(until found?)
(result (and found? i)))))

;xkx (PARSE-INPUT-INTO-GAPS CS G V)
;RRR

’

;¥%% Parses the input represented in vector V using the gap pattern represented

’

;#xx by CS and G. Side-effects the EBE-Gap-Start and EBE-Gap-End siots of the

’

;¥%% non-null entries of G with the bounds where the gap pattern matched V.
;*%% Returns non-() if CS and G match V.
, k%
(define (parse-input-into-gaps cs g v)
(let ((firstg 0)
(from 0)
(end (vector-iength v)))
(cond ((not (vref g firstg))
(tet* ((endg (find-end-of-gap g firstg))
(loc (gap-skip-to-vector v from end cs firstg endg)))
(cond ((and loc (fx= from loc))
(set from (fx+ from endg))
(set firstg endg))
(t
(set from nii))))))
(toop (initial (endg)
(endm))
(while from)
(wvhile (fx< from end))
(white (fx< firstg (vector-length g)))
(do (set (EBE-Gap-Start (vref g firstg)) from)
(set endg (find-end-of-gap g (fx+ firstg 1)))
(set endm (gap-skip-to-vector v from end cs firstg endg))
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(cond (endm
(set (EBE-Gap-End (vref g firstg)) endm)
(set from (fx+ endm (fx- endg firstg)))
(set firstg endg))
(&
(set from nii))))
(result (and from
(fx= from (vector-length v))
(fx= firstg (vector-length g)))))))

;*xx (EXTRACT-GAPS G V)
; kE%

3

;**x Returns a vector of the pieces of the vector V that are matched by each of

;*x*% each of the gaps of G.
Rk
(define (extract-gaps g v)
(toop (initial (I nil))
(step i \.in 0 to (vector-iength g))
(do (cond ({vref g i)
(set | (cons (sub-vector v (EBE-Gap-Start (vref g i))
(fx- (EBE-Gap-End (vref g i))
(EBE-Gap-Start (vref g i))))

DN

(result (list->vector (reverse! 1)))))

;#xx (SUB-VECTOR V FROM LEN)
S ¥EX
;##x Utility for extracting the slice V[FROM..FROM+LEN) of V.
1T
(define (sub-vector v from len)
(let ((vx (make-vector len)))
(toop (step i \.in from to (fx+ from (en))

(step j \.in 0)

(do (set (vref vx j) (vref v i)))

(resuit vx))))

;#xx (PARSE-INPUTS-INTO-GAPS INPUT-LIST CS G)
;EEX
,*¥** Matches the gap pattern represented by CS and G against the input
;*¥** samples in INPUT-LIST, and returns a list of vectors in which
,*¥*x each vector represents the parse of ths corresponding input.
S RER
(define (parse-inputs-into-gaps input-list cs g)
(loop (initial (I nil)
(failed? nil))
(for v in input-list)
(do (cond ((parse-input-into-gaps ¢s g v)
(set | (cons (extract-gaps g v) 1)))
(t
(set failed? t))))
(until failed?)
(result (if failed? nil (reverse! 1)))))




s REX
*%kk

;*¥*x The gap replacement synthesis algorithm.
xkk

*%k%

;*%x (CONSTRUCT-REPLACEMENT-MACHINES OUTPUTS PARSES)
S ¥E%
;#*x Implements the replacement expression synthesis algorithm. Takes as input
;*** 3 |ist of output samples QUTPUTS and a corresponding list of parses of the
;*¥** input samples PARSES, and returns a representation of a finite state
;*** machine that encodes all possibie replacement expressions that produce the
;*** output samples from the inputs. Returns () if there is no replacement
,**% expression that will do the job.
R
(define (construct-replacement-machines outputs parses)
(cond ((alli-nuli-vector? outputs)
(make-vector 0))
(t
(loop (initial (m (and (car parses)
(construct-replacement~machine (car outputs)
(car parses)))))

(for o in (cdr outputs))
(for parse in (cdr parses))
(while (fx> (vector-fength m) 0))
(do (let ((mt (construct-replacement-machine o parse)))
(set m (intersect-repiacement-machines m mt))))
(result (and (fx> (vector-iength m) 0) (remove-self-locps m)))))))

;*#xx (CONSTRUCT-REPLACEMENT~EXPRESSION M)
,xkx
;**»x Transforms a machine into a replacement expression. A replacement
,*** expression is a list of strings, characters and integers; the characters
;*** and strings insert themselves, and the integers insert the gap from the
;#*x input bearing that number. The strategy used in building this single
;**% expression from a machine (which may yield more than one expression) is to
;%% traverse the machine (which has been minimized) from the start state to the
;**x final state taking the biggest jump possible at each step. That is, if
;**x you're in state 3 with outgoing symbols #\A to state 4, -1- to state 9, and
;¥*x -2- to state 7, then take the -1- path and insert that gap into the
;**x replacement expression. Of course, this strategy assumes that the state
;**%* numbers imply something about the number of characters being skipped over,
;**x and it’s quite possible that they den’t. '
xRk
(define (construct-replacement-expressicn m)
(loop (initial (I nil)
(s 0)
(fina!l (fx- (vector-length m) 1)))
(vhile (fx< s final))
(do (iet ((es (vref m s)))
(cond ((or (and (fixnum? (caar cs)) (fx> (caar cs) 0))
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(cdr cs))
(loop (initial (farthest-state -1)
(farthest-gap -1))
(for x in cs)
(do (cond ((and (fixnum? (car x)) (fx> (car x) 0))
(cond ((fx> (cdr x) farthest-state)
(set farthest-state (cdr x))
(set farthest-gap
(fx=- (car x) 999)))))))
(result
(set s farthest-state)
(set | (cons farthest-gap 1)))))
(t
(set | (cons (caar cs) 1))
(set s (cdar cs))))))
(result (cond ((nuli? 1) (cons *" nil))
(t (reverse! 1))))))

