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PROLOGUE

The art of ciphering, hath for relative an art of deciphering,
by supposition unprofitable, but as things are, of great use.
~ (Francis Bacon)

Ciphering has been widely used throughout history in military and diplo-
matic communication in order to make the meaning of transmitted messages
incomprehensible to unauthorized users. According to Francis Bacon! the
following must be among the preferred virtues of cipher systems:

e that they be not laborious to write and read,
o that they be impossible to decipher, and,

® in some cases, that they be without suspicion.

The three Bacon principles listed above are still valid today. But, to
quote Diffie and Hellman?:

the development of computer controlled communication networks
promises effortless and inexpensive contact between people or
computers on opposite sides of the world, replacing most mail
and many excursions with telecommunications. For many appli-
cations these contacts must be made secure against both eaves-
dropping and the injection of illegitimate messages. At present,
however, the solution of security problems lags well behind other
areas of communication technology. Contemporary cryptogra-
phy is unable to meet the requirements, in that its use would
impose such severe inconveniences on the system users, as to
eliminate many of the benefits of teleprocessing.

This need for secure transmission of information among many users via
electronic media, has made inevitable the departure of cryptography from
the old notion of absolute security to embrace the new notion of relative

1The Advancement of Learning, Basil Montague, ed., Vol II, London: William Pickering,
1825, page 200.

2See {DH] in the references.
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security. Thus, in the first case the designer bases the security of the cryp-
tosystem on absolute criteria (e.g. Shannon’s Information Theory), while
in the second case one proves that the system designed is secure assuming
that a certain problem (usually in Number Theory) is difficult to solve. This
new idea has made possible the construction of what are termed public key
cryptosystems, in which, according to Diffie and Hellman®:

two parties communicating solely over a public channel and using
only publicly known techniques can create a secure connection.

The purpose of the present monograph, which is an outgrowth of a series
of lectures given at Yale University in the Spring of 1984, is to isolate and
explain the most important mathematical notions which arise from the re-
cent literature on public key cryptosystems. And in doing this, I have made
every effort to make the monograph as self-contained as possible.

Section 1 develops the techniques of computational number theory
which are necessary for understanding the recent literature on pseudo ran-
dom generators and public key cryptosystems. In addition to basic number
theory concepts, the following notions and algorithms are presented: thresh-
old schemes, modular exponentiation by repeated squarings and multiplica-
tions, the Adleman, Manders, Miller algorithm on computing square roots
and the Pohlig, Hellman algorithm on computing indices.

Section 2 presents some of the most important primality tests known
today. For completeness it starts with the sieve of Eratosthenes. According
to Williams?, primality tests can be classified into three categories: tests
using special functions (e.g. Lucas - Lehmer test), unproved hypothesis tests
(i.e. tests whose efficiency depends on the Extended Riemann Hypothesis)
and Monte Carlo tests (e.g. Solovay - Strassen, Rabin). In addition, Pratt’s
test is given; this can be used to determine the complexity of the set of
binary representations of prime numbers. The section concludes with the
very fast Rumely - Adleman test.

Section 8 is an introduction to those basic notions of probability theory
needed in the development of Pseudo Random Generators and Public Key
Cryptosystems. Highlights include the weak law as well as Bernshtein’s law
of large numbers.

Neither Section 4 nor Section 5 are meant to give an exhaustive study
of all the existing Pseudo Random Generators and Public Key Cryptosys-

 3ibid.
4See [Wi] in the References.
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tems available in the literature. The intention is to present only some basic
generators and cryptosystems which will make clear the connection between
number theory and modern public key cryptography. In addition, the sub-
ject of nonpublic key cryptography is totally omitted. But the reader can
find material to his heart’s content in: David Shulman’s®, An Annotated Bib-
liography of Cryptography, as well as in the literature quoted in the present
book.

Finally, Section 6 presents the general theory of Pseudo Random Gen-
erators and Public Key Cryptosystems. Almost all of the results of this
section are due to Andrew Yao.

The reader will probably notice a total absence of factoring algorithms
in the present book. This subject is beautifully treated in the articles Fac-
torization Algorithms of Ezponential Order, by M. Voorhoeve®, and Analysis
and Comparison of Some Integer Factoring Algorithms, by C. Pomerance’.

An effort has been made to present the material in the most direct and
straightforward manner, with mathematical rigor. For as David Hilbert®
once said:

... it is an error to believe that rigor in the proof is the enemy
of simplicity. On the contrary we find it confirmed by numerous
examples that the rigorous method is at the same time the sim-
pler and the more easily comprehended. The very effort for rigor
forces us to find out simpler methods of proof. It also frequently
leads the way to methods which are more capable of development
than the old methods of less rigor.

The reader should be aware of the many different viewpoints given in
the papers cited in the bibliography, not all of which could naturally be:
included in the present study. Topics omitted include: the Data Encryption
Standard, Digital Signatures and Authentication techniques. It is expected
that one will turn to the references if it is desired to get a more thorough
picture of the subject.

The results of the text presuppose mathematical maturity at the level of a
beginning graduate student in theoretical computer science or mathematics.

8Garland Publ,, Inc., 1976

€ Computational Methods in Number Theory, H. W. Lenstra and R. Tijdeman eds., Math-
ematical Centre Tracts, 154, Vol. 1, Mathematisch Centrum Amsterdam, 1982.

Tibid
8 Mathematical Problems, address presented at the 1900 International Congress of Math-
ematics in Paris, Bulletin AMS, 8, 1901 - 2, pp. 437 - 479.
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But, reader’s backgrounds can be so diverse that it would be hard to say
what the proper order of reading this book should be. However, the diagrams
of figure 1 can give an idea of section dependencies. Thus, sections 1 and 2
can be read together independently of the remaining text; section 3 is used
only in subsection 2.16 (probabilistic priamality tests). In addition, the
reader already familiar with the basic material on public key cryptosystems
can proceed directly to the study of section 6.

AVARNRV

Figure 1: Section Dependencies

The exercises given at the end of most subsections are of three types:
those that give a different proof of a result proved in the main text, those
that give additional results, and those which remind the reader that he must
complete the details of the proof of a result given in the text. In any case,
they will test and deepen the reader’s understanding of the material and
should all be attempted.

I have made every possible effort to attribute the results presented in
the text to their original inventor. If sometimes I failed to do so it is due to
ignorance rather than intent. At the same time I accept full responsibility
for whatever flaws or errors the monograph may contain, and I would be
grateful to receive any comments and suggestions that will improve the
presentation.

In addition, I am particularly thankful to the insightful comments of the
seminar participants during the above mentioned lectures. These included:
Dana Angluin, Josh Cohen, Mike Fischer, Dan Gusfield, Neil Immerman,
Ming Kao, Philip Laird, Susan Landau, Jerry Leichter, Jingke Li, Lenny
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Pitt and David Wittenberg. Special thanks also go to Dan Gusfield who
motivated me to study primality tests. I would also like to express my
deepest appreciation to Mike Fischer for his undiminishing support and
encourangement as well as for the numerous penetrating discussions that
helped me improve the presentation of section 6.

Evangelos Kranakis®
New Haven,
February 1985

°Preparation of the book was supported in part by NSF under grant number MCS -
8305382 and NSA under grant number MDAS04 - 84 - H - 0004.
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1 NUMBER THEORY

... on inezhaustible storehouse of interesting truths.
(C. F. Gauss) '

... a building of rare beauty and harmony.
(D. Hilbert)

1.1 Introduction

The present section is intended first to introduce the reader to the basic
concepts of number theory. Second, it is intended to give some efficient
procedures arising from the study of certain problems in number theory.
The concepts and results thus introduced will be essential to the discussion
of primality tests, pseudo-random generators and public-key cryptosystems.

The concepts introduced in this section include: Fibonacci Numbers, the
Euler function, primitive roots, the Carmichael function, Langrange-Jacobi
symbol, indices and continued fractions. In addition, complete proofs of
the following theorems are given: Gauss theorem on the characterization
of those m for which the multiplicative group Zy, is cyclic, in theorem 1.9,
the Law of Quadratic Reciprocity, in theorem 1.13, Chebyshev’s proof of a
weaker version of the prime number theorem, in theorem 1.20, and a theorem
on Diophantine approximations, in theorem 1.24. Theorem 1.7 provides an
application of the Chinese Remainder Theorem to threshold schemes.

The algorithms described include: the method of exponentiation by re-
peated squarings and multiplications, in theorem 1.8, the method of Adle-
man, Manders and Miller for computing square roots modulo a prime, in
theorem 1.15, and the method of Pohlig and Hellman for computing indices,
in theorem 1.18.

It is true, that the details of the proofs of some of the theorems presented
in this section {(e.g. theorems 1.9, 1.13 and 1.20) are not necessary for under-
standing the concepts included in the sections of pseudo-random generators
and public-key cryptosystems. However, a thorough study of the proofs and
the exercises that follow the individual subsections will undoubtedly enhance
the reader’s proficiency with the number theory concepts involved.
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1.2 The Homomorphism Theorem

Let G, H be two abelian groups such that H is a subgroup of G. Fora € G
consider the coset H+a = {h+a:h € H}, where + is the group operation
on G. G/H is the quotient group of G modulo H. It consists of all cosets
H +a, where a ranges over G. The group operation & on G/H is defined by
(H+a)® (H+b)= H+ (a+b). It is not hard to show that G/H with this
operation is also an abelian group. It is clear that the family {H+a:a € G}
of cosets is a partition of G into sets each of which has size exactly |H|. It
follows that |H| divides |G]|.

Let f be an epimorphism from G onto another group H. The kernel
K = Ker(f) of f, is the set of all elements a € G such that f(a) = the
identity element of H. It is not hard to show that the group G/K is an
abelian group which is isomorphic to H. The required isomorphism is given
by the mapping F(K +a) = f(a). Hence the proof of the following theorem
has been outlined:

" Theorem 1.1 (Lagrange)

(i) If H is a subgroup of G then |H| divides |G|.

(is) If f is an epimorphism of the abelian group G onto the abelian group
H and K is the kernel of f then the group G/K is isomorphic to the group
H. Moreover, |G| = |H|: |K|.

(4ii) For alla € G, f~{a} is a coset in G/K and |f~{a}| = |K] ®

[EXERCISES |

1: Let G be a finite abelian group. Show that all equations of the form
z2 = a, where a € G, have exactly the same number of solutions in G. Hint:
Consider the abelian group H = {a? : a € G} and let f be the epimorphism
f(z) = 2. Then use theorem 1.1.

2: Extend exercise 1 to equations of the form z” = o, wherea € G,n 2 1.

8: Show that the definition of the operation & is independent of the
coset representation.

In the next two exercises H is a subgroup of the abelian group G. Com-
plete the details of the proof of theorem 1.1 by showing that:

4: foralla € G, |H + a| = |H|.

5: {H + a : a € G} forms a partition of G.
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1.3 Fibonacci Numbers

The sequence fo, f1,.-.,fn,... of Fibonacci numbers is defined by induc-
tion on n > 0 as follows:

0 if n=0
Ja=4¢ 1 o fn=1
fn-1+fn—2 if n2>2

It will be useful to know the order of magnitude of the n-th Fibonacci
number. This is easily determined as follows. The quadratic equation 22 =
z + 1 has the two square roots (1 + 1/5)/2 and (1 — \/5)/2. The positive
square root (1+1/5)/2 is called the golden ratio, and is abbreviated with
R. It is.now easy to check by induction on n, that forall n > 1, f, > R*2,
Indeed, assume that fp, > R™2, for all m < n. Then, fas+1 = fn + fa—1 >
Rn-2 + Rn—3 — Rn-a(R+ 1) = Rn-3R2 = Rr-1,

The Fibonacci numbers arise very naturally in the study of the number of
steps needed to evaluate the greatest common divisor of two integers via the
Euclidean algorithm. Indeed, assume that a > b > 0 are two given integers.
Use the Euclidean algorithm to define sequences0 <'rp < ra-1 < ... <11 <
ro=>b< r_y = a,dy,dy,...,dn,dn41 such that rj_p = diriy+ri,t=1,...,1n
and rp-1 = dp417n. It is clear that r, = gcd(a,b) (see exercise 1 below.) It
follows by reverse induction on t = n,n - 1,...,0,~1 that r; > fp41—;. In
particular, @ > fpn4+2 and b > fp4+1. However, it is clear that the number
of division steps needed to compute gcd(fn+2, fn+1) is exactly n + 2, which
is also the number of division steps needed to compute gcd{(a,b). Since,
a 2 fa+2 2 R", it follows that logp a > n. Therefore the following theorem
has been proved.

Theorem 1.2 (G. Lamé) If N is an integer > O, then for any pair a,b
of positive integers < N, the number of division steps required to compute
gcd(a,b) via the Euclidean algorithm is at most —2 + |loggp N] @

[EXERCISES |

1: Use the notation above to show that r, = ged(a,b).

2: Show that the Euclidean algorithm leads to an efficient algorithm
which given any integers a, b will compute integers o, 8 such that gcd(a,b) =
aa + Bb. Generalize this to the greatest common divisor of n integers.
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3: Prove a theorem similar to theorem 1.2 for the greatest common
divisor of n integers.

4: Prove a similar theorem for the least common multiple of n integers.
Hint: Use the identity lem(ay,...,an) = (a1---an)/ gcd(a1,... an).

5: Show that the length of the side of the canonical decagon inscribed
in the unit circle is equal to R, where R is the golden mean.

1.4 Congruences

Let a,b be integers. The symbol a|b means that a divides b i.e. b = ka, for
some integer k. The integers a,b are called congruent modulo the integer
m, and this will be abbreviated a = b modm, if m|(a - b), otherwise a and
b will be called incongruent modulo m, and this will be abbreviated by
a Z b modm. It is clear that for each fixed m, the relation = modm is
reflexive, symmetric, and transitive, and hence it is an equivalence
relation on the set Z of all integers. For each integer a let a denote the
equivalence class of a i.e. the set of all integers z such that z = ¢ modm.
For each m there exist exactly m equivalence classes modulo m, namely
0,1,---,m-1 Z, = {0,1,---,m — 1} is the set of all equivalence classes
modulo m, and Z;, = {a : ged(a,m) = 1}. '

One can define two operations, addition (denoted by +) and multiplica-
tion (denoted by -) on the set Z,, as follows: a+b (respectively a-b) = the
equivalence class of a+b (respectively a-b). The set Z,, endowed with these
two operations forms a commutative ring with unit. In fact both < Zp,+ >
and < Z;,,- > are abelian groups. '

Example 1.1 Figure 1 gives the multiplication table of Z;.

If gcd(a,m) = 1 then there exist integers b,c such that ab+ cm = 1.
Hence, a-b = 1 i.e. a is invertible in Z},. The order of the group Z, is
denoted by p(m), and ¢ is called the Euler totient function or simply
the Euler function.

An important corollary of the above considerations is the following

Theorem 1.3 (Euler-Fermat) For all a € Z,,0a*™ = 1 modm.

Proof: Let a be as above, and let uy,...,u,(;m) be an enumeration
of all the elements of Z,,. It is clear that a-u),...,a- Uy(m) is also an
enumeration of all the elements of Z;,. Consequently, a-u)---a-Uym) =
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1{2(3|4|5]|6]|7(8]9]10]
11112 (3;415(6|7]|81]9/1]10
2121416 |8]10]1[3|5]|71]09
31316 (9|1({4]7(1012}|51}8
414 |811}5}9}2]|6110}3]|7
515|101 4}19{3]8|2|7]|1}]6®6
616 |1|7]1218]3|9]|41]10|35
71713|10]6]2(9]|5]1}|8]4
81815121017 ]4]1}191]161{3
99171513 ]1}10]8]|6]4]|2
10109 {8 |7 |6 |5]|4|3]2]1

Figure 1: Multiplication table of Zf;

uj ‘- -Uy(m) and hence a®e(m) . U] **Up(m) = Up-°°-Up(m). But it follows
from the above observations that the element u; ---u,(y) is invertible in
Zm. Consequently, a?{™) = 1 modm e

In order to avoid unnecessary notational complications, from now on the
same symbol will be used for an integer a and its equivalence class a modulo
a certain integer m. This will cause no confusion because it will always be
clear from the context which of the two notions is meant.

Theorem 1.4 (Euler) 34, 0(d) = m.

Proof: Let p4(m) = |{z € Z,, : gcd(z,m) = d}|. It is then clear that
Ldim wda(m) = m. However, pg(m) = p(m/d), provided that d divides m.
It follows that :

m= Y pa(m) = X p(d/m) = X p(d),

dim dim dim

which completes the proof of the theorem o

Any equation of the form f(z) = 0 modm, where f(z) is a polynomial
expression in the variable z with coefficients in Z,, is called polynomial
congruence modulo m. Such a congruence is called solvable if there is
an z € Z,, such that f(z) = 0 modm; the set of all z’s in Z,, which satisfy
this congruence is called the set of solutions of that congruence. One of
the most important questions in Number Theory is to develop methods to
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solve equations of the form f(z) = 0 modm, where f(z) is a polynomial
expression in the variable z with coefficients in Z,,. For linear congruences
with one unknown this question is answered in the theorem below.

Theorem 1.5 The linear congruence az = b modm 1s solvable if and only
if g = ged(a,m) divides b. In fact if zo 13 any solution of ax = b modm
then the list

im .
z; = xo+T, where: =0,...,g - 1,
forms the complete set of its distinct solutions modulo m.

Proof: If the congruence az = b modm is solvable then m must divide
az — b. Since g|m and gla it is clear that g|b. Conversely, assume that g|b.
It follows that b = kg, for some integer k. It is well known however, using
basic properties of the greatest common divisor, that there exist integers
A, 4 such that

g=Aa+pum.
It follows that

b= kg = kla+ kpm = (kX)a + (ku)m,

and hence kA is a solution of the congruence az = b modm.

It is not hard to see that if 24 is any solution of the above congruence so is
any of the z;’s defined above. Moreover the solutions z; are distinct modulo
m. It remains to show that any arbitrary solution ¢ of az = b modm, is equal
to some z;. Indeed, since ac = azg = b modm, it follows that m|e(c — zo).
But g = ged(a,m), and hence {m/g)|(c — o), which completes the proof of
the theorem o

|EXERCISES |

1: Show that for all n > 1, n is prime & p(n) = n - 1.
2: Show that for all ¢ > 1 and all prime p, o(p’) = (p — 1)p*~1. Use this
to compute p(n) for all integers n > 0.

1.5 The Chinese Remainder Theorem

Systems of linear congruences may not necessarily have solutions although
each of the congruences of the system do.



1.5 The Chinese Remainder Theorem ' 7

Example 1.2 Both congruences:
2=0mod3, and z=1modb6
have solutions, but the system does not.

However, if the moduli are pairwise relatively prime, the system has a
solution as this is shown in the theorem below.

Theorem 1.6 (Chinese Remainder Theorem)

The system a;x = b; modm;, + = 1,...,k has ezactly one solution
modulo m = m, - --my, provided that m,,...,m; are relatively prime and
ged(ay, my) = - - = ged(ag, mi) = 1. '

Proof: The uniqueness of the solution follows easily from the hypothesis
of the theorem. To prove the existence, find integers c; such that ajc; =
1 modm;, where i = 1,...,k. f m = m;---m; and n; = m/m; then it is
clear that ged(ny,...,n;) = 1. Hence, it follows from the basic properties
of the greatest common divisor, there exist integers £;,...,% such that

tiny + -+ fpnp = 1.
Put e; = t;n;. Then one can easily verify that
e; = 6;; modmy;,
whel;e 8ij=1i1=jand §; =0if 1 # . Now, choose
c=eic1b1 + - - - + excrby.

It remains to show that c is a solution of the above system of congruences.
Indeed, for each 1,

a;c = ajbieicy + -+ - + a;brepcr = a;bie;c; = b; modms;,

and the proof is complete e

A further generalization of the Chinese remainder theorem which does
not assume that the moduli are relatively prime can be found in theorem
3 — 12 of [Lev2].

An interesting application of the Chinese remainder theorem, which is
also relative to the security of message transmission, is to the construction of
(k,n) threshold schemes. A (k,n) threshold scheme consists of n people
Py,...,P, sharing a secret S in such a way that the following properties
hold:



8 1 NUMBER THEORY

1. Each P; has some information I;.
2. Knowledge of any k of the {I;,...,I,} enables one to find S easily.

3. Knowledge of less than k of the {I1,...,I,} does not enable one to
find S easily.

Theorem 1.7 For all 2 < k < n there exists a (k,n) threshold scheme.

" Proof: (Mignotte) The construction of (k,n) threshold schemes is based
on the construction of (k,n) threshold sequences. A (k,n) threshold se-
quence is an increasing sequence m; < --- < my of relatively prime positive
integers such that

My M2 Mg > Mp - Mpo1 - Mp—k42. (1)
Assume that a threshold sequence m; < --+ < m, has been constructed and
let M=m3-mg---mg, N =mp-Mmp_1 - Mp_p42. Let the secret S be any
integer such that N < § < M and let the information I; be defined by

Li=Smodm;,t=1,...,n

Next it will be shown that the above defined secret S and informations
{h,...,In} form a (k,n) threshold scheme. Indeed, let {I;,,...,I;,} be
given. By the Chinese remainder theorem the system

z = I; modm;, 1 € {i1,...,i},

has exactly one solution. The proof of theorem 1.6 shows that this solution
is S and is given by

S=e, - Liy+---+e, - Ij mod(m;,---m;,),
where ¢; = §; ;j modm;. It follows from (1) that in fact
S=e¢, Ijyy+---+e, L.

On the other hand if only {I;,,...,L;,_,} are given, then it -follows again
from the Chinese remainder theorem that

S=e,-L;y+---+e,_, I, mod(m; ---m;,_ ). (2)
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Clearly, (2) is the only congruence available in order to compute the value
of S. It follows that one will need to search among at least -M-Eﬂ possible
values in order to find the secret S satisfying (2).

To conclude the proof of the theorem it remains to construct (k,n)
threshold sequences such that the quantity —Mw‘ﬂ is big. This will make
it difficult to compute S if less than k of the {fj,...,I,} are known. This is
done using the main inequality in exercise 3 of subsection 1.15. Indeed, find
t such that the previously mentioned inequality holds. It follows that there
exist at least n distinct primes in the interval psz_l)/ kz, pt). Let my,...,mq
be the last n primes in the last interval i.e. m; = py_p4;, wheres =1,...,n.
It remains to show that this is a (k,n) threshold sequence. Indeed,

=3
M=my -mg---mp2p ¥ >pf 12 my-mpoy: - mp_ysea = N.

This completes the proof of the theorem e

[EXERCISES]

1: If r is the number of distinct prime factors of m > 1 then 22 =
z modm has exactly 2" distinct modulo m solutions. Hint: Use the Chinese
Remainder Theorem.

1.6 Modular Exponentiation

Given a fixed modulus m and an exponent e, the problem arises to com-
pute z° modm, for any given z. The method to be described below, which
solves this problem is called the method of exponentiation by repeated
squarings and multiplications.

Theorem 1.8 There ezists an efficient algorithm A such that given as in-
puts m,e, z it will output A(m,e,z) = 2° modm. The algorithm A requires
at most |log, €| squarings, 2|log, e] multiplications and 2|log, e] divisions.

Proof: Let e,m and z be integers as above. Consider e’s representation
in the binary system i.e. e = 2%e, + 2" lep—y + - - - + 2€; + €p, Where n =
|logz e). Then z¢ = z?"¢a*-+2¢1+¢ modm. Define the sequences zo,...,2Zn
and ¥y, ...,Yn by reverse induction as follows: z, = 2% ,y, = z2 modm and
for t 2 1, Tp—i = Yn—i+12°*= modm,yp—; = a:?,_,- modm. It follows easily
that zo = z° modm.

The above recursive construction is also exhibited in the algorithm below:
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Input: e,m,z
Step 1: Compute n, and bits eg,e1,...,e, such that
e=2"n+ 2" lep1 + -+ 2le; + €g, Where e, # 0.

Step 2: Set y:= 1.
Step 3: Fori=n,n-1,...,0 repeat

set: y= y*z% modm.
Output: y e

Example 1.3 Using the fact that 13 = 2%.1+422.14+21.0420.1, the
table in Ezample 1.1 and the above algorithm, the table in figure 2 shows
that 713 = 3 mod11.

t |6 | y=y* 7% modll | Output
3|1 1% . 7°s 7
211 7¢.7% 2
110 2¢.74 4
0|1 4% . 7% 2

Figure 2: Computation of 73 mod11.

|EXERCISES |

1: Find a similar algorithm for modular multiplication.

1.7 Primitive Roots

Call an integer ¢ € Z;, a primitive root modulo m if g generates the
multiplicative group Z5, i.e. Z% = {g,¢> modm,...,g*(™) modm}. If there
is a primitive root modulo m then the group Z,, is cyclic, and vice versa.
In the sequel, it will be useful to know for which m is the group Z;, cyclic.
The following theorem gives the complete answer.

Theorem 1.9 (Gauss) For all m,Z;, is cyclic if and only if m is equal to
one of 1,2,4,p%,2pF, where p is an odd prime and k is o positive integer.
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Proof: (<)

¥ m is equal to either of 1, 2, 4 it is easy to see that Z, is cyclic (see
exercise 2.) Next it will be shown that for each of the possible values of m
the group Z;, is cyclic. Let p be an odd prime.

Z, is cyclie:

The order of an element z € Z, — {0} is the least exponent e such that
z¢ = 1 modp. For each divisor d of p — 1, let Sy = {z € Z,: the order of z
is d}. However, for each z € S; and each ¢ < d,2° € S3 & ged(e,d) = 1.
(Indeed, on the one hand (<=) if z* = 1 modp then d|ci, and hence dJi.
Thus, the order of 2° modp is d, and on the other hand (=) if k = ged(c, d)
then (2°)%* = (z°/*)4 = 1 modp which implies that k = ged(c,d) = 1.) Let
a be an arbitrary element of S;. Then it is clear that a? = 1 modp. Since
Z, is a finite field, the equation 2 = 1 modp can have at most d solutions,
namely a,a?,...,a. Therefore, S; C {a,da?,...,a%}. ‘It follows from the
above characterization of Sy that if Sy is nonempty then |S4| = ¢(d). But,
the family {S4 : d|(p — 1)} forms a partition of Z;. It follows from Euler’s

theorem that
| p-1= Y pd)= Y |84
di(p—-1) dj(p~1)

Consequently, for all d|(p—1), |S4| = ©(d) and Z; must be a cyclic group.

The following claim will be useful in the sequel:

Claim 1: There exists a primitive root g modulo p such that for all
k> 1, g?*) 2 1 modp*.

Proof of claim 1: Let g be a primitive root modulo p. Then notice
that (g+p)P~! = g~ + (p— 1)pgP~2 = gP~! — pgP~2 modp?. Hence, at least
one of the two primitive roots g,g + p, say go, must satisfy z#=1 & 1 modp®.
The rest of the proof of the claim is by induction on k. It will be shown
that go satisfies the requirements of the claim. The proof in case k = 2 has
already been completed. Assume by induction that g& (#*=) # 1 modp*. By
the theorem of Euler-Fermat there exists an integer ¢ such that g§ "1 -
1+ tp*~1. By the induction hypothesis p does not divide ¢. It follows that
g2 = (14tpb-1)P = 1+ tp* + (1/2)p(p— 1)t2p%*2 = 1+1p* # 1 modp**!.
This completes the proof of claim 1.

;,, is cyclic:

Let g be a primitive root modulo p which satisfies the condition of claim
1. It will be shown that for all k > 0, g is a primitive root modulo p*. Let
k > 1 be fixed, and let e = least exponent such that g¢ = 1 modp*. Clearly

¢ = 1 modp, and hence (p— 1)|e. However, e|p(p*) = (p—1)p*~1. It follows
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that e = p(p') = (p— 1)p* !, for some ¢ < k. But it is clear from the choice
of g that ¢ must be equal to k i.e. e = p(p*).

Z;p,, is cyclic:

Let g be a primitive root modulo p*, where k is positive. Let go be the
odd number among the two integers g, g + p*. It will be showm that go is a
primitive root modulo 2p*. Indeed, ©(2p*) = w(p*). If one defines e = least
exponent such that g§ = 1 mod(2p*), then it follows from the Euler-Fermat
theorem that e|(2p*), and hence e < (20*). But go is a primitive root
modulo p*, and hence e > ©(p*). Hence e = p(p*). This completes the
proof of («=)

(=)

Suppose that m is not of the form 1,2, 4, p*, 2p*, where p is an odd prime
and k > 0. Clearly the theorem is an immediate consequence of the following

Claim 2: For all ¢ € Z},,6¥(™)/2 = 1 modm

Proof of claim 2: If m = 2%, then p(m)/2 = 2¥~2. The claim will
be proved by induction on k. The initial step k = 3 is trivial. Assume
a?*~* = 1 mod2* is true. Then a2*~* = 1 + t2, for some t. Hence, ¢®*™" =
(1+ t25)2 = 1 + t2k+! + 42228 = 1 mod2k+!.

If m = 2Fp", where k > 1 and n > 0, then p(m)/2 = 2¥-2p"~1(p - 1)
is divisible by both ©(2*) and ©(p"). Hence the claim follows in this case
easily, using the result in case m = 2* and the Euler-Fermat theorem.

If m = 25pT1 ... pt where k > 1,7 > O then it is clear that p(m)/2 =
25-20(p11) - - - p(pPr). It follows that p(m)/2 is divisible by each of the
integers ©(2*%), o(p7?),- . ., (P?r) and the rest of the proof can be completed
exactly as before. This completes the proof of the claim, and hence of the
theorem o

Figure 3 displays a table of the first ten odd primes and their corre-
sponding least primitive root:

p|3|5]7]11]18]17]19] 232931
gl2/2]/3]/22|3]2[512]3]

Figure 3: Table of primitive roots.

- |EXERCISES |
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1: Let g be a primitive root modulo m. Then for all nonnegative integers
t,g' modm is a primitive root modulo m if and only if ged(t,o(m)) =1. In
particular, there exist exactly ©(¢(m)) primitive roots modulo m, provided
there exists at least one primitive root modulo m.

2: Show that the groups Z}, 23,2} are cyclic.

3: If m = pi*---pf is the prime factorization of m and ¢; = p{* for
¢ = 1,...,r then the group Z; and the product group Z;, x --- x Z; are
isomorphic.

4: Show that for each odd a and each r > 3,02 = 1 mod?2'.

5: Use exercise 4 to show that if r > 3 then Zj. is isomorphic to the
product of a cyclic group of order 2 and a cyclic group of order 2"~2. Hint:
—1 generates the group of order 2, and 5 the group of order 272,

1.8 Artin’s Conjecture

Theorem 1.9 gives a complete characterization of those m, for which the
multiplicative group Z,, is cyclic i.e. Z,, has a generator. Howevever, the
. following natural questions arise: _

- Question 1: Is there an efficient algorithm which when given as input
a prime number p will output a primitive root modulo p? ‘

Question 2: Given a specific integer g, determine the primes p such
that g is a primitive root modulo p.

The second question is also mentioned by Gauss in [Gau] for the special
case g = 10. The results of section 3 make apparent the importance of these
questions for the construction of pseudo-random generators. Nevertheless,
to this date both of the above questions are open. Some empirical data
are provided in the table of figure 4 (see [Scha], pp. 80 - 83, for additional
empirical data ). Let v,(n) = the number of primes p < n such that g is a
primitive root modulo p, and let 7(n) = the number of primes < n.

Based on probalistic heuristic considerations (see [Scha], pp. 82), Artin
has conjectured that:

Conjecture 1: (Artin) Every integer g # —1,1 which is not a complete
square is a primitive root of infinitely many primes.

More exactly it is conjectured that:

Conjecture 2: For every integer ¢ # —1,1 which is not a complete
square,

l—:f-(%-)-)-NF,-A,
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9 | vo(10%) | v,(10%)/m(10%)
2| 47 .382
3| 476 .387
5| 492 .400
6| 470 .382
7] 465 378

Figure 4: Artin’s Constant

where A is Artin’s constant (approximately equal to .37395...), and which
is independent of n,g and F, is a rational given in [Hoo]; for many values of
g (e.g. =2,3,6) Fy=1. _

It is significant to note that Hooley in [Hoo] has confirmed Conjecture 2
under the assumption that Riemann’s hypothesis holds for certain Dedekind
functions (see [Scha), pp. 222 - 225.)

[EXERCISES |

1: (Lucas) The following result can be useful in testing if a given g is
a primitive root modulo n, assuming that the prime factors of n — 1 are
known. Prove the following statement: g is a primitive root modulo n <
for all prime factors p of n — 1, g(»~1)/P 2 1modn.

1.9 The Carmichael Function

A useful generalization of Euler’s criterion is given through the Carmichael
function A. For each integer m,A(m) is defined as follows:

2¢ if t<3
MZ) = { Co/e i 133

and for any given integer m = 2%p* - .. pr, where py,...,p, are the distinct
odd prime factors of m, one defines

A(m) = lem(A(2%), A(p1*), - - ., A(p77))-

The intended improvement of the Euler-Fermat theorem (see theorem 1.3)
is given in the theorem below. '
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Theorem 1.10 (Carmichael) For all a € Z%,,a*(™) = 1 modm.

Proof: It has been shown in the proof of theorem 1.9 that for any integer

m which is not of the form 1,2,4,p*,2p*, where p is an odd prime, k > 0,
and for all a in Z,,,

a?(™)/2 = 1 modm. ' (3)

Let po,p1,...,pr be the distinct prime divisors of m in ascending order
and for each ¢ let g; be the largest power of p; dividing m. Hence, m = gp -
g1 - - - gr. By the theorem of Euler-Fermat and the observation in congruence
(8), it is true that for all a € Z%, and all i = 0,...,r,a%%) = 1 modg;, and
if po = 2 then a*(%) = 1 modgp. But this is enough to complete the proof
of the theorem o

|EXERCISES |

1: Let m be odd. Show that A(m) is the least exponent e such that
for all @ € Z,,,a®* = 1 modm. Hint: Let p;,...,pr be the distinct prime
divisors of m, and for each ¢ let g; be the largest power of p; dividing m.
For each ¢ let g; be a primitive root modulo ¢;. Fixan¢t = 1,...,r. Use the
Chinese Remainder Theorem to find an a; € Z,, such that a; = g; modg;
and a; = 1 modg; for all j # ¢. Let e be the least exponent e such that
for all ¢ € Z,, a® = 1 modm. By assumption, af = 1 modm and hence
gf = 1 modg;. But g; is a primitive root modulo ¢;. Thus, ©(g;)le.

1.10 The Langrange Symbol

Call an z in Z2 quadratic residue modulo m, if z = y*> modm for some
y € Z,,; otherwise z is called a quadratic nonresidue modulo m. Let
QR (respectively QN Rp,) be the set of all quadratic residues (respectively
nonresidues) modulo m.

For each prime number p, and any z € Z, let

1 if ze@Q
e ={ 2§ IEeM,

(z]p) is called the Lagrange symbol of z modulo p.

Remark: The symbol (£) is also widely used in the literature as iden-
tical to the symbol (z|p). ie symbol (z|p) is used here for typographical
convenience.

One of the most useful properties of the Langrange symbol is expressed
" in the following
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Theorem 1.11 (Euler’s Criterion) For all primesp > 2, and allz € Z;,
z(P-1)/2 = (z|p) modp

Proof: Let z € Z;. Then z°~! = 1 modp, and hence either z(P~1)/2 =
1 modp or z{P~1)/2 = —1 modp. The mapping f : Z; — {-1,1} such that
f(z) = z(P~1)/2 modp, is a group homomorphism. Since for any primitive
root g of Z; g2 = modp, the mapping f is onto and consequently
the kernel K of f is a proper subgroup of Z; of size (p ~ 1)/2 (see theorem
1.1).

K (z|p) = 1, then z € QR,. Thus, z = y?> modp for some y € Z;. It
follows that z(P=1)/2 = yP~! = 1 modp, by the theorem of Euler-Fermat (see
theorem 1.3.) Thus, z € QR, = zP-1)/2 = 1 modp = z € K.

However, QR, = {12 modp,2? modp,...,(p — 1)2 modp}. Moreover,
(p - 2)? = p?* - 2pz + 22 = 2% modp, for all z € Z. Thus, exactly one
half the numbers in Z; are quadratic residues, and the other half quadratic
nonresidues modulo p. Since, K 2 QR,, and both K,QR, have exactly the
same size, (p — 1)/2, it follows that K = QR,.

If -”"IP; = —1, then z € QN R,. It follows from the above remarks z ¢ K
and z{P~1)/2 = —1 modp. Thus, z ¢ K = z(P~1)/2 = —1 modp, which
completes the proof of the theorem e

|[EXERCISES |

1: The following result is a generalization of Euler’s criterion (see the-
orem 1.11) : for all primes p > 2, for all ¥ > 0, and all z € Z*,,2¢(*)/2 =
1 modp < z € QR,+. Hint: Argue as in the above proof to sﬁow that the
mapping f : Z, — {-1,1} such that f(z) = z#(e")/2 modp*, is a group
epimorphism, whose kernel K equals QRp:.

2: Use exercise 1 to show that for all integers z € Z;,,,z EQR, &>z €
QR,:. Hint: (=) Let z € QR, and put a = z¥(P)/2, Then p|(z*)/2 — 1),
Hence, z¥(P")/2 — 1 = o?* ' = 1 = (@ = 1)(a®* "1 + a®* "2+ ...+ a + 1).
Notice that the second factor of the last product is divisable by p*~1.

3: If both z,y € QNR, then zy € QR,.

1.11 The Langrange-Jacobi Symbol

The definition of of the Langrange symbol can be extended to all m and all
z in Z, . Indeed, let m = p, - - - p,, where p;,...,p, are primes. Then the
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Langrange-Jacobi symbol is defined by (z{m) = (z|p1)-- - (z|p,). One
also defines the sets Z;, (+1) = {z € Z;, : (z|m) = 1}, and Z},(-1) = {z €
Zy, : (z|m) = -1}.

In determining whether a given z € Z; is a quadratic residue modulo a
prime p one needs to compute (z]p). This is in fact done using the next two
theorems.