;*** (REMOVE-SELF-LOOPS M)
S RER

’

; ¥*x Removes those state transitions in the finite state machine M that are

’

;¥*x self-loops. Self-loops are the oniy kinds of loops that occur in the
;**#x finite automata having to do with replacement expression synthesis -- they
;¥** correspond to a gap that matches a null-string in the input. All other
,¥** state transitions are not involved in cycles. This operation is applied

;¥*% as a post-processing pass after al! of the intersections have been done.
1L
(define (remove-self-loops m)
(toop (step i \.in 0 to (vector-iength m))
(do (vset m i (iist-subset (vref m i) (lambda (x) (fxN= (ecdr x) i))))))

(minimize-one-more-time m))

;*#%x (MINIMIZE-ONE-MORE-TIME M)
;RER

’

;**¥x This is a minimization procedure in which self loops don’'t count. The

’

;*¥*x other minimization procedure would do fine here, except that we’ve changed

’

;¥*x representations, and its not a lot of code anyway.

S RxX
(define (minimize-one-more-time m)
(loop (initial (final (fx- (vector-tength m) 1)))
(decr i from final to 0)
(do (vset m i (list-subset (vref m i)
(lambda (x) (or (fx= (cdr x) final)
(vref m (cdr x)))3N)))

m)

;#xx (LIST-SUBSET L PREDICATE)

;EEX ==
*** Destructively modifies a list L, leaving only those elements that answer
;*¥*xx trye to the PREDICATE.

*kX%

*
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(define (list-subset | predicate)
(loop (while (and | (not (predicate (car 1)))))
(do (set ! (cdr 1))))
(loop (initial (prev 1))
(while (cdr prev))
(do (if (not (predicate (cadr prev)))
(set (cdr prev) (cddr prev))
(set prev (cdr prev)))))

;*xx (CONSTRUCT-REPLACEMENT-MACHINE OV PARSE)
; k%

’

;x%x Constructs a3 finite automaton that represents all possible replacement
;*%* expressions that can create the output sample OV using the input parse
;*%% PARSE.
T
(define (construct-replacement-machine ov parse)
(let* ((I (vector-length ov))
(m (make-vector (fx+ | 1))))
{vector-fill m nil)
(toop (decr i from (fx- (vector-length parse) 1) to 0)
(do (loop (initial (pv (vref parse i))
(j o)
(vhile (fx< j 1))
(do (let ((start (gap-skip-to-vector ov ] |
pv 0 (vector-length pv))))

(cond (start
(vset m start
(cons (cons (fx+ i 1000)
(fx+ start (vector-iength pv)))
{vref m start)))
(set | (fx+ start 1)))
(t
(set j 1NN
(loop (step i \.in 0 to 1)
(do (vset m i (cons (cons (vref ov i) (fx+ i 1))
(vref m i)))))
n))

;%% (INTERSECT-REPLACEMENT-MACHINES M1 M2)
RER

’

;*xxx Intersects two finite state machines M1 and M2, returning a machine that M

;*%% that encodes those replacement expressions that can simulaneously produce

’

;**% those outputs handled by both M1 and M2. Takes advantage of the fact that
;%%% M1 and M2 are both acyclic (with the exception of self-loops}, and that

;#%% gvery transition from state i in Ml (and M2) is to some state | numbered

;#%x j >= i, The intermediate representation of M is 3s a sparse matrix, a

’

-xx% yector of lists of column elements; the final call to CANONICALIZE-MACHINE

’

-xxx converts M back to the same form as M1 and M2.

’

s kkX

(define (intersect-replacement-machines ml m2)
(cond ((fx> (vector-length ml) (vector-iength m2))
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(tet ((t1 ml1)) (set ml m2) (set m2 t1))))
(tet ((m (vector-fill (make-vector (vector-length ml)) nil)))
(create-state m 0 0)
(loop (step i \.in 0 to (vector-tength m))
(do (loop (initial (1 (vref m i))
(es nil))
(while I)
(do (set cs (car 1))
(set (cdr cs) (merge-states m ml i m2 (car ¢s))))
(do (set 1 (edr 1))0)))
(minimize-machine m (fx- (vector-ltength ml) 1) (fx- (vector-iength m2) 1))
(canonicalize-machine m)))

;¥xx (MERGE-STATES M M1 I M2 J)
;K

)

;¥ A utility used by the intersection procedure that takes state I from M1 and
;**x state J from M2 and merges them together to form state [I,J] in M. For
;¥x*% example, if state I has output transitions on symbols A and B to states 43
;*x+x and 77, respectively, then M1[I] wouid contain the list ((A . 43) (B .
;#%x T7)). If state J in M2 goes on B and C to states 11 and 17, then M2[J]
;*¥xx would contain ((B . 11) (C . 17)). State [I,J] in M2 would contain

;*xxx something like ((B . (77 . 11))), where (77 . 11) is a temporary marker

;*¥*x for a state in M that will be made into a regular state number by the
;**x machine canonicalization procedure.
CkkR

(define (merge-states m m1 i m2 j)
(loop (initial (I nil)
(11 (vref m1 i))
(12 (vref m2 })))
(for x in 11)
(do (loop (for y in 12)
(do (cond ((eq? (car x) (car y))
(set | (cons (cons (car x)
(create-state m (cdr x) (cdr y)))
DINN)

(result (reverse! 1))))

;#%x%x (CREATE-STATE M I J)
;*t*

;*x% A utility used by MERGE-STATES to create state M{ (I . J) ].
s kX

(define (create-state m i j)
(let ({1 (vref m 1)))
(cond ((or (nuli? 1) (fx< | (caar 1)))
(vset m i (cons (cons | nil) 1))
(car (vref m i)))
(t
(loop (while (cdr 1))
(while (fx>= | (caadr 1)))
(do (set ! (edr 1))))
(cond ((fx= j (caar 1))
(car 1))
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s Xkk

s Rk%
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.
SERX
SHEX
s Rk

»

b2

’

; Xkk

»

S kAR

(def

SkkR

»

 Wkk

I3

s RRX

’
SR
s RER

’

21

»

JRXX

(def

(¢
(set (cdr 1) (cons (cons j nil) (edr 1)))
(cadr NN

(MINIMIZE-MACHINE M FINAL-I FINAL-J)

Minimizes the state machine M that is constructed by the intersection
procedure. M has only one accepting state, state [FINAL-I, FINAL-J], and
if this state is not present, then the resulting machine is the empty
machine. This procedure then takes advantage of the fact that all
transitions in M are from lower-numbered states to higher-numbered states
and minimizes M by simply traversing the states from highest-numbered to
lowest and deleting those states in M that have no non-failing successors.

ine (minimize-machine m final-i final-j)

(loop (initial (got-to-final? nit))
(for x in (vref m final-i))
(do (cond ((fx= (car x) finai-}j)
(set (cdr x) (cons (cons 'final x) (cdr x)))
(set got-to-final? t))))
(after
(cond ((not got-to-finai?)
(vector=fill m nil)))))
(loop (decr i from (fx- (vector-iength m) 1) to 0)
(do (cond ((vref m i)
(if (cdr (vref m i))
(set (vref m i) (reverse! (vref m i))))
(loop (for x in (vref m i))
(do (loop (initial (prev x))
(white (cdr prev))
(do (cond ((nutt? (cddadr prev))
(set (cdr prev) (cddr prev)))
(t
(set prev (cdr prev))))))))
(if Cedr (vref m 1))
(set (vref m i) (reverse! (vref m i)))))))))

(CANGNICALIZE-MACHINE M)

Converts a minimized state machine from the sparse-matrix form produced by
the intersection procedure to the canonical form. Performs a breadth-first
traversal of the machine from the start state, assigning state numbers, and
then produces a cancnical finite state machine with that numbering.

ine (canonicalize-machine m)
(tet ((number-states 0))
(loop (step i \.in 0 to (vector-length m))
(do (loop (for x in (vref m i))
(do (cond ((cdr x)
(set (car x) number-states)
(set number-states (fx+ 1 number-states)))}))))
(toop (step i \.in 0 to (vector-length m))
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(do (loop (for x in (vref m i))

(do (loop (for y in (cdr x))

(do (set (cdr y) (cadr y))))))))
(ioop (initial (final-m (make-vector number-states)))
(step i \.in 0 to (vector-length m))
(do (loop (for x in (vref m i))
(do (cond ((cdr x)
(vset final-m (car x) (edr x)))))))

(result final-m))))
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;XXX

»

;XXX

;*xx The gap bounding heuristic.
SRRk

s REX

’

;**xx (BOUND-GAPS I-PARSE DGAP)
JRER

;**x Performs the gap bounding heuristic, counting the maximum number of NEWLINE

’

;*¥*x characters that occur in the text matched by each of the gaps in the
;%% pattern.
,Xxx
(define (bound-gaps i-parse dgap)
(loop (initial (gnum -1))
(for x in dgap)
(do (cond ((ebe-gap? x)
(set gnum (fx+ 1 gnum))
(loop (initial (max-lines 0))
(for y in i-parse)
(do (loop (initial (v (vref y gnum))
(nient 0))
(step j \.in 0 to (vector-iength v))
(do (if (eq? (vref v j) #\NEWLINE)
(set nient (fx+ 1 nient))))
(result (if (fx> nlent max-!ines)

(set max-lines nicnt)))))

(result
(set (ebe-gap-bound x)
(fx\/ (fx* max-lines 3) 2)))))))))
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; XXk

»

5 kX

;*¥*x  The pattern reduction heuristic.

k2

’

; *kk

’

;¥%k (GAPS-IN-COMPATIBLE-POSITIONS? G-0CC NG-0CC SEP)

; kkk

;¥*x A predicate for testing if a pair of gaps -1- CONSTANT -2~ are being
;%*%x moved 3as a block in the replacement expression.
S wkX
(define (gaps-in-compatible-positions? g-oce ng-oce sep)
(and (fx= (length g-occ) (length ng-oec))
(loop (initial (failed? nil))
(for x in g-occ)
(for y in ng-occ)
(do (cond ((fx<= (length x) (fx+ sep 1))
(set failed? t))
(t
(set failed? (not (eq? y (nthedr x (fx+ sep 1))))))))
(until failed?)
(result (not failed?)))))