Theorem 1.12 (Evaluating (z|m)) Let z,y € ZJ,.
(3) If z= y modm then (z|m) = (y|m)
(59 (slm) - (ylm) = (z - ylm)
(#) (=1|m) = (=1){m-1/2 )
(iv) (2|m) = (~1)(m*-1/8 where m is odd.

Proof: The proofs of (i), (ii) are easy and are left as an exercise to the
reader. As a first step, parts (iii), (iv) of the theorem will be reduced to the
case of the Lagrange symbol, i.e. m is prime. This reduction is based on
the following claim whose proof is straightforward

Claim: If s, t are odd then

s—1 t-1 - st—1

7 + =3 mod2, and

2 2 __ 2
s 8—1+t - IE.fs2t8 1mod2
Using the definition of the Jacobi symbol, the reduction to the case of
the Langrange symbol is an immediate consequence of congruences (4), (5)
below. Let m = p; - - - p, be the prime number factorization of m. Then the

above claim implies that

-1 -1 _m-1
p—lz-—+~--+p"2 = — mod2, (4)

2 2
ﬁ;—1+~-+p"8-15ms_-lmodZ. (5)
So from now on it will be assumed that m = p is a prime. It is now
obvious that (iii) is an immediate consequence of Euler’s criterion. Hence it
only remains to give the proof of (iv).
Since ((p - 1)/2)! is the product of numbers all of which are less than p,

it is clear that p does not divide ((p — 1)/2)!. Also notice that

k if k is even
1\ .= hs
(1) "—{p-k if k is odd
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It follows that on the one hand

(~D 1 (=1)%2- - (~1) PR = ©)

(P2 ),( 1)1 H2EHe-1)/2 - ( )!( 1)l*-1)/8 (7)

and on the other hand using the theorem of Euler-Fermat,

(-1)11(-1)22---(-1)(?-1)/23-;-152-4-6-..(,;-1)5 8)
2(9-1)/2( )z—(z| )( )'modp ©)

The result now follows by combining equations (6-9) and the fact that p
does not divide ((p— 1)/2)! o

Theorem 1.18 (Law of Quadratic Reciprocity, Gauss) For all odd
m,n > 2 which are relatively prime the following equation holds

(n|m) - (m|n) = (- 1)(m-1)-(n—1)/4

Proof: Using the claim of theorem 1.12 it can be assumed without loss of
generality that m = p,n = ¢ are primes. For any set M C Z}, define the set
~M = {~a :a € M}. For the given primes p, q let P = {1,2,...,(p—1)/2}
and Q = {1,2,...,(g = 1)/2}. It is clear that for any ¢ € Q there exists
b € Q such that either pc = b modg or pc = —b modgq (a similar property
holds for P). Define n(p,q) = the number of times that pc is congruent
modulo ¢ to an integer in —Q, as ¢ runs through Q. The proof is based on
the following

Lemma’ 1.1 (Gauss’ Lemma) (p|q) = (—1)"()
Proof of the Lemma: For each ¢ € Q one can find s, b,
pc = scbe modg, (10)
where b, € Q and s = +1 or —~1. The mapping ¢ — b.(c € @,b. € Q)

is 1 -1 (and hence also onto.) Indeed, assume that b, = by. Hence, either
pc = pd modg or pc = —pd modg. But p,q are relatively prime. It follows
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from the definition of Q that ¢ = d. Hence, the mapping ¢ — b, is a
permutation of Q and

-1
("T)z = bibg - - bg-1)/2- (11)

Multiplying the congruences (10) as ¢ ranges over Q and using (11) one
obtains that, »

pla=1/2 = (=1)"P4) modg.

The proof of the lemma can now be completed using Euler’s criterion e

Returning to the proof of the theorem let 9 = €2%/P (respectively g =
¢%7i/9) be the primitive p-th (respectively g-th) root of unity. Gauss’s Lemma
and the fact that for all a € Q there exists b € Q U (—Q) such that pa =
b modg, imply that

e _ ,—pa
(le) = (-1 = T] £ (12
a€Q
Howevver, the following identity holds for all z # O,

-z P= H (z9® — 27197h) (13)
bEZ, .

(To see this, multiply both sides of (13) by zP and use ¥? = 1 to show that
the resulting polynomials have the same leading coefficient 1 and the same
zeroes: 9%, —9%, where b=0,...,p—1.) Combining (12) and (13) one easily
obtains that

0= (H I (e4° - e“'t"")) / (n - e-«))

a€Q beZp a€EQ
= ]I II (e*8* - ¢™*57")
ae€Q dbeZ;
=TI I1(e** - ¢™*57") - (¢°67" - ¢™*#").

a€Q beP

Hence,

lo)= TI ((&*+e7%)) - (3 +97%)).
a€Q beP
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Interchanging the roles of p and ¢ one also obtains

@)= JI (9 +97%)-(e*+2"%).
a€Q.beP

Since, each of the last two products has (p — 1)(g — 1)/4 factors, the proof
of the Law of Quadratic Reciprocity is complete o

It is not hard to see that computing the Jacobi symbol (z|m) of two
relatively prime integers z,m is similar to computing the greatest common
divisor of z, m. This is illustrated in the example below.

Example 1.4 Show that 76 € QN Ry3;. Indeed,
(76]131) = (2]131) - (2|1312 - (19]131) =
(19]131) = (131]19) - (—1){131-1)/2:(19~1)/2
(17]19) - (~1) = —(19]17) - (—1)(19-1)/2:07-1)/2 =
~(19]17) = = (2]17) = ~(~-1)07*-1)/8 = _

An analysis similar to that in the proof of Lamé’s theorem, (see theorem
1.2) shows that

Theorem 1.14 If N > a,b > O are integers, with a,b relatively prime then
the number of steps required to compute (alb) is O(logr N), where R is the
golden mean e

|EXERCISES |

1: Prove parts (i) and (ii), as well as the claim used in the proof of
theorem 1.12.

2: Compute (56|39).

3: Determine (3|p), where p is a prime > 3.

4: For k > 2 and a odd, a € QRy: < a = 1 mod8 Hint: (=) see the
proof of claim 2 in theorem 1.9;(<=) use exercise 5 of subsection 1.7.

From now on assume that p is an odd prime and &k > 1.

5: Show that (1 + p)*'™" = 1 modp* and (1+ p)?*™ = (1 + p*~1) &
1 modp*. Hence, (1 + p) generates in Z;,, a cyclic subgroup H of Z of
order p*~1,

6: (This is a continuation of exercise 5.) Let g be a primitive root
modulo p. Then gg = g"l"'l is a primitive root modulo p and go generates
a cyclic subgroup G of Z;,, of order p — 1. Moreover, G x H is isomorphic
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to Z;,,. Every element a € Z;,, can be written uniquely in the form a =
g5(1 + p)" modp*, where 0 < t < p—1and 0 < r < p*~1. (exercise 6 gives
a new proof of the cyclicity of Z%,, for k > 1.)

7: For all g, if a is relatively prime to p then a € QR, & a2 € QR
Hint: (=) Write a in the form a = g§(1 + p)" modp*, where0 <t <p-1
and 0 < r < p*~1. Notice that ¢ is even. Find ¢ such that 2¢ = 1 modp*~!
and let b = g(',/ (1 + p)" modp*. Show that a = b? modp*. (exercise 7 gives
a new proof of exercise 2 in subsection 1.10.)

8: Give the proof of theorem 1.14.

1.12 Computing Square Roots

One of the most important problems in complexity theory is to find an
efficient algorithm which given as input an z € QR, and an integer n it will
output a square root of £ modulo n. It will be seen in the sequel that such
an algorithm exists if n is prime. It will also be shown that for composite
n, the above problem is equivalent to the problem of finding an efficient
algorithm which given as input n it will output the factors of n.

If p is an odd prime number then such an efficient probabilistic procedure
for computing square roots modulo p is given in the theorem below.

Theorem 1.15 (Adleman-Manders-Miller) There exists a probabilistic
polynomial time algorithm which when given as inputs an odd prime p and
an a € QR, it will output a square root of a modulo p.

Proof: Let p be a prime and a € QR,. Write p— 1 in the form p~1=
2¢P, where P is odd. Choose any random b € QNR,. Define a sequence
G1,82,...,08n,... of quadratic residues modulo p and a sequence of indices
e>ky>--+>kp>--- as follows by induction on n :

a =a,
k-1 = least k such that aﬁf_ﬁ = 1 modp,
an = n-1b® ™" modp.

However, it is true that

k -1=1 - O—kn_x 2k”_1—1P —
?: " F= (an—1b2 ) =

azkn-l"Pb2""P = (_1)(-—1) =1 modp.

n-1
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The proof of the last congruence uses the fact that 42° P = plp-1)/2 =
(b]p) = -1. Using the minimality of k,-;, the above congruences, and
the Euler-Fermat theorem, it follows that for all integers n if k-3 > 0
then k, < k,—3. Hence, there exists an n < e such that k, = 0, and for
such an n, aS.PH)/ ’isa square root of a,. Next one defines by reverse
induction a sequence ry,...,r, such that for all i,r? = a; modp. Indeed,
let r, aS.P'H)/ 2 modp. Assume that r;;; has already been defined and
let r; = rig1 (8 7%7")"! modp. It is straightforward to see that for all
t,a; = r{ modp.

The above observations provide an efficient algorithm, described more
explicitely below, to compute square roots modulo a prime number p. One
merely chooses a random b such that (b]p) = —1 and then follows the above
described procedure with input p, a.

Input: p (prime), a € QR,.

Step 1: Compute an odd P and e such that p— 1 =2¢P,

Step 2: Choose random b such that (b|p) = ~1.

Step 3: Set y := a,r := a(P*1)/2 modp.

Step 4: Find the least k such that y*'F = 1 modp.

Step 5: If k = 0 then output r else set

y= b2 modp,r=r(6*"")"! modp

and go to step 4.

Output: r.

The running time of the algorithm is a polynomial in the lengths of p
and a, plus the time required to find an integer b such that (bjp) = —~1 e

The case of composite n is studied in the theorem below.

Theorem 1.18 For all z € Z;,, where p,q are distinct odd primes, z €
QRyy & z € QRy and z € QR,;. Moreover there is an efficient algorithm
which given as inputs z,u,v,p,q, where p and g are distinct odd primes and
z = 4? modp and z = v2 modq, will output a w such that z = w? mod(pg).

Proof: Suppose that z,u, v, p, ¢ are as in the hypothesis of the theorem.
Since p, g are relatively prime one can compute efficiently integers a,b such
that 1=ap+bg. Putc=bg=1~apand d=ap=1 - bqg. It is then clear
that

¢ = 0 modg,c = 1 modp,d = 0 modp,d = 1 modg.
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It will be shown that w = cu + dv is a quadratic residue modulo n. It is

enough to show that w is a quadratic residue both modulo p and modulo g.
Indeed,

w? = (cu+ dv)? = (Pu? + d®v? + 2cduv) = u? = z modp.

A similar calculation shows that w? = z modg. This completes the proof
of the theorem o

|EXERCISES |

In exercises 1 and 2 below f(z) denotes a polynomial with integer coef-
ficients.

1: Use Hensel’s Lemma (see [Kob}, theorem 3, page 16 or [Kn], exercise
22, page 439) to show that if one has a solution of the congruence f(z) =
0 modp, where p is prime, then for any e > 1 one can lift it to a solution of
f(z) = 0 modp® in polynomial time.

2: Use Exercise 1 and the Chinese remainder theorem to show that if
the factorization of n is known then one can take solutions of f(z) = 0 modp
for p|n to produce a solution of f(z) = 0 modn in polynomial time.

3: If p= 4n + 3 is prime and a € QR, then a™*! modp is a square root
of a modulo p (see also [Scha] page 47.)

1.13 Indices

Let p be a prime a,nd let g be a primitive root modulo p. It is known that
Z; = {g° modp, g* modp,...,g7~2 modp}, and hence for any z € Z; one can
deﬁne the index or discrete logarithm of z with rspect tog, a.bbrevxa.ted
indexp 4(z), as the unique m < p — 2 such that z = g™ modp.

The following theorem gives a very useful characterization of quadratic
residues in terms of the above defined index.

Theorem 1.17 (Characterization of Quadratic Residues) Let p be an
odd prime, and let g be a primitive root modulo p. Then for any z € Zy,z €
QR, & indexp4(z) s even.

Proof: The proof of (<) is easy and is left to the reader.

(=) Let =z be a quadratic residue modulo p. There exists an integer u
such that .':: = u® modp. Let ¢ = indexpy(u) < p— 1. Then u = ¢* modp
and z = g% modp. It follows that index, (z) = 2¢ mod(p — 1), and hence
index, 4(z) is even o



24 - 1 NUMBER THEORY

Using the multiplication ta.ble of Z}, one can compute the table of indices
given in figure 5.

10 |
5

—
N
wW
'Y
[44]
o)
-3
oo
©

z
indexj;o(z) [0 |18

N
[N
©
-3
wW
(2]

Figure 5: Table of values of index;; 2(z).

If n = pq is the product of two distinct primes then the product mapping
< z,y >— zy is an isomorphism between the groups Z; x Z; and Z;. Let
g (respectively h) be a primitive root modulo p (rspectwely q) Then any
element in Z; can be written in a unique way in the form z = g"h!. As
before, let the index of z with respect to g,h, abbreviated index, 4 4(2) be
the pair < r,t >.

|EXERCISES |

1: Prove (<=) in theorem 1.17.

2: Let n = pg be the product of two distinct odd primes such that
g (respectively h) is a primitive root modulo p (respectively g.) For any °
z € Z,,z € QR < both components of index, g 4(2) are even.

3: Let g be a primitive root modulo the prime p > 2. Show that for all
a,b€ Z;,and all n > 0,

1. index, 4(ab) = index, 4(a) + indexp 4(b) mod(p — 1).
2. indexp4(a™) = n - index, g4(a) mod(p — 1).

3. index, 4(1) =0

4. index,4(g9) = 1.

5. indexpg(—=1) = (p ~ 1)/2.

4: If g is a primitive root modulo p, then g € QR,.

1.14 Computing Indices

One of the most important problems in complexity theory is to find an
efficient algorithm A such that for any prime p, any primitive root ¢ modulo
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p and any z € Z;, A(p, g, 7) = index, 4(z). This problem is very significant
for the construction of secure cryptographic protocols. In general, no such
algorithm is known. However, the theorem below provides such an efficient
algorithm in the case where the prime factorization of p — 1 is known. For
each integer n, |n| denotes the binary length of n.

Theorem 1.18 (Pohlig-Hellman ) For any polynomsial poly(.) there ezists
an effictent algorithm A such that if p s a prime such that the prime factors
Piyer-sPr of p— 1 satisfy pr,..-,py < poly(lpl),g is @ generator of Z, and
y € Z; then A(p,g9,p1,...,Pr,y) = indexp4(y). Moreover, A runs in time
polunomial in the length |p| of p.

Proof: Let p be a prime number such that the prime factors p;,...,p, of
p—1satisfy py,...,p, < poly(|p|). Let g be a generator of Z;,and let y € Z;.
For each j = 1,...,r, let ¢; = the largest exponent e such that p}|(p — 1)
and let ¢; = p;’. For each 5 = 1,...,r define y; = y(r—1)/e; modp,g; =
g(P~1/8 modp, zj = the unique z such that g = y; modp. Notice that
z; < g;. Thus, z; can be represented in the number base p; as follows:

' 2 e;—1
Tj = Tj0+ Tj1Pj + Tjap; + - + Tje;-1pf , where 3 <pj. (*);

The idea of the proof is the following: first, one gives an algorithm A; which
on input p, p;, g,y computes z;0 as above; second, one extends A, to give an
algorithm A2z that on input p,pj,g,y computes z;; and third, one uses the
Chinese Remainder theorem to compute the indexp 4(y) from the previously
computed z;. '

The algorithm A; is given below.

Input: p,pj,g,y.

Step 1: Compute g;,g;,y; as above.

Step 2: Compute z; = 7 ~1)/p; modp.

Step 3: Compute ¢ = the first ¢ < p; such that z; = g;.(p =1)/ps modp.

Output: ¢p.

It is a consequence of the Euler-Fermat theorem that #g = z;0. Indeed,
using (*); one obtains #p = z;o through the following congruences: z; =

g;O(p-l)/p,‘ = y(p—l)/pj = g;:'(P—l)/Pj. = g;,'.o(p-l)/p:' modp.

An easy extension of the above algorithm gives a new algorithm to com-
pute z;. Indeed, consider the following algorithm A, defined by

Input: p,p;,9,v.



26 1 NUMBER THEORY

Step 1: Compute g;, ¢;,9;, ¥;-

Step 2: Compute A1(p,p;,9,y)-

Step 3: Put gj0 = g;,Yj0 = ¥j»Cj0 = A1(P, pj» 9, ¥)-
Step 4: For : = 0 to ¢;—; do: Compute the following

95i+1 = g} modp, yjis1 = yj49;; " modp.

Step 5: Compute ¢;,+1 = Ai(p, Pjagj.i+l,!lj,n‘+1)l-
cim
Output: c¢jo + cj1p5 + c,-,gp} +---+ c,-,,j_lpj’
To prove the correctness of A; one shows by induction on ¢ < e;, that
‘¢j = Zj; e.g. it has already been shown that z;0 = c;o. Thus,

= o =G0
Y51 = Y5095,0

-] -

etz 1p o
2jPjt 4 2j,5-1P; $ i1

| g; (g5
Consequently,

z;1 = A1(p, pj» 955, v;9; °) = A1(p, P> 9i1,¥51) = €1
PN J

The proof of ¢;; = zj; (§ > 1) is similar.

The rest of the proof is an application of the Chinese remainder theorem.
Indeed, consider the following algorithm A:

Input: P, 9,P1s.-+5Pr ¥

Step 1: Compute z; = Az2(p,p;,9,¥).

Output: The unique z such that for all j =1,...,7,

z=z; mod(g...gr).

To see that A works notice that for all j = 1,...,r, y(P~1)/a; = gzilp=1)/4;
modp and z = z; modg;. Since, ged((p ~ 1)/q1,...,(p — 1)/gr) = 1, there
exist t,...,t, such that ;(p—1)/q1 +-- -+t (p—1)/gr = 1. It follows from
the Euler-Fermat theorem that

y= yl = y‘I(P°1)/ql+"’+‘r(l’-1)/¢r = y‘l(P“l)/ql .o y"(P'l)/q' =

g.‘nh(p-l)/ql .. g-‘h‘r(P"l)/qr = gnl1(2-1)/qn+--+zrtr(p-1)/¢' = ¢* modp,

which completes the proof of the theorem o
Remark: Clearly the running time of the above algorithm depends
on the given polynomial poly(.). In general however, no such algorithm
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is known. Recently E. Bach has shown (see [Ba]) that if one can solve
a® = b modn in polynomial time then one can find a proper factor of n with
high probability in polynomial time (if the Extended Riemann Hypothesis
holds this algorithm can in fact be made deterministic.) Conversely, if a* =
b modp can be solved efficiently for prime p, so can a* = b modn, for any
modulus n, provided the factorization of n is known.

[EXERCISES ]

1: Complete the proof of ¢;; = z;;,4 > 1, in algorithm A, of theorem
1.18.

1.15 The Prime Number Theorem

Let b,c be relatively prime positive integers, and let 7} .(2) = the number
of primes p < z such that p is of the form p=bk+c. f b= 1,c =0
then 7(z) = 71 0(z) = the number of primes p < z. The prime number
theorem is the following statement (where the logarithm is taken with
respect to the base e€) :

Theorem 1.19 (Dirichlet, Hadamard, de la Vallée Poussin)
If ged(b,c) = 1, then

"b,c(z) _ 1
260 z/logz  o(b) *

In particular, as a special case of theorem 1.19 one obtains that

m(z) _
#2560 z/logz ~ L

The table of figure 6 gives some values of 7(n).

n | 107 | 10° | 105 | 10% 10° 10° 107
m(n) | 4 | 25 | 168 | 1,229 | 9,592 | 78,498 | 664,579

Figure 6: Table of values of 7(n).

A proof of theorem 1.19 would lie outside the scope of the present section.
However, the proof of the following weaker version of the prime number

\
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theorem will be sufficient for most applications. Its proof is due to Zagier
(see [Z]) and is partly based on ideas of Chebyshev.

Theorem 1.20 (Chebyshev) For all z > 2,400,

17z
10logz

7(z) < (14)

z .

3logz

Proof: (Zagier) For simplicity throughout the present proof p will range
over prime numbers. For each real r, let [r] denote the integral part of r.

Proof of the lower bound: This is is based on the following
Claim: For all z,k the following holds:

(;) <o, (15)

Proof: Let z be fixed. It is clear that for any power p* of the prime
p the number of integers among 1,2,...,z ~ 1,z divisable by p* is exactly
[z/p]. For each integer n let

e(n,p) = the largest exponent e such that p®|n.

Further, let ‘
A.={1<d<z:pf|d}.

1= (2]

p‘

It is then clear that

Moreover,
A1 24822 248, 28412

However, forany 1 < d < =z,
d¢ Ac(d,z)+l’d € Ac(cl,::) C---CA).

Hence, each 1 < d < z is counted in the sum 3,5, |A.| exactly e(d, z) times.
It follows that

elatp) = 3eldir) = Tlad = £ [Z].

d=1 e21 e21
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It follows from the last equation and the definition of the binomial coefficient
that

. ((;) ,p) = e(at,p) - e((z - K)Lp) — e(kl,p) =
= ([z]- 1515 (1)

Since, each of the summands in (16) is either O or 1, and all summands
vanish if ¢ > logz/logp, it is clear that e ((),p) < [logz/logp] and hence,

p‘((:)"’) < z. Now, the claim follows from the fact that

(z) = I pHBo) < o762,

p<sz

This completes the proof of the claim. To complete the lower bound proof
apply (15) to k= 0,1,...,z, and add the resulting inequalities to obtain:

z

2% = Z (i) <(z+1) . z7(2),
k=0 .

Taking the logarithm of both sides of the above inequality one obtains that

zlog2 log(z+1) 2z
logz log z 3logz’

7(z) 2 (17)

(Notice that the right side of the last inequality is valid for z > 200.)
Proof of the upper bound: It is clear from the definition of the
binomial coefficient that

] »divides (2”). - (18)
z<p<2z z

But, the product term in (18) has exactly #(2z) — = (z) factors, all of them
> z. Hence, using the binomial theorem one obtains that

2
- gm(22)-n(2) < H p< (23) < Zz: (23) — 22z,
z<p<l2z z i=0 ¢
and taking the logarithm (in base e) of both sides of the above inequality

2
zlog?2 < 1.30——.
logz logz

7(2z) — n(z) < (19)
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Next, assume by induction that the right side of equation (14) is true
for z. It follows from (19) and the induction hypothesis that

2z

z z
1?(22) < 1?(2) + 1.391-(;&; < 3.091-&-; < 1.7W. (20) .
Moreover, using (20) one obtains that
z 2z+1
< 09— < 1]
7(2z+1) < 7(2z)+ 1 <30910gz +1< 17log(2z+l)’ (21)

which completes the induction proof and hence the proof of the theorem o

Remark: For more information the reader should consult [E} (pp. 23 -
25, and exercises 1.8 - 1.13 in pages 30 - 31). Better upper and lower bounds
of the quantity 7 (z) are known e.g. it is known that for all z > 114,

7(z) <

5z
4logz

logz
(see [RS].)

|EXERCISES |

1: Use ¢(4) = 2, to show that asymptotically for all z, half the primes
p < z satisfy p = 3 mod4.

2: How many primes of a given length k exist? Hint: Use theorem 1.19.

3: The result of the present exercise is used in the proof of theorem 1.7.
Let p, be the n-th prime and let 0 < o < 1 be a fixed real number. Let
7(n,a) denote the number of primes in the interval (p§, pn]. Use the prime
number theorem to show that for all large enough n,%,

r(n+t,0)~ (n+t)- (1 - }.a) :
Pyt

In particular, for any 2 € k < n there exist arbitrarily large integers ¢ such

that "
T (t, %) > n. (22)

4: Prove that the right hand side of inequality (17) holds for all z > 200.
Hint: Reduce to a simpler inequality and use a hand calcurator.

5: Prove that the right band sides of inequalities (20) and (21) hold
for all 2 > 1,200. Hint: Reduce to simpler inequalities and use a hand
calcurator.
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1.16 Continued Fractions

For any two positive real numbers o, f let [a, 5] = a+1/8. This notation is
extended by induction to Sequences aq,...,Qn,. .. of positive real numbers
by the equation

[e1,...,ans1] = [o1,[02,. . ., an41]]-

For a.ny' real number @ > 0 define the sequence aj,a9,...,Qpn,... of reals
and the sequence aj,as,...,a,,... of nonnegative integers as follows: a; =
a,an = |ap| = the greatest integer < a,, and

Uptl = _1-
an - ‘an
i.e an = [@p,an41]. The sequence [a1],[a1,a3),...,[a1,...,8p),... defined
as above from the given real number « is called the continued fraction
expansion of a.
Remark 1: Notice that if a, = @, then a,4; is undefined for all + > 0.
Remark 2: For all n,

an = [@n, An41] = [@nyGnt1,Onp2] = -+

In particular,
a = [a1,a2] = [81,ag,a3] = ---.

The continued fraction expansion [a1],[a1,a2},...,[a1,...,8n],... Of the
real number a breaks-up if for some n,a, = a,.

The following observation which is an immediate consequence of the
above definitions and the Euclidean algorithm, will be useful in the sequel:
if d is the divisor and r is the remainder in the Euclidean division z = yd+r,
where 2 > y > r > 0 and ged(z,y) = 1 then

o[ e2]-

. Theorem 1.21 A real number > 0 is rational if and only if its continued
Jraction ezpansion breaks-up.

Proof: Let a > 0 be a real number with continued fraction expansion
[a1,82],...,[81,...,8p],.... ffor some n,a, = o then an easy computation
shows that a = [a;,...,8p-1,2p] = [a1,...,8n-1,08,] is rational.
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Conversely, assume that o = a/b is rational. Use the Euclidean algo-
rithm to define sequences

O0<K<r,<rp1<---<n <'1‘o=b< r-1 =a,d1,d2,...,d,.,d,.+1

such that
a=db+ r,b=dsr; + r2,
ri=dsra+1r3,...,fn-2 = dnfp-1 + TnyTn—1 = Gn41Tn.

It follows by induction on ¢ that

Tim .
o =22 g;=d; fori= 1,...,n+1.
Ti-1
In particular,
Tn-1
An4l = =dp41 = aps1 ®

Let [a),a3],...,[a1,...,an],... be the continued fraction expansion of
the real number a > 1; define the sequences

A—laAOsAla' . -';Aﬂa“'aB-la BOa Bh'- 'aan' vy

as follows:
A-1 = 0,Ao= 1,B-1 = 1,Bo= 0 and

Ap = anAn-1 + Aﬂ—2, B, = aan-l + Bn-2»

The fraction A, /B, is called the n-th convergent of o.
The basic properties of the convergents can be found in the theorem
below.

Theorem 1.22 Let a > 0 be a real number with continued fraction ezpan-
sion [a1,a2},...,[a1,...,ap],... and convergents A,/B,. For any integer
n > 0 for which apsy 1s defined the following hold

(1) ApBp-1 — Ap1Bp = ("’1)”-

(%) gcd(An,B,)=1.

() Ap< Ay <---<Ap<--+, Bg<Bj<:---<B,<-:-.

(v) a= (Anani1+ An-1)/(Bnans1 + Baoy),n 2 1.

(v) |&~ An/Bal < 1/(BaBus1) < 1/B2,

(vz) A,./Bn - A,,-l/B,._l = (—1)"/(3,.3,.-1),71 > 1.

(vii) An/Bp— Ap-2/Bp—2 = a,.(—l)"“l/(B,.B,...g),n > 2.

(viti) Agn—1/Ban-1 < Azn41/Bont1 < @ < Agn/Ban < Agn-2/Bap-3.

(iz) limpeoo An/Bn = a.
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Proof: The proof of the theorem, although tedious, it is straightforward
by induction on n and is left as an exercise to the reader. Notice that
(ix) follows from (v) and the fact that the sequence B, has exponential
growth. In fact, an easy induction on n, using the definitions of A,, B,
will show that An,Bp > fa > R™ 2, where R is the golden mean. Hence,
n < 2+ loggp Bp,2 + logg An, where n > 1 and the number of steps needed
to compute A, (respectively B,) is equal to O(number of steps needed to
compute f,) o

Theorem 1.23 For any reals o > 0 and r > 1 there erxist integers A, B
such that 1 < B < r and

A 1
I-B- - C!l < ;ﬁ.

Proof: Let An/B, denote the n—th convergent of a. Without loss of
generality it can be assumed that if @ = a/b is rational then b > r (otherwise
the theorem is trivial.) In this case one can choose n large enough such that
B, < r £ Bp41. Setting A = Aq, B = By, the theorem follows easily from
part (v) of theorem 1.22 e

A rational A/B is called a Diophantine approximation of the real
number o > 1 if and only if B > 0 and ged(A, B) = 1 and for all integers
C,D with D < B and C/D # A/B the inequality |A — Ba| < |C — Doj
holds. It is easy to see that if A/B is a Diophantine approximation of & > 1,
then for all integers C, D,

<

A
DgBandC/D;-eA/B:lE-a 5

5
- —af.

The following theorem will be essential in the study of the 1/p pseudoran-
dom generator.

Theorem 1.24 Let A,B be positive integers such that gcd(A,B) = 1 and
let @ be a positive real. Then the following statements hold

(t) A/B is a Diophantine approzimation of a = A/B 1is a convergent
of a. :

(%) |a — A/B| < 1/(2B?) == A/B is a Diophantine approzimation of c.

Proof: (i) First notice that
Ay A4

Zcl<c<ca<c < =< =,
By, By Bs B
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At first it will be shown that A/B is either a convergent or else lies
between two convergents of a. Indeed, assume on the contrary

A A

By B’

Recall that a;/1 = A;/B,;. It follows from the definition of Diophantine
approximation that

l_ |A - aB]
- B

<|A-aB|<

a1
—_——a
:-al.

which is a contradiction. Hence, A;/B; > A/B. Next, assume on the
contrary that

A A
B, B
Recall that B; = a3. It follows that
A A A 1
—— —_— | D e |
IB o> 1B le"BzB
Thus,
A-aB|> =2 >L s —a]= |4, - aBy]
32—02_02— 1 = 1 1{s

which contradicts the definition of Diophantine approximation. It follows
that

Now it can be shown that A/B is a convergent. Indeed, assume on the
contrary that A/B lies strictly between two convergents i.e.

Apny1 A Ap
T =< .
Bpyy B Bpg

A contradiction will be derived by distinguishing two cases.
Case 1: n is odd (see figure 7).

An _ Ana|_ 1D
Bn B,...l Ban—l
i A Apg 1

—————a—— > — —
Ban-l B Bn—l

- BBn-l )
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i
5
o>

Az A An-y A A A Ap—.
B# oSt B e £ R

Figure 7: The Convergents of o

It follows that B > B,. Moreover,

lﬁ - al 2 ﬁ - Antl 1 > 1
B T |B  Bp41l ~ BBp41 ~ (Bnan+1 + Bp-1)B
and

AnQni1 + Apy _4An 1

Bn

"It follows that

Buont1 + Bo-1  Bn| (BnOmt1+ Ba-1)Bn

|An = aBa| = —— < |4 - aB| < |4, — aBa|,
Bni1 ’

since B, < B, and A/B is a Diophantine approximation of a, which is a
contradiction.

Case 2: n is even.

This is omitted because it is similar to the proof of case 1. Hence the
proof of (i) is complete.

(i) Assume on the contrary that A/B is not a Diophantine approxi-
mation of a. This means that there exist integers C,D with D < B and
C/D # A/B such that the following inequality holds:

|A = Ba} > |C - Daj (23)

In the proof below it will be assumed that a < A/B. The case @ > A/B
is treated similarly. Notice that |[AD — CB| > 1, and hence,

A C} 1
B~ D|2BD (24)

Case 1: C/D< A/B<a
In this case one has
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which contradicts inequality (24).
Case 2: A/B<C/D< «
In this case one uses D < B to obtain

which contradicts inequality (24).
Case 3: a < C/D

0<g_a_C—Da<A—Ba___B_( __4)
D -~ D - D T D B
Consequently,
C A C A_B({ A A
—_———— == — — — e & o - ——
O<p-s=p-ote-gs D( B)+( B)
- (-3)(-3)- 252 (- 3) <252
- D B/ D B D 2B?
B 1 1

which contradicts inequality (24). This completes the proof e

{ EXERCISES |

1: Give the details of the proof of Theorem 1.22.

2: What is the limit of the sequence [1,1],[1,1,1],...7

3: Give the details of the proof of case 2 of part (i) of theorem 1.24.

4: Give the details of the proof of part (ii) of theorem 1.24 in the case
where a > A/B.

1.17 Bibliographical Remarks

The approach taken in this section is to provide a self-contained introduction
to all the material on Number Theory, necessary to understand the results on
the security of Pseudo-random Generators (section 4) and Public-key Cryp-
tosystems (section 5). There are numerous nice introductory or advanced
books in Number Theory. Such books include [We], [Vi], [Levl], [NZ], [K1],
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[Scha)]. Since the present chapter is intended to empasize techniques useful
to understanding the security of Public Key Cryptosystems, the material
presented is combined with the study of the complexity of certain problems
in Number Theory. Several more Algorithms in Computational Number
Theory can be found in [Kn), as well as in [An].

For more information on Lamé’s theorem (1.2) see [Kn] (page 343). The
result on (k,n) threshold schemes is originally due to [Sham2]. However,
the proof of theorem 1.7 given here follows the presentation of [Migl]. The
characterization in theorem 1.9 of those m for which Z3, is cyclic, as well
as the Law of Quadratic Reciprocity (theorem 1.13) were first proved by
Gauss in [Gau]. The interested reader can find more information on Artin’s
conjecture in [Scha], pp. 80 - 83, 222 - 225, as well as-in [Has], pp. 74 - 75.

 The Law of Quadratic Reciprocity is very useful in solving Diophantine

equations. According to Gesternhaber more than 150 proofs of the Law of
Quadratic Reciprocity have so far appeared in the literature, including 8
given by Gauss himself. The present simple proof appears in [Ge]. Some
interesting proofs and comments on the Law of Quadratic Reciprocity caa
also be found in [Pi].

A procedure for finding square roots modulo a prime number first ap-
peared in [Ber]. The present proof of Theorem 1.15 is from [AMM]. Com-
- puting the index of a number z modulo a prime number p is in general an
open problem. The algorithm given in theorem 1.18 is from [PH].

A complete proof of theorem 1.19 can be found in [La] (part 6) or [Prac]
(pp. 131 -139). The proof of the weaker version of the prime number
theorem 1.20 presented in subsection 1.15 is due to Chebyshev and follows
closely the presentation of Zagier in [Z). For more information the reader can
consult the beautiful expository articles: Prime Numbers, by Mardzanisvili
and Postnikov in [MP] and Die ersten 50 Millionen Primzahlen, by Zagier
in [Z].



38 2 PRIMALITY TESTS

2 PRIMALITY TESTS

There are problems that one poses,
and there are problems that pose themselves.
(H. Poincaré)

2.1 Introduction

Prime numbers have fascinated the minds of mathematicians and amateurs
alike for thousands of years. Unfortunately, research from its outset in
ancient Greece to the 2nd World War was limited mostly to calculations
done by hand. The advent of electronic computers has changed all this
and has brought to the forefront the problem of how to efficiently test the
primality of a given integer. In recent years, prime numbers as well as the
ability to test the primality of a given integer efficiently has become very
important for the construction of secure public key cryptosystems.

This section is an attempt to give an account of recent work on Primality
testing. The sieve of Eratosthenes (subsection 2.2) is still useful in listing
all the primes less than or equal a given integer. Subsections 2.3, 2.4 give
two tests of theoretical significance; Wilson’s and Lucas tests. Subsection 2.5
includes the Sum of Two Squares Test. In subsection 2.6 the number of steps
needed to prove the primality of a given prime is studied. Subsections 2.7,
2.8 and 2.9 study the primality of integers of specific forms, including Fermat
and Mersenne numbers. The Extended Riemann Hypothesis (abbreviated
ERH) is explained in subsection 2.10. Subsections 2.11, 2.12, 2.13 and 2.14
give three tests which prove that assuming ERH primality can be tested in
polynomial time. Two probabilistic primality tests are given in subsections
2.17 (Solovay - Strassen) and 2.18 (Rabin.) The test in subsection 2.15
is inspired from the tests based on ERH and is of practical value. The
section concludes with an account of the Rumeley - Adleman algorithm in
subsection 2.19.

2.2 The Sieve of Eratosthenes

The sieve of Eratosthenes can be useful if one wants to determine all the
primes less than or equal a given positive integer x, assuming that z is
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relatively small. To do this list all the numbers from 2 up to z in their
natural order in the sequence

2,3,4,5,6,7,8,9,10,11,12,13, 14,15, . .., z.

Starting from 2, the first prime in the above sequence, delete all the multiples
2m of 2 such that 2 < 2m < z. The resulting sequence is -

2,3,5,7,9,11,13,15,..., 2.

Next, starting from 3, the next prime in the above sequence, delete all the
multiples 3m of 3 such that 3 < 3m < z. The resulting sequence is

2,3,5,7,11,13,...,z.
In general, if the resulting sequence at the t—th sfa.ge is
2,3,5,7,11,13,...,p,...,7,

where p is the t—th prime, then delete all the multiples pm of p such that
p < pm < z. Continue in this manner untill you exhaust all primes less than
or equal to z. If at some stage in the course of this procedure a number k
has dropped then k is composite, else it is prime. It is clear that the above
procedure will give a list of all the primes less than or equal to z.

With minor alterations in the above procedure, it is easy to see that in
order to check the primality of = one only needs to continue the process up
to the t-th stage, where if p is the ¢-th prime then p < /z; moreover at the
tth-stage one need only delete all multiples pm such that p? < pm < =.

|[EXERCISES |

1: Prove the assertions made in the last paragraph of the above subsec-
tion.

2.3 Wilson’s Test

Theorem 2.1 For any positive integer n the following are equivalent
(1) n is prime
(2) (n - 1)! = —1 modn.

Proof: Without loss of generality it can be assumed that n > 2.

(1) =(2)
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For each a € Z;, the congruence az = 1 modn has a unique solution
modulo n, say a~! (here one uses the primality of n.) Since,

a’=1modn & a= 1modnora= (n - 1) modn,

it follows that the only fixed points of the mapping a — a~! are the numbers
1,n — 1. Thus, after writing all the factors of the product (n—-1)!=1.2.
3---(n—1) (except for 1,n — 1) in pairs a,a~! and cancelling out, it follows
that (n — 1)! = (n - 1) = —1 modn.

@)= (1)

Assume on the contrary that n is composite. Let n = ab, where a,b > 1.
Then it is clear that a|(n — 1)!. Hence, by assumption a|(n — 1). But this is
a contradiction since ajn

It appears that Wilson’s test has only theoretical value. However it can
be used to obtain a list of all the primes. Indeed, for each integer n let
r(n) = the remainder in the division of (n — 1)! by n(n — 1)/2. It is clear .
that if n is composite then r(n) = 0. On the other band if n > 2 is prime
then by Wilson’s theorem n|(n — 1)! + 1. It follows that (n — 1)/2|r(n),
n|r(n) + 1 and r(n) < n(n — 1)/2. Hence there exist s > 2 and ¢ 2 0
such that r(n) = s(n — 1)/2 and r(n) + 1 = tn. It is now easy to see
that 2tn = sn — s+ 2. This in turn implies n|s — 2 and hence s = 2 and
r(n) = n — 1. Hence the following theorem has been proved (see [Di], page
428.)

Theorem 2.2 (Barinaga) {r(n) + 1 : r(n) > 0} is ezactly the set of odd
prime numbers o

[EXERCISES |

1: For any positive integer n > 4 the following are equivalent
(1) n is composite
(2) (n - 1)! = 0 modn.

2.4 Lucas Test

Theorem 2.3 For any positive integer n the following are equivalent

(1) n is prime _

(2) There ezists g € Z}, such that g"~! = 1 modn, but for all primes
pl(n - 1), g(*~1/P £ 1 modn.
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Proof: (1) = (2)

If n is prime then the proof follows from the theorem of Gauss asserting
that the multiplicative group Z, is cyclic. Let g be a generator of this group.
It can be verified easily that the above g satisfies (2).

(2)= (1)

Let g satisfy (2) and let m be the order of g in the group Z; i.e. m =
the least ¢ such that ¢* = 1 modn. Since, g"! = 1 modn, it follows that
m|(n — 1). On the other hand, the second part of (2) implies that m cannot
be a proper divisor of n— 1. It follows that m = n — 1. Further, the theorem
of Euler-Fermat implies that g¥(®) = 1 modn. Hence, m = n — 1|¢(n) and
consequently n — 1 = p(n). It follows that n is prime o

Lucas test like Wilson’s test does not provide any efficient algorthm to
test the primality of a given integer n. However the following corollary of
the proof of theorem 2.3 shows that if the factorization of n — 1 is known
then it can be used to test if a given g € Z, generates the multiplicative
group Z,.

Theorem 2.4 For any positive integer n and any g € Z, the following are
equivalent

(1) g generates Z, ,
(2) g"' = 1 modn and for all primes p|(n — 1), g(*~1)/?P % 1 modn e

[EXERCISES)

1: Complete the details of the proof of theorem 2.4.

2.5 Sum of Two Squares Test

Let v (t) = largest k such that m*|t. The following lemma will be essential
for the present as well as for later subsections.

Lemma 2.1 Letn = pf‘ -« -pkr be the prime factorization of an odd integer
n, where py,...,p, are distinct primes. Putv = min{ve(p;—1):i=1,...,r}
and s =[I7; gcd(m,go(pf")). Then it can be shown that

(1) ™ = 1 modn has ezactly s solutions.

(2) (3z)(z™ = —1 modn) & vy(m) < min{ip(p; = 1) :i=1,...,r}.

(8) If z™ = —1 modn has a solution then it must have ezactly s solutions.
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Proof: For each 1 = 1,...,r let g; be a generator of Z;*." Taking

the indices of both sides of the congruence 2™ = a modn one obtains the
congruences

m - index,, (z) = index,, (a) modp(pF), fori =1,...,r. (1)

If @ = 1 then index,, (1) = 0 and hence congruences (1) become
m - index, (z) = 0 modp(pF), fori =1,...,r. (2)
If a = —1 then index,,(~1) = ¢(pf)/2 and hence congruences (1) become

go(p, ) modp(p;*), fori= 1 (3)

m - index,,(z) =
Part (1) of the lemma follows from congruences (2) and the theorem on
solving linear congruences. On the other hand the same theorem xmphes
that congruences (3) have a solution if and only if ged(m, ©(pf*))|e(p5) /2,
for each ¢+ = 1,...,r. However it is easy to see that this last equivalence
holds exactly when vo(m) < min{wa(p; ~1):i=1,...,r}
For each n let r(n) denote the number of distinct prime factors of n and
let p(n) = |{a € Z; : a®> = —1 modn}|. It is an immediate consequence of
lemma 2.1 that for all odd integers n > 2,

p(n) = 2'(") 1f 3z(z? = ~1 modn)
if =3z(z% = -1 modn)

The main result leading to the sum of two squares test is the following

Theorem 2.5 For all odd integers n > 2 the following statements are equiv-
alent

(1) 3z(z* = —1 modn)

(2) Ja,b(n = a® + b* and gcd(a,d) = 1).

Proof: (2) = (1)

Let n = a®? + b?,gcd(a,b) = 1. It is clear that ged(b,n) = 1. Hence
b is invertible modulo n and a - b~! modn is a solution of the congruence
z2 = -1 modn.

(1) =(2)
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Let z be an arbitrary solution of z2 = —1 modn. It follows from the
theory of continued fractions that there exists a rational k/b with ged (k,b) =
1,1 < b < \/n such that
z El 1 4)
2 tel < v (
Put a = zb+ kn and use equation (4) to show that |a| < \/n. It is clear
from the definition of a that a2 + 2> = 0 modn. Since 0 < a? + b2 < 2n it
follows that a? + b? = n. Substituting the value of a = zb + kn in the last

equation, using the congruence 22 = —1 modn and dividing through by n
one obtains that )
1= (z 1o+ kz) b+ ka.

However the last equation implies that gcd(a,b) =1e
A careful analysis of the proof of theorem 2.5 shows that

Theorem 2.6 For all odd integers n > 2 if z is a solution of the congruence
72 = —1 modn then there ezists ezactly one ordered pair (a,b) such that

a,b> 0,gcd(a,b) = 1,n = a® + b%,bz = a modn.

Proof:

Existence:

Consider the integers a,b defined in the course of the proof of (1) = (2)
in theorem 2.5. If @ > 0 then all the conditions of the theorem are satisfied
by the pair (a,b). If a < O then (—a)z = (—b)22 = b modn. Hence all the
conditions of the theorem are satisfied by the pair (b, —a).

Uniqueness:

Let (a,b),(a1,b1) be two pairs satisfying the conclusion of the theorem.
Using the identity of Diophantus (see exercise 2) it follows that n? = (aa; +
bb1)? + (ab; — ba;)? and aay + bb; = (1+ 22)bb; = 0 modn. These imply that
aa; + bby = n and ab; — ba; = 0. Thus, a =a;,b=10b; e

If n can be represented as the sum of the squares of the components of
the pair (a,b) then it can also be represented as the sum of squares of the
components of each of the pairs

(a,b),(~—a,bd),(a,~-b),(—a,-b),(b,a), (-b,a), (b,—a),(—b,—a).

It follows from theorem 2.6 that for any odd n > 2 there exist exactly 4p(n)
pairs (a,b) such that gcd(a,b) = 1,n = a? + b2,
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If n = a%+ b% = a? + b2, with gcd(a,b) = gcd(as,b;) = 1, then the
pairs (a,b), (a1, b;) are called essentlally identical if and only if {a2 b?} =
{a?,b2}. The integer n is said to have an essentially unique represen-
tation as a sum of two squares if n is the sum of two nonzero squares
n = a? + b2, with gcd(a,b) = 1, and all such representations of n are essen-
tially identical. It is now easy to prove the following

Theorem 2.7 (Sum of two squares test, Euler) For any odd n > 2 the
following statements are equwalent
(1) n is prime
(2)(a) n is not a nontrivial power of a prime
(b) n has an essentially unique representation as the sum of two
squares of integers o

|EXERCISES |

1: Show that a prime n > 2 can be written as a sum of two squares if
and only if n = 1 mod4.
2: Prove the following identity of Diophantus:

(a? + b%)(a? + b?) = (aa; + bb))> + (ab; — ba;)>.

Conclude that if each of n,m is a sum of two squares, so is their product.

3: Show that for any odd n > 2 there exist exactly 4p(n) pairs (a,b)
such that gcd(a,b) = 1,n = a2 + b2.

4: Determine all the integers that can be expressed as a sum of two
squares. Hint: Use lemma 2.1 and theorem 2.5.

5: (Euler) Show that the Fermat number F5 = 22° + 1 is not prime.
Hint: Fs; = (62,264)% + (20, 449)2.

2.6 Pratt’s Test

Pratt’s test is concerned with the number of steps needed to verify that

a given integer n is prime. Call (a,n), where n is a positive integer and

a € Z;, Fermat pair if and only if either (a,n) = (1,2) or ¢ 2 2 and
a™! =1 modn.

Example 2.1 (1) If p is prime then (a,p) i ¢ Fermat pair, for alla € Z;.
(2) None of (5,12),(7,12),(11,12) is a Fermat pasr.
(8) (2,341) is a Fermat pair, while (3,341) is not (see [Scha], page 118.)
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Define a partial ordering < on Fermat pairs by
(b,m) < (a,n) & m|(n—1) and a(*" /™ = 1 modn

It is clear from the above definition of < that there are no infinite < de-
scending sequences i.e. infinite sequences (ay,n;), (az,n2),...,(ak, ns),...
such that :

LRI (ak,nk) < -0 (al,nl)

For such a partial ordering it makes sense to define for each Fermat pair
(a,n) the rank of (a,n) by

rank(a,n) = sup{rank(b,m) + 1: (b,m) < (a,n)}.

Call a sequence (a;,n,),..., (ax, ng) of Fermat pairs, where & > 1, a Pratt
sequence for the Fermat pair (a,n) if and only if for each ¢ = 1,...,k,

4(a,-,n,-) <(a,n)andn-1=mn;- -n.

For any set (possibly empty) S of Fermat pairs, let I'(S) denote the set
of Fermat pairs (a,n) such that either (a,n) has no < predecessor or else
there exists a Pratt sequence (a1,n1),..., (ax,ng) for (a,n) such that for all
i=1,...,k, (a;,n;) € S. Finally, for each ¢ > 0 let the sets I'<* and I'¥ of
Fermat pairs be defined by induction on £ as follows

I<=|JI"and I* =T(I'“Y)
r<t
In addition, let
| re~=Jr.
¢

It is an immediate consequence of the definition that the operator I is
monotone i.e. § C S’ = I'(S) C I'(S’). Using this, and < induction it can -
be shown easily that the sequence I satisfies the following properties:

Lt<t/=>T¢CT¥,
2. For all t, I'* C I(TY).
3. I(I'*®) = I'.

Theorem 2.8 (Pratt) For any Fermat pair (a,n) the following are equiv-
alent

(1) (a,n) € T*.

(2) n is prime and a generates Z,,.
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Proof: (1) = (2)
It will be shown by induction on ¢ that for all Fermat pairs (a,n)

a,n) € I = n is prime and a generates Z".
n

If t = 0 then it will be shown that I'® = {(1,2)}. Indeed, let (a,n) € I'°. By
definition of I‘, (a,n) does not have an < predecessor. If n > 2, then write
n—1= q1---q, where ¢;,...,q; are the distinct prime powers dividing
(n = 1). For each ¢t = 1,...,k, let a; be a generator of Z‘ Then it is
clear that (a;,¢;) # (a,n). Thls however implies that a(""l)/‘h = 1 modn
for all ¢ = 1,...,k. Consequently a = 1 which is a contradiction. Hence,
(a,n) = (1,2). In the general case t > 0, let (a,n) € I'. By definition of
I¥, (a,n) € T'(U,<: T"). Hence, there exists an r < ¢ and a Pratt sequence
(al,nl), cesy (ak, ni) for (a, n) such that forall = 1,...,%, (a;,n;) € " and
=1=n;-:-ng. It follows from the induction hypothesis that for each i =
1 -y k, n; is prime and a; generates Z,.. Moreover, each (a;,n;) < (a,n),
a,nd hence aln=D/n 2 1 modn. It follows from Lucas test that n is prime.
In addition, a generates Z,.
(2)=(1) |
This direction will be proved by induction on the rank of the Fermat
pair (a,n). If rank(a,n) = O then (a,n) bas no < predecessor. Hence, as
in the proof of (1) = (2) it can be shown that (a,n) = (1,2). In general,
if n > 2 write n ~ 1 = p;---pg, where p1,...,p; are primes. For each
t=1,...,k, let a; be a generator of Z,.. It is then clear that (a;,p;) < (a, n),
and hence rank(a;,p;) < rank(a,n), for all { = 1,...,k. It follows from
the induction hypothesis that for all i = 1,...,k, (ai,p;) € T'™. Hence,
(a,n) € T(I'*®) = I'*®, and the proof of the theorem is complete ®

Example 2.2 Constder the Fermat pair (6,971). Notice that 971 — 1 =
2:5-97,97-1=2%-3,5—-1=2% 3—1=2. < predecessors of (6,971)
are (1,2),(2,5), (5,97); < prcdcccssors of (5, 97) are (1,2),(2,3); the only
< predecessor of (2,5) and (2,3) s (1,2). It is clear that rank(1,2) = 0,
rank(2,3) = rank(2,5) = 1, rank(5,97) = 2, rank(6,971) = 3. Moreover,
(6,971) € I3,

For each Fermat pair (a,n) € I'® let
la,n|r = smallest ¢ > 0 such that (a,n) € I'.

In the next result an upper bound of the quantity |a, n|r will be determined
which depends only on n. Let (a,n) € I'*®. Then there exists a Pratt
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sequence (a1, n1),...,(ak,ni) for (a,n) such that n — 1=1n;---n; and
la,n|r = max{|a;,nilr+1:i=1,...,k}.
It follows by induction that
la,n|r < max{logon; +1:i=1,...,k} <
logy(ny - - - ng) = logy(n — 1) < log, n.
Thus, the following theorem has been proved

Theorem 2.9 For any prime n and any generator a of the group Z3, |a,n|r <
logon e ' '

An immediate consequence of the above results is also the following

Theorem 2.10 For any integer n > 1 the following statements are equiva-
lent

(1) n is prime.

(2) 3a((a,n) is a Fermat pair and (a,n) € Tlogz2n)) o

For each prime n let II(n) be the number of divisions and exponentiations
needed to prove the primality of n. The above theorem implies that if n is
prime then (a,n) € I'¥, where ¢ = |log, n)|. To test the primality of n write
n ~ 1= p;---p; and verify the following two properties:

1. each p; is prime
2. a(r-1)/Pi 2 1 modn, fori =1,...,k.
It is now easy to show by induction that
k k
M(n) <2+ H(p:) < 2k+Y_(~2+3logy p;) < ~2+ 3logy n.
i=1 i=1

Hence it has been shown that

Theorem 2.11 For any prime n the number of divisions and ezponentia-
tions needed to prove the primality of n is at most —2+ 3logyn e
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|[EXERCISES |

1: Show that 2340 = 1 mod341, but 3240 = 56 mod341.
2: Show that < has no infinite descending sequences.
3: Show that the operator I' defined above satisfies:

l.t<t'=>TtCr?.
2. For all ¢, T* C I'(T¥).
3. I(I'®) =T,

4: Let NP (respectively Co-NP) be the class of problems which are
solvable (respectively whose complements are solvable) in nondeterministic
polynomial time. Let PR be the set of binary representations of prime
numbers. Show that PR eNPNCo-NP. Hint: Use theorem 2.11 (see [GJ]
for more details on the classes NP, Co-NP.)

2.7 Proth’s Test

This and the next two tests can be used to verify the primality of positive
integers of specific forms. Proth’s test is concerned with numbers of the
form k2" 4 1. Its proof requires the following lemma.

Lemma 2.2 (Pocklington) Let n = ab+1 > 1, where 0 < a < b+ 1.
Assume that for any prime divisor p of b there exists an integer z such that
2"1 = 1 modn and gcd(z("~V/P — 1,n) = 1. Then n is prime.

Proof: Assume on the contrary that n is not prime and let ¢ be a prime
factor of n which is < \/n. By assumption, for every prime factor p of b
there exists an integer z, such that

ordery(z,)|(n — 1) and ordery(z,) In ; 1,

where order,(z) = least ¢ such that 2/ = 1 modq. Let p* be the largest power
of the prime p such that p*|b. Then order,(z,) = sp*, for some integer s.
Considering the prime factorization of b and using the last assertion one can
find an integer z such that ordery(z) = b. It follows that ¢ — 1 > b and
hence,
@?22(b+1)32>ab+1)=ab+a>n.
In particular, ¢2 = n, a =1 and a = b+ 1, which is a contradiction
It is now easy to prove Proth’s theorem.
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Theorem 2.12 (Proth) Assume 3 Jk, k < 2"+ 1 and 3 < 2"+ 1. Then
the following statements are equivalent

(1) k2™ + 1 is prime.

(2) 3*"7" = —1 mod(k2" + 1).

Proof: (2) = (1)
This is immediate from the previous lemma, with a = k, b = 2" + 1 and
z=3.

(1) = (2) |
Using Euler’s criterion, it is enough to show that 3 is a quadratic non-
residue modulo k2" + 1. Since 3 [k, k2" + 1 = 2 mod3. Hence,
(k2" +1]3) = (2|3) = -1.

Using the law of quadratic reciprocity one easily obtains that

(Blk2" +1) = (-1)¥*"7 . (k2" + 1|8) = ~1 e

[EXERCISES]

1: Let n = ap* + 1 > 1, where p is prime, a < p* + 1l and p fa. f z
is such that z*~! = 1 modn and ged(z(®»~1)/P — 1,1) = 1 then each prime
factor g of n satisfies ¢ = 1 modp*. Hint: Imitate the proof of lemma 2.2.

2.8 Pepin’s Test

Suppose that 2" 41 is prime. It will be shown that n = 2™, for some integer
m 2> 0. Indeed, assume on the contrary that n = k- 2™, where k is odd > 1.
Put @ = 22", Then

+l1=a+1= (a+ 1)(a"'1 —aF2 4 gk3_ ... 4+ 1),

which contradicts the primality of 2" + 1.
For each n > 0, let the n—th Fermat number be defined by

=27 +1.

Pepin’s test is used to verify the primality of Fermat numbers, and is an
immediate consequence of Proth’s theorem.
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Theorem 2.13 (Pepin) For each n 2 1, the following are equivalent
(1) Fy is prime.
(2) 3Fa-1)/2 = _1 modF, e

According to [Scha), page 80, [Wi], page 134, and [BLSTW], the Fermat
numbers Fy, Fy, F3, F4 are primes, but all of Fs,...,Fyg, F2) are composite.
The status of Fp is not known. Other Fermat composites, for n > 23, are
listed in [Wi] . Moreover no other Fermat prime seems to be known.

[EXERCISES |

1: Show that for all k > 0, Fyyy = Fo---Fp + 2. Hence the Fermat
numbers are relatively prime to each other.

2.9 Lucas-Lehmer Test

It is easy to show that if 2" — 1 is prime so is n. Indeed, assume on the
contrary that 2" -1 is prime but n is composite. Let n = ab be two nontrivial
factors of n and put x = 2% Then one can show that

2"-—1=:c"-1=(z—1)(zb'l+z'“2+---+z+1),

which is a contradiction.

The Lucas-Lehmer test can be used to determine the primality of the so
called Mersenne integers i.e. integers of the form 27 — 1, where p is prime.
For each prime p, let the Mersenne number corresponding to p be defined
by '

M, =27 -1,

The main result to be used in the proof of the Lucas-Lehmer test is the
following lemma.

Lemma 2.3 (H. W. Lenstra) Let A be a commutative ring with unit
which includes Z,, as a subring. Let s > 0 be an integer. Further assume
that there ezists an o € A such that o® = 1 but for all prime g|s, o/t~ 1 is
tnvertible in A. If for some tnteger t > 0,

-1

1 (-

§=0

13 a polynomial with coefficients in 2, then for any r|s, there ezists an i
such that r = n’ mods.
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Proof: Assume that the hypothesis of the lemma is true. Let r be
a divisor of n. To show that r = n’ mods, for some ¢. Without loss of
generality it can be assumed that r is prime. Since r|n, n = rk = 0, for
some k, and hence r is a zero divisor in A. Clearly, I = {z € A : zk = 0}
is an ideal of A such that r € I. Let M be a maximal ideal containing r
and consider the field B = A/M. The hypothesis of the lemma implies that
the multiplicative order of # = o modM in B is exactly s (this is because
no invertible element can belong to a maximal ideal.) By assumption, the

polynomial
-1

p(z) = ] (= - ™)

, T §=0

has coefficients in Z,. Since, r = 0 modM and r|n, it can also be assumed
without loss of generality that p(z) € Z,[z]. Moreover, p(8) = 0. The
mapping z — z" is a homomorphism of B which leaves Z, fixed. It follows
that p(8") = 0, and hence 8" = B™ for some 0 < ¢ < t. The rest of the
proof follows from the fact that the multiplicative order of 8 in B is exactly
s o

Define the sequence ¢; by induction on k as follows

e1=4andek+1=c2—2.

Theorem 2.14 (Lucas-Lehmer) For all m > 2 the following statements
are equivalent

(1) My, = 2™ ~ 1 iz prime.

(2) em-1 = 0 modM,.

Proof: (H. W. Lenstra) f m = 2k is even then M;, = 2% -1 =
3(4*-1 + 482 4+ ...+ 1) and hence M, is not prime. In addition, it can be
shown by induction on ¢ > 2 that .3 = —1 mod3. In particular, e,,—1 #
0 modM,, (since 3|My.) Thus, without loss of generality it can be assumed
that m is odd.

Put n = M, and consider the element a = 2(m+1)/2 modn of Z2. It is
then clear that

a?=2mt1 = (2™ — 1) 4+ (2™ + 1) = 2 modn.

Counsider the quotient ring

Z, (4]

A= (22 - az-1)
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where (z2 — az — 1) is the ideal generated from the polynomial z2 — az — 1
and let o be the image of z in A. Since 22 — az — 1 is of degree 2 it is clear
that

A={s+ta:ste€ 2}, ® =aa+1.

It follows that 8 = a — o = —a~! is the other root of z2 — az — 1 in A.
Moreover, o+ 8 = a and aff = ~1. Using this and induction on k > 1 i
follows that '

o + B2 = e; modn. (5)
Now the proof of the main theorem can be completed.
(1) = (2) _
Assume n is prime. It follows easily from n = 2™—1 that n = 1 mod3 and
n = —1 mod8. Using the last two congruences, quadratic reciprocity and
the formula (2|n) = (—1)("*~1)/8 it can be shown that (2|n) = —(3|n) = 1
and hence (6|n) = —1. Since the discriminant of the polynomial z2 — az— 1

is equal to 6 it follows that A is a quadratic field extension of Z. Moreover,
a, B are conjugate over Z,, being roots of the same polynomial. Considering
the automorphism z — z" it follows easily that o™ = 8. Thus, o"*l = af =
—land B2 = o~?""" (since B = a~1.) It follows from equation (5) that

eme1 =0 + 87 = + a2 = 0 modn.
(2) = (1) - . _
Since em~1 =0 modn and A2" = o~?"" it follows from equation (5)
that _ .
o®" = -1 modn and &®™*" = 1 modn.

The idea is to apply lemma 2.3 to s = 2™*! and the ring A = 2Z,. The
lemma applies because o = § and hence z2 — az — 1 = (z — a)(z — a").
It follows that for any r|s, there exists an ¢ such that r = n’ mods. But
n? = (2™ — 1)2 = 1 mod2™*!. Hence, for every r|n, either r = 1 mod2™+!
or r = n mod2™*!, It follows that n is prime o

Remark 1: A different proof of the Lucas - Lehmer test can be given
using the so called Lucas - Lehmer functions, which for any two relatively
prime integers p,q are defined as follows:

a® ~
un(p,q) = a_g", vn(pq) = a" + 8",

where o, 8 are the two roots of the quadratic 22 — pz + ¢ and n > 0. Many
of the properties of the Lucas - Lehmer functions can be found in [Wi]. In
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section 4.5.4. of [Kn} the Lucas - Lehmer functions u, (4, 1), v,(4, 1) are used

to derive theorem 2.14 .

Remark 2: It is not known if there exist infinitely many Mersenne
" primes or infinitely many Mersenne composites. My, M3, M5, M7, M3, M7
are primes. All the remaining known Mersenne primes are listed in the table

of Figure 1.

p with 2° — 1 prime Discoverer Year | Machine 1
19 Cataldi 1588 - i
31 Euler 1722 -
61 Pervushin 1883 -
89 Powers 1911 -

107 Powers 1914 - I
127 Lucas 1876 -
521607 1,279 2,203 2,281 | Lehmer — Robinson | 1952 | SWAC
3,217 Riesel 1957 | BESK
4,253 4,423 Hurwitz — Selfridge | 1961 | IBM 7090
9,689 9,941 11,213 | Gillies 1963 | ILIAC 2
19,937 Tuckerman 1971 | IBM 360
21,701 Nickel — Noll 1978 | CYBER 174
23,209 Noll 1978 | CYBER 174
44,497 Slowinsky — Nelson | 1979 | CRAY—1
86,243 Slowinsky 1982 | CRAY

Figure 1: Table of Mersenne Primes
|EXERCISES |

1: Show that for all n,m, ged(2” - 1,2™ -1) = 28cd(n.m) _ 1 (see [Scha)
theorem 10.) Hence, the Mersenne numbers {M, : p is prime } are relatively

prime to each other.

2: In the proof of (1) = (2) in theorem 2.14 show that n = 1 mod3,n =
—1mod8 as well as (2|n) = ~(3|n) = 1.
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2.10 Extended Riemann Hypothesis

Let C* denote the multiplicative group of the field of complex numbers. A
character modulo n is a function x : Z; — C* which is a group homo-
morphism between Z,,C*. For each modulo n, the trivial character x, is
defined by xn(a) = 1, for all @ € Z}. Any character x can be extended to a
function x' : Z* — C* as follows:

1y _ J x(amodn) if ged(e,n)=1
x(e)= { 0 if ged(a,n) # 1,

where Z* = {n € Z : n > 0}. For simplicity the same symbol will be used
for x, x'.
For any character x modulo n the Dirichlet L function corresponding to
X is a function L, of a single complex variable z defined by the following
infinite series: -
L) =3 X1,

z
nsl n

Notice that if x # x3 then by analytic continuation the function Ly can be
extended to a unique analytic function defined on the half plane R(z) > Oe.g.
see [KP] (R(z) is the real part of the complex number z.) The Riemann
Hypothesis for the L function L,, abbreviated RH[L,] is the statement:
all the zeroes of the function L, in the critical strip 0 < R(2) < 1 must lie on
the line R(z) = 1/2. The Extended Riemann Hypothesis, abbreviated
ERH is the statement: for all n and all characters x modulo n, RH|[L,]
holds.

The following theorem will be essential in understanding the primality
tests that follow (see [Mont] theorems 13.1 and 13.2.)

Theorem 2.15 (Ankeny-Montgomery) There ezists a constant C > 0
such that if x ts a nontrivial character modulo n and RH{L,] holds then
there ezists a prime p < C - (logn)? for which x(p) # 1 e

It is a well known result from the theory of finite abelian groups that
every finite abelian group G is the direct product of cyclic groups, say
Gi,-..,Gy (see [Ku], part II, chapter VI.) For each i = 1,...,r, put ¢; = |G|

and let _
27
6= e (57
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be an e;-th root of unity. Clearly, each cyclic group G; is isomorphic to the
cyclic group {§/ : 7 = 0,...,6; — 1}. It follows that the group G can be
embedded into the group C*. ’

Let f : Z, — G be a nontrivial abelian group homomorphism. The
image Im(Z;;) of Z; under f is also an abelian group and as such it can be
embedded into C*; let g : Im(G) — C* be the embedding thus defined and
let x be the modulo n character g o f. It is then clear that for any a € Z,,
x(a) # 1 if and only if f(a) # 1.

As an immediate consequence of the above remarks and theorem 2.15 it
can be shown that

Theorem 2.16 (Assume ERH) There ezxists a constant C > 0 such that
if X t8 a nontrivial homomorphism x : Z;, — G between abelian groups then
there exists a prime p < C - (logn)? for which x(p) # 1 o

|EXERCISES |

1: Show that every finite abelian group can be embedded into the mul-
tiplicative group C* of complex numbers. :

2.11 Solovay-Strassen Deterministic Test
This test is based on the following theorem.

Theorem 2.17 For any odd integer n > 1 the following statements are
equivalent

(1) n is prime

(2) (Va € 2})(a*V/? = (a|n) modn)

Proof: (1) = (2) is an immediate consequence of Euler’s criterion. For
each a € Z}, let the order of a modulo m, abbreviated orderm(a), be the
least nonegative integer ¢ such that a! = 1 modm. Call n square free if
(Vp)(p|n = p* fn). To prove (2) = (1) the following lemma will be used.

Lemma 2.4 If (Va € Z;)(a"! = 1 modn) then n is square-free.

Proof of the lemma: Let p be a prime dividing n and let p* be the
largest power of p dividing n. Let g be a generator of Zge- Use the Chinese
remainder theorem to find an a € Z; such that

a = g modp’ and a = 1 mod(n/p).
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It follows from the hypothesis that a"~1 = ¢g"~! = 1 modp*. Hence,

ordery: (9) = (p') = "' (p - 1)|(n - 1).

Thus, t = 1, as desired o

Proof of the main theorem:

The above lemma implies that if n is composite then it must be of the
form n = p, -- -p,, where p;,...,p, are distinct primes and r > 2. Let a be
a quadratic nonresidue modulo p;. Use the Chinese remainder theorem to
find an z € Z; such that z = a modp; and z = 1 mod(n/p;). Hypothesis
(2) of the theorem implies that

(zln) = (zlp1) -+ (zlpr) = (alp1) = —1 = 2(*~1/2 modn,

However this contradicts z = 1 modps
Using the above theorem and theorem 2.16 it can be shown that

Theorem 2.18 (Assume ERH) There ezists a constant C > 0 such that
for any odd integer n > 1 the following statements are equivalent

(1) n is prime

(2) For all a € Z;, such that a < C - (logn)?, a("~1)/2 = (a|n) modn.

Proof: (1) = (2) is trivial. To prove the converse assume (2) is true
but n is composite. Let C > 0 be the constant of theorem 2.16. Consider
the abelian group G = {a(""1)/2. (a|n) modn : a € Z3} and the group ho-
momorphism x : Z; — G such that x(a) = a(*~1)/2. (a|n) modn. - Theorem
2.17 implies that x is nontrivial. A contradiction follows easily from theorem
2.16 ¢

2.12 A Variant of Solovay-Strassen’s Test

This test constitutes a simplification of the Solovay-Strassen deterministic
test because it makes no mention of the Langrange-Jacobi symbol. It is
based on the following theorem.

Theorem 2.19 For any odd integer n > 1 the following statements are
equivalent

(1) n is prime

(2) (Va € Z2)(al"1/2 =% 1 modn) and (3a € Z2)(a(*~1)/2 = —1 modn)
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Proof: (1) = (2)
This is an immediate consequence of Euler’s criterion and the primality
of n.

() = (1)

It follows from lemma 2.4 that n is square free ie. (Vp) (pln = p? jn).
Hence without loss of generality it can be assumed tha.t n is the product of
the distinct primes py,...,pr. The groups Z; and Z;, - X Zp are isom-
porphic. Since there exists an a € Z} such that a(""l)/ 2 = —1 modn, there

exist a; € Z;, such that a(" V2= modp;, for t = 1,...,r. Consider the
nontrivial cha.ra.cters

x(a) = a2 modn, x;(a) = a*~V/? modp;,

where ¢t = 1,...,r and let K, Ky,...,K, be their respective kernels. It is
then clear that K is isomorphic to Ky x --- x K, and hence

w(n) ko em)  eler) _ e(n)
= K| = |Ku| - Kr| = ER.. £00) £
It follows that r = 1 and hence n is prime o
Using theorem 2.16 the following result can be proved.

Theorem 2.20 (Assume ERH) There ezists a constant C > 0 such that
Jor any odd integer n > 1 the following statements are equwalent
(1) n is prime
(2) (Va < C - (logn)? in Z2)(a™ /2 = 1 modn) and
(3a < C - (logn)?in Z2)(a("~1/2 = —1 modn).

Proof: (1) = (2)

Assume n is prime. The first part of (2) is an immediate consequence of
theorem 2.19. To prove the second part use theorem 2.19 to conclude that
the character x(a) = a(®~1)/2 modn is non trivial and then use theorem
2.16.

2)=(1)

It is enough to prove that both conditions of part (2) of theorem 2.19
are true. The second part is immediate. To prove the first part assume on
the contrary (3a € Z2)a(""1)/2 #£ 1 modn. Consider the quotient group
G/H, where G = Z; and H = {1,-1}. Let x : Z; — G/H be the character
x(a) = the equivalence class of a(*~1)/2 modn in the group G/H. Using
theorem 2.16 one easily obtains an a < C - (logn)? such that x(a) # H (H
is the unit of the group G/H.) But this is a contradiction e
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2.13 Miller’s Deterministic Test

Miller’s deterministic test is based on the following theorem.

Theorem 2.21 For any odd integer n > 1 write n — 1 = 2°u, with u odd.
Then the following statements are equtvalent

(1) n is prime

(2) (Ya € Z2)(a* # 1 modn = 3k < e(a?"* = —1 modn))

Proof: (1) = (2) is an immediate consequence of the theorem of Euler-
Fermat and the primality of n. The converse (2) = (1) requires the following

Lemma 2.5 Assume that n = pf‘ .--pkr {s the prime factorization of n,
where py,...,pr are distinct primes. Write n — 1 = 2°u, with u odd and put
v=min{ve(p; — 1) :i = 1,...,r}. Then the following statements hold
(1)e2v
(8)e=v e |{1<i<r:k;isodd and vo(p; — 1) = v}| s odd.

Proof of the lemma: Clearly e > v follows easily from

r~1 S ’
) E; .
n—1=(pf - 1)+ (o - Dpiiy 2. (6)
il

Without loss of generality it can be assumed that 1,...,k are the indices ¢
for which k; is odd and v2(p; — 1) = v. It is easy to see that

(Vi > h+1)(2"|pF — 1) and (Vi < R)(2"* fo¥ ~ 1)

Hence pf‘ = 1 mod2¥*!, for ¢ > h+ 1. For s < h, let s; be odd such that
pf" = 14 5;2". Substituting in equation (6) and multiplying out it is easy
to obtain

n—1=(s;+---+ 8)2” mod2¥+! &)

It is now immediate from equation (7) that e = v & 8; + --- + 55, is odd.
The result of the lemma follows easily o

Proof of the theorem: Assume that hypothesis (2) of the theorem is
true. Theorem 2.17 implies that it is enough to show (Va € Z2)(al*-1)/2 =
(a]n) modn). Indeed, let @ € Z;. If a* = 1 modn, then a("~1)/2 = 1 modn.
Moreover since u is odd

(aln) = (afn)* = (a"|n) = 1.
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Hence without loss of generality it can be assumed that a* # 1 modn.
Hypothesis (2) of the theorem implies that there exists k < e such that

a?** = —1 modn and a2**'* = 1 modn. (8)

Let n = pf‘ ---p¥ be the prime factorization of n, where py,...,p, are
distinct primes. For each ¢ = 1,...,r let v; = vo(p; — 1); also let u; be odd
such that p; — 1 = 2%u;. Then it is true that (a|p;) = (a|p;)* = a¥(P:i~1/2 =
a2""'ui% modp;. Since both u,u; are odd it follows from (8) that

k=vi-1= (alp;))=-1,and k< vy; - 1= (a|p;) = 1. 9)

Assume on the contrary that k¥ > v; — 1, for some ¢ = 1,...,r. Then
(alpi) = a2 7'%% modp;, and hence a2"%* = 1 modp;, which contradicts
congruences (8). It follows that k S v—-1<e~1. Kk < v ~1 then
equations (9) imply that for all { = 1,...,r, (alp;) = 1 and hence also
(a]n) = 1. Since k < e~1 it follows that a("~1)/2 = 1 modn. Consequently to
complete the proof of the theorem it is enough to consider the case k = v—1.
Without loss of generality let 1,...,h be the indices such that k; is odd
and v; = v. It follows from equations (9) that (a|n) = (—1)kr+-+k  If
' v = e then the above lemma implies that k is odd. Hence (a|n) = ~1 and
a("1/2 = 2" = _1 modn. On the other hand if ¥ < e then h is even
and k + 1 < e. Moreover, (a|n) = 1 and a(*~1)/2 = ¢2*7'¢ = 1 modn. This
completes the proof of the theorem o
The above theorem and theorem 2.16 can be used to show.

Theorem 2.22 (Assume ERH ) There exists a constant C > O such that
for any odd integer n > 1 if n — 1 = 2%u, with u odd, then the following
statements are equivalent

(1) n is prime

(2) For all a € Z}, such that a < C - (logn)?,

a" # 1modn = 3k < e(azk" = -1 modn).

Proof: (1) = (2) is trivial. To prove the converse assume (2) is true
but n is composite. Let C > 0 be the constant of theorem 2.16. Assume on
the contrary that for some prime p, p?|n. Consider the abelian group G =
{a*"! modp® : a € Z;,} and the group homomorphism x : Z, — G such
that x(a) = a?~! modp®. The following lemma implies that x is nontrivial.