;#xx (REPL-CONSTANTS-EQUAL? CS N ENDG REPL G-0CC)
Kkk
;#%% A predicate for testing if a pair of gaps ~1- CONSTANT -2- are being
,*** moved as a block in the replacement expression.
11
(define (repi-constants-equal? ¢s n endg rep! g-occ)
(loop (initial (failed? nil))
(for x in g-oce)
(do (loop (step i \.in n to endg)
(for y in (edr x))
(do (set failed? (not (eq? (vref ¢s i) y))))
(until faited?)))
(until failed?)
(result (not failed?))))

;#+% (MERGE-GAP-PAIR-IN-PATTERN CS G N ENDG)
SkkX
;¥x% Utility for modifying the gap pattern when merging a pattern fragment -1-
;*%x CONSTANT -2- into -1-.
1]
(define (merge-gap-pair-in-pattern ¢s g n endg)
(loop (step i \.in endg to (vector-iength cs))
(step j \.in n)
(do (set (vref cs j) (vref es i))
(set (vref g j) (vref g i)))
(after
(set (vector-length cs) (fx- (vector-length cs) (fx- endg n)))

(set (vector-length g) (fx- (vector-length g) (fx- endg n))))))
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;#%x (MERGE-GAP-PAIR-IN-REPL REPL GAPDEL G-0CC NG-0CC)
SRR
;#xx Utility for modifying the replacement expression when merging a pattern
;*¥*x fragment -1- CONSTANT -2~ into -1-.
S XX
(define (merge-gap-pair-in-rep! repl gapdel g-occ ng-occ)
(toop (for x in g-oce)
(for y in ng-occ)
(do (set (cdr x) (ecdr y))))
(loop (initial (r repl)
(one-deleted gapdel))
(while r)
(do (if (and (fixnum? (car r))
(fx> (car r) one-deleted))
(set (car r) (fx~ (car r) 1))))
(next (r (cdr r)))))

;**x (MERGE-GAP-PAIR CS G REPL N ENDG GAPNUM NEXTNUM)
S EEx
;*¥** Tentatively merges a pattern fragment Iike ~1- CONSTANT -2- into a single
;#*x gap -1-, if they are used as a block in the replacement expression REPL.
SRR
(define (merge-gap-pair cs g repl n endg gapnum nextnum)
(let ((g-occ ()
(ng-occ )))
(loop (initial (r repi))
(while r)
(do (cond ((eq? (car r) gapnum)
(set g-occ (cons r g-occ)))
((eq? (car r) nextnum)
(set ng-occ (cons r ng-occ)))))
(next (r (cdr r))))
(cond ((and (gaps-in-compatible-positions? g-occ ng-ccc (fx- endg n))
(repl-constants-equal? cs n endg repl g-occ))
(merge-gap-pair-in-pattern cs g n endg)
(merge-gap-pair-in-rep! repl nextnum g-occ ng-occ)

t)

(t

niil))

;#*x (VECTOR-PCPULATICN G)
SRR
;*¥*x Counts the number of non-null elements of the vector G.
sk
(define (vector-pcpuiation g)
(toop (initial (pop 0))
(step i \.in 0 to (vector-iength g))
(do (if (vref g i) (set pop (fx+ pop 1))))

(result pop)))
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;#%xx (GAP-REDUCTION! CS G REPL)

’

D kkX

;*%** Modifies the gap program represented by CS, G, and REPL to a reduced
;*¥%% gap program.
S Exx
(define (gap-reduction! cs g repl)
(loop (initial (previ)
(i (fx- (vector-length g) 1))
(gapnum (vector-population g)))
(before
(loop (while (fx> i 0))
(until (vref g i))
(do (set i (fx- i 1))
(while (fx> i 0))
(do (set previ (fx- i 1))
(loop (while (fx>= previ 0))
(untit (vref g previ))
(do (set previ (fx- previ 1)))))
(until (fx< previ 0))
(do (merge-gap-pair c¢s g rep! previ i (fx- gapnum 1) gapnum)
(set gapnum (fx- gapnum 1))
(set i previ))))

;*#*x (GAP-REDUCTION CS G REPL)

CRkk

’

;*#xx Performs the pattern reduction heuristic on the gap program represented
;#¥%x by CS and G.
SRR
(define (gap-reduction cs g rep!)
(let ((cs (copy-vector cs))
(g (copy-vector g))
(rep! (copy-list repi)))
(gap-reduction! cs g repl)
(list cs g repi)))

;x*xx (GAP-PROGRAM-DOESNT-WORK CS G REPL IL OL)

22

;#xx This program accepts a gap program encoded as a constant sequence,
;*¥*x 3 gap sequence, and a replacement expression; a list of inputs;
;*** and 3 parallel list of outputs. It returns false if the gap program
;**%x can compute the function described by the inputs and outputs,
;**% 3 positive index i if the pattern fails to match the i’th input,
;*¥*x% 3and a negative index if the program fails to transform the -i’th
,*¥*x input to the ~i’th output.
S REX
(define (gap-program-doesnt-work c¢s g repl il ol)
(loop (initial (failure nil))

(step j from 0)

(for i in il)

(for o in ol)

(do (cond ((parse-input-into-gaps cs g i)

{cond (o



(cond ((input-maps-to-output? g i repl o))
(t
(set failure j))))))
(t
(set failure (fx- 0 j)))))
(until faiture)
(result failure)))

;**x (INPUT-MAPS-TO-OUTPUT? G I REPL 0)
s kK

’

;¥x% Returns T if the replacement expression REPL can transform all of the
;*¥* inputs in I parsed by G to the outputs in O.
;XXX
(define (input-maps-to-output? g i rep! o)
(loop (initial (failed? nil)
(j 0
(endo (vector-length o)))
(while (fx< j endo))
(while repl)
(do (cond ((and (fixnum? (car repl))
(fx> (car repl) 0))
(tet ((gp (retrieve-gap g (car repi))))
(or (gap-constants-match? o j i (EBE-Gap-Start gp)
(EBE-Gap-End gp))
(set failed? t))
(set j (fx+ j (fx- (EBE-Gap-End gp) (EBE-Gap-Start gp))))))
((eq? (car rep!) (vref o j)2
(set j (fx+ j 1))
(¢
(set failed? t)))
(set rep! (cdr repi)))
(until failed?)
(result (and (not failed?)
(fx= j endo)

(nuii? rep))))

;#%x (RETRIEVE-GAP G NUM)
JEEx
;%% Returns the NUM'th gap of G.
S X%
(define (retrieve-gap g num)
(loop (step i \.in 0 to (vector-length g))
(do (cond ((vref g i)
(set num (fx- num 1)))))
(untit (fx= num 0))
(result
(cond ((fx>= i (vector-length g))
(error *Illegal number in repl: “s”&* num))
t
(vref g D))




172

References

1] A.V. Aho, B.W. Kernighan, and P.J. Weinberger.
AWK - A pattern matching and scanning language.
So ftware -- Practice and FEzperience 9(4):267-280, April, 1979.

2]  A.V. Abho.
Pattern matching in strings.
In Formal Language Theory, pages 325-347. Academic Press, 1980.

8]  D. Angluin.
On the complexity of minimum inference of regular sets.
In formation and Control 39:337-350, 1978.

[4]  D. Angluin.
Finding patterns common to a set of strings.
Journal of Computer and System Sciences 21:46-62, 1980.

[5]  D. Angluin and C. Smith.
A survey of inductive in ference: theory and methods.
Technical Report 250, Yale University, Department of Computer Science, October,
1982.

]  D. Angluin.
A note on the number of queries needed to identify regular languages.
In formation and Control 51(1):76-87, October, 1982.

(7]  D. Angluin.
Inference of reversible languages.
Journal o f the ACM 29(3):751-765, 1982.

[8]  R. Balzer.
Automatic programming.
Technical Report 1, USC/ISI, September, 1972.

9] M.A. Bauer.
Programming by examples.
Arti ficial Intelligence 12(1):1-21, May, 1979.

(10} A.W. Biermann and J.A. Feldman.
On the synthesis of finite-state machines from samples of their behavior.
IEEE Transactions on Computers C-21:592-597, 1972.

[11] A.W. Biermann.
On the inference of Turing machines from sample computations.
Arti fietal Intelligence 3:181-198, 1972.

(12] A.W. Biermann and J.A. Feldman.
A survey of results in grammatical inference.
In Frontiers of Pattern Recognition. Academic Press, N.Y., 1972.



[13]

[14]

[15]

(16]

[17]

(18]

(19]

[20]

[21]

[22]

(23]

173

A.W. Biermann and R. Krishnaswamy.
Constructing programs from example computations.
IEEE Transactions on So ftware Engineering SE-2(3):141-153, September, 1976.

A.W. Biermann.
Regular LISP programs and their synthesss from examples.
Report CS-1976-12, Computer Science Department, Duke University, 1976.

L. Blum and M. Blum.
Toward a mathematical theory of inductive inference.
In formation and Control 28:125-155, 1975.

R.S. Boyer and J.S. Moore.
A fast string searching algorithm.
Communications of the ACM 20(10):262-272, October, 1977.

V. Chvatal, D.A Klarner and D.E. Knuth.

Selected combinatorial research problems.

Technical Report STAN-CS-72-292, Stanford University Computer Science
Department, June, 1972.

S. Crespi-Reghizzi, M.A. Melkanoff and L. Lichten.
The use of grammatical inference for designing programming languages.
Communications of the ACM 16:83-90, 1973.

S. Crespi-Reghizzi, G. Guida and D. Mandrioli.
Noncounting context-free languages.
Journal of the ACM 25:571-580, 1978.

Gael Curry.

Programming by Abstract Demonstration.

PhD thesis, University of Washington, 1977.

also appeared as Computer Science Department Tech. Rep. 77-08-02.

T. Dietterich, R. London, K. Clarkscn, and R. Dromey.

Learning and inductive inference.

In P. Cohen and E. Feigenbaum (editors), The Handbook of Arti ficial Inteliegence,
pages 323-512. William Kaufman, Inc., 1982.

A. Ehrenfeucht and P. Zeiger.
Complexity measures for regular expressions.
Journal of Computer and System Sciences 12:134-148, 1976.

John R. Ellis, Nathaniel Mishkin, Robert P. Nix, and Steven R. Wood.

A BLISS programming environment.

Research report 231, Yale University, Department of Computer Science, June,
1982.



[13]

[14]

[15]

(18]

[17]

[18]

[19]

[20]

[21]

(22]

[23]

173

AW, Biermann and R. Krishnaswamy.

Constructing programs from example comp:tations.
IEEE Transactions on So ftware Engineering SE-2(3):141-153, September, 1976.