- Lemma 2.8 The congruence 2~ = 1 modp? has at most p — 1 solutions.
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Proof of the lemma: Let g be a generator of 93 Then it is easy to
show that the only solutions of the above congruence are

g° modp?,¢® modp?,...,q" "V modp? e

It follows from theorem 2.16 that there exists an integer a < C - (log p?)?
such that a?~! # 1 modp?. It will be shown that in fact a®~! % 1 modp?.
Indeed, if a"~! = 1 modp? then ordery2(a)|(n — 1) and order,s(a)|(p?) =
p(p—1) imply that orderpa(a)[p—1, which is a contradiction. Hence a"~! 3
1 modp?, which contradicts the hypothesis of the theorem.

Thus it can be assumed that n is the product of distinct primes. Let
P, ¢ be two distinct prime factors of n. Without loss of generality it can be
assumed that vo(p — 1) > v3(g — 1). Define an integer d = 1 mod4 by

=1 P8 Enlp-1)=1(¢-1)
p fura(p—1)>e(g-1)

It follows from theorem 2.16 that there exists an a < C-(logd)? < C-(log n)?
such that (a|d) = ~1. Put b = a¥. Since u is odd it follows that (b]d) =
—1 and hence b # 1modd. It will be shown that for all j < e, b2 #
—1 modn. This clearly contradicts hypothesis (2) of the theorem. Indeed,
assume otherwise and let § < e be maximal such that 42’ = —1 modn. Then
order,(b) = order,(b) = 2/*1. One can now distinguish two cases.

Case 1: v2(p—1) > 12(g-1)

In this case 2/*1|g — 1 and hence 2/+!|(p — 2/2 Thus, on the one
hand (b|d) = (blp) = —1 and on the other hand 5(P~1)/2 = 1 modp, which
contradicts the Euler-Fermat theorem.

Case 2: 1a(p—1)=15(g-1)

In this case (b|d) = (blp)(blg) = —1. Say, without loss of general-
ity, (b]p) = —(blg) = —1. Hence bl#~1)/2 = 1modg and ordery(b) =
orderg(b)|(g—1)/2. Since vo(p—1) = v2(g—1) this implies that order,(b)|(p-
1)/2 and hence 5(P~1)/2 = 1 modp, which is a contradiction, since it is true
that (bjp) =1e

|[EXERCISES |

1: (Assume ERH) Using the notation of theorem 2.22 show that if n
is composite then there exists a k < € and an a € Z with a < C - (logn)?
such that gcd(az"“ modn — 1,n) > 1. Hint: use theorem 2.31.



2.14 An Improvement of Miller’s Test 61

2.14 An Improvement of Miller’s Test

The proof of theorem 2.22 requires the Riemann hypothesis for the L func-
tions corresponding to the characters

x(a) = a*~! modp?, p is prime and

x(a) = (ald),
where d = 1 mod4 and d is either a prime or the product of two primes.
H.W. Lenstra in [Len4] has observed that the Riemann hypothesis is not

necessary for the characters x(a) = a®~! modp?. In fact it can be shown
that

Theorem 2.23 Assume that the Eztended Riemann Hypothesis holds for
all L functions of the form L4(z) = i, (k|d)k™*, where d = 1 mod4 and d
is either a prime or the product of two primes. Then there exists a constant
C > 0 such that for any odd integer n > 1 if n — 1 = 2%u, with u odd, then
.the following statements are equivalent
(1) n is prime
(2) For all a € Z}, such that a < C - (logn)?,

(e # 1 modn = 3k < e(azk" =-1 modri)).

Proof: The proof of (2) = (1) is exactly as the proof of theorem 2.22.
However to show that for all prime p, p* /n one does not use the ERH
but instead the following lemma (due to H. W. Lenstra) which requires no
unproved hypothesis.

Lemma 2.7 For any odd prime p there ezists a prime a < 4(logp)? such
that '
a?~! # 1 modp®.

This completes the proof of the theorem o
" Details of the proof of lemma 2.7 can be found in [Len4], page 87.

|[EXERCISES |

1: (H. W. Lenstra) Use lemma 2.7 to give the following improvement
of lemma 2.4, which requires no unproved hypothesis: if n # 4 and Ve <
(logn)?a™"! = modn then n is square-free. Hint: argue by contradiction.
Assume that p is a prime such that p?|n. First show that n must be odd
and then use lemma 2.7.
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2.15 Selfridge-Weinberger Test

For each prime p let F(p) = the least positive square free integer n such
that for all prime numbers ¢ < p, (¢g|n) = 1.

Theorem 2.24 Let n > 1 be an odd tnteger and suppose that p is a prime
such that p < n < F(p). Then the following statements are equivalent
(1) n is prime
(2)(a) (Vg prime < p)ged(g,n)=1
(b) n is not a nontrivial power of a prime
(c) (¥gprime < p)(¢™~1/2=%1 modn)
(d) (3¢ prime < p)(¢{*~Y/2 = —1 modn)

Proof: (1) = (2)

This is an immediate consequence of Euler’s criterion, the primality of
n and the minimality of F(p).

(2)=(1)

Assume on the contrary that n is composite. Let n = pf‘ .-.p¥ be the
prime factorization of n, where p1, . .., pr are distinct primes. By assumption
r>2 Fori=1,...,r, write n — 1 = 2%u,p; — 1 = 2%y;, where u,u;,...,u,
are odd. The basic step in the proof is the following

Claim: y; =e,foralli=1,...,r.

Proof of the Claim: Consider an integer ¢ = 1,...,r. Since p; < n <
F(p) there exists a prime ¢ < p such that (g|p;) = —1. Let d = ordery, (g).
By Euler’s criterion ¢®*~1)/2 = —1 modp;. By assumption, ¢(*1)/2 =%
1 modp;. It follows that 15(d) = v; and d|n — 1 and hence v; < e. It remains
to show that v; > e. By assumption there exists a prime ¢ < p such that
¢®=1)/2 = —1 modp;. On the other hand ¢*~! = 1 modp;. It follows that
v; 2 e and the proof of the claim is complete.

It follows from the claim and lemma 2.5 that there exist two distinct
primes p;, p; such that p; - p; < n (assume for simplicity that ¢ = 1 and
J = 2.) By assumption there exists a prime g < p such that (¢|p; - p2) = ~1.
Without loss of generality it can be assumed that (¢|p;) = —(¢lp2) = 1.
Moreover it is true that

q(""l)/ 2 =%+ 1 modn. (10)

For ¢ = 1‘,2 put d; = order,,(¢g). Since ¢P2=1)/2 = _1 modp,, 2°|d; and
hence
¢™V/? = —1 modp,. (11)
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Since ¢(?*=1)/2 = 1 modp,, d;]2°"1u;. It follows from congruence (10) that
di|(n — 1)/2. Hence,
g™ 1/2 = 1 modp,. (12)

However congruences (10), (11), (12) give a contradiction e

Besides its theoretical value the Selfridge-Weinberger test has practical
significance as well. In applications one uses tables of values of the function
F(p) and tests the primality of an integer p < n < F(p) via theorem 2.24.
Such a table of values of F(p) can be found in [LLS], from which the table
in Figure 2 is extracted.

p_| F(p) p | F(p)

3 |73 53| 22,000, 801

7 | 1,000 67 | 175,244, 281
13 | 8,089 79 | 898,716,289
19 | 53, 881 101 | 10, 310, 263, 441
20 | 117,049 || 103 | 23,616, 331,489

37 | 1,083,289 | 127 | 196, 265,095,009

Figure 2: Table of Values of F(p)

In addition, Weinberger has shown (unpublished) that assuming ERH
there exist constants c;,cg,c3 > O such that for all n and all primes p,

p > (c1logn + czloglogn + c3)? = n < F(p).

2.16 Probabilistic Primality Tests

The main feature of a probabilistic primality test is the construction of a
family P = {P, : n > 1} of sets of integers such that the following properties
hold:

1. Foreachn 2> 1, P, C Z;

2. Given b € Z;, it is easy to check (i.e. in time polynomial in the length
of the integer n) if b€ P,

3. If n is prime then P, = 0

4. There is a constant 0 < € < 1 which is indepedent of n such that for
all sufficiently large compositeodd n > 1, Prlz € Z} : 2 &€ P,] < e.
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Remark: In practice property 4 above will be true for all n > ng, where
no is small (e.g. no = 1 in the Solovay-Strassen test and no = 9 in the Rabin
test.)

Such a family P = {P, : n > 1} will be called a primality sequence
and the constant ¢ satisfying condition (4) above is called the primality
constant corresponding to the family P. To any primality sequence P one
can associate a primality test, denoted by Ap and defined as follows:

Input: n> 1

Step 1: Choose an integer b € Z, at random.

Step 2: Check if b € P,.

Output:

PRIME ifbég P,
Ap(n) = { COMPOSITE if b€ P,

The following result is now an immediate consequence of the above def-
initions.

Theorem 2.25 Let € be a primality constant corresponding to the primality
sequence P. Then for any sufficiently large odd mtegcr n21,

(1) n is prime = Ap(n) = PRIME.

(2) n is odd and composite = Pr[Ap(n) = PRIME|<ce

In other words, if n is prime the test Ap will output the correct answer
(i.e. PRIME). However, if n is composite and odd the test Ap may not
necessarily output COMPOSITE; in fact it may very well output PRIME.
However, the probability of making such an error is less than or equal to ¢.

If the random choices of b are indepedent in successive runs of the al-
gorithm Ap then one can significantly improve the probability of error. In
fact it is very easy to show that

Theorem 2.26 Let ¢ be a primality constant corresponding to the primality
sequence P. Then for any snteger m > 1, and any sufficiently large odd
integer n,

n is composite = Pr[Ap(n) = PRIME, m times] < c™e

The next two tests are probabilistic primality tests. In each case the
primality sequence will be defined and the primality constant correspond-
ing to this sequence will be determined. The proba.blhstlc primality test
corresponding to each such sequence P is Ap.



2.17 Solovay-Strassen Test 65

{EXERCISES |

1: Prove theorems 2.25 and 2.26.

2.17 Solovay-Strassen Test
The primality sequence of the Solovay-Strassen test is defined by

Po={be Z} : 5™ 1/2 2 (b|n) modn}.

It follows from Euler’s criterion that P = {P, : n > 1} satisfies conditions
(1) = (3) of primality sequences. For each n consider the multiplicative group
automorphisms fp,,gn, kn : Z, — Z, defined by

fn(a) = ™2 modn, g,(a) = (a|n) modn, ks(a) = (a|n)-a™1V/2 modn.

Let K,, Ln, M, denote the kernels of the homomorphisms fp, gn, hn respec-
tively. Put K, = {b € Z} : fu(b) = -1 modn}, L, = {b € Z : go(b) =
—1modn} and M}, = {b € Z} : ha(b) = —1modn}. It is clear that
M, =2Z} - P,.

Theorem 2.27 (Monier) For all odd n, if p1,...,p, are the distinct prime
factors of n then

L n—-1
lz;—Pnl=5anCd( D) ’Pi—l)’

i=1
where 6, has one of the values 1/2,1,2.

Proof: It is clear from the definition of K,; and lemma 2.1 that

L n—-1
lKnl=Hng( 2 spi_]-)-

=1

On the other hand it is true that M, = (K, N L,) U (K}, N L!,). Hence,

M= | BN Lol f KpnL =0
1= 2|K,NL ¥K,NL, %0

(if K} n L), # 0 choose by € K}, N L}, and consider the bijective function
b — bby to show that |K, N L,| = | K}, N L}|.) A similar argument using
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K, = (K, N L,) U (K, N L), the kernel of the homomorphism f, shows
that
| K| if KnnL,=90

Hence |M,| = 6,|K,| as desired o
Now it is not very difficult to determine the primality constant.

|[Kn N Lp| = {

Theorem 2.28 (Solovay-Strassen) For all composite odd integers n,

| p(n) ~2

Proof: Let p;,...,p, be the distinct prime factors of n and suppose that
p:-" is the largest power of p; dividing n. It follows from Monier’s theorem
and the properties of the function ¢ that

1z =Pl s T ged (258, p: — 1)

Qo(n) =1 P:‘-l (Pc' - 1)

(13)

If for some 1, {; > 2 then the righthand side of inequality (13) is < 4,,/3 <
2/3. Hence, Z, — P, is a proper subgroup of Z; and as such it must be true
that |Z; — P,| < (1/2)(n).

Thus, without loss of generality it can be assumed that for all ¢, ¢; = 1.
In this case n = p; - - - p,. Assume on the contrary that Z; = M,. Sincen is
composite, r 2 2. Let g be a generator of Z7 . Use the Chinese Remainder
theorem to find an a € Z; such that ¢ = ¢ modp; and ¢ = 1 mod(n/p;).
Since Z2 = M, it is true that a("~1)/? = (a|n) modn. However, (a|n) =
(alp1) - (alpr) = (alpr) = (glp1) = —1. Hence, a™=1/2 = —1 mod(n/m),
which contradicts a = 1 mod(n/p;) o

As an immediate corollary of equality (13) one can also obtain that

Theorem 2.29 For all composite odd integers n, if (n — 1)/2 is odd and r
1s the number of distinct prime factors of n then
p(n) ~ 271

|EXERCISES |
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1: Prove that for all composite odd integers n, if (n ~ 1)/2 is odd,
P1,...,Pr are the distinct prime factors of n and e = 3"7_; v2(p; — 1) then

p(n) = 2717

Use this to deduce theorem 2.29.

2.18 Rabin Test
The Rabin primality sequence is defined by
P,={be 2z} : b1/ £ 1 modn and (vt > 0)(6("~1/?" % —1 modn},

where e = vp(n — 1) and the quantifier V¢ above is restricted to allt < e. It
is easy to show that P = {P, : n > 1} satisfies conditions (1 - 3) of primality
sequences. It is clear that Z} — P, =

{be 2z : "1/ = 1 modn or (3t > 0)(4™1/* = —1 modn)}, (14)

where the quantifier 3¢ above is restricted to ¢t < e. The following theorem
determines the exact size of the above set.

Theorem 2.30 (Monier) Let n be a composite odd integer, with prime
Jactorization n = p'l‘ --.plr, where p1,...,p, are distinct primes. Write
n—1=2%,p; — 1= 2%uy;, with u,u; odd and let v =min{y; :i=1,...,r}.
. Then the following equality holds

2™ _ 1\ of
|Zp = Pal = (1 + ) ) chd(u,u,-)
§=1

Proof: Put s = []7_; gcd(u,u;). The leftmost congruence of the set in
(14) has exactly s solutions (see lemma 2.1.) For any given ¢ > O the other
congruence has a solution if and only if v2((n — 1)/2') = e — t < v. Hence,

for each ¢ > e — v the number of solutions of 5("~1)/2* = —1 modn is .
L n—1
II ged (""'2';"‘,?:' - 1) .
i=1

It follows that /

L n—1
|Zy - Pal=s+ Z chd( 5 ,p.--l).

e=y<i<e i=1
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The theorem now follows easily from
ged (I‘—z-;-l,p,- - l) =2 . gcd(u, u;) @
Let R, be the set
{b €Z;:5" ! # 1 modn or (3t > 0) [l < ged (b("'l)/"" - l,n) < n]},

where n— 1 = 2°u, u is odd and the quantifier 3¢ above is restricted to ¢ < e.
It is now easy to show that

Theorem 2.31 (Miller-Rabin-Monier) For all odd integersn > 2, P, =
R,.

Proof: Let b € Z} be arbitrary. For each t such that 2f|n — 1 let

__n-—l

2
It is very easy to show that for all t such that 2‘|n — 1, the following hold

d(t) , z(t) = b¥0) ) g(t) = ged(2(t) - 1,n).

1. g(t) =n & z(t) = 1 modn
2. g(t)=n=>g(t-1)=n
3. z(t - 1) = z(t)2.

Proof ofbe P, = beER, ,

Assume on the contrary that b € P, but b € R,. It follows that there
exists an integer k < e such that g(k) = n. Since b € P,, b%9 % 1 modn
and hence g(e) # n. It follows that there exists k£ < e such that

9(0)=g(1) = =g(k) =n > g(k+1) =---=g(e) = 1.

But g(k) = n. Hence, z(k + 1)? = 1 modn. Therefore n|(z(k+1) - 1)(z(k+
1) +1). This and g(k + 1) = ged(z(k+ 1) = 1,n) = 1 imply that z(k+1) =
—1 modn, which in turn contradicts b € P,.

Proof of be R, = be P,

Assume that b € P,. Then either z(e) = 1 modn or 3t > 0(z(t) =
—1modn). In the first case b € R,. Thus without loss of generality it can
be assumed that z(e) # 1 modn. Choose k < e such that

z0)=z(1)=---=z(k-1) =1, z(k) = ~1 modn.
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~ Using the fact that z(k) = z(k + 7)* = —1 modn it follows that
zk)-1=z(k+1)?-1= :t:(lc+2)22 ~-1= ---Ez(e)"-‘ - 1= -2 modn.

However, for all j < e — k there exists an integer b; such that
2k + 5)* = 1= (a(k + §) - 1)bj = -2 modn.

(V5 < k)(g9(5) = n) it follows that (Vt)(g(t) = 1 or n). Hence, b€ R, ®

It remains to determine the primality constant of the Rabin sequence.
Let n be an odd integer with p1,...,pr its distinct prime factors. Let n =
pf‘ .- - pkr be the prime factorization of n and put ¢; = pf‘, wheret =1,...,r.
Let t; = ged(p(gi),n — 1) and m; = ©(g;)/t;. In addition put e; = 1a(t;),
o; = max{e;—ej:j=1,...,r}. It is clear that if ¢; is minimum among the
{e1,...,e} then a; = 0. Consider the sets

Since n is odd > 2 it follows that (Vj < e ~ k)(g9(k + 5) = 1). Since

I={1<i<r:a;>0},J={1<i<r:a;=0}

andputa=a;+---+ap f=|J|. Itisclear that > 0and a+ 8> r.
The following result uses the above notation and is the main theorem of this
subsection.

. Theorem 2.32 For any composite odd integer n > 2 if the number r of
distinct prime factors of n is > 2 then
|Z; - | 1
w(n) 2".‘.'-ﬂ-.lm-l mr

Proof: Let b € Z! — R,. Then b"~1 = 1 modn. For each i = 1,.
let a; be a generator of Z;.. It follows that there exists an s; < v(g:) such
that b = af’ modg;. Thus, "1 = a:‘("—l) = 1 modg; and ©(g;)|si(n - 1).
Since ged(m;,n — 1) = 1 and m; = ©(g;)/ti|si(n — 1) it follows that m;|s;
and s; = m;h;, for some h; < p(g;)/mi. Soforalli=1,...,r

b= a}”‘h‘ modg; - (15)

and si(n — 1) = m;hi(n — 1) = ©(g;)h;&=. An essential step of the proof is
the following
Claim: For all i = 1,...,r, 2%|h;.
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Proof of the Claim: Without loss of generality it can be assumed that
a; > 0. Let 7 be an index such that o; = ¢; — ¢; > 0. Let f; > 0 be such
that vp(n — 1) = ¢; + f;. Put 4; = ¢; ~ ¢; + f;. Then va(d(v;)) =¢;. In
addition, t;|d(v;). Hence, p(g;) = t;m;|m;d(~;). It follows from congruence
(15) that b4(%) = a;-'"'h"d("‘) = 1 modg;. Hence, 1 < ¢; < gcd(b9%) — 1,n).
Since b & Ry, ged(b%™) — 1,n) = n and hence b%%) = 1 modn. Using the
last congruence, the fact that a; generates Z;, as well as congruence (15) it
follows that ¢;]d(v;)h;. But this easily implies that 2%~% = 2%|h;, which
completes the proof of the claim.

Using the above claim and congruence (15) it follows easily that

|22 - B < pla)  eler) < p(n)
2%1m; 2%rm, ~ 2m;---m,

The above inequality shows that the proof of the theorem is complete if
B = 1. Hence without loss of generality it can be assumed that 8 > 2. It
follows from the definition of J that for all 1,5 € J, e; = e;; let e* be the
common value of the e;’s, for j € J. Put 7 = fj+ 1 (where f; was defined
above) and notice that for j € J the value of fi, and hence of ), does not
depend on j; let 4 be the common value of the 7 ’s, for 5 € J It is now

" clear that

2d(x) and t; Jd(n)
On. the other hand using congruence (15 ) it is true that for all j € J,
) =1 modg; ¢ ga(qj)lh,-m,-d('y) < tjlhjd(’y).

However b € Z3 — R, and hence gcd(b%(") — 1,n) = 1 or n. It follows that
either (V5 € J)(2|h,) or (V5 € J)(2 fhj). Since (Vi € I)(2%|h; ), the proof
of the theorem is complete o

As a first corollary it can be shown that

Theorem 2.33 (Rabin) For all odd composite integers n > 9,
122 - Ba|
“ () < 4
Proof: If r > 3 the theorem follows from theorem 2.32. If r = 2 then
a+ B8 -1 2> 1. Hence the theorem follows from theorem 2.32 if either

m; = 2 or mg = 2. Assume on the contrary that m; = mg = 1. This last
statement implies that n = p;py. Say p; < pp. Then p2 ~ 1= p(p)jn-1=
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p1(p2 — 1) + (p1 — 1), which is a contradiction. It remains to prove the
theorem in the case r = 1. Let n = p!, some t > 2. But

|Zy— Rp| < |{b€ Z:: 0" =1modn}| < ged(n - 1,p—~1)=p-1.
It follows that
| |Zo—Rn|l . _p-1 _ 1
p(n) = pp-1) p!

Since n > 9 the proof of the theorem is complete
Another corollary is the following

Theorem 2.34 For all odd integers n > 2, if r is the number of distinct
prime factors of n then

|Za = Ra| _ 1
p(n) 271

[EXERCISES]

1: T:Ising the notation of the proof of theorem 2.32 one can show that

—_ ]
e(n) 2my---m,

where § = e1'+ .-« 4 e,. Hint: Use lemma 2.1.

2.19 Rumeley-Adleman Test

The Rumeley-Adleman algorithm (abbreviated by RA) is different from the
previously considered probabilistic primality tests. Given as input an odd
integer n > 1, RA(n) may not converge; however, if RA(n) converges then
the test gives the correct answer. -

Throughout the proof below n will be an odd integer > 1. For each
prime p let ¢, = exp(27i/p) be a primitive p—th root of unity and consider
the cyclic group G, = {g;; :0 <1< p-1}. Let p,g be primes such that
plg — 1 and consider a character xp,g = x : Z; — Gp of Z; onto Gp. Such
characters exist (e.g. let g be a generator of Z; and put x(¢9* modg) = ¢7),
which is well defined since p|g — 1, and are called characters of order p
and conductor g. Further, consider the ring Z[¢p, ¢g]-
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For each character x of order p and conductor g the generalized Gaus-
sian sum corresponding to x is defined by

=
G(a,x) = - E x(f)s", wherea € Z;.

i=]

The Gaussian sum corresponding to x is defined by G(x) = G(1, ).
Now one can prove the following

Lemma 2.8 Let x : Z; — Gp be a character of order p and conductor g,
where plg — 1. Then for any odd integer r the following statements hold:

(1) G(a, x)___(a) - G(x), for a € Z;.
(2) G(x)-G(x) =g.
(8) G(x)" = x(r)™" - G(x") mod(rZ[sp, ¢))

Proof: The proof of (1) is immediate from the equations below

g-1
G(a,x) = - Y_ x(ia)x(a)¢i* = Xx(a)G(x)-
i=]

To prove (2) notice that for a € Z Z:f:ll G2 = (e -1)/(e-1) =0
Hence,

TR = -C(x) S X0y f==3 el x) = Y x()gUY =g
i=1 i=1 i,y=1

It is easy to show that if congruence (3) holds for each of the integers r,s
then it must also hold for their product r-s. Hence without loss of generality
it is enough to prove (3) when r is prime. Using the binomial theorem it
can be shown that

e-1 AW q-1 )
G(x) =~ (E x(i)cé) =-> x(@)¢r=

$=1 =1
g-1 '
=x(r)™" 2 x(Er)"g" = x(r) T G(x") mod(rZGp, ) @
f=1

The next lemma is basic for the proof of the Rumeley-Adleman test.
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Lemma 2.9 Let x : Z; — Gp be a character of order p and conductor g,
where plg — 1. Then for any odd integer r one can show that
(1) If there exists an 1(x) € Gp such that

G(x)" = n(x)""G(x") mod(rZ{sp, &]) (16)
then n(x) = G(x)™" ~* mod(rZls, gl)-
(2) In particular,
x(r) = G()™ ! mod(rZ¢p, <))

Proof: Clearly (2) is an immediate consequence of (1) and part (3) of
lemma 2.8. To prove part (1) apply the homomorphism of Z[gp, ¢], which
carries ¢, to ¢5° and ¢, to ¢, to congruence (16) above to obtain

G(xX") = ()" (x"™*") mod(rZ[s,, ) (17)
Using this and induction on ¢ it follows easily that
G(0" =900 G (x") mod(rZlsp, i) (18)

Now apply congruence (18) to the exponent ¢ = p— 1 in order to obtain the
desired result e

Let r|n be such that v (r*"1—1) > vp(n?~1~1). Then (rP~1—1)/(nP"1 -
1) is a fraction of the form (p*a)/b, where a,b are relatively prime to p and
k > 0. Hence b is invertible in Z, and it makes sense to define

. rp-l -1
ep(r) = ;;;-:i—:I modp

It is clear that £,(n) = 1. If one uses the identity
(rs)P = 1= (P = 1)(P 1= 1)+ (P 1= 1) + (s = 1)
then it can be shown easily that
Lemma 2.10 Assume that ged(p, n) = 1 and that for all primes r|n,
vp(rf~1 = 1) 2 1y (nP™! - 1). (19)

Then for all integers r, s|n, £y(rs) = £y(r) + £y(s) modp
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Remark: If n~! # 1 modp? then for any r|n,
vp(rP~1 - 1) > u,,(n"'1 -1).

Lemma 2.11 Let p be a prime such that gcd(p, n) = 1. Assume there exists
a character x : Z; — G, of order p and conductor g such that gcd(g,n) = 1
and plg — 1. If there exists an n(x) € G, such that 9(x) # 1 and

G(x)" = n(x)™"G(x") mod(nZ[s, &]) (20)

then one can prove that for all rin,
(1) wp(rP~t = 1) 2 p(nP~1 ~ 1)
(2) x(r) =n(x)%") mod(rZs, &)
(3) x(n) = n(x) end x(r) = x(n)*") mod(rZ{¢, &)

Proof: It follows from lemma 2.9 (for r = n) that

n(x) = G(x)™" ! mod(nZlg, &)

Assume that rin.
Let a be the order of G(x) in Z{¢p,¢q]/nZ][¢p,¢q)- Since n(x) # 1, a does
not divide nP~! — 1. Since 7(x)? = 1, a|p(nP~! — 1). In addition lemma 2.9
implies that .
-

1= x(r)? = G(x)P"" ) mod(rZlggg))-

Hence it follows that a = v,(p(n?~! - 1)) < vp(p(r?~! — 1)) and the proof
of (1) is complete.

To prove part (2) write (rP~! — 1)/(n?~! — 1) = a/b, where a,b > 0 and
b =1 modp. It is then clear that £,(r) = a modp and hence

x(r) = x(r)* =GOV =6 N =
n(x)* = 1(x)*") mod(nZlgp,gq]) ©
For each integer t put
s(t) = H{q : ¢ — 1|t and ¢ is prime}.

To study the running time of the Rumeley-Adleman algorithm one needs
the following result from analytic number theory (see [APR}.)
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Theorem 2.35 (Odlyzko-Pomerance) There is a constant ¢ > O which
ts effectively computable such that for all integers n > €°, there ts an tnteger

0<t< (logn)cloglogloxn
(which is not actually constructed in the proof) such that s(t) > \/n e

Now it is possible to state the Rumeley-Adleman algorithm.

Input: n odd > 1.

Step 1: Try the integers t = 0, 1,..., until you compute an integer ¢
such that s(t) > /n.

Step 2: Put s = s(t) and confirm gcd(st,n) = 1.

Step 3: If for any prime p|t either

(1) nP~1 % 1 modp? or _

(2) n~! = 1 modp? and a g can be selected with g|s and pjg — 1, as well
as a character x : Z; — Gp of order p and conductor ¢ can be selected such
that G(x)" = 7(x) "G (x") mod(nZ]¢p, ¢]) holds for some n(x) € Gp — {1}

then go to Step 4.

Step 4: For each i =0,1,...,5 — 1 compute gcd(n’ mods, n).

Output:

RA(n) = { FRIME if (Vi < 8)(ged(n' mods,n) = 1 or n)
~ | COMPOSITE if (3¢ < s)(1 < ged(n’ mods, n) < n)

It is clear that the algorithm may not terminate but instead run forever
in Step 3. However it can be shown that

Theorem 2.36 (Rumeley-Adleman) For all odd integers n > 1, if the
algorithm RA terminates on tnput n then the following statements are equiv-
alent:

(1) n is prime.

(2) RA(n) = PRIME.

Moreover, if RA(n) terminates then the number of steps needed to output
the answer s O ((log n)°l°‘l°‘l°"') .

Proof: Assume on the contrary that RA(n) = PRIME but that n is
composite. Let r be a prime divisor of n such that r < /n. Let ¢ be an inte-
ger such that s = s(t) > /n and suppose that gcd(st,n) = 1. Since RA(n)
converges the integer n passes the test in step 3. It follows from lemma 2.11
that vp (kP~1-1) > vp(nP~1-1), for all k|n. Hence 4,(k) is defined for all k|n.
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Use the Chinese Remainder theorem to find an integer £(r) € {0,1,...,5-1}
such that for all prime divisors p of t, £(r) = &(r) modp. It follows from
parts (2),(3) of lemma 2.11 that for any character x : Z; — G, of order p
and conductor ¢ (such that plg - 1),

x(r) = x(n).

However, such characters generate the group Char(Z;) of characters modulo
s (which is isomorphic to Z;.) It follows from the duality theorem of the the-
ory of characters (see [KP], page 129 or [Cohn], page 24) that r = nf(") mods.
But this is a contradiction since 1 < r = ged(n«") mods,n) < n. The other
direction is easy. If the test declares n composite (i.e. RA(n) = COMPOS-
ITE) then n must be composite o

Lenstra in [Len3] has observed that the integer s(t) used in the proof of
the Rumeley - Adleman algorithm can in fact be replaced with

e(t)=2- H{ql’q(‘)"’l : ¢ — 1]t and g is prime}.

Details of the proof (which is similar to the above proof) have been carried
out by H. Cohen in [Cohe]. In addition Lenstra has pointed out that con-
dition e(t) > /7 can in fact be replaced by e(t) > n!/3. Although both of
these observations are useful for applications they do not alter the theoret-
ical bound O ((log n)"°‘l°‘l°‘"). In applying the Rumeley-Adleman test

one need only form a table of values of ¢(£)? (see [Cohe], page 31.)

7 @)

60 = 223. 5 464 F 19
1,260 = 2%3%5 .7 131 E 62
10,080 = 25375 . 7 183 E 128
55,440 = 2%3%5 . 7. 11 242 E 213
166,320 = 2%3%5 . 7 11 | 4.88 £ 313 |

Figure 3: Table of Values of e(t)?

The table in Figure 3 shows that to test the primality of a 200 digit
integer one need only factor integers t < 55,440 (by all means an easy task)
and then use the Rumeley - Adleman algorithm. According to [ScCil] this
algorithm can be used to test the primality of an arbitrary 97 digit number
in 78 seconds of computer time.
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|EXERCISES)|

1: If p,¢ are primes such that pjg — 1, g is a generator of Z7 and ¢ is a
p—th root of unity then x{¢* modg) = ¢; is an epimorphism of Z7 onto Gp.

2.20 Bibliographical Remarks

Eratosthenes developed the sieve method in the 3rd century BC. The obser-
vation that one need only run the algorithm for p < \/n in order to test the
primality of n is due to Pisano {1202); this was also oserved by Ibn Albanna
(end of 13th century.) For more details see [Di]. A discussion of the limits
of the sieve method can be found in [Se]. In [Rad] a double sieve method is
applied to show that 3 {1/p+ 1/(p+ 2)} converges, where the sum ranges
over primes p such that p+ 2 is also a prime. The reader should also consult
[Haw] for the notion of random sieve. In addition exercise 8 in section 4.5.4
of [Kn] is relevant. Barinaga’s theorem is an immediate application of Wil-
son’s theorem and is stated in page 428 of [Di]. Pratt’s test was first proved
in [Prat]. For more information see [Len2].

The sum of two squares test is essentially due to Euler. His proof followed
after Girard’s determination of all integers which are expressible as the sum
of two squares. This was also proved by Gauss using the theory of binary
quadratic forms (see [Gau], Art. 182.) For more information the reader can
consult [Gr], pp. 265 - 277, [Scha], pp. 159 - 163 and [Kr], section 6.2.

Gauss was the first to state that Fermat’s assertion that every F, is
prime is false. It is not known if there exist infinitely many Fermat primes
or infinitely many Fermat composites. Fermat numbers play an important
role in Gauss’ theorem: a regular polygon of m sides can be inscribed in a
circle if and only if m is the product of distinct Fermat primes and a power
of 2 (see [Va).) The present proof of the Lucas-Lehmer test is due to Lenstra
(see [Len2].) The traditional proof uses Lucas functions and can be found
in [Kn], page 391 or better yet in [Wi]. In addition [Wi] gives an excellent
survey of Lehmer functions and generalized Lehmer sequences.

For more information on the Riemann Zeta function and the Extended
Riemann Hypothesis the reader should consult [KP), [Prac], [T], [Da). The
proof of Ankeny-Montgomery’s theorem can be found in [Mont]. The idea
of the proof of the Solovay-Strassen deterministic test is from [SoS]. The de-
terministic test in subsection 2.12 is inspired from the Selfridge- Weinberger
test and unlike the Solovay-Strassen test it makes no mention of the Jacobi
symbol. Miller was the first to show that under the Extended Riemann Hy-
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pothesis there is a polynomial time algorithm to test primality. The original
proof of Miller’s test uses the Carmichael function (see [Mil], [An].) The
present proof is from [Mig2] and [Len4]; the last reference also includes the
proof of lemma 2.7.

~ The probabilistic Solovay-Strassen test comes from [SoS] and Rabin’s
test from [Rab2]. Theorem 2.32 is from [Kran]. In addition Monier in
[Moni] compares the performance of the last two probabilistic tests. The
first proof of the Rumeley-Adleman test was published in [Ad1]. The proof
given here is essentially due to Lenstra (see [Len2], [Len3], [Cohe].)

An interesting history of the machines used since 1925 for factoring and

testing primality can be found in [BLSTW] .
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3 PROBABILITY THEORY

There s nothing more certain than the probable.
(Ancient Greek Proverb)

3.1 Introduction

The present section introduces the reader to the fundamental concepts of
probability theory. The development of the concepts is limited to the ma-
terial necessary to understand the proofs in the sections on pseudo random
generators and public key cryptosystems.

Subsection 3.2 includes all the necessary introductory notions i.e. o-
algebra, probability space, product and sum of events. The notion of random
variable is developed in subsection 3.3. Further, this subsection includes the
fundamental theorems for computing expectations and variances of random
variables. The binomial distribution, which is studied in subsection 3.4, will
be the only probability distribution to be exhibited in the present mono-
graph. Chebyshev’s law of large numbers is proved in subsection 3.5. The
strengthening of the weak law of large numbers, proved in subsection 3.6,
will be very useful in the development of the general theory of the security of
pseudo random generators and public key cryptosystems. An introduction
to the Monte Carlo method, is exhibited in subsection 3.7.

3.2 Basic Notions

A o-algebra A on a nonempty set € is a nonempty set of subsets of 2
which satisfies the following three properties:

1. Q € A.

2. HE€Athen Q- E € A.

3. ¥ {En:n 20} C A then (U,>0 En) € A.
Example 8.1 The set {Q2,0} is a o— algebra.

Example 3.2 The set of all subsets of a nonempty set 1 is a o— algebra.

A probability space is a triple (2, A, Pr), where
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1.  is a nonempty set,
2. Ais a o— algebra on the set 2, and

3. Pr is an experiment on the o— algebra A i.e. Pr is a function Pr:
A — [0,1], with domain the o— algebra A and range a subset of the
unit interval [0, 1] such that

(a) Pr[Q] =1 and Pr{8] =0,
(b) For any family {E, : n > 0} C A of pairwise disjoint subsets of

Pr [U E,.] = i Pr[En).
n20 n=0

The subsets of  are called events, while the subsets of 2 which belong
to the o~ algebra A are called observed events; the elements w € Q are
called the possible outcomes of the experiment Pr. An event E is called
certain (respectively impossible) if Pr[E] = 1 (respectively if Pr[E] = 0).
The set Q is called the sample space of the experiment.

‘Example 8.3 The ezperiment determined by the fispping of a fair coin con-
sists of the sample space Q = {H,T}, where H = Head and T = Tail, the
o~ algebra A of all subsets of 1 and the ezperiment Pr which satisfies:

Prl{8,T}] = 1, Pr[{H}] = Pri{T}| = 1/2, Prlf] =

Example 3.4 The exzperiment determined by the tossing of two fair dice
consists of the sample space @ = {(i,7) : 1 < 1,5 < 6}, the o~ algebra of all
subsets of Q) and the ezperiment Pr which satisfies

Pr[E] = |E|/36, for all events E.

Example 3.5 In the above ezperiment one can also consider the following
o— algebra of observed events: an event E € A if and only if for all (2,7),
if (1,7) € E then (j,1) € E.

Corresponding to the set theoretic boolean operations of union, intersec-
tion and difference of sets, one can define respectively the sum, the product
and the difference of events. Hence, given two events E, F' one defines the
sum (respectively product, difference) of the events E, F' to be the event
EUF (respectively ENF, E - F).
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Given a probability space (2, A, Pr) and an observed event K, such that
Pr[K] > 0 the conditional probability space with respect to K, is the
triple (Q, A, Prg), where the new experiment Prg is defined by
Pr|E N K]

PrlK}
In addition, the notation Pr[E|K] will also be used as identical to Prx|[E].