AW, Biermann.
Regular LISP programs and their synthesss from examples.
Report CS-1978-12, Computer Science Department, Duke University, 1976.

L. Blum and M. Blum.
Toward a mathematical theory of inductive inference.
In formation and Control 28:125-155, 1975.

R.S. Boyer and J.S. Moore.
A fast string searching algorithm.
Communications of the ACM 20(10):262-272, October, 1977.

V. Chvatal, D.A Klarner and D.E. Knuth.

Selected combinatorial research problems.

Technical Report STAN-CS-72-292, Stanford University Computer Science
Department, June, 1972.

S. Crespi-Reghizzi, M.A. Melkanoff and L. Lichten.
The use of grammatical inference for designing programming languages.
Communications of the ACM 16:83-90, 1973.

S. Crespi-Reghizzi, G. Guida and D. Mandrioli.
Noncounting context-free languages.
Journal o f the ACM 25:571-580, 1978,

Gael Curry.

Programming by Abstract Demonstration.

PhD thesis, University of Washington, 1977.

also appeared as Computer Science Department Tech. Rep. 77-08-02.

T. Dietterich, R. London, K. Clarkson, and R. Dromey.

Learning and inductive inference.

In P. Cohen and E. Feigenbaum (editors), The Handbook of Arti ficial Intellcgence,
pages 323-512. William Kaufman, Inc., 1982.

A. Ehrenfeucht and P. Zeiger.
Complexity measures for regular expressions.
Journal o f Computer and System Sciences 12:134-146, 1976.

John R. Ellis, Nathaniel Mishkin, Robert P. Nix, and Steven R. Wood.

A BLISS programming environment.

Research report 231, Yale University, Department of Computer Science, June,
1982.



f25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

John R. Ellis, Nathaniel Mishkin, Mary-Claire van Leunen, and Steven R. Wood.

Tools: An environment for timeshared computing and programming.

Research report 232, Yale University, Department of Computer Science, June,
1982.

To appear in Software, Practice & Experience.

W.S. Faught, D.A. Waterman, S. Rosenschein, D. Gorlin and S. Tepper.
EP-2: A prototype ezemplary programmsing system.
Report R-2411-ARPA, Rand Corporation, 1979.

W.S. Faught.

Applications of exemplary programming.

In AFIPS Con ference Proceedings, 1980 National Computer Con ference, pages
459-464. AFIPS Press, 1980.

J.A. Feldman.
First thoughts on grammatical in ference.
Technical Report 55, Stanford University Artificial Intelligence, 1967.

J.A. Feldman, J. Gips, J.J. Horning, S. Reder.
Grammatical complezsty and tn ference.
Technical Report, Stanford University, Computer Science Department, 1969.

E. Fredkin.
Techniques using LISP for automatically discovering interesting relations in data.
In The Programming Language LISP, pages 108-124. MIT Press, 1964.

K.S. Fu and T.L. Booth.

Grammatical inference: introduction and survey, parts 1 and 2.

IEEE Transactions on Systems, Man, and Cybernetics SMC-5:95-111 and
409-423, 1975.

B.A. Galler and A.J. Perlis.
A View of Programming Languages.
Addison-Wesley, Reading, Mass., 1970.

E.M. Gold.
Language identification in the limit.
In formation and Control 10:447-474, 1967.

E.M. Gold.
Complexity of automaton identification from given data.
In formation and Control 37:302-320, 1978.

C.C. Green, R.J. Waldinger, D.R. Barstow, R. Elschlager, D.B. Lenat, B.P.

McCune, D.E. Shaw, and L.I. Steinberg.

Progress report on program understanding systems.

Technical Report Stan-CS-74-444, Stanford University, Computer Science
Department, 1974.



(3]

[36]

(37]

38]

[39]

[40]

a1

42

[43]

[44]

175

C.C. Green.

The design of the PSI program synthesis system.

In Proceedings of the Second International Con ference on So ftware Engineering,
pages 4-18. San Francisco, 1976.

C.C. Green.

A summary of the PSI program synthesis system.

In Proceedings of the Fifth International Joint Con ference on Arti fictal
Intelligence, pages 380-381. Cambridge, Massachusetts, August, 1977.

R.E. Griswold, J.F. Poage and I.P. Polonsky.
The SNOBOL4 Programming Language.
Prentice Hall, 1971.

D.C. Halbert.

An Example of Programming by Example.

Master’s thesis, Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, 1981.

Also an internal report of Xerox Office Products Division, Palo Alto CA, 1981.

S. Hardy.

Synthesis of LISP functions from examples.

In Proceedings of the Fourth International Joint Con ference on Arti ficial
Intelligence, pages 240-245. Thilisi, USSR, September, 1975.

D. Hatfield.

Formatting and Formats by Template (By Example) and What-You-See-Is-What-
You-Get Programming.

1980.

An internal report of the IBM Cambridge Scientific Center, Cambridge MA,
October 1980 (draft).

David Hirschberg.
A linear space algorithm for computing maximal common subsequences.
Communications of the ACM 18(6):341-343, June, 1975.

J.E. Hoperoft and J.D. Ullman.
Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, Mass., 1979.

James W, Hunt and Thomas G. Szymanski.
A fast algorithm for computing longest common subsequences.
Communications of the ACM 20(5):350-353, May, 1977.

E. T. Irons and F. M. Djorup.
A CRT editing system.
Communications of the ACM 15(1):16-20, January, 1972.



(46]

[47]

[48]

l49)

[51]

/52

(53]

[54)

K.P. Jantke and H.R. Beick.

Combining Postulates of Naturalness in Inductive Inference.
1980.

preprint, Humboldt Universitat zu Berlin.

S. C. Johnson.
YACC: Yet another compiler compiler.
Technical Report 32, Bell Telephone Laboratories, 1978.

J-P. Jouannaud, G. Guiho and J-P. Treuil.

SISP/1: An interactive system able to synthesize functions from examples.

In Proceedings of the Fi fth International Joint Con ference on Arti ficial
Intelligence, pages 412-417. Cambndge, Massachusetts, August, 1977.

J-P. Jouannaud and Y. Kodratoff.

Characterization of a class of functions synthesized by a Summers-like method
using a B.M.W. matching technique.

In Proceedings of the Sixth International Joint Con ference on Arti ficial
Intelligence, pages 440-447. 1979.

J-P. Jouannaud and Y. Kodratoff.

An automatic construction of LISP programs by transformations of functions
synthesized from their input-output behavior.

International Journal of Policy Analysis and In formation Systems 4:331-358,
1980.

W.N. Joy, O. Babaoglu, R.S. Fabry, K. Sklower (editors).

Uniz Programmer’s Manual, Seventh Edition, Virtual VAX-11 Version

Computer Science Division, Department of Electrical Engineering and Computer
Science, University of California, Berkeley, California, 1980.

Brian W. Kernighan and D. M. Richie.
The C Programming Language.
Prentice Hall, 1978.

D.E. Knuth, J.H. Morris, and V.R. Pratt.
Fast pattern matching in strings.
SIAM Journal of Computing 6(2):323-350, 1977.

D.E. Knuth.
TEX and METAFONT, New Directions in Typesetting.
Digital Press, Bedford, Massachusetts, 1979.

Y. Kodratoff and J. Fargues.

A sane algorithm for the synthesis of LISP functions from example problems.

In Proceedings of the AISB/GI Con ference on Arti ficial Intelligence, pages
169-175. AISB and GI, 1978.



(53]

(58]

[57]

(58]

(59]

[60]

61]

(02]

[63]

(04]

[65]

Y. Kodratoff.

A class of functions synthesized from a finite number of examples and a LISP
program scheme.

International Journal of Computer and In formation Sciences 8:439-521, 1979.

M.E. Lesk.
LEX - A lexical analyzer generator.

Technical Report 39, Bell Telephone Laboratories, 1975.

H. Lieberman and C. Hewitt.

A session with Tinker: interleaving program testing with program design.

In Con ference Record of the 1980 LISP Con ference, pages 90-99. Stanford
University, 1980.

D. Maier.
The complexity of some problems on subsequences and supersequences.
Journal of the ACM 25:322-336, 1978.

Z. Manna and R. Waldinger.
Arts ficial Intelligence Series: Studies in Automatic Programming Logic.
North-Holland, 1977.

Z. Manna and R. Waldinger.
The logic of computer programming.
IEEE Transactions on So fltware Engineering SE-4:199-229, May, 1978.

Z. Manna and R. Waldinger.
Synthesis: dreams --> programs.
IEEE Transactions on So ftware Lngineering SE-5:294-32%, July, 1979.

N. Meyrowitz and A. van Dam.
Interactive editing systems: Part II.
Computing Surveys 14(3):353-415, 1982.

R. Michalski, J. Carbonell, and T. Mitchell.
Machine Learning - an arti ficial intelligence approach.
Tioga Publishing Company, Palo Alto, California, 1983.

Jim Morris and Eric Schmidt.

Poplar Language Manual.

1978.

Xerox Palo Alto Research Center, 1978.

James H. Morris, Eric Schmidt, and Philip Walder.

Experience with an applicative string processing language.

In Con ference Record of the Seventh Annual ACM Symposium on Principles of
Programming Languages, pages 32-46. Association for Computing Machinery,
January, 1980.



178

[66]

[67]

[68]

[69]

[70]

71]

75]

[76]

R.P. Nix and N.W. Mishkin.

U Editor User’s and Programmer’s Manual

Yale University, Department of Computer Science, 1983.
In preparation.

T.W. Pao and J.W. Carr III.
A solution of the syntactical induction-inference problem for regular languages.
Computer Languages 3:53-64, 1978.

S. Persson.

Some Sequence Eztrapolating Programs: A Study of Representation and Modeling
in Inquiring Systems.

PhD thesis, Stanford University, Computer Science Department, 1966.

M. Pivar and E. Gord.
The LISP program for inductive inference on sequences.
In The Programming Language LISP, pages 260-289. MIT Press, 1964.

M. Pivar and M. Finkelstein.
Automation, using LISP, of inductive inference on sequences.
In The Programming Language LISP, pages 125-136. MIT Press, 1964.

Jonathan A. Rees and Norman I. Adams V.

T: a dialect of Lisp or, lambda: the ultimate software tool.

In Proceedings of the 1982 ACM Symposium on Lisp and Functional
Programming. Association for Computing Machinery, August, 1982.

Jonathan A. Rees and Norman I. Adams IV.
T User’s Manual
Yale University, Department of Computer Science, 1982.

Brian K. Reid and Janet H. Walker.
Scribe User Manual
Computer Science Department, Carnegie-Mellon University, 1973.

Brian K. Reid.

A high-level approach to computer document formatting.