Given a probability space (£2, A, Pr) and two observed events E, F the

following three rules are very useful for the study of probability theory and
can be derived easily from the above defining properties of Pr:

1. Difference Rule: If E C F then Pr[F — E] = Pr[F] - Pr[E).
2. Sum Rule: Pr[EU F| = Pr[E] + Pr[F]| - Pr[ENF].
3. Product Rule: If Pr[F] > 0 then Pr[E N F] = Prf|E]- Pr[F).

Prg[E] =

Events E, F are called indepedent with respect to the probability space
(Q, A, Pr) if Pr[EN F] = Pr[E] - Pr[F].

|EXERCISES |

1: Show that every o— algebra is closed under countable intersections.
2: Show that the empty set is a member of every o— algebra.
3: Prove in detail the Difference, Sum and Product rules.

3.3 Random Variables

Let R be the set of all real numbers. A random variable on the probability
space ({1, A, Pr) is a real valued function X : @ — R such that for any
open set I of real numbers,

X N={we:X(w)eI}eA.

A vector random variable on the probability space (2,4, Pr) is a
real vector valued function X : 2 — R" such that for any open subset I of
the set R" of n tuples of real numbers,

XM ={we:Xw)eI}€ A

_ It is easy to see that if Xi,...,X,, are random variables on {1 then the
function (Xj,...,Xpn) is a vector random variable on £1.
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For any random variable X on the probability space (2, 4, Pr) and any
real number k, let X = k denote the event {w € 2 : X(w) = k}. A
random variable is finite (respectively discrete) if it takes on only a finite
(respectively countable) number of values.

For any random variables X, ..., X, on the probability space (2, A, Pr)
and any function f : R" — R, let f(Xj,...,Xys) denote the composition
of the functions f,(Xi,...,Xn) ie. for all w € Q, f(Xh,...,Xn)(w) =
f(X1(w)y...sXn(w)). If f is continuous then the inverse image under f of
any open set is open. Hence, if all the Xj,...,X, are random variables on
the probability space (€2, 4, Pr) and f is continuous then f(Xy,...,X,) is
a vector random variable on the probability space (£2, A, Pr). In particular,
if X,Y are random variables so are X +Y, X - Y, exp(X), etc.

For any random variable X on the probability space (1, A, Pr) the
(probability) mass or (probability) distribution function of the ran-
dom variable X is the function px defined for all real numbers k by

px(k) = PT[X = k].

Hence, if the random variable X takes on only the values z,,...,2,,... then
its corresponding probability distribution function px will ta.ke on only the
values pX(zl), <y PX (z,,),

The random variables X, Y on the probability space (€2, A, Pr) are called
independent if for all real numbers s,¢ the events X = 5,Y =t are inde-
pendent.

For simplicity from now on and for the rest of this section
all the random variables used will be discrete and bounded i.e.
there exists a real number B such that for all w € Q,|X(w)]| € B.
Moreover, the probability space used in each particular case will
not always be explicitely mentioned, unless there is a cause for
confusion.

Let X be a random variable which takes on only the mutually distinct
values z;,...,2Zp,... and let px(z1) = p1,...,0x(Zn) = Pn,... be the cor-
responding values of its distribution function px. (i.e. it is asssumed that
z; # zj, for all ¢ # j.) The expectatlon of the random variable X, abbre-
viated E[X], is defined by

ElX] =" 2n o M
n=0



3.3 Random Variables : 83

The variance of the random variable X, abbreviated Var[X], is defined by
VarlX] = E (X - E[X])?]. (2)

It is easy to show (see theorem 3.1) that in fact

VarlX] = i_":o(zn ~ E[X])® - p.

The square root of the variance of X is called standard deviation of X

and is denoted by D[X] i.e.
D|X] = \/Var[X]. A (3)

Remark: Since the random variable X is bounded the infinite series in
definition (1) is absolutely convergent. Hence, the definition of E[X] does
not depend on the given enumeration of the values taken on by X.

Example 3.6 For the ezact fitiing of a certain part of a precision instru-
ment it 18 required to make 1,2,...,5 trials. The number of trials necessary
to achieve ezact fitting of the part s a random varsable, denoted by X. Let
p1 = .1,p2 = .15,p3 = .25,p4 = .3,p5 = .2. The behavior of the probability
distribution function of the random varsable X is represented in the graph

of figure 1.
The ezpectation of X 18 given by

E[X]=1-1+2-.15+3-.254+4-.345..2=3.35

Thus, the number of trials necessary to achieve ezact fitting will on the
average be 8.85 i.e. the ezact fitting of 100 instruments will on the average
require 335 trials.

The varsance of X is given by

Var[X] = (2.35)%-.14(1.35)2-.154 (.35)2-.25+(.65)%- .3+ (1.65)%-.2 = 1.527
The standard deviation of X will be
D[X] = v/1.795 = 1.236.

Thus, the standard deviation D[X] gives the magnitude of the oscillations
of X around the ezpectation E[X].
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P=DPn

.25

.15

Figure 1: Graph of px

The covariance of two random variables X,Y, abbreviated Cov[X,Y],
is defined by

Cov[X,Y] = E[(X - E[X]) - (Y - E[Y])]. (4)
The following two theorems will be useful in the sequel.

Theorem 3.1 (The Expectation Theorem) Let X,Y be two random
variables. Let the random variable X take on only the mutually distinct
values o, ..., Zn,... and let px(Zo) = po,-..,Px(Zn) = Pn, ... be the corre-
sponding values of sts distribution function px. Then

(1) Ela-X+b-Y]=a-E[X]+b- E[Y], where a,b are reals.

(2) If X,Y are indepedent then E[X -Y] = E[X] - E[Y].

(8) For any continuous function f : R — R, E[f(X)] = Xako f(Zn)-Pn.

Proof of 1: Only the proof of E[X + Y] = E[X] + E[Y] will be given;
the rest will be left as an exercise to the reader. Suppose that the random
variable Y takes on only the mutually distinct values yo,...,¥m,... and
let py (%) = ¢0s-..+P¥ (¥m) = ¢m,... be the corresponding values of its
distribution function py. Let Z = X + Y and suppose that 2,...,2,-..
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are the mutually distinct values taken on by the random variable Z. Finally
put Pam = PT[X =Tn a.nd Y = ym].
From the definition of expectation,

EX+Y]|=E[Z]=)_z-Pr(Z = z].
k20
However, forall k > 1
4 PT[Z = ZEI = Z (Zn + ym) ° pn,m.
ZatUm=2k
It is then clear from the last two equations that

EX+Y]= ) (Za+Ym) Pam=

n,m20

=D Zn (an,m) + Y Y- (Zp,.,,..).

n20 m20 m20 n20
On the other hand it is obvious that

Pn= Z Pn,m, ém = an,m-

m2>0 n20

The result now follows immediately from the definition of expectation and
the last two equations.

Proof of 2: The notation of the proof of part (1) will be used in the
proof of part (2) as well. Since the random variables X,Y are indepedent,
it is clear that for all n,m > 0,

Pnm = Pn qm-

On the other hand using the definition of expectation, and arguing as in the
proof of part 1 it can be shown that

E[X-Y]= Y ZnYm Pam= Y %n ¥m Pn-dm.

n,m>0 nm>0

It follows that

E[X-Y]= (}"_,z,. -p,.) . (}: !Im'Qm) = E[X] - E[Y],

n>0 m>0
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which completes the proof of part (2).

Proof of 3:

Let 29,...,2,... be the mutually distinct values taken on by the random
variable f(X). For each k > 0,let I = {n > 0: f(zn) = 2z}. Clearly, the
event f(X) = 2z occurs if and only if for some n € I, the event X = z,
occurs. Hence, the distribution function of f(X) is given by

prxy(ze) = Z PriX=z,)= Z Pn-
ne€l; n€l;
It follows from the definition of expectation that

E[f(X)] = >_ 2 pyxy(z) =
>0

IS (Z ,,,,) = g,of(z,.) - P

k20 n€ly
This completes the proof of part (3) and hence of the theorem o
Theorem 8.2 (The Variance Theorem) Let X,Y be two random vari-
ables. Then for all real numbers a,b,
(1) Varla- X +b-Y] = a? - Var[X] + b? - Var[Y] + 2ab - Cov[X,Y].
(2) If X,Y are indepedent then Var[X + Y] = Var[X] + Var[Y].

Proof of 1: Only the proof of Var[X + Y] = Var[X] + Var[Y] +
2Cov[X,Y] will be given; the rest will be left as an exercise to the reader.
Let E[X] = p,E[Y] = v. Using the definition of the variance and the
expectation theorem one can show that :

VarlX +Y]= E[(X+Y —p-v)?| =
E[(X-p)?+ (Y -v)P+2-(X=p) (Y -v)|=
=Var[X] + Var[Y] + 2Cov[X,Y].

Proof of 2: Using the definition of the covariance and the expectation
theorem it is easy to see that

Cov[X,Y] = E[(X - E[X]) - (Y = E[Y])] = B[X - Y] - p - .

But the right side of the above equality is O because the random variables
X,Y are indepedent. This completes the proof of (2) and hence of the
theorem
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|[EXERCISES |

1: If Xi,...,X, are random variables then (Xj,...,X,) is a vector
random variable.

2: If (X;,...,Xn) is a vector random variable and the function f :
R™ — R is continuous then f(Xj,...,X,) is a random variable.

3: Let X be a random variable. Show that for all real numbers a, b,

1. Efa-X+bl=a-E[X]+b
2. Var[a- X + b] = a? - Var[X]
3. Dla- X + b] = |a|- D[X]

4: K the random variable X is bounded by the constant B then E[X] <
B. ‘

3.4 The Binomial Distribution

A random variable X which takes on only the values 0,1,...,n is said to
have the binomial distribution with parameters n,p if and only if for any
0<k<n, )

PrX =k]= (:)p"(l -p)" "

For any event E in a given probability space and any integer n let the
random variable B, (E) denote the number of occurrences of the event E
in n indepedent from one another trials. The n—th relative frequency of
the event E, abbreviated F,(E), is the random variable

F.(E) = Z2(E),
n
The following theorem will be very useful in the sequel.

Theorem 3.3 (The Binomial Distribution Theorem) For any event
E in a given probability space such that p = Pr|E] and any integer n > 0
the random variable B,(E) has the binomial distribution with parameters
n,p. Moreover,

(1) EBa(E)} = n- 9, E[Fa(E)] = p, and

(2) Var(Ba(E)] = n-p- (1- p),VarlFa(E)] = (1/n) -p- (1 - ).
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Proof: To see that B, (E) satisfies the binomial distribution, notice that
the event B,(E) = k occurs exactly when the event E occurs k times and
the event (1 — E occurs (n — k) times. Each such event-sequence occurs with
probability p*(1 ~ p)”~%. Hence, the first part of the theorem follows from
the fact that there exist exactly (}) such sequences.

Proof of 1: Using the definition of expectation, and trivial algebraic
manipulations one obtains,

BiBn(@) = 3ok (3] 1=t =

n _1 _ _
=np-2(:_1)-p" L.l-pt=

k=1 .
=np-(p+(1-p))" " = np.

The evaluation of the quantity E[F,(E)] follows easily from the expectation
theorem.

Proof of 2: Using the definition of variance, the result in part (1) and
trivial algebraic manipulations one obtains,

Var|Ba(E)} = é‘.o(k - np)?- (Z) - (1-pt=

= 2 [P k n—k
=Zk )P (1-p)" k4
k=0

n

n2p2°z (:) -pk°(1—p)"-k-‘2np‘ik' (Z) ,pk.(l—p)n—k=
k=0

k=0

n
-n’p?+ 3 k- (Z) o (1-p)"F =

k=0
—n2p2+2n:k(k—1)- (Z) ~p"'(1-p)""‘+2n:k- (Z) - (1-p)" =
k=0 k=0

—n?p? + n(n — 1)p* + np = np(1 - p).

The evaluation of the quantity Var[F,(E)] follows easily from the variance
theorem e
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3.5 Chebyshev’s Law of Large Numbers

In general, a law of large numbers gives a set of sufficient conditions to
enable the arithmetic mean of a sequence of random variables to tend to a
fixed constant number with high probability, when the number of summands
is increasing. The first such law to be proved is based on the following
inequality.

Lemma 3.1 (Chebyshev’s Inequality) For any random variable X, and
any real number € > 0,

Prilx - BIX]| 2 4 < L2,

Proof: Let the random variable X take on only the mutually distinct
values Zg,...,Zn,... and let px (o) = po,...,Px(Zn) = Pn, ... be the corre-
sponding values of its distribution function px. Put p = E[X]. Then

Var[X] =Y (zn — #)* - pn-
n>0

It follows that
VarlX] > Y. (zn—1)* pn

|za—nl2e
2 Z 62 Pp= 62 . E Pn =
|za—pi2e jon—ni2e
€ Y PriX=z=€ Pr[|X—p|>¢|e

{Zn—ul2e
As an immediate application one obtains the following

Theorem 8.4 (Chebyshev’s Law of Large Numbers) Let Xi,...,X,
be indepedent random variables and let the random variable X denote their

arithmetic mean 1i.e.
Xi+---+Xq

n

X=

Then for any € > 0,

Prilx - BIX]| 2 s 7]

Moreover,
max;<i<n Var[Xi]

n- €2

Pr{|X - B[X]| 2 ¢] <
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Proof: The proof is immediate from the variance theorem and Cheby-
shev’s inequality e

The next theorem, which is an immediate consequence of Chebyshev’s
inequality, will be applied frequently in sections 4 through 6.

Theorem 3.5 (Weak Law of Large Numbers, Bernoulli) Suppose that
the event E occurs with probability p. Then for any integer n > 1 and any
€e>0,
- ) 1

< .
€ “4n-e?

PrlIFA(E) 5l 2 4 < 20

Proof: This is an immediate consequence of the binomial distribution
theorem, Chebyshev’s inequality and the fact that 4p(1—p) <1 e

3.6 Bernshtein’s Law of Large Numbers

The Bernoulli estimate for the weak law of large numbers given in theo-
rem 3.5 can be substantially improved. The improvement is based on the
following inequality.

Lemma 3.2 (Markov’s Inequality) For any random variable X, any real
number ¢ > 0, and any nondecreasing continuous function f : R — R,
which takes on only positive values,

PriX>¢l < M

f(e)
In particular, if E[X] > O then

PriX > ¢ E[X]] < %

Proof: Let the random variable X take on only the mutually distinct
values zo,...,Zn,... and let px(zo) = po,...,px(Zn) = pn,... be the cor-
responding values of its distribution function px. The expectation theorem
implies that

Elf(X)] = é F(n) -pn 2

S f(@a) Pa2 Y F(€) pn=

Tn2€ T 2€
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£(€)- Y pa=fle) - PriX > €].

Tn ZG

This completes the first part of the lemma. To prove the second part, apply
the first part to the identity function and use ¢ = ¢ E[X] o

As an immediate consequence of the second part of Markov’s inequality,
with X' = e(X~EIX]) ¢ = ¢!, one obtains that for all ¢,

Pr [e‘(x -EXD) > ¢E [e‘(x‘E[X])]] <et. (5)
Clearly inequality (5) is equivalent

t+logE[e‘(X*ElX])]] <
<e.

€

Pr {x > E[X]+ (6)

The next lemma constitutes the major step in proving Bernshtein’s

sharpening of the weak law of large numbers.

Lemma 8.3 (Bernshtein) Let X;,...,X,, be a sequence of independent
random variables with zero ezpectations and which are bounded by the con-
stant K. If X=X3 +---+ X, then

E [ee-X] < exp [EE_Y_;_’;EE]_ (1+ 5.3'5{. ,eex)] .

Proof: It is clear from the expectation theorem that

Elex] = [ B[eX)]. G

=1

Hence, using the variance theorem and equation (7) it can be assumed with-
out loss of generality that n = 1,X = X;. Let V = Var[X]. It follows

that o & o b v
E [e"x ] =E [?;:o %x”] = Z:o %E [x*] =
1+ eE[X] + 62—2E [x?] + }3 ;—l:E [x*] <
k=3 "

€2 2. ek b
1+-2—V+k§37c—!E[X2]K 2=
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€2

1+2

= €F -2
V+ g:s VK=
e2 62 00 (eK)k—2
1+—V+=-VvYy *—L _=
o+ 57 2 iy

Using the inequality 1+ u < e* and equation (8) one easily obtains that

K
E [e"x] < exp [€2V (% + GK: )] °

Let Xi,...,X, be a sequence of independent random variables with
zero expectations and which are bounded by the constant K. Put X =
X1 + - -+ + X,. Using inequality (6) to X, ~X, applying lemma 3.3 to the
random variables Xj,...,Xn and ~Xj,...,—Xn, and using the fact that
E[X] = 0 it follows that for all ¢,

K
1+62V[l+£].

t+e2Var 1, eKetK
Pr [pq > [Xle (3 + %67) <2t )
Putting
D = D[X],e= \/_g-_t_"\ =2t,
inequality (9) becomes
AK Y.< -2
Pri{|X|> AD 1+—6—1-)-e £2-.e77, (10)
Assuming that L‘DI‘: < 1, one obtains that
el‘b"g <e<3,
Putting K
u=2A: (1 + E).) R

and using the fact that g > ) inequality (10) becomes

u?

e (1+g{§)2 . (11)

2
Pr[|X| > pD] <2-¢ ¥ <exp |-

To sum up, it has been shown that
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Lemma 3.4 Let X;,...,X, be a sequence of independent random variables
and let K be a constant such that for all i, |X; - E[X;]| < K. If X =
Xi+--+ X, then forallO< u < B,

2 2
Pr|X - E[X]| 2 pDX]] S 2-¢™F < 2-exp ——————ﬁ—;{——f :
2(1+ b))
Proof: Immediate from the above, since uy < D/K = AK/D<1e

Using the last lemma and the binomial distribution theorem one easily
obtains that

Theorem 3.6 (Bernshtein’s Law of Large Numbers) Suppose that the
event E occurs with probability p. Then for anyn > 1 and any 0 < € <

p(l - P),

ne?

Pr(|Fo[E] - pl 2 ] < 2-exp ['4;:?1 - p)

] < 2-exp[—ne?] o

{EXERCISES |

1: For any nonzero real number a, if X;,...,X, are independent random
variables so are exp[aXj],...,exp[aXa). v

2: Derive theorem 3.6 from lemma 3.4 . Hint: apply lemma 3.4 to the
random variable X = B,(E), to K =1 and u = (ne)/D.

3.7 The Monte Carlo Method

There are many computational problems whose solution via deterministic
procedures is cumbersome. For such problems it was observed that sta-
tistical sampling methods can approximate the solution much faster than
numerical methods based on classical analysis. An example of such a prob-
lem is the computation of 7, the area of the unit circle.

Buffon’s Needle Problem: Suppose that parallel lines are drawn on
a plane surface at a distance d from one another. Let a needle of length £
less than d be thrown at random on the plane. What is the probability that
the needle will touch one of the parallel lines?

Let the position of the needle be as in figure 2. Suppose that C is the
center of the needle, z (respectively d — z) is the dictance of the center from
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Clp

B d—:r 4————4—-2—J

Figure 2: Buffon’s Needle

the line L (respectively L') and ¢ the angle between the needle and the
line perpendicular to L (see figure 2). For the sake of the argument that
follows it will be assumed that the angle ¢ and the distance z are distributed
uniformly over the range —7/2 < ¢ < 7/2 and 0 < z < d respectively. It
is apparent that the position of the needle is uniquely determined from the
pairs of coordinates (z,¢), where0 < z < d and ~7/2 < p < 7/2. It is also
clear from figure 2 that the needle will not touch any of the lines L, L' if
and only if ‘

- SSOS%, -g-cosp<z<d-§-cos¢ (12)

e

Let Q be the set of pairs (z, ) satisfying equation (12). Hence, the proba-
bility that the needle will not touch any of the parallel lines is

area(}) d-w—2-£ 2.
d-x ~ d-x =1 d-n’ (13)

where the area of {2 is computed via

/2

area((l) = / \ dp(d — £ cosp) (14)
)

It follows from equation (13) that the probability p that the needle will touch

one of the lines is 5.0

Equation (15) and the weak law of large numbers ca.ﬁ be used as the basis for
an experimental evaluation of 7. Indeed, assume for simplicity that d = 2
and £ = 1. Then p = 1/x. Consider an experiment in which the needle is
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thrown independently n times, and let the random variable X; be equal to
1 if the needle intersects a line on the ¢-th throw and 0 otherwise. It follows
from theorem 3.5 that for any € > 0,

X544+ Xe 1
Pru——n_-; 26]5-4;-_62-' (16)

Hence, with high probability r(the lower bound 1 - 1/4ne? on the probability
is determined from inequality (16)),

n
Xt ot X

Other examples of such a statistical sampling method are the probabilis-
tic primality tests of section 2. '

‘In general, a Monte Carlo method is a statistical sampling method
that can be used to approximate the solution of a certain problem. The
computation necessary to find the solution is called a Monte Carlo com-
putation. Although a problem might admit more than one Monte Carlo
solution, there exist problems for which no Monte Carlo solution is known.

In sections 4, 5 and 6 several Monte Carlo computations will be included
in the construction of circuits. As described above these computations will
in fact be statistical sampling techniques which will enable the construction
of polynomial size circuits solving the corresponding problems.

It should also be pointed out that an essential step in applying the Monte
Carlo method for the solution of a certain problem is the ability to do
random sampling. However, due to apparent technical limitations it would
be unrealistic to hope that one could produce via an unbiased execution of
an experiment a perfectly random sampling. Thus, one is led to replace the
notion of random with that of pseudo random. Details on this last concept
will be studied in section 4.

|[EXERCISES |

1: Evaluate the integral in equation (14).
2: Show that both the Solovay - Strassen as well as the Rabin tests are
Monte Carlo methods for determining the primality of a given integer.

3.8 Bibliographical Remarks

[GK], [Roz] and [Kol] give nice introductory accounts of the theory of prob-
ability. :
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All the random variables considered in this section are discrete. However,
this restriction would not be necessary if the reader were familiar with the
notion of Lebesque integral. For a more general development of the notions
of probability theory the reader should consult e.g. [Fe], [Gn], [Rel], [Re2],
[Ros]. The proof of Bernshtein’s law of large numbers given here is partly
based on the account given in [Rel], pp. 322 - 326, and [Re2], page 200.

Buffon’s needle problem is due to George Louis Leclerc, Comte de Buf-
fon, (better known as Buffon, 1707 - 1788) and is described in his Essai
d’Arithmetique Morale (see [Lec]). The name Monte Carlo method was first
used in the article [MU)]. For more information on the Monte Carlo method
the reader can consult the excellent introductory book [So]. There are nu-
merous books and essays on the Monte Carlo method. These include [Hou],
(Shr), [Br], [N], [Hal).
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4 PSEUDO-RANDOM GENERATORS

Il faut donner quelque chose au hasard.
(French Proverb)

4.1 Introduction

Of the four pseudo-random generators presented in this section the first
two, the Linear Congruence Generator and the 1/p-Generator (see subsec-
tions 4.2, 4.3) are predictable, while the other two, the Quadratic Residue
Generator and the Index Generator (see subsections 4.8, 4.10) are unpre-
dictable.

In subsections 4.2, 4.3 the proof of the predictability of the Linear Con-
gruence Generator and the 1/p-Generator respectively is studied. Subsec-
tions 4.5 and 4.6 examine questions relating to factoring and to the period-
icity of quadratic residues respectively, and they will be used in the study
of the security of the Quadratic Residue Generator. The definition of the
model of computation to be used in the sequel, the probabilistic polynomial
size circuit, is given in subsection 4.7.

The reader should notice some of the general notions emerging from
the presentation in subsections 4.8, 4.10. These notions, whose study is
postponed till section 6, include the notions of 1 — 1, one-way function, am-
plification of advantage and unpredictable pseudo-random generators. An
understanding of the present material will not only provide a good introduc-
tion to the general theory, but will also help introduce a number of examples
essential to clarifying the development of the above concepts.

4.2 The Linear Congruence Generator

Let a,b,m be given fixed but unknown positive integers such that m is
greater than max{a,b}. For each integer z < m define the infinite sequence
Z0,Z1,...,Ti,... and the infinite sequence z},75,...,z},... of differences as
follows:

o= { z if t=0
'= 1 (a- zi-1 +b) modm if i>0,

and
Tiyy = (Tiy1 — zi), where ¢ > 0.
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Notice that for all ¢ > 1,
zi,1 = a- zimodm.

The linear congruence generator, abbreviated LGEN accepts as
input a quadraple < z,a,b,m > as above; the output LGEN(z,a,b,m) is
the infinite sequence 29, 21,...,%;,... defined from z,a,b, m as above.

Example 4.1 LGEN(3,7,5,12) = 8,2,7,6,11,10,8,2,7,6,11,10,.. .

The problem to be investigated in the sequel is the following:

Question: Is it possible to find an efficient algorithm which when
given as input a sufficiently long initial segment of the infinite sequence
20, Z1,-- 5 Ziy- .. Will output integers a',b',m' such that for all 1,2; = (a' -
z;—y + b') modm/'?

For each ¢ > 1, let g; = ged(a),...,z}).

Lemma 4.1

The least i > 1such that g;|z},, is < 2+ |logy m].

generality it can be assumed that ¢ > 3. It is clear that for all ¢,

Proof: Let t = the least ¢+ > 1 such that gi|z},;. Without loss of

n= 3'1 and g4 = ng(gia z:~+1).

However, if g; does not divide z],, then |gi4+1] < |gi|/2. Consequently,

joal < 02l g, < sl gy < 1AL
T2 2

It follows easily that,

lgll | 1

l9e-1] < 21-2 — 9i-2°
and hence,
2‘—2 < Izi‘ < m.
loe=al

This completes the proof of the lemma o
Using the notation described above the following result can be proved.
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Theorem 4.1 (J. Plumstead) There is an efficient algorithm A which
when given as input the sequence zg, Z1,. .., Tt4+1 produced by the linear gen-
erator LGEN (z,a,b,m), where t = the least i > 1 such that g;|z}, ,, it will
output integers a',b' such that for all1 > 1,

= (a' - 7i—1 + V') modm.
The algorithm A runs in time polynomial tn logo m. Moreover, it is true

that t < 2 + |logy m].

Proof: The upper bound on the size of ¢ is an immediate consequence
of lemma 4.1. The algorithm A is defined as follows:

Input: zo,21,...,Zt41.

Step 1: Put z} = z; — z;~1, where 1 < ¢ < t+ 1.

Step 2: Put d = ged(z),...,2}).

Step 3: Compute u,...,us such that

Output:
! I: !
E . _..._, = z; - a - g.

It will be shown that

Claim: o'z} = zj,, modm, forall ¢ > 1.

Proof of the claim: Let g = ged(m,d). Then

¢ ¢
ad=a) ui-zi=) a-u-2p=

i=1 i=1

t
Y ui-giy = dz i —'i'l = a'd modm.
i=1 i=1

It follows from the definition of g that

a = a'mod (-’-n—) .
g

However, for all ¢ > 1, g|gcd(z}, m). It follows that for all : > 1,

a= a’mod (-a(%) . (1)
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But ¢ is a solution of the congruence
u-z; = zj,, modm. (2)

An immediate consequence of the theorem on solving linear congruences is
that every solution of (2) is of the form
jm . '
—_— =0,1,... ; - 1.
a+ gcd(x:.’m), J bt ] ’ng(zl,m)

It follows from (1) that o’ as well must be a solution of congruence (2). This
completes the proof of the claim.

The rest of the proof of the theorem follows from the above claim and
the following congruences:

d zi+b—zip=d-zi+ (21 -d -20) - 2ign =

] $
o (zi—20) = (Bir1 - 7)) = Y2 - D 2hy
k=1 - k=1
i ‘
> (o' 7} — 2}4;) =0 modm e
k=1 R

No small bound on the number of z;’s is known that will enable one
to predict a modulus m' so that the conclusion of theorem 4.1 is valid. In
many instances however one can predict such a modulus for arbitralily long
finite segments of the sequence zg,z),...,2;,... produced by LGEN using
the following argument. Use the algorithm of theorem 4.1 to compute o', ¥
such that the conclusion of theorem 4.1 is true (e.g. this can always be done

if the given sequence is of length > 2+ |log; n).) For any given modulus M
define the following sequence by induction on ¢ > O:

zo(M) = 29, zi41(M) = a'z;(M) + b’ modM.
It is not hard to show by induction that for all ¢ > 0,
M*'|M = z;(M) = z;(M") modM". (3)
Finally for each modulus M define

k(M) = least k such that zp43 (M) # 24 modM,
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M* = ged(M, zpa)+1(M) ~ Zp(ar)+1)-

Since Zi(ar)+1(M) = Zy(ar)41 modM* it follows from (3) that for any mod-
ulus M, k(M*) > k(M) + 1.
To facilitate the discussion that follows the notation

ged(a,00) = a, a modoo = a,

where a is an integer, will be used. The idea in predicting a modulus is
the following: given a sequence zo,21,...,2, produced by LGEN one tries
first the modulus M = oco. i zx(M) = zx modM, for all k¥ < s, then M is
the desired modulus; otherwise update M to M*. Continue updating the
modulus in this way. Clearly the number of updates necessary is at most
< s. ’

More formally, given a sequence zp, z1,...,z, produced by LGEN such
that s > the least ¢ > 1 such that g;|z},,, define the following sequence
m(0), m(1), ..., m() of moduli such that the conditions below are met for all
j<r,

mU+) = (mUN)* k(m0)) < s and

m® = 0o, k(m") > s.
Put m' = m("). Since z;(m') = z; modm’, for all i < k(m'), it is clear that
z;=ad'z;y + b modm/, forall1 < i <. (4)

The periodicity of the linear congruence generator, as well as the problem
of choice of modulus that will make the generator as secure as possible is
studied in detail in subsection 3.2.1.2. of {Kn].

|[EXERCISES |

Throughout the exercises below the notation of the above subsection will
be used. Show that foralln > 1,

1: zo = a2+ (@™ 1 +---+ a+ 1)b modm.

2: 7/, = a" 1z} modm.

Further, assume that gcd(a,m) = 1 and show that

3: zp = (Zas1 — b)a®(™-1 modm. :

4: If (a — 1)|b then 2, = T (n)4n- Hint: use exercise 1.

5: T, = T ()4, Hint: use exercise 2.

6: Prove the assertions stated in (3) and (4) of the above subsection.
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4.3 The (1/p) - Generator

Throughout the present subsection p will denote an odd prime
number, g will be a fixed primitive root of Z;, and |p| the length
of p in base g i.e. |p| = [log,p]. An integer r such that 0 < r < g will
also be called a g-digit. Given any integer r such that 0 < r < g define the
infinite sequence rg,71,...,7m,... as follows

tm =r- g™ modp, m > 0. (5)

Since g is a primitive root of Z;, it follows from the Euler - Fermat theorem,
that for any 0 < r < p the period of the sequence rg,71,...,7m,... equals
p—1i.e. p—1 = the least m such that ro = r,y. Moreover, {ro,r1,...,7p-2} =
{1,2,...,p-1}.

It is an immediate consequence of the Euclidean algorithm and the defi-
nition of ry, that for each m > 0 there exists a nonnegative integer gm+1 < 9,
such that

TR em——cm—— -

p g g p
It follows that for all m > 0, .

Tm _ Gmtl 1 Tm41 . (6)

To _ Q1 , Q@ gm , 1 tm
S=24+Z 4+ . 7
p g9 ¢ g™ g™ p @)
Multiplying equation (7) by g™p one obtains

rog™ = (1™ + q20™ 2 + - - + qm)P + Tm. (8)
For any sequence 2y, z3,...,Zm of g-digits let the notation

2123...Zm, Z1%2...Zm

be used as an abbreviation of
31

b 4 X
zlgm°l+zzgm-2+...+zm’ and ?+;§=+---+-g—::—’

respectively. With these abbreviations, equations (7), (8) can be generalized,
for each ¢ > 0, to
E ' 1 Ti+m (g)

p=-¢1i+1¢Ii+2---¢Ii+m+;,;' >

righ = (¢I:'+1¢Ii+2 .. -¢Ii+m)P + Tigm (10)
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An infinite sequence 1,%2,...,Zm,... of g-digits is called a de Bruijn
sequence of period p-— 1 and base g if the sequence z;,232,...,Zm,...
of g-digits is periodic with period p — 1, every finite sequence of g-digits
of length |p| — 1 occurs at least once as a segment of z1,22,...,Zm,...,
but every finite sequence of g-digits of length |p| occurs at most once as a
segment of 2;,%2,...,%mye 0.

Example 4.2 (1) For p=3 (= 11 in base 2), the sequence 0,1,0,1,... 18
a de Bruiyn sequence of period 2 and base 2.

(2) For p=5 (= 101 in base 2), the sequence 0,1,1,0,0,1,1,0,... is a
de Bruijn sequence of period 4 and base 2.

The 1/p generator, abbreviated by PGEN, accepts as input the triple
< p,r,g >, where p is a prime, 0 < r < g and ¢ is a primitive root of
Z,; the output PGEN(p,r,g) is the infinite sequence ¢1,92,...,gm,... of
g-digits which arises when the rational number r/p is represented in base g
(see equation (9)).

The notation established above will be used during the course of the
proof of the theorems below.

Theorem 4.2 For any primitive root g modulo p and any g-digit r, the
sequence PGEN (p,r,g) is a de Bruijn sequence of period p— 1 and base g.

Proof: In view of equation (9) one obtains that for all k¥ > 0,
o0
. .
2 = Qe1Qesz-.. = gﬁ,"-—'- (11)
i=1 9

But the sequence r9,71,...,7m,... is periodic with period p — 1 and hence
for all ¢ > 0, r; = ri4p—1. It follows from this and equation (11) that

Qi+19i42 -« = Qi+pTitp+1 - - - (12)

Hence, the period of the sequence ¢;,92,...,9m,... must be < p~— 1. It
remains to show that it is exactly equal to p — 1. Indeed, assume on the
contrary that the period is ¢ and 0 < # < p — 1. Then it clear that

Q41042 -+ - = Q102+ -+, (13)

and hence ro/p = r;/p, which is a contradiction. It will now be shown that
the sequence ¢j,qz,... is a de Bruijn sequence. Let d = d,...,d; be an
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arbitrary finite sequence of g-digits of length ¢ > |p| — 1. It is then clear that
the following statements (14) - (17) are equivalent

d is a segment of the sequence ¢i,¢2,... (14)

for some ¢ > 0,d is an initial segment of g;41,gis2,- .. (15)

for some ¢ > 0, d is an initial segment of the expansion of % (16)
for some k > 0, d is an initial segment of the expansion of % (1

However, to each finite sequence d = dy,...,d; of g-digits of length ¢ there
corresponds exactly one subinterval

i1\ .
[é;,%),whereOSt(g',

of [0,1); namely, the subinterval to which the real number .d; ...d; belongs.
Since, glPl=1 < p < glPl, it is clear that

1 1 1
El;r < ; < gT—'_l. (18)

It is now easy to see using inequality (18) and properties (14) - (17) that for
each ¢ > 0,

. k t t+1
there is at least one k < p such that > € [W’ ;Fl—_l) .

. k t t+1
there is at most one k < p such that ; € [m, _gFI-) .

This completes the proof of the theorem o
The predictability of the 1/p generator follows from the theorem below.

Theorem 4.3 (Blum-Blum-Shub) Let g be a primitive root modulo a
prime p, and 0 < r < p. Then there there ezxists an algorithm A running in

time polynomial in |p| such that if k = [log,(2p%)] then for allm > 0,

A(ga dm+1s9m+2y -« '9qm+k) = Py Tm > .
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Proof: Let A;/B;, A2/ Ba,... denote the convergents of the fraction

(gm+19m+2 .- - Qm+k)/9k'

By assumption, k = [log,(2p?)] > log,(2p?), and hence g > 2p®. It is then
clear, using inequality

1 1
- Thtm —
g p g
and equation (9) that
(gmt1.: -gmak) tm| 1 1
g | SFS3

It follows from results of the subsection on continued fractions that rm/p is
a convergent of (gm+1qm+2 - - - dm+k)/9* and hence,

r_:_ = %, for some ¢ > 0. (19)
Since, gcd(rm,p) = ged(A;, B;) = 1, it follows that ry, = A;, p = B;. To
complete the proof of the theorem it will be shown that A;/B; can be ob- .
tained by generating the sequence A;/B;, A2/Ba, ... of convergents until the
Jj-th fraction A;/B; has gm+1,dm+2, - - s dm+k S its k first g-digits. Indeed,
let j be the first index such that the ﬁrst k g-digits of the fraction A;/B;
are gm+1,dm+2;- - - dm+k- It follows from equation (19) and the minimality
of 7 that 7 < . Assume on the contrary that A;/B; # A;j/B;. Then it is
clear that
1

B;B; —

A;B; - A;B;
B;B;

Y 1
T |B; Bj| g¢*
Since j < i, it must be true that B; < B; and hence 2B? = 2p? < ¢F <

B;B; < B,?, which is a contradiction. Moreover the amount of steps needed
to compute A;, B; is polynomial in |p| e

|[EXERCISES |

1: Show that for all 0 < r < p and any ¢ > 0, r; = rj4p—1. Conclude that
{rOarla ’rp—2} {1 2.5 1}

2: Show that in the proof of theorem 4.3 both A;, B; can be computed
in polynomial in |p| many steps. Hint: the theory of continued fractions
implies that one need only compute A;, B; until condition 1/B? < 1/g* is
met.
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Let g be a primitive root modulo p, p a prime, 0 < r < p.

3: There exists an algorithm A; running in time polynomial in |p| such
that for all m, A1(p, 9, dm+1,9m+25- -+ »Im+jp|) = Tm.

4: There exists an algorithm A2 running in time polynomial in |p| such
that for all m’is A?(pags Tm, t) =< Tm=1sTm+isqms -+ s Im+i >

5: There exists an algorithm A3 running in time polynomial in |p| such
that for all m, if r,,g # rm+1 then A3(9,7m,7m+1) = p. Hint: Let S be
the set {(¢9rm — rm+1)/t : ¢ = 0,1,...,9 — 1}. By equation (6), p =
(97m — *m+1)/qm+1 € S. Show that p is the unique z € § such that for all
t=1,...,9, gced(z,?) = 1.

4.4 Quadratic Residues in Cryptography

In constructing cryptographic protocols one considers integers n = pg, where
P, q are two distinct odd primes. For such integers n it will be necessary to
study the behavior of the Langrange-Jacobi symbol modulo n. From now
on and for the rest of this subsection it will be assumed that n = D4y
where p,q are two distinct odd primes.

Let z be a quadratic residue modulo n. Call u a square root of z
modulo n, if u> = z modn. The next theorem determines the number of
square roots of any given qudratic residue.

Theorem 4.4 Any quadratic residue has four square roots modulo n.

Proof: By the Chinese Remainder theorem there exist integers a, b such
that

a = 1 modp and a = —~1modg,
b= -~1modp and b= lmodg

Since both p,q are odd it is clear that a,b,1,—1 are distinct modulo n.
Moreover, a? = b? = 1 modn. It follows that 1,~1,a,b are four distinct
modulo n square roots of 1. The rest of the proof follows from exercise 1 of
the subsection on the homomorphism theorem e

For the rest of this subsection it will be assumed that p=g¢ =
3 mod4, i.e. both (p—1)/2 and (¢ — 1)/2 are odd. It follows that
(-1]p) = (~1|¢g) = -1 and (-1|n) = (-1|p)(-1|g) = 1. Hence, for all
z € Z},(~z|n) = (z|n). ‘

Theorem 4.5 (i) If 2 = y? modn, and z,y,~z,~y are distinct modulo n
then (z|n) = —(y|n).
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(3t) The mapping £ — 22 modn(z € QR,,z? modn € QR,) s 1 -1
and onto t.e. every quadratic residue has a unique square root which 1s also
‘a quadratic residue modulo n.

Proof: (i) Assume that z and y are as above. Then, it is clear that
n = pq|(z? — y?) = (z — y)(z + y). Since z, —z,y, —y are distinct modulo =,
neither z—y nor z+y can be divided by both p,q. Without loss of generality
assume that p|(z — y), and ¢|(z + y) (the other case is treated similarly.)
Then z = y modp and z = —y modg. It follows that (z|p) = (y|p) and
(zlg) = —(vlg), and hence the proof of part (i) is complete.

(ii) Let @ be any quadratic residue modulo n. By the previous theorem
a has exactly four square roots modulo n, say z,—z,y,—y. By part (i),
(z|n) = ~(y|n). Let z be the square root of a such that (z|n) = +1. It
follows that either (z|p) = (z|q) = +1 or (—z|p) = (—z|¢) = +1. Thus, one
of z, —z must be a quadratic residue modulo n. This completes the proof of
the theorem o

The above theorem implies that the mapping

T — 22 modn, where (z € QRp,z? modn € QR,)
is 1 — 1 and onto, and hence it has an inverse which will be denoted by
T — /z modn, where (z € QR,,/z modn € QR,).

It is.an immediate consequence of the above considerations that every
quadratic residue z has four square roots z;, 27, 23, z4 which satisfy:

(z1]p) = (21lg) = +1, (z2]p) = (22l¢) = -1,

(z3|p) = —(z3lg) = +1, —(z4|p) = (24]q) = +1.

Moreover, the square root z; is also a quadratic residue modulo n.

|EXERCISES |

1: Show that |QRn| = ©(n)/4, |Z5(+1)| = p(n)/2, |Za(-1)] = p(n)/2.

2: The mapping z — z? modp(z € QR,,z? modp € QR,) is 1~ 1 and
onto i.e. every quadratic residue has a unique square root which is also a
quadratic residue modulo p, where p is a prime with p = 3 mod4.

3: Is the result of exercise 2 valid for primes of the form p = 1 mod4?
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4.5 Factoring and Quadratic Residues

The main theorem of the present subsection is due to Rabin. In a sense
it shows that the problems of factoring a composite number, and solving
quadradic congruences modulo a composite number are equivalent.

Theorem 4.6 (Rabin) The following statements are equivalent:

(i) There is an efficient algorithm A such that for all n, if n is the product
of two distinct odd primes both congruent to 3 modulo 4 then A(n) = p, where
p 18 a prime factor of n.

(i1) There is an efficient algorithm B such that if n is the product of-
two distinct odd primes both congruent to 3 modulo 4 and z € QR,, then
B(n,z) = {/z modn.

Proof: (ii) = (i)

Assume the algorithm B is given. The algorithm A is defined as follows:

Input: n

Step 1: Choose a random y such that (y|n) = ~1.

Step 2: Compute z = y* modn. -

Step 3: Compute z = B(n,z).

Output: ged(y + z,n).

‘It remains to show that this algorithm works. Indeed, it is clear that
z = y? = 22 modn. Hence, n|(y*-2%) = (y—2)(y+2). Assume that n = pq.
It follows that pg|(y — z)(y + z). But, (y|r) = —(z|n) = —1 and therefore
y £ z modn and y £ —z modn. Consequently, gcd(y + z,n) must be one of
the prime factors of n. _

(i) = (ii) A

The algorithm B uses the Adelman-Manders-Miller algorithm for com-
puting square roots modulo a prime and is defined as follows:

Input: n,z

Step 1: Let p= A(n),qg = n/p.

Step 2: Compute v € QR,, v € QR, such that z = v modp, z =
v? modg.

Step 3: Compute a,b such that 1 = ap + bq.

Step 4: Compute ¢ = bg and d = ap.

Output: cu + dv. "

Let w = cu+dv. Since ¢ = 1 modp,d = 1 modg it is clear from the above
algorithm that w? = z modn. It remains to show that w € QR,. Indeed,
notice that ¢ = 0 modg and ¢ = 1 modp,d = 0 modp and d = 1 modg.
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Hence, (w|p) = (v|p) = 1 and (wlq) = (v|g) = 1. Thus, w € QR, and
w € QRg and consequently, w € QR, o 4

|EXERCISES |

1: Show that the following statements are equivalent:

(1) There is an efficient algorithm A such that for all n, if n is the product
of two distinct primes then A(n) = p, where p is a prime factor of =.

(ii) There is an efficient algorithm B such that if n is the product of two
distinct primes then B(n) = ¢(n). Hint: to prove (ii) = (i) notice that
p+g=n+1-B(n),p-g¢=V[p+q)?° -4n

4.6 Periodicity of Quadratic Residues

For each n and each z in Z} the order of z with respect to n, abbreviated
order,(z), is the least nonnegative exponent e such that z° = 1 modn.
Throughout this subsection n = pq, where p, ¢ are two distinct odd primes
such that p = ¢ = 3 mod4. For each quadratic residue z € Q R, define the
infinite sequence

coeyTn,—2,Tn,=1,Tn0 = T3 Tn,1,Tn,25- -

of quadratic residues as follows: -

g .= 2% modn if {20
T VEerr i i<0

The modulus n used as a subscript in z,; will usually be omitted, but this
will cause no confusion because n will be easily understood from the context.

Call period of z, abbreviated 7(z), the least positive integer ¢ such that
z; = z. The purpose of the theorems below is to determine the size of #(z).

Theorem 4.7 (Blum-Blum-Shub)
orderp(z) = A(n)/2 and ordery(s)/2(2) = A(A(n)) = A(A(n)) = 7(z).

Proof: Put ¥ = 7(z). By assumption A(n)/2 is the least exponent e
such that z° = 1 modn. But zy = z = 22° modn. It follows that z2"~! =
1 modn, and consequently A(n)/2}(2¥ — 1). Thus, 2% = 1 mod(A(n)/2). Us-
ing the hypothesis ordery(n)/2(2) = A(A(n)) one obtains that A(A(n)) = the
least exponent e such that 2° = 1 mod(A(n)/2). It follows that A(A(n))|7.
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Hence, the theorem will follow from the following

Claim: 7|A(A(n))

Proof of the Claim: First notice that the congruence a = 4? modn
implies that order,(a)|order,(b). Indeed, set e = order,(b). Then b¢ =
1 modn. Hence, a® = b%* = 1 modn. Thus order,(a)order,(b) = e. It
follows from the above observation that for all ¢, order,(z;41)|order, (z;).
However zg = z5. It is therefore clear that for all ¢, order, (z;) = order,(zo).
Further, it can be proved that order,(z) is odd. Indeed, assume on the
contrary that order,(z) = 2°m, where m is odd, e > 0. Then z?™ =
z2°7'm = 1 modn, which contradicts order, (1) = order, (o).

It is immediate from the definition of 7(z) = T that 7 equals the least
exponent e such that 2° = 1 mod(order,(z)). Since ged(2,ordern(z)) = 1,
it follows from Carmichael’s theorem that 7|A(order,(z)). But od,(z)|A(n),
and consequently A(odn(z))]A(A(n)). This is enough to complete the proof
of the claim, and hence of the theorem o

" Clearly, the above theorem supplies necessary hypothesis which imply -
that A(A(n)) = 7(z). Next it will be determined for which integers are these
conditions satisfied. A prime number p is called special if there exist prime

‘numbers p;, p such that p = 2p; + 1,p; = 2p2 + 1 and p2 > 2. The number
n = pq is called special if both primes p and ¢ are special and p # g.

Remark: It is not known if there exist infinitely many special primes.
Some examples of special primes are obtained for ¢ = 11,23,83, in which
case p = 2¢+1is a special prime. For a detailed discussion of this conjecture,
as well as for a table of bigger special primes see [Scha] (pp. 28 - 30.)

Theorem 4.8 (Blum-Blum-Shub) Let n = pg be special, such that p =
2n+1,p=2p2+1,9=201+ 1,1 =2¢2 + 1, and p1,p2, 1,92 are primes.
If 2 is a quadratic residue modulo at most one of p1,q; then

ordery(n)/2(2) = A(A(n)).

Proof: It is a consequence of the definition of the Carmichael function
that A(n) = 2p1g1, A(n)/2 = p1g1, A(A(n)) = 2p2g2, A(A(n)/2) = 2p2ga. It
follows from Carmichael’s theorem that ordery(n)/2(2)|A(A(n)/2) = 2p2qe.
Assume on the contrary that order(n)/2(2) # 2p292- In each of the three
cases below a contradiction will be derived

Case 1: odj(n)/2(2)|2p2

It is clear that 222 = 1 mod(p1q1). Hence, 22?2 = 1 modg;. By the
Euler-Fermat theorem it is true that 2292 = 1 modq;. It follows that
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28cd(2p2,202) = 1 modgq;, and hence 22 = 1 modg,, since gcd(2p2,2¢2) = 2.
But this contradicts the fact that q; > 3.

Case 2: odj(n)/2(2)|2¢2

This is similar to case 1.

Case 3: odj(n)/2(2)|P292

It is clear that 27292 = 1 mod(p;¢;). Hence, 27292 = 1 modg,. Since p; is
an odd prime the last congruence implies that 292 # —1 modg;. By Euler’s
criterion, and since g2 = (g1 — 1)/2, 292 = (2|g1) modg;. It follows that
(2]g1) =1, and hence 2 € QRy, Similarly 2 € QR,,. But it is clear that this
is a contradiction e

Theorem 4.8 provides integers n satisfying ordery(n)/2(z)A(A(n)). It
turns out that integers n satisfying ordern(z) = A(n)/2 are much easier
to locate.

Theorem 4.9 [{z€ QR,: o@n(z) = A(n)/2}] = Q(n/(loglogn)?)

Proof: By assumption n = pg is a product of two primes. Z7 (re-
spectively Z7) has exactly o(p(p)) (respectively p(p(g))) generators. Let
g € Z; (respectively h € Z7) be a generator of Z; (respectively Z;). By
the Chinese Remainder theorem there exist a unique modulo n integer a
such that a = g modp and a = k modg. It follows that order,(a) = A(n) =
lem(p — 1,9 — 1). Consequently, there exist at least p(10(p)) - w(1(g)) ele-
ments in Z;} of order A(n). It follows from a theorem of E. Landau that for
all z > 2,

z
~— < 6loglog z.
p(z) g8

To complete the proof of the theorem notice that

o(p(p) - ple(9) = pp—1) - plg~1) 2

p—-1 ' g—-1 n-p—-gqg-1 n/2
6loglog(p— 1) 6loglog(¢ — 1) = (6loglogn)? = (6loglogn)?”

But the mapping z — z* modn(z € Z3,2? modn € QR,) is 4 — 1. More-
over, if z € Z2 is of order A(n) then z%2 modn € QR, is of order A(n)/2.
Using this observation one can complete the proof of the theorem easily o

The next theorem establishes the connection between computing the
period of quadratic residues and the factoring problem.
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Theorem 4.10 (Blum-Blum-Shub) Assume that there ezist efficient al-
gorithms A, A' such that for all n which is the product of two distinct odd
primes, for allz € QR, and all1 > 0,

A(n,z) =7(z) and A'(n,z,i) =2z

Then there exists an efficient algorithm which given as input an integer n
which is the product of two distinct odd primes, it will output a prime factor

of n .

Proof: The factoring algorithm is defined as follows:

Input: n

Step 1: Choose a random y such that (y|n) = -1.

Step 2: Compute z = y% modn.

Step 3: Compute T = A(n, z).

Step 4: Compute z = A'(n,z,7 ~ 1).

Output: ged(z ~ y,n). _

The proof that the above algorithm works is similar to the proof of
theorem 4.6 and uses the fact that in the above algorithm z = y2 = 22 modn
®

|EXERCISES |

1: Prove results similar to those of theorems 4.7, 4.8, 4.9 for quadratic
residues modulo p, where p is prime; to be more specific show that for
T € QR, the following statements hold:

(i) If orderp(z) = A(p)/2 and ordery()/2(2) = A(A(p)) then A(A(p)) =
7(z).

(ii) If p is special and 2 € QN R(,_,)/2 then ordery(p)/2(2) = A(A(p)).

(iii)|{z € QR, : order,(z) = A(p)/2}| = Q(p/ loglog p).

3: Complete the details of the proof of theorem 4.10.

4.7 The Circuit as a Model of Computation

An (n,t) circuit is an acyclic, labeled (i.e. with labeled nodes), digraph
(i.e. with directed edges) consisting of

1. a list of n distinguished input nodes each of which has indegree 0 (i.e.
no entering edges) and outdegree 1 (i.e. exactly one exhiting edge),

2. internal nodes each of which has outdegree 1 and is labeled with one
of the symbols &, ®,
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3. a list of ¢ distinguished output nodes each of which has outdegree O
and is labeled with one of the symbols &, ®.

The nodes of the circuit are also called gates. Each gate of the circuit
can hold one of the two boolean values O or 1. An assignment of the input
nodes of an (n,t) circuit is an n- tuple (z,,...,2,) € {0,1}". If an internal
@ (respectively ®) gate has indegree k then the output of this gate on input
(u1,y...,uk) € {0,1}* is u; @ - - @ u. (respectively u; ® - - -®uz.) The value
of the circuit on the input assignment (z,,...,z,) € {0,1}" is the value of
the circuit obtained at the ¢ output gates when one evaluates the output of
each of the internal gates in topological order along the circuit.

Thus, every (n,t) circuit C determines a function

fe : {0, 1}" — {0,1}

such that fo(z1,...,2n) = (v1,-..,%), where (y1,...,%) is the t— tuple of
the values of the ¢ output gates of the circuit C when the input assignment
is (Z1y.+-92Zn)-

Example 4.3 The circuit in figure 1 computes the function

f(215-..,79) = [(21 ® 22 ® 23) ® (74 ® 75)] ® [(26 ® 27) ® (28 D 20)). -

'Figure 1: A Deterministic Circuit

The size |C| of the circuit C is the total number of its gates and the
depth d(C) of the circuit is the length of its longest path..
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An (n,m,t) probabilistic circuit C is an (n + m,t) circuit with two
distinct types of input gates:

1. a list of n distinguished input gates called deterministic gates,
2. a list of m distinguished input gates called random gates.

Let C be an (n,m,t) probabilistic circuit. To evaluate the value of C on
the input assignment (z3,...,2,), one assigns the deterministic input gates
- the values (z,...,Zn), the random gates the values (y;,...,¥m) each with
probability 1/2 and then computes the output of the circuit C on the input
assignment

(zlr cesTny Y1y -,ym)-

A pdlynomial size family of probabilistic circuits is a family C =
{Cpn : n > 1} of probabilistic circuits such that

1. there exists a polynomial P with positive integer coefficients of degree
> 1such that for all n > 1 each circuit C, has P(n) many deterministic
input gates, and

2. there exists a polynomial P’ with positive integer coefficients of degree
2 1 such that |C,| £ P'(n), forall n > 1.

Mention of the polynomials P, P' in the above definition will usually be
suppressed. From now on and for the rest of the present monograph
all the circuits considered will be probabilistic, unless otherwise
specified. For that reason, the name circuit whenever used will be
identical to probabilistic circuit. In addition, in order to simplify
the notation, for any circuit C considered, mention of its random
gates will usually be suppressed. Thus, if C is an (n,m, 1) probabilistic
circuit and € > 0 then the symbol

PriC(z) =0]2> ¢
will mean that with probability > € the circuit C will output O on input z,
where the probability space is the set {0,1}™.
4.8 The Quadratic Residue Generator

Throughout the present subsection n will range over integers which are
the product of two distinct odd primes p, ¢ such that p = ¢ = 3 mod4;



4.8 The Quadratic Residue Generator 115

N = {N; : k € I} will denote a family of nonempty sets N of nonegative
integers such that I is an infinite set of indices, and for all n € N the
integer n has binary length exactly k. By theorem 4.5 the squaring mapping
z — z?> modn (2 € QRa,2?> modn € QR,) is 1 — 1 and onto, and
hence it has an inverse which will be denoted by 2 — /z modn (z €
QRn,/Z modn € QRy).

From now on and for the rest of this section the capital ro-
man letters P, Q with subscripts or superscripts will range over
nonzero polynomials with one indeterminate, positive coefficients,
and degree > 1, and the lowercase greek letters ¢,8 with subscripts
or superscripts will range over positive real numbers.

Also the parity function will be used frequently in the sequel.

ar(z) = 0 if riseven
PAWTI=1 1 if zisodd

Definition 4.1 A polynomial size circuit C = {C} : k > 1} has a 1/P-
advantage for computing the parity function for the family N, and this will
be abbreviated by APAR(C,N,1/2+ 1/P), if for all but a finite number of
indices k € I the following property holds for all n € N,

1
P(E)’

Definition 4.2 A polynomial size circuit C = {Ci : k > 1} has a 1/P-
advantage for determining quadratic residuosity for the family N, and this
will be abbreviated by AQR(C,N,1/2 + 1/P), if for all but a finite number
of indices k € I the following property holds for all n € N,

Prlz€ QR : C’k(n,i) = par(\/z modn)] > % +

1

%(Pr[Ck(n,x) =1|z€QRp]+ Pr[Ci(n,z) =02 & QR,]) > %+ )’

where for each n € Ni, z ranges over Z;(+1).
Theorem 4.11 For all polynomsials P,
(3C)APAR(C,N,1/2+ 1/P) = (3C)AQR(C,N,1/2+ 1/P)

Proof: The proof is based on the following

Claim: For all z € Z}(+1), z € QR, ¢ par(z) = par(Vz? modn).

Proof of the claim: (=) Assume 2 € QR,. Then z is the unique
square root modulo n of z?modn. Hence, z = V22 modn. Conversely,
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(<) suppose that z ¢ QR, and put zp = Vz? modn. Let n = p-gq.
By assumption, (z|n) = 1 and =z ¢ QR,. Since, both z, 7o are square
roots of zZmodn, it follows that (z]p) = (z|¢) = —1 and z = —z5. Thus,
par(z) # par(v/zZ modn), which is a contradiction.

Based on the claim one can give the proof of the theorem. Let C be a
circuit such that APAR(C, N, 1/2+ 1/P). To find a circuit C' = {C} : k >
1} such that AQR(C’, N,1/2 + 1/P). Define

Ci(n,z) = Ci(n,z? modn) & par(z) @ 1. (20)
It is clear from the definitions that
Ci(n,z)=1% Cg(n, z? modn) = par(z). (21)
Consider the sets
Ap = {2 € QR : Ci(n, z) = parity(/z modn)}, -

X,={r€QR,:2’ modn € An},
Y, = {z € Z}(+1) — QR, : 2> modn € A,},
Wy = {z € Z3(+1) : 22 modn € 4,}.
It is then clear that Wy = X, U Yy and |Xn| = |An] = |Val. It follows that

‘. L
Prlze Z,(+1) :z e Wp] = 1Z:(+1)]
| Xn| + |Val _ |4n| =Prlz€QR,:z€ An] (22)

21QRa|  |QR|
As a consequence of equations (22), definition 4.1 and the above claim one
obtains easily that

5(PrlCi(n,2) = 1| 2 € QRa] + Pr[Ci(n,2) = 0 | 2 € QRa]) =

Priz€ Z(+1) : 2€ X,)+ Prlz € Z3(+1) : 2 € Yy] =
1 1
: ]2 =+ ——.
Prlzr€QR,:z€ A,] 2 3 + 20
This completés the proof of the theorem o
A strengthening of definition 4.2 is given in the following
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Definition 4.3 A polynomaial size circuit C = {Cy : k 2 1} has a (1/2 ~
1/P)-advantage for determining quadratic residuosity for the family N, and
this will be abbreviated by AQR(C,N,1—1/P), if for all but a finite number
of indices k € I the follouing property holds for all n € Ny,

3(PriCi(n2) = 1| 2 €QRA] + PriCi{n,2) = 0| 2 QR) 2 1= 575,
where for each n € Ni, z ranges over Z3(+1).
Theorem 4.12 (Goldwasser-Micali)

(3C)(3P)AQR(C,N,1/2+4 1/P) = (VQ)(3C)AQR(C,N,1-1/Q)

Proof: Assume that C is a polunomial size circuit and Pisa polynomial
such that the inequality of definition 4.2 holds. Put

Pn = Pr[Ci(n,z) = 1|z € QR,) and ¢gn = Pr[Ci(n,z) = 1| 2 € QRy}.
Then it is clear that for all but a finite number of indices k € I,

7 3T PR
and therefore . . 1
n n
In _Inyg __—
2 "2 2 PR (23)

The aim of the construction below, which is based on the Weak Law of
Large Numbers, is to construct for every polynomial Q a new circuit C' that
will satisfy the conclusion of the theorem. Indeed, let Q be given and define
the circuit C' as follows:

Input: k> 1, n € Ni, z € Z3(+1).

Step 1: Put m = 16- Q(k) - P(k)2.

Step 2: Select m random quadratic residues

sf modn,..., s?,, modn € QR,,.
Step 3: Compute the following two integers:
R,=|{1£i<m : Ci(n,s? modn) =1} and

Roz=|{1<i<m : Ci(n,z-s? modn) = 1}|
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Step 4: Compute dp s = |Ry — Rpz|/m
Output :
1 if dnz < Bl
Ci(n,z) =
0 if dyz> F(I'FI

It remains to show that the above polynomial size circuit C' satisfies
property AQR(C',N,1-1/Q). First notice (see exercise 5 at the end of the
present subsection) that if z € QR,, (respectively z & QR,,) then

z5? modn,...,zs, modn

is a sequence of m random quadratic residues (respectively nonresidues).
Recall that the notation Pr4[E] abbreviates the conditional probability

Pr[E|A] of the event E under the condition that the event A holds. Next,
the Weak Law of Large Numbers implies that, '

Pror. [z € Z, R"' 2P(k)] < 4Ql(k)’

Prox, [z €2 Bne > 2P1(k)] < 4Q1(k)’

Prong. [ Rﬂl 2P(k)] < 4Ql(k)’ 4
ProNE. [ Tzl > 2P1(k)] < 4Ql(k)' )

Now, the following two claims will be proved (in the proofs below z ranges
over Z}(+1).)
Claim 1: Prgp,[|Rn/m — BRnz/m| < 1/P(k)] > 1~ 1/Q(k).

Indeed,
R, Rns 1|
Pror. ”;' | S m] =
Rn R, 1
R, J o 1 1_
pron. [ -]« gyt o - o) < 75 -
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Prqr, H"‘ — Pn

1
= 2P(F )] o “""”") B 2P(k)] 2

(- @) (- 4Q(k)) > 1= 3
Claim 2: Prong,[|Ra/m — Rnz/m| > 1/P(k)] > 1 - 1/Q(k).
By the assumption in inequality (23),
2
Pn—Gqn 2 Fm

Using inequalities (24) and (25) it follows that with probability > 1 —
1/(4Q(k)), Rn/m must lie outside the closed interval

[0+ 555577 - 5273

For the same reason, Rn/m must lie outside the same closed interval. It
follows that

Bo _Bng

m m

>

1 > (1_._1__.)2> 1___1_
P(k)] ~ 4Q(k)/ Q(k)
This completes the proof of the theorem o

Recall that to each z € QR,, an infinite sequence

Proneg, [

¢y Zn,=2yTn,—1,%n0 = T, Tn1,Tn,2s-- -
of quadratic residues was associated as follows:
zniE{ zzimodn lf ':20
’ VEmisr  if 1<0
For each z € QR,, and each integer ¢, define the bits
bn,i(z) = par(zn,)-

The Quadratic Residue Generator, abbreviated QRGEN, accepts as
input a pair < z,n >, where z € QR,; the output is the infinite sequence
’ bn,i-—l (Z), bn,i (Z), bn,t'+1 (Z), ... of bits.
Remark 1: The sequence...,bpi-1(2),bn,i(Z),bni+1(x),. .. of bits, can
also be defined as follows. Given an integer n as above define the function

fn : QR — QRy :z — fo(z) = 2? modn
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and its inverse
/7' i QRy — QRn:z — f7(2) = /Z modn
Further, let the functions fi be defined as follows:
if t=0

fi@)={ f(fi(2)) i i>0
[l (firk(z) if i<o0

For each n, and each x € QR, define the bits
bn.i(2) = Bn(f7(2)),

where for z € QR,,,
By (z) = par(z).

It is easy to show that for all n,z as above
b i (%) = bn,i(2).

Definition 4.4 A polynomial size circuit C = {Cy : k > 1} has a 1/P-
advantage for predicting correctly from sequences of bits of length Q(k) pro-
duced by the generator QRGEN (for the family N ), and this is abbreviated
by APR(C,N,Q,1/2+ 1/P), if for all but a finite number of indices k € I
the following property holds for all n € N,

1

PT[CL‘ (bn,o(:t), s ’bn,Q(k)-l(x)) = bn,—l (z)] 2 % + "}";(—6,

(26)

where for each n € N, z ranges over QR,.
Theorem 4.13 For all polynomials P,
(3C)(3Q)APR(C,N,Q,1/2+ 1/P) = (3C)APAR(C,N,1/2+1/P)

Proof: Let P, Q be polynomials and C a polynomial size circuit such
that inequality (4.4) holds. Define a new polynomial size circuit via the
equation below:

Cl(z) = par(Ch(bao(2); - -~ »bno()-1(2))) (27)
Notice that

Ci(bno(2); - - - bn,(k)-1(2)) = bn,-1(z) = Ci(z) = par(y/z modn).
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One can then verify easily that the circuit C' satisfies the inequality in
definition (4.1) e
Remark 2: Theorem 4.13 will be further improved in section 5.

|EXERCISES |

In the exercises below the notation of subsection 4.8 is used.
1: The location function, denoted by loc,, is defined by:

_J 0 if z<n/2
loc,,(z)—{l if 2> n/2

Show that for all z € Z;, 2 < n/2 & 2z modn is even. Moreover, for all
z € QR,, par(2,/z modn) = locy(/Z modn).

2: A polynomial size circuit C = {C} : k > 1} has a 1/P-advantage for
computing the location function for the family N, and this will be abbre-
viated by ALOC(C,N,1/2 + 1/P), if for all but a finite number of indices
k € I the following property holds for all n € N,

1

Pr{z € QR, : Ci(n,z) = loca(\/Z modn)] > % + 208

Show that for all polynomials P,
(3C)ALOC(C,N,1/2 + 1/P) = (3C)APAR(C,N,1/2+1/P)

Hint: Let C = {C : k > 1} be a polynomial size circuit such that the
above hypothesis ALOC(C, N,1/2 + 1/P) is true. It is required to find a
circuit C' = {C}, : k > 1} such that APAR(C',N,1/2 4 1/P) is true. Use
exercise 1 to show that the circuit Ci(n,z) = Ci(n,4 1z modn), satisfies
the requirements of the conclusion.

3: Define, by analogy to the definitions of the previously defined predi-
cates the following notions

ALOC(C,N,1/2+¢€), APAR(C,N,1/2 +¢),

AQR(C,N,1/2+¢), AQR(C,N,1-¢),

APR(C,N,Q,1/2+¢),

where € > 0 is a constant. Show that for all circuits C,

1. (3¢)ALOCR(C, N,1/2+ ¢) = (VP)ALOCR(C, N,1/2+1/P)
2. (3)APAR(C,N,1/2 + ¢) = (VP)APAR(C,N,1/2+ 1/P)
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3. (3)AQR(C,N,1/2+¢) = (VP)AQR(C,N,1/2+ 1/P)
_4. (3P)AQR(C,N,1-1/P) = (V) AQR(C,N,1 - ¢)
5. (3¢)APR(C,N,Q,1/2 + ¢) = (VP)APR(C,N,Q,1/2 + 1/P)

6. Prove corresponding versions of theorems 4.11, 4.12, 4.13 for the above
defined notions of advantage.

4: Show that for any family N the following statements are equivalent:
. (3C)(3¢)AQR(C,N,1/2 +¢)

. (3C)(3e)AQR(C,N,1 —¢)

. (3C)(3P)AQR(C, N,1/2 + 1/P)

. (3C)(3P)AQR(C,N,1-1/P)

. (YP)(3C)AQR(C,N,1~- 1/P)

. (Ve)(3C)AQR(C,N,1 —¢)

5: Let z € Z;(+1) be fixed. Show that:

1. If z € QR then QR, = {zs?* modn : s € Z2}.

2. f z € QNR, then QNR, = {zs?modn:s€ Z}}.

[« = B U -

4.9 The Quadratic Residuosity Assumption

As in subsection 4.8, throughout the present subsection n will range over
integers which are the product of two distinct odd primes p, ¢ such that
p =g =3mod4; N = {Ni: k € I} will denote a family of nonempty sets
Ni of nonegative integers such that I is an infinite set of indices and for all
n € N the integer n has binary length exactly k.

The notions of advantage defined in subsection 4.8 will now be altered
in order to reflect the fact that this advantage is valid only for a certain
fraction of the n € Ni. The generalization is as follows.

Definition 4.5 A polynomial size circusit C = {Cx : k > 1} has a 1/P-
advantage for computing the parity function for a fraction 1/P' of the inte-
gers in Ny, and this will be abbreviated by APAR(C,N,1/P',1/2+1/P), if
for all but ¢ finite number of indices k € I the set
+ 5757}
(k)

{n € Ni : Pr[z € QRy : Ci(n,z) = par(\/z modn)] > %
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has size > |N|/P'(k).

The remaining overlined versions (i.e. generalizations) of the previously
defined notions of advantage can be defined as above. In addition, one can
prove the following theorem exactly as before. '

Theorem 4.14 For all polynomzials P, P!, the following statements hold

(1) (3C)APAR(C,N,1/P',1/2+1/P) =
(3C)AQER(C, N,1/P',1/2+1/P).
(2) (3¢, P)AQR(C,N,1/P',1/2 4 1/P) =
(VQ)(BC)IQ—E(C, N, l/P" 1- l/Q)
(3) (3C,Q)APR(C,N,Q,1/P',1/2+ 1/P) =
(3C)APAR(C,N,1/P',1/2+1/P) e
Given a circuit C, an integer n € Ng, and an z € Z;(+1), Ck(n,2)
decides correctly if z € QR, if and only if Ci(n,z) = 1 assuming that
z € QR,, and Ci(n,z) = 0 assuming that z € QR,. Recall that from
definition 4.2, '

%(Pr[Ck(n,z) = 1|2 € QR+ PrCi(n,z) = 0| z € QR,]) =
= Pr[C(n,z) decides correctly z € QR,]

Definition 4.6 The Quadratic Residuosity Assumption for the family N =
{Ni 'k € I}, abbreviated QRA(N), is the following statement: if C = {C} :
k > 1} is a polynomial size, O, 1-valued circuit and P, P' are polynomials
with positive integer coefficients then for all but a finite number of indices
k €I the set

{n € Ni : Pr[Ci(n,z) decides correctly z € QR,] 2 1~ -I-"—(lk—)}

has size < |Ng|/P' (k).
Theorem 4.15
QRA(N) & -(3P,P',Q,C)APR(C,N,Q,1/P',1/2+ 1/P)

Proof: Assume that the hypothesis QRA(N) is true, but that the
conclusion —~(3P, P',Q,C)APR(C,N,Q,1/P',1/2 + 1/P) fails. By theo-
rem 4.14 there exist polynomials P, P’ with positive coefficients, and a
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polynomial size circuit C such that AQR(C,N,1/P',1 — 1/P). Consider
the polynomial P"(k) = P'(k) + 1. On the one hand, the definition of
AQR(C,N,1/P',1-1/P) implies that for all but a finite number of indices
k € I the set

{n € N; : Pr[Ci(n,z)decides correctly z € QR,] 2 1 - P—zk—)}
has size > |Ni|/P'(k). On the other hand, QRA(N) implies that for all but
a finite number of indices k € I the set

{n € Ny : Pr[Ci(n,z) decides correctly z € QR,] 2 1 - I—,%H}

has size < |Ng|/P"(k). But this is a contradiction, because N; # 0. The
proof of the other direction is similar e

Remark 1: A typical example of a family NV to which the above results
apply is defined as follows: let N; be the set of all integers n of length
k such that n is a product of two primes p, ¢ such that p = ¢ = 3mod4
and ||p| — |g| | £ 1, where |p| (respectively |g| ) is the binary length of p
(respectively ¢). The quadratic residuosity assumption for this family is
abbreviated by QRA.

To sum up it has been shown that

Theorem 4.16 (Assume QRA) The quadratic residue generator is unpre-
dictable o ~

|EXERCISES |

1: Give the details of the proof of theorem 4.14.

2: Define explicitely the remaining overlined notions of advantage and
show that each of them is implied by its corresponding nonoverlined coun-
terpart.

3: (Blum-Blum-Shub) The location loc, function defined in exercise
1 of subsection 4.8 gives rise to a pseudo-random generator. Define this
generator and use QRA to show that it is unpredictable.

4.10 The Index Generator

Let g be a primitive root modulo the odd prime number p. Let z € QR,
be an arbitrary quadratic residue modulo p. It is known that index, 4(z) =
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2t, for some integer t < (p — 1)/2 (see also exercise 4 in the subsection
on indices). The principal square of z with respect to p,g, abbreviated
PQR(p,g,z), is the integer g¢‘modp; the nonprincipal square root of z with
respect to p,g, abbreviated NPQR(p,g,z), is the integer g*+(?=1)/2 modp.
For each p,g as above define the predicate B, as follows:

B,,(z) = 1 if z= PQR(p,g,z*modp)
P\F) = 0 if z= NPQR(p,g,2*modp)

It is now easy to see that

. 1 if -1)/2
Bypg(9'modp) = { 0 if :; g— 1%2

A very significant observation is that the existence of an efficient algo-
rithm for computing the above defined function B, g, leads to an efficient
algorithm for computing the function index,, (see exercise 4 below.) The-
orem 4.17 below shows that the existence of an efficient algorithm for com-
puting PQR leads to the existence of an efficient algorithm for computing
the function index, 4, something that will be used in the sequel. For each p
let |p| denote the binary length of p.

Theorem 4.17 Suppose there ezists an algorithm A running in time poly-
nomial in |p| such that for any odd prime p, any primitive root g € Z;, and
any z € QRy,

A(psgs :L') = PQR(p,g-,z).

Then there ezists an algorithm A' running in time polynomial in |p| such
that for any odd prime p, any primitive root g € Z;, and any z € Z;,

A'(p, g, z) = indexp 4(2).

Proof: For any sequence u of bits and any bit b let ub be the sequence
of bits obtained from u by adjoining the bit b at its rightmost end. Recall
that testing z € QR, is easy; one need only compute the Langrange symbol
(z]p). Assume that A is an algorithm that satisfies the hypothesis of the
theorem. On input p, g,z the algorithm A’, using the integer ¢ as a counter,
outputs the sequence d of bits, which constitutes the binary representation
of indexp ¢(z), and is defined as follows:

Input: p prime, g primitive root modulo p, z € Z;.

Step 1: Putd=0,¢c=0.
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Step 2: Test if z € QR,.
Step 3: Put d = db(z), ¢ = ¢ + 1, where

_J 0 if zeQR,
"“”)"{ L if z¢QR,
Step 4: Put
se { z if z€QR,
"1 27 lmodp if 2¢QR,
Step 5: Put z:= A(p,9,z). '
Output: If ¢ < |p| — 1 then goto Step 2 with this new z, else output
d and stop.
The proof that this algorithm works is easy o
Throughout the rest of the present subsection p will range over odd
primes. N = {N} : k € I} will denote a family of nonempty sets N; such
that I is an infinite set of indices and for all n € N the integer n is an
odd prime of binary length exactly k. From now on and for the rest
of this section the capital roman letters P, Q with subscripts or
superscripts will range over nonzero polynomials with one inde-
terminate, positive coefficients, and degree > 1, and the lowercase
greek letters ¢,6 with subscripts or superscripts will range over
positive real numbers.

Definition 4.7 A polynomial size circuit C = {Cy : k 2 1} has a 1/P-
advantage for determining the indices (for the family N ), and this will be
abbreviated by AIND(C,N,1/2 + 1/P), if for all but a finite number of
indices k € I the following property holds for all p € N, and all primitive
roots g modulo p,

1 + 1

P(k)

Similarly, one can define the notion AIND(C,N,1 - 1/P).
Definition 4.8 A polynomial size circuit C = {Cy : k > 1} has a (1/2 ~
1/P)-advantage for determining indices (for the family N ), and this will be
abbreviated by AIND(C,N,1~1/P), if for all but a finite number of indices

'k € I the following property holds for all p € Ny, and all przmztwe roots g
module p,

Pr(z € Z; : Ci(p,9,7) = index, 4(z)] 2

: . 1
Prlz€ Z; : Ci(p,9,2) = indexp4(z)] 2 1 - "Isvc‘)‘
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For technical reasons, to become apparent in the proofs below, the fol-
lowing notion will also be used.