In Con ference Record of the Seventh Annual ACM Symposium on Principles of
Programming Languages, pages 24-31. ACM, January, 1980.

D. M. Ritchie and K. Thompson.
The Unix time-sharing system.
Communi:cations of the ACM 17(7):385-375, July, 1974.

E. Shapiro.
Inductive in ference o f theories from facts.
Technical Report 192, Yale University, Department of Computer Science, 1981.



[77]

-

(78]

[79]

(80]

[81]

2]

(83]

[84]

85)

(86]

179

E. Shapiro.

A general incremental algorithm that infers theories from facts.

In Proceedings of the Seventh International Joint Con ference on Arti ficial
Intelligence, pages 446-451. Vancouver, 1981.

E. Shapiro.

Algorithmic program diagnosis.

In Con ference Record of the Ninth Annual ACM Symposium on Principles of
Programming Languages. 1982.

Ehud Yehuda Shapiro.

Algorithmic Program Debugging.

PhD thesis, Yale University, 1982.

Also appeared as Yale Computer Science Department Research Report #237, and
as a book in the ACM Distinguished Dissertation Series, MIT Press, 1983.

D.E. Shaw, W.R. Swartout and C.C. Green.

Inferring LISP programs from examples.
In Proceedings of the Fourth International Joint Con ference on Arti ficial
Intelligence, pages 260-267. Thilisi, USSR, September, 1975.

T. Shinohara.

Polynomial time inference of pattern languages and its application.

In Proceedings of the 7th IBM Symposium on Mathematical Foundations of
Computer Science. 1982.

T. Shinohara.
Polynomial time inference of extended regular pattern languages.
In Proceedings of Software Science and Engineering. Kyoto, Japan, 1982.

D.C. Smith.

Pygmalion: A Computer Program to Model and Stimulate Creative Thought.
PhD thesis, Stanford University, Computer Science Department, 1975.

Also available as AIM-260, Jun 1975, and as a book from Birkhauser Verlag, 1977.

D.R. Smith.
A survey of the synthesis of LISP programs from examples.

In Proceedings of the Symposium on Program Construction. Bonas, France.
INRIA, 1980.

R.M. Stallman.

EMACS, the extensible, customizable, self-documenting display editor.

In Proceedings of the ACM SIGPLAN-SIGOA Symposium on Text
Manipulation, pages 147-160. 1981.

The conference proceedings appeared as SIGPLAN Notices, Volume 16, Number 6,
June 1981.

L.J. Stockmeyer and A.R. Meyer.

Word problems requiring exponential time: preliminary report.

In Proceedings of the 5th Annual ACM Symposium on Theory of Computing,
pages 1-9. 1973.



180

[87] P.D. Summers.
Program Construction fromm Erxamples.
PhD thesis, Yale University, Department of Computer Science, December, 1975.
Also available as IBM T.J. Watson Research Center Report RC-3637, September
1975.

[88] P.D.Summers.
A methodology for LISP program construction from examples.
Journal of the ACM 24(1):181-175, January, 1977.

[89] G.J. Sussman.
Arti fiesal Intelligence Series. Volume 1: A Computational Model of Skill
Acquisition.
American Elsevier, 1975.

[90] William R. Tanner.
Industrial Robots — Volume 1: Fundamentals.
Society of Manufacturing Engineers, Dearborn, Michigan, 1979.

[91] K. Thompson.
Regular expression search algoritbm.
Communications of the ACA 11:419-422, June, 1968.

[92] B.A. Trakhtenbrot and Y.M. Barzdin.
Finite Automata.
North-Holland. Amsterdam, 1973.

[93] R.A. Wagner and M. J. Fischer.
The string-to-string correction problem.
Journal of the ACA 21:168-173. 1974.

[94] D.A. Waterman.
Exemplary programming in Rita.
In D.A. Waterman and F. Hayes-Roth (editors), Pattern Directed In ference
Systems, . Academic Press, 1978.

[95] R.M. Wharton.
Grammar enumeration and inference.
In formation and Control 33:253-272, 1977.

[96] P. Wiener.
Linear pattern matching algorithm.
In Proceedings of the 14th IEEE Sympostum on Switching and Automata
Theory. pages 1-11. 1973.

[97] L.H. Witten.
Programming by example for the casual user: a case study.
In Proceedings of the Seventh Con ference of the Canadian Man-Computer
Communieations Socsety. Waterloo, Ontario, June, 1981.



[98]

(99]

[100]

[101]

[102]

(103]

181

S.R. Wood.

Z: The 95% program editor.

In Proceedings of the ACM SIGPLAN SIGOA Symposium on Text
Manspulation, pages 1-7. Association for Computing Machinery, June, 1981.

M.M. Zloof.

Query by example.

In AFIPS Con ference Proceedings, 1975 National Computer Con ference, pages
431-438. AFIPS Press, 1975.

M.M. Zloof.
Query-by-example: a data base language.
IBAM Systems Journal 16(4):324-343, 1977.

M.M. Zloof and S.P. delJong.
The system for business automation (SBA): programming language.
Communsications of the ACM 20(8):385-396, June, 1977.

M.M. Zloof.
QBE/OBE: a language for office and business automation.
Computer 14(5):13-22, May, 1981.

M.M. Zloof.

Office-by-example: a business language that unifies data and word processing and
electronic mail.

IBM Systems Journal 21(3):272-304, 1982.



	tr280.1
	280a