Definition 4.9 For any polynomial Q let E(p,g,Q) denote the event:

. p—1

index, 4(z) € [0, -Q(_k)}

Definition 4.10 A polynomial size circuit C = {Cr : k 2 1} computes
the indices which lie in the closed interval [1,(p — 1)/Q(k)] for primes p
which belong to Ni with 1/P-advantage , and this will be abbreviated by
IND(C,N,1/Q,1/P), if for all but a finite number of indices k € I the
following property holds for all p € Ni, and all primitive roots g modulo p,

" . 1 1
Pre(p0,0) [a: €7, Ci(p,9,z) = indexp 4 (z)] > 3 o,

()
Theorem 4.18 (Blum-Micali)

(3G, P,Q)IND(C,N,1/Q,1/P) = (VP)(3C)AIND(C,N,1 - 1/P)

‘Proof: Assume that P,Q are polynomials, and C is a polynomial size
circuit such that the inequality of definition 4.10 holds. The circuit C' is
defined as follows:

Input: p € N, g primitive root modulo p, z € Z;.
Step 1: Guess an integer 0 < 7 < Q(k) such that

ilp-1) (E+ 1)(p—1)]
Q) Qk)

Step 2: Compute z; = zg~i(p-1)/Q(¥) modp.
Step 3: Compute d = Ci(p,9,%i)
Output: If z = gi+i(P-1)/Q(¥) modp then output

index, 4(z) € [

indexpg(z;i) +i(p — 1)/Q(k).

If : 2 @Q(k) then put ¢ = 0 goto Step 2, else put ¢ =1+ 1 and goto Step 2.

Since the probability that the circuit Cy will give the wrong answer ‘is
< 1/2 - 1/P(k), the probability that the circuit C} will give the wrong
answer is < (1/2 — 1/P(k))2(*). This completes the proof of the theorem o
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Definition 4.11 A polynomial size circuit C = {Cy : k > 1} has a 1/P-
advantage for computing the function By, for the family N, and this will be
abbreviated by AB(C,N,1/2+ 1/P), if for all but a finite number of indices
k € I the following property holds for all p € Ni, and all primstive roots g
modulo p,

Priz € QR, : Ci(p,9,z) = Bpy(z)] 2 -;—+ }7(1-55

Definition 4.12 A polynomial size circuit C = {Cy : k > 1} has a 1/P-
advantage in computing the function PQR for the family N, and this will
be abbreviated by APQR(C,N,1/2 4+ 1/P), if for all but a finite number of
indices k € I the following property holds for all p € N, and all primitive
roots g modulo p,

1

Prlz € QR, : Ci(p,9,2) = PQR(p,z,9)] 2 % + 208

Definition 4.13 A polynomial size circuit C = {Cy : k > 1} has a 1/P-
advantage for computing the function PQR only for indices which lie in the
interval [1, (p—1)/Q(k))], for the family N, abbreviated by APQR(C,N,1/Q,1/2+
1/P), if for all but a finite number of indices k € I the following property
holds for all p € N}, and all primitive roots g modulo p,

1 1
PreGae) |z € @Ry : Ce(p,9,2) = PQR(p,2.0)12 5 + 13

« The main result of the present subsection is the following

Theorem 4.19 (Blum-Micali)
(3C,P)AB(C,N,1/2+ 1/P) = (VQ)(3C, P')APQR(C,N,1/P',1-1/Q).

Proof: Let C be a polynomial size circuit which computes the function
Bpg with a 1/P-advantage. For each e € QR, let ¢/,¢” denote the two
square roots of e modulo the prime p. The function PQR® computes the
principal square root with the aid of the circuit C and is defined as follows:

e if Ck(p’g’ el) > Ck(p’g’e")
PQR%(p,g,e) = " if Ci(p,9,¢') < Ci(p,g,¢")
random{e’,e"} if Ci(p,g,€¢') = Ci(p,9,¢")
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Let Q be any polynomial, and let the polynomial P’ be defined by
P'(k) = 4- P(k) - Q(k)?. 1t will be shown that there exists a polynomial size
circuit C’ such that property APQR(C',N,1/P',1-1/Q) holds, i.e. for all
but a finite number of k € I, and all primitive roots g modulo p,

1

Pre.a) [2 € @Ry : Cilp,9,2) = PQR(p,9,2)] 2 1 - 55

The circuit C' is defined as follows:
Input: p € Ng, g primitive root modulo p, e € QR, such that

indexpg(e) < (p— 1)/P'(K).

Step 1: Compute the two square roots ¢’,e” of e modulo p.

Step 2: Put m = P'(k).

Step 3: Select m random integers ry,...,7y, such that 2r;,...,2r, <
p—1.

Step 4: Compute ¢; = eg?"i modp, wherei=1,...,m.

Step 5: Compute ¢ = €'g" modp, and €] = €’g" modp, where 1 =
1,...,m. ' ’
- Step 6: Compute the following two integers:

L'(p,g,e) = l{l <i1<m: PQRC(p,g,e,-) = e:}l
L"(p,g,¢) =|{1<i<m : PQR®(p,g,¢;) = €}}|

Output:

' _} ¢ if L'(p,g,¢) > L"(p,g9,€)
Q@m”_{f if L'(p,g,€) < L"(p,g,€)

It remains to show that the above circuit C’ works. Let 25 = index, 4(e)

, T={1<1<m : 2s+2r; <p-1} and t = |T|. It follows from exercise
3 that there exist at least t many 1’s such that

2r; € [-(-m—-—%g-ti),p- 1] .

However, the above closed interval is the rightmost subinterval of the parti-

tion {[i(p— 1) f+1)(p~ 1)] : i< m}

m m
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of the closed interval [(p — 1)/m,p — 1], into closed subintervals each of
~length (p—1)/m. Since the integers 2ry,...,2ry, are randomly chosen from
the closed interval [1,p — 1], it follows that ¢ must be small. Moreover, for
allt € T if y is a square root of e then by exercise 2,

y9™ modp = PQR(p,9,¢;) < y= PQR(p,g,€).

Next, the following two cases can be considered.

Case 1: If ¢ = PQR(p,9,€)

In this case, using the fact that the circuit C has a 1/P advantage
for computing the function B, g, the expected value of L'(p,g,€) is m/2 +
m/P(k). Similarly, the expected value of L”(p, g,€) is m/2=m/P(k). Thus,
using the Weak Law of Large Numbers, with probability > 1 — 1/Q(k),
L'(p,g,€) > L"(p,g,€).

Case 2: If ¢’ = PQR(p,g,¢)

In this case, using the fact that the circuit C bas a 1/P advantage
for computing the function B,,, the expected value of L'(p,g,€) is m/2 —
m/P(k). Similarly, the expected value of L"(p, g, €) is m/2+m/P(k). Thus,
using the Weak Law of Large Numbers, with probability > 1 — 1/Q(k),
L"(p,g,€) > L'(p,g5e).

This completes the proof of the theorem »

As an application of theorems 4.17 and 4.19 one obtains the following:

Theorem 4.20 (Blum-Micali)
(3C,P)AB(C,N,1/2+ 1/P) = (3C, P,Q)AIND(C,N,1/Q,1/2 + 1/P)

Proof: Apply the result of theorem 4.19 to the polynomial Q(k) = 2k
to find a polynomial P'(k) and a polynomial size circuit C’ such that

: 1
PrE(pty'Q) [z e QRP : C;:(p’g, z) = PQR(P,Q, z)] _>_ 1 - ﬁ

Next, apply the algorithm of theorem 4.17, but use the circuit C} insted
of the algorithm A used there. Call C” the resulting circuit. As before,
the circuit Cj, will be applied |p| = k times. Each time Cj will supply the
correct answer with probability > (1 -~ 1/2k). Thus, C} will supply the
correct answer with probability ,

1\* -1
> —— —_—
_(1 Zk) Nexp(z)
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It follows that there exists a polynomial P(k) such that

This completes the proof of the theorem o
Given an odd prime p and a primitive root modulo p consider the function

fog ¢ Z; — Z; ‘T fp,y(z) = g% modp

and its inverse

;,1 2 Zy — Z; T — f;,l(z) = indexp 4(z).

Further, let the functions f;;'y be defined as follows:

) T . if t=0

L@ =1 foglfizh(z) i i>0

Sod(fart(x)) if i<O.
For each odd prime p, for each primitive root g modulo p and each z € Z;

define the bits _
bpg,i(z) = BP,J(f;,g(z))

The index generator, abbreviated INDGEN, accepts as inputs the triples
< p,g,z >, where p is an odd prime, g is a primitive root modulo p and

z € Z; the output is the infinite sequence by 4,0(2),bp,g,1(2),- - - s bpg,i(2),---
of bits.

Definition 4.14 A polynomial size circuit C = {C; : k > 1} has a 1/P-
advantage for predicting correctly from sequences of bits of length Q(k) pro-
duced by INDGEN (for the family N), and this will be abbreviated by
APR(C,N,Q,1/2 + 1/P), if for all but a finite number of indices k € I
the following property holds for all p € N, end all primitive roots g modulo

p’
PriCk(bnaa(@)s-- bpaat)1(®) = boso®)] 2 5+ pry- (29

Theorem 4.21 For all polynomials P,

(3€)(3Q)APR(C, N,Q,1/2 + 1/P) = (3C)AB(C,N,1/2+ 1/P)
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Proof: Let Q be a polynomial and let C be a polynomial size circuit such
the inequality in definition 4.14 holds. Define a new circuit C' as follows:

Ci(z) = Ci(bpg,1(2), .- 1bp.0,0(8)-1(7))

It is now easy to see that the circuit C' must satisfy the inequality of defi-
nition 4.11 @
Remark: Theorem 4.21 will be further improved in section 5.

|[EXERCISES |

1: Complete the details of the proof of theorem 4.18.
2: Assume that z € QR, and 2r + index, 4(z) < p — 1. Show that for
any square root of ¥ of £ modulo p,

yg" modp = PQR(p,g,79°") & y = PQR(p,9,7).

3: If indexp 4(2z) < (p—1)/m and 2 £ 2r < p—1 then

2r +indexp4(z) 2 p— 1= 2r 2 -(Ln—:l’)-n(L_-i)
4:(Blum-Micali) Repeat the proof of theorem 4.17 to show that if there
exists an algorithm A running in time polynomial in |p| such that for any
odd prime p, any primitive root g € Z;, and any z € QR,,

A(p, 9, z) = Bp’g(z)

then there exists an algorithm A’ running in time polynomial in |p| such
that for all p,g,z as above,

A'(p,9,7) = indexp 4(z).

Hint: Steps 1 - 4 remain exactly the same. The new step 5 is the following:
Step 5: Use the Adelman-Manders-Miller algorithm to compute the two
square roots of £ modulo p, say 2/, 2".
The new step 6 to replace the old step 5 is the following:
Step 6: Put .
.= { 7 i Alpg,2) =1
| " if Ap,9,2")=0
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4.11 The Discrete Logarithm Assumtion

As in subsection 4.10, throughout the present subsection p will range over
odd primes, N = {N; : k € I'} will denote a family of nonempty sets N;, of
nonegative integers such that I is an infinite set of indices and for all n € N;
the integer n is an odd prime of length exactly k. -

From the notions of advantage defined in subsection 4.10 one can define
overlined notions, just like in subsection 4.9, as follows:

Definition 4.15 A polynomial size circuit C = {Cy : k > 1} has a 1/P-
advantage for computing the function By 4 for a fraction 1/P’ of the primes
in N, and this will be abbreviated by AB(C,N,1/P',1/2+ 1/P), if for all
but a finite number of indices k € I, for all p € Ni, and all primitive roots
g modulo p the set

{PG Ny : Prlz € Z; : Ci(p,9,2) = Bpy(z)] 2 %_,_ F%H}

has size > |Ni|/P' (k).

The remaining overlined ‘versions of the previously defined notions of
advantage can be defined as above. In addmon, one can prove the following
theorem exactly as before.

Theorem 4.22 For all polynomials P, P', the following statements hold

(1) (3¢,P,Q)IND(C,N,1/Q,1/P',1/2+ 1/P) =
(vP)(3C)AIND(C,N,1/P',1 - 1/P).

(2) (3¢, P) AB(C,N,1/P',1/2+1/P) =
(VQ)(BC’ R)APQR(C’ N, l/Pla I/R’ 1- l/Q)

(3) (3c,P) AB(C,N,1/P',1/2+1/P) =
(3C,P,Q)IND(C,N,1/Q,1/FP',1/2+ 1/P).

(4) (3¢,Q)4PE(C,N,Q,1/P',1/2+1/P) =
(3C)AB(C,N,1/P',1/2+1/P) o

Definition 4.16 The Discrete Logarithm Assumption for the family N =
{Ng : k € I}, abbreviated DLA(N), 1s the following statement: if C = {C} :
k > 1} is a polynomial size, O, 1-valued circuit and P, P' are polynomials
with positive integer coefficients then for all but a finite number of indices
k €I the set

{PGJ\ : (Vg) (P 7[Ck(p,9,2) = indexp 4(z)] 2 1 - P(lk))}

where g ranges over primitive roots modulo p, has size < |Ni|/P'(k).
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Now, it is not difficult to show that
Theorem 4.23

DLA(N) « —(3P,P',Q,C)APR(C,N,Q,1/P',1/2+ 1/P) o

Remark 1: A typical example of a family N to which the above results
apply is defined as follows: let Ni be the set of all primes such that |p| = k,
where |p| (respectively |g| ) is the binary length of p (respectively ¢). The
discrete logarithm assumption for this family is abbreviated by DLA.

Remark 2: The DLA is related to the Pohlig-Hellman algorithm given
in section 1.

To sum up it has been shown that

Theorem 4.24 (Assume DLA) The indez generator is unpredictable o

[EXERCISES |

1: Give the proof of theorems 4.22, 4.23.

2: Define explicitely the remaining overlined notions of advantage and
show that.each of them is implied by its corresponding nonoverlined coun-
terpart.

4.12 Bibliographical Remarks

The linear congruence generator, LGEN, defined in subsection 4.2, is one of
the most popular pseudo-random generators in use today, and is based on a
scheme first devised by Lehmer. The general theorem 4.1 on the predictabil-
ity of the linear congruence generator is the main result of [P]], which also
gives a different proof of theorem 4.1. Additional information on the linear
congruence generator can be found in [Kn} (pp. 1 - 37) as well as in [N].

The 1/p-generator is due to Blum, Blum and Shub. The predictability
of the 1/p generator proved in theorem 4.3, as well as exercises 3, 4 and 5
at the end of this subsection are from [BBS].

The equivalence of factoring and computing square roots modulo a com-
posite number (theorem 4.6) was first discovered by Rabin (see [Rabl].) The
periodicity of z2modn is useful in the study of the security of the zmodn
generator. The results of subsection 4.6 appear in [BBS]. v

The definition of the probabilistic polynomial size circuit given in sub-
section 4.7 is based partly on the definition given in [AB].



4.12 Bibliographical Remarks 135

A study of the security of the z2modn generator, as well as the reduc-
tion of its unpredictability to the Quadratic Residuosity Assumption can
be found in [BBS]. Theorem 4.12 on amplifying the advantage in predict-
ing quadratic residues is extracted from [GM]. The security of the indexp
generator, as well as the reduction of its unpredictability to the Discrete
Logarithm Assumption can be found in [BM].

It is interesting that the origins of both the Discrete Logarithm Assump-
tion as well as the Quadratic Residuosity Assumption go back to Gauss (see
[Gau].) A similar assumption, called Factoring Assumption, has been used
in [GMY] for the construction of strong signature schemes.
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5 PUBLIC KEY CRYPTOSYSTEMS

Secret de deuz, secret de Dieu,
secret de trois, secret de tous.
(French Proverb)

5.1 Introduction

The systems presented in this section have been chosen in order to illuminate
the recent developments in public key cryptosystems, which followed the
suggestions of Diffie and Hellman in [DH].

Subsection 5.2 sets the ground by giving all the necessary definitions and
terminology appropriate to understanding the development of public key
cryptosystems. The RSA system is developed in subsection 5.3, the Rabin
system in subsection 5.5, and the Merkle-Hellman system in subsection 5.7.
Subsection 5.9 presents the Quadratic Residue System which is based on
probabilistic encryption. _

In addition, the security of the RSA and the Rabin systems is studied
relative to the security of single RS A and Rabin bits respctively (see subsec-
tions 5.4 and 5.6 respectively.) The single iteration Merkle-Hellman system
is not secure; an outline of Shamir’s cryptanalytic attack is presented in
subsection 5.8.

5.2 What Is a Public; Key Cryptosystem

Suppose that user S (sender) wants to transmit a given message P to
another user R (receiver) via a certain communication channel in such
a way that it will be very difficult to any unauthorized user to read the
message P. To accomplish this task the sender resorts to encryption or
enciphering of the message P i.e. he scrambles the original message P,
also called plaintext, and transmits the resulting scrambled text, say C.
The scrambled text C thus obtained from the plaintext P is also called
ciphertext.

The receiver must now convert the ciphertext C back into the original
plaintext P. This conversion process is also called decryption or deci-
phering. In addition, the encryption and decryption processes mentioned
above are in fact efficient algorithms, called the encryption algorithm and
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the decryption algorithm respectively, transforming a given message into
another one. The function E (respectively D) determined by the encryp-
tion (respectively decryption) algorithm is called encryption (respectively
decryption) function.

An interceptor is a user other than the sender or the receiver who
gets hold of the transmitted ciphertext C. An interceptor who tries to
reconstruct the original plaintext P from the inercepted ciphertext C is
called a eryptanalyst, and the deciphering analysis he applies is called
cryptanalysis (see figure 1). '

SENDER RECEIVER

—+[Transmission ling— P

lInterceptor]

Figure 1: Message Transmission

In order to make the cryptanalysis even more difficult the encryption
and decryption functions depend on a set K of parameters, also called the
set of keys; each k € K is called key.

Thus, a nonpublic key cryptosystem, abbreviated NPKC, consists of
two families {E; : k € K},{D¢ : k € K}, of encryption and decryption
functions respectively such that

1. For all k € K, E; is the inverse of D;.

2. For all k € K, E; (respectively D;) is known only to the sender
~ (respectively receiver.)

3. For all k € K, the algorithms Ej, D; are efficient.

4. It is difficult to compute the plaintext P from the ciphertext Ex(P)
alone without prior knowledge of the decryption function Dg used.

To transmit messages the sender and the receiver agree in advance on a key,
say k, chosen from the set K of keys; the sender transmits the ciphertext
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Ei(P) to the receiver; the receiver uses Di(Ex(P)) = P in order to obtain
the plaintext P (see figure 2.)

SENDER = ;E{EYEE' *RECEIVER

P —{Trasmission Tind— P

I Interceptor l

Figure 2: Nonpublic key cryptosystem

The following is an example of a widely used system in nonpublic key
cryptography.

Example 5.1 The Vernam System: Let both plaintezts and keys be rep-
resented by sequences of bits. Let k = (ko,...,kn) be the key agreed by the
sender and the recesver. Let @ represent modulo 2 addition between bits. In
this system Ey = Dj and for any plaintezt P = (P, ..., Pn),

Ei(P) = (ko ® Po,... kn ® Pn),

Clearly, the Vernam system requires a key of length at least as as long as
the message transmitted. This ts accomplished by providing the key in a long
enough tape; each section of the used tape is then discarded (one-time-pad.)

As was noted above, a nonpublic key cryptosystem requires the in ad-
vance exchange of a key between the sender and the receiver. However, such
a limitation is indeed impractical for today’s electronic communication re-
quirements. A public key cryptosystem, abbreviated PXC, overcomes this
limitation by allowing the existence of a private file as well as a public file
(see figure 3.) Thus, for each user U, the public file of U is made available
to all potential users; each such public file includes the encryption function
Ey. However, the private file of U is known only to U itself and consists
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USER | PUBLIC FILE | PRIVATE FILE

A E,s Dy ]
B Ep Dp
C Ec D¢

Figure 3: The Filesin a PKC

of the decryption function Dy. Moreover, the construction of the encryp-
tion and decryption functions is based on the notion of trapdoor function.
Loosely speaking, a trapdoor function is a function f such that the following
properties hold:

1. f is easy to compute.
2. f~!is difficult to compute.
3. f~!is easy to compute when a trapdoor or trick becomes available.

A function f satisfying only (1), (2) above is also called 1 ~ 1, one-way or
simply one-way.

Consequently, a PKC consists of two families {Ey},{Dy}, where U
ranges over the set of all potential users, of encryption and decryption func-
tions respectively such that

1. For all U, Ey is the inverse of Dy.
2. For all U, Ey is in the public file but Dy is known only to U.
3. For all U, Ey is a trapdoor function.

To transmit a plaintext P the sender S transmits the ciphertext Ep(P) to
the receiver, where Ep is the public encryption function of the receiver R.
The receiver uses Dr(Eg(P)) = P in order to obtain the plaintext P (see
also figure 4).
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SENDER<—— PUBLIC FILH RECEIVER
Egr

P—Ep(P) = —Transmission line— Dr(C) = B—P

IInterceptorl

Figure 4: Public key cryptosystem

5.3 The RSA System

The first system to be examined is called RS A, named after the initials of
the last names of its three inventors: Rivest, Shamir and Adleman. In the
RS A system two distinct odd primes p, ¢ are selected, that are kept secret;
their product N = p - ¢ is publicized. Further, each user chooses integers
e,d < N such that

ged(e,o(N)) =1, e-d =1 modp(N); -

e is publicized, but d is kept secret. The encryption and decryption
functions respectively are

E(z) = z° modN, D(z) = z® modN.

Figure 5 describes the RS A system.

Since N is the product of the two primes p, g, o(N) = (p~ 1) - (¢ - 1).
Thus, any prime e > max(p, gq) will be relatively prime to ¢(N). Using the
Euclidean algorithm one can now determine an integer d such that e-d =
1 modN. Hence it is easy to find integers e,d as above. It follows from
results of the section on Number Theory that both RSA encryption and
RS A decryption are easy (see subsection on modular exponentiation.) It
remains to show that the functions E, D are the inverse of each other i.e. to
show that for all z € Zy,,

E(D(z)) = z, D(E(z)) = =. (1)
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USER | PUBLIC FILE | PRIVATE FILE

1 e, Mi=pi-q1 d;
2 ez, No=ps-qo dy
3 e3, N3 =p3-¢3 ds

Figure 5: The RSA System

To prove (1) notice that
E(D(z)) = E(:c" modN) = 2°¢ modN.

However, ¢ - d = 1 modp(N ) Hence, there exists an mteger k (computed
easily via the Euclidean algorithm) such that

e-d=1+4+k-p(N)
It follows that
E(D(z)) = 2z°% modN = z'*#¢¥) mod ¥

=z 28°(M) modN = z - (2°()* modN = z modN,

using the Euler-Fermat theorem.

The rest of this subsection will be devoted to some security consider-
ations arising from the study of RSA and related to the factoring of the
integer N.

Let N = p- g,e be a given instance of RSA. If o(N) is known then one
can factor N easily (see exercise 1 below.)

Now assume that an arbitrary integer d is known such that ed = 1 modN.
It is then clear that s = ed — 1 is a factor of (V) and hence

Va € Zj(a* = 1 modN). 2)

Write s = 2'u, where u is odd and consider the set Ay = Z} — By, where
By is defined by

By={a€Zy:a*"=1modNor3j< t(a?’® = -1 modN)}.
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For any element a € Ay c.hoose k minimal with a2*¢ = 1 modN Since
a€ AN, k2 1. Put b = a®*"'% modN. Then

b#% 1 modN and b? = 1 modN.

It follows that ged(b — 1, N) is a proper factor of N.

Next write p — 1 = 2"1y;, ¢ — 1 = 2"2u,, with u;,us odd, and put
v = min{¥;,2}. Let K = ged(u,u;) - ged(u, u2). A repetition of the proof
of Monier’s theorem (see section 2, subsection on Rabin’s test) shows that

y—
|B~1=(1+4—-§—1)-Ks-“-’-(-2-’ﬂ.

It follows that

Pr[anfv:aeAN]Z%.

Hence with probability > 1/2 a random element a € Zj; is also a member
of Any and hence by the result in the previous paragraph it can be used to
factor N. To sum up it has been shown that

Theorem 5.1 Given any instance N,e of RSA and an arbstrary d such that
ed = 1 modN, there ezists an efficient probabtlzsttc algorithm for factoring'
the snteger N.

|EXERCISES |

1: Use the identity o(N) = N —p~ ¢~ 1 to show that if p(N) is known
then N can be factored easily.

5.4 RSA Bits

In studying the security of RS A it is reasonable to examine specific bits
of the transmitted message. One might hope that it might be easier for a
cryptanalyst to devise an algorithm that will output a specific bit of the
original message, given the encrypted message. To be more specific the
present subsection is motivated by the following

Question: If a cryptanalyst knows an efficient algorithm which given as
input an RSA message z° modN (of a specific instance of RS A) will output
a certain bit of the original message z, can he devise an efficient algorithm
which given as input an RSA message 2° modN (of the same instance of
RS A) will output the whole message z?
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Nevertheless, it might come as a surprise that for specific bits (to be
studied below) devising an algorithm that will output a specific bit of the
original message, given the encrypted message, is just as difficult as de-
vising an algorithm that will output the entire original message, given the
encrypted message.

If the representation of the integer N in the binary system is

fn-1 .
N=EN,'-2'

i=0

then let bit(N) denote the sequence N,_;...Ng. Conversely, given a se-
quence S = N,_;...Np of bits let the representation of S, abbreviated
rep(S) be .

n=-1

rep(S) = E N; - 2%,
i=0
For any instance N,e of RSA define the following bit functions:

Location Function:

0 if z< N/2

e —
locy (= modN)—{ 1 i 2> N/2

s-th Bit Function:
- bity .(2° modN) = z,,

where bit(z) =zp-1...2,...20.
As a special case one obtains the
Last Bit Function:

0 if ziseven

240 e —
bity (= modN)—{ 1 i zisodd

For any odd integer N such that bit(N) = N,—;... Nc;, it makes sense
to define the significant position of N, abbreviated s(N), by
s(N) = the largest k such that Npg4y =0< Np=---=No=1.

Notice that since N is odd, s(N) 2 1.
The following result formalizes and answers the question stated above.
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Theorem 5.2 (Goldwasser-Micali-Tong) For aeny instance N,e of RSA
and any 0 < s < s(N) the following statements are equivalent
(1) There is an efficient algorithm A such that
A(z® modN) = z, for all z € Z},.
(2) There is an efficient algorithm computing the function bit?v',.
(8) There is an efficient algorithm computing the function locy .
(4) There is an efficient algorithm computing the function bitl .

Proof: Fix any 0 < s £ s(N). It is obvious that (1) implies each of
the statements (2), (3) and (4). Since N is odd N,2°¢ are relativily prime;
hence there exists an integer I such that I-2°= 1 modN (such an I can be
computed using the Euclidean algorithm.)

Proof of (2) & (3): It is clear that for all z € 2},

z< -‘;X < 2z modN is even (3)

It follows from (3) that
locy,.(z) = bity .(2°- 2 modN), (4)

bitY .(z) = locy (I -  modN), (5)

(see exercise 1.) Now, the proof of (2) < (3) can be completed easily.
The rest of the proof will require the following simple lemma, whose
proof is left as an exercise (see exercise 2.)

Lemma 5.1 For I, N, e as above the following statements hold
(1) N -z°= (N - z)° modN.
(2) If = is even then I- 2° = (£)° modN.
(8) If z is odd then I- (N — 2°) = (¥52)° modN.

From now on and for the rest of the proof of the present the-
orem the subscripts of bity, will be omitted. For any sequence
% = ¥p-1,...,up of bits let £(u) = n denote the length of u and let u 1 3
denote the sequence up—1,...,U%n-;, i.6. the sequence consisting of the first ¢
bits of u. Hence, if # > £(u) then u 1 i = u. For any sequences u, v’ of bits let
ulAu' denote the last £(u') bits in the binary representation of the number
rep(u) — rep(u'), where rep(u) > rep(u'); further, let u ~ u' denote the
concatenation of u,u’ i.e. the sequence obtained from u by adjoining at the
end the bits of u'. It is then easy to prove (see exercise 3) that
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Claim 1: For any z < N/2 there exists a sequence of bits w such that
bit(N — 2z) = w ~ [ bit(N) A( bit(z) ~ 0)]

Proof of (2) = (1)

Let A be the efficient algorithm computing the last bit function bit®. The
idea of the proof is based on repeating the following algorithm £( bit(N))
times:

Input: z° modN

Step 1: Compute b = A{z® modN)

Step 2:

1. If b = 0 then compute I - z° modN = (£)° modN
2. If b=1 then compute I- (N — z°) modN = (452)° modN

Step 3: Use the number computed in Step 2 as new input, (this number
is either (z/2)° modN or ((N — z)/2)° modN) and repeat the process.

The sequence of bits given in successive applications of Step 1, constitutes
the binary representation of z. The formal aspects of the proof are given
in the sequel. Let n = £( bit(N)). Define r;,a;,t;, where ¢t = 1,...,n, by
induction as follows.

r1 = 2° modN;a; = bito(r.-),

I.(N-ri.;)modN if gi1=1

Also, define by reverse induction ¢, = a, and

- t;~0 if a;=0
LT bit(N)A[G ~0) if a; =1

r.,_ { I-ri_; modN if a;=y =0
;=

Clearly, for all ¢, £(t;) = n — ¢+ 1. Also, for each ¢ there exists a unique
integer u; such that uf = r; modN. Put v; = bit(x;). Then one can prove
by reverse induction on i that for all 1 there exists a sequence w; such that

Claim 2: v; = w; ~ t;.

Indeed, the case 1 = n is immediate from the definitions. Assume that
the claim is true for 7, and let w; be a sequence such that v; = w; ~ ¢;. To
find a w;—; such that v;_; = w;_; ~ t;—;. If on the one hand ag;_; = O then
ri=1I-r;—; modN. Thus,

uf_ =ri=2°-r,=2°uf = (2 v)° modN.
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Consequently, 2 - u; = u;_;. It follows from the induction hypothesis that
vi-1 = bit(y;—;) = bit(y;) ~O=w; ~t; ~ 0.
If on the other hand a;—y = 1 then r; = I- (N — r;—;) modN. Thus,
Y =Eria=N-2°rn=N-2°ui=

N-(2-4)=(N~-2: 4)°modN.

Consequently, N — 2 - u; = u;—;. It follows from claim 1 that there exists a
sequence w)_, such that

vi-1 = bit(uj—1) = bit(N — 2- ;) = wl_; ~ [ bit(N)A(v; ~ 0)].

Hence, the result follows ‘easily from the induction hypothesis.
Finally, claim 2 implies that wy = 0 and hence v; = bit(z) = ¢;.
Proof of (4) = (1)

Define r;,a;, fisy..., fi,0, Where ¢ = 1,...,n, by induction on i:

fio = bit*(ry), fle-1=--= f10=0,
r, = 2° modN, a; = f;o.

7; is now defined exactly as before i.e.

o= I -7,y modN if a1 =0
"1 I-(N-ri-1) modN if a;o; =1
Further, put
froctooifio= Ji-1,0---fim11 if ¢j-1=0
MR T L (1= fiere) - (U= fim1g) o @i =1

The sequence ¢; is defined by reverse induction; one sets tp = fn,...fn0,
and for ¢t > s+ 1 one puts

to o= t;~0 if aj=q =0
=171 bit(N)A[t ~ 0] if ai-y =1

Clearly, forall 1 £ ¢ < n - s, £(tp41-i) = s+ i. Hence, £(t,41) = n. As
before, let u; be such that uf = r; modN. It will be shown by induction on
s+1212>1that
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Claim 3: [f;,... fio] T i = [last s+ 1 bits of bit(u;)] 14
Proof of Claim 3: The case t = 1 is trivial. Assume the claim is true
for 1. It will be shown that the claim is true for £ + 1. On the one hand, if
a; = 0 then
itr,0 - -fix10] T+ 1) = firrofisofipm1--- fijamier1 =
bit’ (Ti+1)fi,af:',a—l voe fi,a—l'+1 =
[(s + 1) — st bit from the end of bit(wit1))fisfie=1-- fis—i+1-

The claim now follows from the fact that f; o =0, u; = 2u;4, (see claim 1).
On the other hand, if a; = 1 then

. [fl'+1,a . 'fl'+1.0] 1 (, + 1) =
[(s + 1) — st bit from the end of bit(ui+1)](1 = fis) --- (1 = fipmit+1)-

The claim now follows from the fact that f;g = 1, u; = N —2u;4; (see claim

1) |

Next, one can show as in claim 2 above that for all ¢ > s+ 1 there exists
- a sequence w; such that v; = w; ~ ¢;. In particular, v,4; = t,4+1 and hence,
us41 = bit(ts41). It follows from the definition of u; that for all ¢,

2- 44y = u; modN or 2- u;4) = —u; modN.
In particular, since z = u;
‘ 2° - 44y = 2 mod N or 2° - u,4; = ~z modN.
It is now clear that if one puts y = 2* - rep(Z,+1) modXN then
g=4dY if y*=2° modN
Tl N—y if y*#z° modN
The above recursive construction can be easily converted into an efficient
algorithm for computing z from z° modN e

[EXERCISES |

1: Give the proof of equations (4) and (5).

2: Give the proof of lemma 5.1. Hint: Use the fact that e is odd and
that J-2°= 1 modN.

3: Give the proof of Claim 1.

4: Give in detail the algorithms described in the proof of (2) = (1) and
(4) = (1) of theorem 5.2.
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5.5 The Rabin System

The main strength of RSA is based on the (supposed) difficulty of factoring.
Thus, if a cryptanalyst knows how to factor efficiently he will also be able to
break RS A. However, it is not known if the converse of this last statement
is true. Rabin, in an attempt to resolve this intricate situation has proposed
a public key cryptosystem (to be defined below) for which the problem of
factoring is equivalent to that of breaking his system.

In the Rabin system each user selects a pair p, ¢ of distinct odd primes,
that he keeps secret, and publicizes N = p- ¢; further, each user chooses an
integer b < N. The encryption function is

Enp(z) =z (z+ b) modN.

The decryption function Dy 3 supplies for each given encoded message m a
solution u (there are four possible such solutions) of the quadratic equation
z- (z+ b) = m modN. Figure (6) describes the Rabin system.

USER | PUBLIC FILE | PRIVATE FILE
1 bi,Mi=p1-q1 P1,91
2 be, N2 =p3-q2 P2, 42
3 b3, N3 = p3- g3 P3,93

Figure 6: The Rabin System

- It is clear that the encryption Enp(z) = z- (z + b) modN requires one
addition, one multiplication and one division by N. Decryption is also easy
if the factorization N = p- ¢ of N is known. Indeed, given an encrypted
message m (such that p,g jm) use the Adleman, Manders and Miller al-
gorithm to compute the roots r,s of the congruences z - (z + b) = m modp
and z - (z + b) = m modg respectively. Next, use the Euclidean algorithm
to compute integers k,! such that k-p+1-g = 1. It is now easy to see that
lgr + kps is a solution of the congruence z - (z + b) = m modN. Further, it
is easy to show that the functions Ex 3, Dy p are the inverse of each other.

It will simplify the remaining proofs if one notices that the congruence
z- (2 + b) = m modN has a solution if and only if the congruence y: =
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m + — ” modN has a solution. To see this last claim, one merely has to
complete the squares in the congruence z2 + z - b = m modN; this can be
done since N is odd; one merely has to define 4~1 modN, the inverse of 4
modulo N. Thus, from now on only congruences of the form z2 = m modN
will be considered.

As promised, it remains to show that decryption is equivalent to factor-
ization. This is proved in the theorem below.

Theorem 5.3 (Rabin’s Factorization Theorem) Let N be the product
of two odd primes. Then the following statetements are equivalent:

(1) There is an efficient algorithm A such that for allm < N, A(N,m)
is a solution of the congruence z2 = m modN.

(2) There 13 an efficient algorithm for factoring N.

Proof: The proof of (2) = (1) was given in the above discussion (see
also exercise 1.) Thus, it remains to prove (1) = (2) Choose at random an
integer a such that gcd(a,N) = 1 and let m = a2 modN. If u = A(N,m)
then both a,u are solutions of the congruence z> = m modN. So, on the
one hand if v & {a, N — a} then ged(N,u+ a) is a prime factor of N; on the
other hand if ¥ € {a, N — a} then choose another a and repeat the above
procedure. Since, with probability 1/2, u € {a, N — a}, it is expected that
after two trials one will be able to factor N. More details of the proof can
be found in subsection 3.5 e

A closer examination of the proof of the previous theorem can a,lso show
the following

Theorem 5.4 (Rabin) Let A be an efficient algorithm such that for any
N which is the product of two odd primes, A(N,m) outputs in F(N) steps
a solution of the congruence z2 = m modN with probability at least . L.
Then there ezists an efficient algorithm B such that for any N which :}g

product of two odd primes, the algorithm B(N) will output the factors of N
in at most2-e(N) - F(N)+2-loga N steps o

|EXERCISES |

1: Show that if r (respectively s) is a solution of the congruence z(z+b) =
m modp (respectively z(z + b) = m modg) and kp + £g = 1 then kps + £gr
is a solution of the congruence z(z + b) = m modN.

2: Prove theorem 5.4 using an argument similar to that of theorem 5.3.



150 5 PUBLIC KEY CRYPTOSYSTEMS

5.6 Rabin Bits

Just like in the case of the RS A system it is reasonable to examine the
secutity of specific bits of messages transmitted via the Rabin system. To
be more specific the present subsection is motivated by the following

Question: If a cryptanalyst knows an efficient algorithm which given as
input a Rabin message 22> modN (of a specific instance of Rabin’s system)
will output a certain bit of the original message z, can he devise an efficient
algorithm which given as input a Rabin message z2 modN (of a specific
instance of Rabin’s system) will output the whole message z?

Without further ado the notation of subsection 5.4 will be used in the
present subsection.

Each £ € QRN has exactly four square roots; let z%+ (respectively z™)
denote the square root of £ which is < N/2 and such that the Jacobi symbol
of z* (respectively of z~) with respect to N is +1 (respectively —1.) For
any instance N of Rabin’s system define the following bit functions whose
domain is the set Q Ry of quadratic residues modulo N.

Parity Function:

Pary(z) = par(z*),

Parity Comparison Function:

0 if par(zt) = par(z~
CPary(z) = { 1 if gar(z"'; # gar(z';-

The following result formalizes and answers the question stated above.

Theorem 5.5 (Goldwasser-Micali-Tong) Given any integer N which s
the product of two distinct odd primes p,q such that N = 1 mod8 the fol-
lowing statements are equivalent

(1) There is an efficient algorithm for factoring N.

(2) There 13 an efficient algorithm computing the function Pary.

(8) There is an efficient algorithm computing the function C Pary.

Proof: Fix N as in the hypothesis of the theorem. It is obvious that (1)
implies each of the statements (2) and (3). Since N is odd N,4 are relativily
prime; hence there exists an integer I such that -4 = 1 modN (such an [
can be computed using the Euclidean algorithm.)

Proof of (2) = (1): The proof is similar to that of theorem 5.2. The
following algorithm factors N:

Input: N
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Step 1: Choose a < N/2 at random such that (a|N) = -1.
Step 2: Compute r; = a? modN,a; = Pary(r).

Step 3: Compute the length n = £( bit(N)) of N.

Step 4: For 1 = 1 to n compute

r;=I-r,_y modN, a; = Pary(r;)

Step 5: Compute t, = a,
Step 6: For t = n down to 2 compute

£ 1= t;~0 if a;i-1 =0
-1 = bit(N)A[t; ~0] if a;-y =1

Output: gced(a + rep(t1),N).

For each ¢ let u; be the unique root of 2 = r; modN such that u; <
N/2, (4|N) = +1. However, recall the following properties of the Jacobi
symbol:

(~11N) = (-1)¥-D/2, (2]N) = (~1)N¥-D)e,

Hence, for the N considered in the present theorem (—1jN) = (2|N) = +1.
Using this and arguing as in the proof of theorem 5.2 one can show that

gi-1 =0=yi) =2-u,

gi-1=1=2u_1=N-2- 4.

For each 1 let v; = rep(u;). As in the proof of theorem 5.2 it can be shown
that for all ¢ there exists a w; such that v; = w; ~ {;. In particular, v; = t;.
It follws that ged(a + vy, N) is a prime factor of N.

The proof of (3) = (1) is left as an exercise to the reader o

|EXERCISES |

1: Complete the details of the proof of (2) = (1) in theorem 5.5.
2: Give the proof of (3) = (1) in theorem 5.5. Hint: the algorithm is
similar to that given in the proof of (2) = (1).

5.7 The Merkle - Hellman System

In the Merkle-Hellman system each user selects a pair w, m of positive inte-
gers, that he keeps in his private file, such that ged(w,m) = 1; w is called
the multiplier and m is called the modulus. In addition, each user keeps
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in his private file a superincreasing sequence o’ = (a},...,a},) of positive
integers i.e. a sequence that satisfies

n n
al > z a;foralli > 1, and m > Za}.
J=i41 J=1
The user publicizes the sequence a = (ay,...,a,) Which is defined by

a; = w-a) modmforall¢ > 1.

A message z = (z1,...,%,) (which is a sequence of 0, 1 bits) is encrypted
via the encryption function "

E(z) = z":z.- - aj.
i=]

The decryption function D supplies for each given encoded message S a
solution u = (u1,...,uy) of the equation

S=zn:u."a.’- . (6)

fa=]

Figure 7 describes the Merkle-Hellman system.

USER PUBLIC FILE PRIVATE FILE
1 a = (al,l,-“3al,n1) wl,ml,a& = (all,l,-",a'l.nl)
2 az = (a2,3,-..,02,n,) | w2, me,05 = (ab,,...,a5,.)

3 as = (0'3,ls e oo sa3,n3) wg, ma, 0’3 = (ala,ls vo. )a"a,na)

‘Figure 7: The Merkle-Hellman System

Equation (6) is based on a knapsack problem and is in general difficult to
solve. However, the following lemma indicates how one can solve efficiently
knapsack problems for superincreasing sequences.
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Theorem 5.8 Leta' = (a},...,al,) be a superincreasing sequence of positive
integers and let S’ > 0. Then the following equation has at most one solution
z = (z3,...,2n) € {0,1}" satisfying

S'ézn:z;-a:-. (M

i=1

In fact, if equation (7) has a solution then

n
S' < Ea:-.
. i=1
Proof: The proof is straightforward. One merely needs to observe that
any solution of (7) must satisfy

n
:c,-=1§$"_>_a:-+ 2 :c,--a;-,
J=i+1

foralli=1,...,ne

It remains to show that encryption is easy. Indeed, when the user receives
the encrypted message S he is supposed to solve equation (6) to obtain the
original message z = (zj,...,%,). Instead, he computes w™1, the inverse of
w modulo m, and solves the equivalent knapsack problem

n
w™l.S=)"z;-a; modN. ‘ (8)
i=1
Since the sequence a' = (a},...,a},) is superincreasing, equation (8) can be
solved easily using theorem 5.6.

An obvious generalization of the above system is the iterated Merkle-
Hellman system, also considered by Merkle and Hellman. In such a system
one successively applies pairs w¥, m* of multipliers and moduli respectively
(such that ged(w*,m*) = 1, where k = 1,...,7 — 1) to the original vector a

to obtain a sequence a = a%,al,...,a" of vectors satisfying

a* = w**! x ¢**! modm*t!, fork=0,...,r -1,
componentwise (here, the symbol * is used to indicate multiplication of a

scalar with a vector.) The last vector a” is chosen in advance to constitute a
superincreasing sequence. For more details the reader should consult [MH].

|EXERCISES |

1: For each n construct a superincreasing sequence of length n.
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5.8 Security of the Merkle - Hellman System

Let w,m,a' = (a},...,a}),a = (aj,...,a,) be an instance of the Merkle-
Hellman system. A cryptanalyst is in possession of the sequence a, but not
of w,m,a’. In order to analyze the above instance, the cryptanalyst might
try to compute a trapdoor pair for the sequence a i.e. a pair W, of
integers such that the sequnce @ = (@,,...,8,) defined by

@; = a; - W modm . 9)

is superincreasing and satisfies

Ya<m (0

izl

It is clear from the argument in subsection 5.7 that any trapdoor pair could
be used to decrypt easily any transmitted message of the above instance of
the Merkle-Hellman system.

Dividing congruences (9), (10) by 7@ one obtains that

a; w

%' = (a; - %) modl, (11)
n

Z a; -Fmodl < 1, (12)
i=1

where 7 = Z. The function (g; - ¥) mod1, for real numbers 7 is represented
in figure 8. (Notice that for convenience the unit length in the horizontal
axis is bigger than the unit length in the vertical axis.)

In order to compute such a trapdoor pair one first determines a point
To on the 7- axis such that inequality (12) is valid (of course such a point
is guaranteed to exist because this is required in the construction of the
Merkle-Hellman system.) Hence, an interval [r;,r2] must also exist such
that for all points ¥ € [r,r9] inequality (12) is valid. If one thinks of
the sawtooth curves superimposed one upon the other then it is desired to
determine accumulation points of minima of all these sawtooth curves. In
fact such accumulation points will occur at intervals [ry, ro] as before.

Let p; = the p;-th minimum of the :-th sawtooth curve. One obtains the
following two systems of inequalities with the integral unknowns p;,...,pn.
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(a; - 7) modl
1

T= 5
ol L2323 .. & ol a=1y "

a; a; a; a; a; a;

Figure 8: The i-th sawtooth function
1<pp<a-1, —e2 < p1fa1 —p2faz < &
1<pp<ar—1, -3 < p1/a1 —p3faz < €
) ’ (13)

1<pn<an,-1, "‘fnspl/al“Pn/anSC;;

where ¢;, ¢! are the acceptable deviations -of the differences py/a1 — p;/a;
respectively, for ¢ = 1,...,n. The deviations should be chosen small enough
in order to determine accumulation points. Usually it will be enough to
consider a constant number of inequalities in (13) that is independent of n.
System (13) can be solved using Lenstra’s integer programming algorithm
(see [Lenl)).

Let p; be one of the values determined by the above procedure and let
F1,...,7k be a list of all discontinuity points such that

- = n pntl
Tly.. s Tk € [a—l.,——al_),

arranged in increasing order, of all the sawtooth curves. Between any two
such discontinuity points each sawtooth curve looks like a line segment;
moreover, the linear segment corresponding to the ¢-th sawtooth curve is
represented by the formula

a;~¢, TIST<T,

=
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where ¢/ = the number of minima of the i-th sawtooth curve which lie in
the interval (0,7:). Thus, for each 1 < t < k conditions (11), (12) can now
be formulated as the following system of linear inequalities with unknown
7, such that 7 < 7 < Fi41:

i(?- a-g¢)<l, (14)
=1
i~1

’ (?-a,--qf)>2(?~a,--—q;-), fori=1,...,n. (15)
j=1

The solution of the above system provides a subinterval of [F;,Fi41). Any
¥ = W/ lying in this subinterval gives a trapdoor pair W,7. For more
details the reader should consult [Sham1].

5.9 The Quadratic Residue System

The quadratic residue system, abbreviated QRS, to be described below,
replaces the notion of trapdoor function with the notion of probabilistic
encryption i.e. to encrypt a given message the user will use the result of a
sequence of coin tosses in order to scramble the original message.

Suppose that a sender S wants to send a binary message M = (m; - - - m,)
to receiver R. S obtains the numbers n,y, where y € QR,,, corresponding
to R from the public file; n is the product of two odd primes p, ¢ known only
to R such that p = ¢ = 3 mod4 (see figure 9)." S encrypts the message M
by choosing a random sequence z = (z1,...,z,) of r elements of Z} = {1 <
z < n:ged(z,n) = 1} and letting

En(z; M) = (y™ - 22 modn,...,y™ - 22 modn).

Given (ej,...,€,) the receiver who knows the factorization of n reconstructs
the message M = Dy(ey,...,e) = (my,...,m,) via

_J 1 if ¢,€QR,
=10 if e ¢QRn,
where¢ = 1,...,r.

The following definitions will be needed in the study of the security of
the QRS. The signature of an integer z € Z; is defined by

_J 1 if e @R,
a’n(z)""{ 0 if z¢QR,
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USER PUBLIC FILE PRIVATE FILE

1 Y1 €QRn,m1=p1-q1 P1,01 |
2 y2’¢ Qan,n2=p2-q2 D2, 42
3 Y3, & QRny,n3 = p3 - g3 P3,43

Figure 9: The Quadratic Residue System

Thus, the above definition of the decryption function D, implies that

Da(e1s-»6) = (Gn(er)s- - -, 0n(er))-

The r-signature of the r— tuple z = (zy,...,2,), where each .i.- € Z,, is
defined by
Onr(Z1y---s2p) = (On(Z1)s...,0n(zr)).

K = (¢,...,¢) is a given sequence of bits let
Qrne={(z1,...,2) € (Z})" : Onys(21,...,2) = £}.

Given two sequences a = (ay,...,ar),b = (b1,...,b,) of bits the distance
between a,b, abbreviated dis(a,b), is the number of indices 1 < ¢ < r such
that a; 5 b;; a,b are called adjacent if their distance is equal to 1.

Recall the notation of the subsection on the Quadratic Residue Gen-
erator. N = {N; : k € I} will denote a family of nonempty sets N of
nonegative integers such that I is an infinite set of indices, and for all n € N
the integer n has binary length exactly k; throughout the present subsec-
tion n will range over integers which are the product of two distinct odd
primes p, ¢ such that p = ¢ = 3 mod4. The capital roman letters P,Q, R
with subscripts or superscripts will range over nonzero polynomials with
one indeterminate, positive coefficients, and degree > 1, and the lowercase
greek letters €,8 with subscripts or superscripts will range over positive real
numbers.

A decision function is any family d = {d,, : n € N,k € I} of functions
dn : (Z2)P(®) — {0,1}, where P is a polynomial. For any decision function
d as above, any sequence £(n) of P(k) bits, and any n € N let

Pipn(€(n)) = Prlda(z) = 1|z € Qp (k) n e(n)]
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For technical reasons, to become apparent below, the definition of advan-
tage for determining quadratic residuosity will be extended to the definition
of advantage for determining quadratic residuosity assuming a quadratic
nonresidue is known.

Definition 5.1 A polynomsial size circuit C = {Cp : k > 1} has a (1/2 ~
1/P)-advantage for determining quadratic residuosity (for the family N ),
assuming @ quadratic nonresidue is known, and this will be abbreviated by
AQR*(C,N,1~ 1/P), if for all but a finite number of indices k € I the
follounng property holds for all n € Ni,

—Pr[Ck(n,z, y)=1|z€QR, and y € QR,]+

1

SPriCk(n,7,3) = 0| 2 ¢ QRy 2d y & QRa] 2 1 - Pr)’

where for each n € Ni, z,y range over Z}(+1).

The following two lemmas will be used in the study of QRS.
Lemma 5.2 (Goldwasser-Micali)

(3C)(3P)AQR*(C,N,1- 1/P) = (YQ)(3C)AQR(C, N,1 - 1/Q)

Proof: (Outline) Let C = {C} : k € I} be a polynomial size circuit and
P a polynomial as in definition 5.1. Let n € Nj and let @ be any given fixed
polynomial. Put m = 4. Q(k) - P(k)? and select at random m quadratic
residues

7 modn,...,s2, modn.

Further, select at random m elements
Yi,:+3Ym € Zv:(+1)’

and putY = {y1,...,ym}. Theidea is now the following: one of the elements
of Y is a quadratic nonreridue with high probability (in fact the probability
is 1 —27™); it is natural to search for such an element, say z € Y, and then
use the circuit C’ defined by

Ci(n,z) = Ci(n,z,z), where z € Z3(+1). (16)

To search for such an element z € Y it is enough to check the performance
of the circuit C.
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Thus, fort=1,...,m do:
Step 1: Compute the integers

Ry =|{1<i<m: Ck(n,s? modn, y) = 1}|

Rpy;=[{1<i<m : Cin,y;-sf modn,y) =1}

Step 2: Compute
_ |Bng = Rnyjl

dn,tq =
m
until for some 5 = 1,...,m, the following holds

dns, >»1r,—(115 (17)

If a 7 can be found such that (17) is true then define the circuit C’ as in
~ (16) with 2 = y;. The rest of the proof is an application of the weak law of
large numbers and will be left as an exercise (see exercise 2) o

Lemma 5.3 (Goldwasser-Micali) Let P, R be polynomsials and let d be an
easy to compute decision function such that the following statement holds for -
all but a finite number of k € I: for all n € Ni one can efficiently compute
u,u' € {0,1}F*) such that

1

|Pan(u) = Pan(u')] > 0] (18)

Then one can prove that
(VQ)(3C)AQR™(C,N,1-1/Q).

Proof: Without loss of generality it can be assumed that u,u' in (18)
are adjacent. To see this let n € Ni and let u,u' witness the validity of
(18). If A = dis(u,u') then there exists a sequence up = u,u,...,ua =
u' € {0,1}P(¥) such that for all 1 < i < A, u;—;,u; are adjacent. It follows
that

A
g IPd,n(ui-l) - Pd,n(ui)l > IPJ',,(u) - Pd,n(ul)l > 'ﬁ%ﬁ

Hence, there exists an 1 < ¢ < A such that

1 1

|Pan(vic1) ~ Pan(ul > 250y 2 iGhy’
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where R'(k) = R(k) - P(k) (here one uses the fact that A < P(k).)

Next, let @ be an arbitrary but fixed polynomial and define the circuit
C as follows:

Input: n € N,z € Z3(+1),y € Z;(+1) - QR,.

Step 1: Put m = 16- Q(k) - R(k)2.

Step 2: Choose at random m quadratic residues

s? modn,...,s2, modn € QR,

and put

2

7, modn.

N Ez’sfmodn,...,ymsms

Step 3: Compute u = (u1,...,upr)), ¥ = (vui,. ..,u;,(k)) adjacent,
witnessing the validity of (18); let r be such that u, # u} (without loss of
generality assume u, = 1,u, =0.)

Step 4: Choose at random m elements wi,...,Wm € Qp(k)nu a0d m
elements wi,..., W), € Qp@)nu-

Step 5: Fori=1,...,r—1,r+1,...,P(k) do

For j = 1,...,m draw z; € Z;(+1) at random and put

¥ = y*®! - 22 modn.

Moreover, put
Yir=yj, forg=1,...,m.

Step 8: For each y=1,...,m put
Iy = (yj,la coos Yir=1s Yss Ysrtlse e yj,P(k))'

Step 7: Compute

b = d(z1)+---+d(zm) d(w)+ ---+d(wm)|
Ty = m - m ’
7 = d(z)) + - +d(@zm) d(w))+ -+ d{w},)
=y m B m )
Output: .
1 if diy < g
Ci(n,z,y) =

0 ifd’,'y<§%;)=
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To show that this circuit works notice that for all j = 1,...,m,

_ ) ou if 1#£r
dn(yi,j)-{ Un(yj) if i=¢

However by definition either all the y; are quadratic residues or else they are
all quadratic nonresidues. It follows that either {z;,...,2m} € Qp(k),n,u OF
{z1,...,Zm} C Qp(i)n,w» depending on whether z is a quadratic residue or
not (recall that u, = 1 and u} = 0). The rest of the proof is an application
of the weak law of large numbers. Indeed, let A, = {(z,y) : 2 € QR ¥y &
QRp} and By = {(2,9) : ¢ € QRn,y € QRn}. Then it is true that

Pra. [ d(z1) + m + d{zm) _ Pap(k)u| > 2R1(k)] < sz)’
Pra. [d(l'l) + .,:n--i-d(l'm) _ Pd,P(k),u' > 2R1(k)] < sz).

Hence the result follows from the above inequalities as well as

Pr [ld(wl) + -+ d(wm) 1

1
> 2R(k)] <om’

~ — P4 p(k),u

d(}) + -+ d(u,)

1 ] 1
> < °
2Rr(k)) ~ Q(k)
Let P be a fixed polynomial, n € Ni. For each integer k let ©p() be

the set of all messages of length P(k). For any message M € Op(y) let M)
be the set of all encodings of M i.e.

Pr

= Py p(k) v

M(e) = {E,.(.’L'; M) cT= (z_lv . sz(k)) € (Z;)P(k)-}'

It is easy to see that for any two messages M,M € Op(;), |M €] = |-1\7(°)|
(see exercise 3.)

A predicate S on the family of messages {8p() : k € I} is a family
S = {Sk : k € I} of functions such that for all k € I, St : ©pu) — {0,1}.

Theorem 5.7 (Goldwasser-Micali) Let P,Q be polynomials, S an easy
to evaluate predicate on the family {Bpy):k €I} andC={Cr:k€ I} a
polynomsial size circuit such that Cy has k - P(k) input gates and one output
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gate. Further, assume that for all but o finite number of k € I, and all
n € Ng,

Pr[Ci(n, En(z;: M) = 5(M)] 2 Pr[Si(M) = 1]+ ——.  (19)

Q(k)
Then there exists a polynomial R and an easy to compute dectsion function
d = {dn : n € Ni,k € I}, where dy, : (Z3)PF) — {0,1)}, such that for all
but a finite number of k € I, and for all n € N one can efficiently compute
u,u' € {0,1}F(*) sych that

|Pa,n () = Pan (“’)l > = (20)

1
R(k)
Proof: Let k € I,n € Nj be fixed and let x¥ be the common value of -
|M(©)|, where M € ©p(x). Further, put ® = 6p(;) and § = |8|. For any
Me€®6,and any ¢ € {0 1} let G'(M) be the number of encodings e of M
such that Cx(n,e) =1 i.e.

G/ (M) = |[{En(z; M) : Ci(n, En(z; M)) =i}

Finally let
: GI(M) if Si(M)=1
G(M)={ G°£M; if si&zu% =

It is then clear that

l...

Pr[Ci(n, En(z; M)) = Sp(M)] = > G(M). (21)

X Y pmeo

Partition the set © into R(k) = 10 Q(k) sets {6(t) : t = 1,...,R(k)}
defined by

Q

t—1 _GYM) t
Meo(t)« < < . 22
Oezms—x <&® 22)
Since,
R(k)
=3 leq), (23)
=1
it follows that there exists 1 < ¢t < R(k) such that
6
18(t)] > 573 (24)

Rk
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The main part of the proof of the theorem consists of proving the following
Claim: There exist 1 < s+ 1 <t < R(k) such that (24) holds for both
s and t.
Proof of the Claim: Assume on the contrary that there are no 1 <
s+ 1 < t < R(k) such that (24) holds for both s and ¢t. Then one of the
following two cases can occur:

1. There exists exactly one ¢ such that (24) holds for ¢.
2. There exists exactly one ¢ such that (24) holds for both ¢ — 1 and ¢.

Put p; = Pr[Si(M) = 1]. In case 1, Y pee(y) G(M) is maximum when
i = R(k) and (VM)(Si(M) = 1 = M € ©(R(k))) ; thus, using (19) and
(21) one can show that

1 1 [ |
+m$;—e[ E G(M) + 2 G(M)]

Me©(R(k)) Mee(i)i<R(k)
1 1
< — s
which is a contradiction. In case 2, Y pee(i-1) G (M) + Lumeo() G(M) is

maximum when ¢ = R(k) and (VM)(Si(M) = 1 == M € ©(R(k))) and
(VM)(Sx(M)=0= M € O(R(k) - 1)), thus, using (19) one can show that

Pk + =7 (k)

4?%[ Y e+ Y e+ X Gun]
M

€6(R(k)-1) Me®8(R(k)) Me8(i).i<R(k)-1

1 - Oy Ox 1
< Y [expk+2(1 "Pk)"RT(k-)'i' '}?(-l'c-)-] <pr+ 20(%)’

which is a contradiction. This completes the proof of the claim.
To define the decision function d, for each k € I, n € Ni let

dn(z) = Ci(n, z), where z € (Z2)P(¥),

Let 1 < s+ 1 < t < R(k) be such that (24) holds for s and £. Then it is
clear that for all u € 8(s),u’ € 6(t),

Gl(u) _ Gl(v')
X X

>Raf (25)
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Using a Monte Carlo computation one can easily compute u € O(s),u’ €
©(t). However,

Pin(u) = Gl)f“)  Pan () = .C"z((_“')

Thus, the theorem follows from the above equations and inequality (25) e

The following interpretation of the hypothesis of theorem 5.7 is useful.
Let S = {Si : k € I} be an easy to evaluate predicate on the family
{®p() : k € I} of sets of messages. Call Sj true of the message M, where
M € Opy,, if Sp(M) = 1, and false otherwise. Then Pr[Si(M) = 1] is
the probability that Sg(M) is true on a random message M € ©p(;). Let
C = {Ci : k € I} be a polynomial size circuit such that Cy has k - P(k)
input gates and one output gate..Then the quantity

Pr[Ci(n, Ena(z; M)) = Sp(M))],

is the probability that the polynomial size circuit C guesses correctly the
value of Sg(M) assuming only knowledge of the encoded message E,(z; M).
The hypothesis of the theorem now states:

There exists a polynomial Q, an easy to compute predicate S, and a
polynomial size circuit C such that for all but a finite number of k, C}
guesses the correct value of Sg(M) from a random encoding E,(z; M) of M
with a 1/Q(k) advantage.

If one recalls that QRA(N) is an abbreviation of the Quadratic Resid-
uosity Assumption for the family N, takes into account the results in the
subsection on the Quadradic Residue Generator, and combines them with
lemmas 5.2, 5.3 and theorem 5.7, it is immediate that

Theorem 5.8 Assuming QRA(N) there is no polynomial Q, no easy to
compute predicate S, and no polynomial size circust C such that for all but
a finite number of k, C guesses the correct value of Sg(M) from a random
encoding E,(z; M) of M with a 1/Q(k) advantage o

|EXERCISES |

1: Show that for each r - tuple z = (z3,...,2;) of r elements of Z2 the
encryption and decryption functions E,(z;-), Dn(-) of QRS are inverses of
each other. '

2: Complete the details of the proof of lemma 5.2.
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3: Show that for any two messages M,M € Op(), |M©)| = |ﬁ(c)l.
Hint: Show that the mapping Epn(z; M) — E,(z; M) is one to one and
onto.

4: Prove equation (21) above.

5: Show that for all messages M, G°(M) + G!(M) = |[M(9)|.

5.10 Bibliographical Remarks

The recent rapid development of public key cryptosystems followed imme-
diately after the publication of Diffie and Hellman in [DH]. Before this
the security of cryptosystems was based on absolute security criteria (see
[Shan] and [Kon]). For further general remarks on cryptosystems the reader
should consult [Pe], [Lem], [Bet]. Some recent works which include material
on public key cryptosystems are [Kon), [Den), [DDDHL] and [MM]. This last
reference also includes an analysis of DES, the Data Encryption Scheme.
The RSA system described in subsection 5.3 was developed in [RSA]
and the Rabin system described in subsection 5.5 in [Rabl]. The proof of
theorem 5.1 is in [Del]. It is clear however that the idea of its proof goes back
to Miller’s paper [Mil]. The security of RSA bits and Rabin bits studied in
subsections 5.4 and 5.6 respectively is from [GMT). In fact [GMT] includes
the proof of a slightly stronger result: if there is an efficient algorithm A

such that
1

= bitd, > 1~
Pr[A(z) = bity,] 21 oz,

(26)

then there is an efficient algoritm for inverting the RS A function. Recently
it has been shown that the RS A function can be inverted even if one as-
sumes that the left side of inequality (26) is - 1/2 + 1/P(log; N), for some
polynomial P (see [ACGS]).

The Merkle Hellman system is based on knapsacks and was developed
in [MH)]. The presentation of the security of the Merkle Hellman system
presented in subsection 5.8 is based partly on [Sham1l] and [EL]. Recent
work of Adleman (see [Ad2]), Lagarias, Odlyzko and Brickel (see [ScCi2))
shows that the iterated Merkle - Hellman Public Key Cryptosystem is not
secure. There is also a generalization of the Merkle - Hellman Public Key
Cryptosystem using Galois fields (see [CP]).

The presentation of the Quadratic Residue System, given in subsection

5.9, is a continuation of the presentation of the Quadratic Residue generator
and is from [GM].
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An annotated bibliography on Public Key Cryptography can be found
in [F1).
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6 TOWARDS A GENERAL THEORY

Die Theorie traumt,
die Prazis belehrt.
(Karl von Holtei)

6.1 Introduction

The present section presents a general theory of pseudo-random generators
and public key cryptosystems. Subsection 6.2 includes two security tests for
pseudo-random generators. The first one, the Blum-Micali Test, is used to
construct unpredictable pseudo-random generators. The second one, Yao’s
Statistical Test, is proved in theorem 6.2 to be equivalent to the Blum-Micali
Test. This is important, because it confirms the fact that the security of
the pseudo-random generators constructed via the Blum-Micali Generator
theorem do not depend on the order of the bits produced by the generator.

The second subsection deals with the concept of xoring. This is useful
for the construction of pseudo-random generators satisfying improved un-
predictability properties. Moreover the XOR theorem is proved by reducing
it to the XOR lemma. The next subsection gives a complete proof of the
XOR lemma. The proof is divided into two parts. The first part gives a
heuristic proof of the lemma, which will be essential to understanding the
main formal proof, which follows next.

The last two subsections deal with three applications of the XOR the-
orem: to unapproximable predicates, to pseudo-random generators and to
one way functions.

6.2 Security Tests

As usual, the capital roman letters P,Q with or without subscripts
and superscripts will range over polynomials of degree > 1 with
positive coefficients. All the circuits considered in the present
section will be probabilistic.

Let Sy = {0,1}™ be the set of sequences of bits of length exactly m.
Let X = {Xm : m 2 0} denote a family of nonempty sets such that for
some polynomial Q each X,n is a subset of Sg(m), and let f = {fm:m 2>
0} be a family of polynomial time computable functions such that each
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fm is a permutation of X,, and let B = {By : m > 0} be a family of
polynomial time computable functions such that each B : X — {0,1}
is a 0, 1-valued function with domain Xy,. Any such family {B,, : m > 0}
of functions is called a predicate on {X, : m > 0}.

Further, it will be very important for the construction of polynomial
size circuits to be able to generate random elements in X,,. To be more
exact from now on and for the rest of this section whenever a family X =
{Xm : m > 0} is considered it will be assumed that there exists an algorithm
running in time polynomial in m which on input m it will output a random
element of Xp,.

Definition 8.1 A polynomial size circuit C = {Cp, : m > 0} P-predicts the
predicate B = {By, : m > 0} if the following statement holds for infinitely

many m,

Priz € Xpm : Bp(z) = Cn(z)] 2 %+ }7(-1’-;;

Definition 6.2 The predicate B = {Bp : m > 0} is unapprozimable if
(VP,C)(C does not P — predict B).

Definition 6.3 The family f = {fm : m > 0} of functions is a friendship
function for the unapprozimable predicate B = {By, : m > 0} if both of the
following two functions are computable in time polynomsial in m,

(1) < myz >— fm(z),

(2) < m,z >— Bp(fm(z)).

Remark: Notice that the function < m,z >— B,,(z) in definition 6.3
need not be computable in time polynomial in m.

Example 6.1 For any two primes p,q satisfying p = ¢ = 3 mod4 consider
the following function and predicate:

(1) fn: QR, — QR, : £ — z? modn

(2) Bn : QR, — {0,1} : £ — B,(z) = par(y/z modn),

where n = pq. Assuming the Quadratic Residuosity Assumption it is
easy to see that the above family satisfies the requirements of definition 6.83.

Example 6.2 For any prime p and any generator g € Z; consider the
Jollowing function and predicate:
(1) fpy:Zy — Z; : z — g* modp
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(2) Bpy: Zg — {0,1} : z — By 4(z), where

B =11 if z=PQR(p,9,2* modp)
g 0 if z= NPQR(p,g,2? modp),

and PQR(p,g,2> modp), NPQR(p,g,z? modp) respectively denote the prin-
cipal, nonprincipal square root of 2 modp. Assuming the Discrete Loga-
rithm Assumption it is easy to see that the above family satisfies the require-
ments of definition 6.8.

Definition 6.4 A family G = {Gm : m > 0} of functions is a pseudo-
random generator, if there exists a polynomial Q such that

(1) For all m, Gp : X — Sq(m) and

(2) < m,z >— Gun(z) 18 computable in time polynomial in m.

The elements 2 € X,,, which produce the sequences Gy, (z) of bits are called
seeds. To any pseudo-random generator G as in definition 6.4 associate the
sequence S (), ... ,bg’Q(m)_l(z) of bits generated by G, where for each

index m, bsm-(z) is the ¢—th bit of G (z).

Definition 6.5 A polynomial size circuit C = {Cm : m > 0} P-predicts
the pseudo-random generator G = {Gp, : m > 0}, ¢f for infinitely many m,
there ezists an i1 < Q(m) such that

.
P(m)

Definition 6.6 A pseudo-random generator G = {G,, : m > 0} passess
the Blum-Mzicali test, and the test will be abbreviated BMT, if the following
statement holds,

1
Pr[z€ Xm: Cm(tS.0(2), -+, 65im1(2)) = bmi(2)] 2 5 +

(VC, P)(C does not P ~ predict G).

For any function h : Y —— Y and any integer ¢ > O recall that A’ :
Y — Y stands for the function defined by induction as follows:

i x if t=0
h(z) = { h(hi=1(z)) if i>0

The following theorem is very important, because it provides a technique
for constructing pseudo-random generators that pass the Blum-Micali test
from an unapproximable predicate B = {B,, : m > 0}, and a friendship
function f = {fm : m 2 0} for B. ’
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Theorem 6.1 (The Blum-Micali Generator Theorem) For any poly-
nomial Q, any unapprozimable predicate B = {By : m > 0}, and any
friendship function f = {f;n : m > 0} for B the pseudo-random generator
GBJQ = [GBSQ : m > 0} defined for z € Xm by _

Gg'f'q(-’r) =< Bm(fg("‘)(x)), oes ,Bm(fg(m)-j(x))" «-sBm(fm(2)) >,

passes the BMT.
Proof: Consider the abbreviation

bS, ;(2) = Bm(f2™)=(z)), for 0 s 7 < Q(m),

and assume on the contrary that the pseudo-random generator GB+/:Q does
not pass the Blum-Micali test. It follows that there exists a polynomial size
circuit C = {Cp, : m > 0} and a polynomial P such that C, P-predicts the
generator GP+/:Q, It follows from the definition of GB+/'Q that for infinitely
many m, there exists an ¢ < Q(m) such that

1

Pr [z€ X : Om(8h0e)s: - ¥ima (&) = 8400 2 5+ iy (O

Let M be the set of indices m which satisfy inequality (1). Clearly, for each
m € M there exists an integer ¢{,, < Q(m) such that

1

Pr [z € Xm: Cm(tS,0(a),. 16311 (2)) = 4G5, (2)] 2 -21- + 5y @

Define a new circuit C' = {C!, : m > 0} as follows for z € Xy,

Cm(2) = Cm(Bm(fa7 (2))s Bm(fix 71 (2))s - - - » B (fm (2)))-

One can then prove that the following claim holds:
Claim: For all m € M,
1 1
: C! = D = 4 ——
Prz € Xpm : Cly(z) = Bm(z)] 2 3 + Pim)
Proof of Claim: Fix an arbitrary m € M and puti =iy, j = i— Q(m),
7' = fJ(z), where z ranges over X,,. Then the following statements are
equivalent for each z € X,,,

C! () = Bum(z).
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C_'m(Bm(f,'},(z)), Bum(fa ! (2))s-- s Bm(fm(2))) = Bm(2)-
Crm (83, 0(f5(2)),5 1 (F2(2))s - - -, b5 i1 (F2 (2))) = 85, s (fin (2))-
Cm(bran,o (zl)’ ern,l (z’)’ LS ] ern,i-l (x')) = bran,i (z’)'

However, the mapping z — z' is a permutation of X,,. Hence, using
inequality (2) one obtains that, ’
Pr [z’ € Xm : Cm (b o(2"), ..., b8 ;_1(z") = b -(z’)] >1 + —
m, yYmi— m =9 P(m)’
" which completes the proof of the claim.

But, this is a contradiction since the predicate B is unapproximable.
The proof of the theorem is now complete o

Definition 8.7 A piolynomial size statistical test, abbreviated PSST,
for the pseudo-random generator G = {Gy, : m > 0}, where G : Xpp —
Sq(m) for some polynomial Q, s a polynomial size O, l-valued circust C =
{Cm : m > 0} which for each m > 0 has Q(m) input gates.

Definition 6.8 Let C be a PSST for the génerator G. For each m > 0,
consider the probabilities

pg"’a = Pr[z eXm: Cm(Gm(z)) = 1]’
ps",R = Prjue SQ(m) ¢ Cm(u) = 1].

Definition 6.9 The pseudo-random generator G passes the PSST C, if for
all but a finite number of integers m,

1
c,G _ LC.R
(VP) [| Pm P I < P(m)} .
Definition 6.10 The pseudo-random generator G passes Yao’s statistical
test, abbreviated YST, if for any PSST C for G, G passes C.

Theorem 6.2 (Yao’s PSST Theorem, A. Yao) For any pseudo-random
generator G = {Gm : m > 0}, the following statements are equivalent:

(1) G passes the Blum-Micali Test.

(2) G passes the Yao Statistical Test.
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Proof: Assume that for each m > 0, Gy, : Xpn — Sg(m), Where Q is a
polynomial.

(2) = (1)

Assume, by way of contradiction, that (2) is true, but (1) fails. Let P
be a polynomial, C = {C,, : m > 0} a polynomial size circuit and M the
set of integers m such that there exists an ¢ < Q(m) so that the following
holds:

1
)’ (3)

For each m € M let i,, be an integer { < Q(m) that satisfies inequality (3).
Define a new polynomial size circuit C' = {C!, : m > 0}, which for any
given u =< ug,...,UQ(m)-1 >€ Sg(m) is given by the formula

Pr[2€ Xm : Cn(63,0(a)s- -, 8E,im1(2)) = $5.4(2)] 2 5 +

CL(u)= Com (405« s Uip-1) ® iy, ® 1.
It is then clear that for all u € Sg(m),
Clh(u) =1& Cm(uo,...)Up-1) = ti,.

It is an immediate consequence of definition 6.8 that for all m € M,

250 = PriCm(tS.0(@), - 8 it () = 830 (2] 2 5 + p%,;; (4)

Now it can be proved that

Claim 1: (Vm € M) [pg"a >1/2+1/ (2P(m))] }

Proof of Claim 1: Sinse G passes YST it must also pass the test C’.
Thus, the following inequality holds for all but a finite number of m,

' ' 1
c'¢ _ ,C'\R
[I Pm Pm ‘ < 2P(m)] .
It follows from (4) that for all but a finite number of m € M,

crRy c6¢__1 1, 1 1 1. 1
Pm™ > Pm” = 3P(m) 2 21 B(m) 2P(m) 2 2P(m)’

which completes the proof of claim 1.
However this is a contradiction since

PR = Prlu € Sg(m) : Cm(0,. - -, Uip—1) = Ui, ) =
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Pr[Cm(u0,- .-, ti,-1) = Olu;,, =0]- Prly;, =0+
Pr[Cm (o, -- - Uim—-1) = 1]u;,, = 1} - Pru;,, = 0] =

1
S(PrACm (s -+ Uim1) = Olui,, = O]+

PrlCm(toy -+ vy Uim=1) = ljy;,, =1]) =

% (Pr{Cm(tos - - - ytipp—1) = 0] + Pr{Cum(i0, ..., i) = 1]) =
(1) = (2)

Given two sequences ¥ =< Uj,..., Uy >, ¥ =< ¥1,...,Vy >, of bits,
where m,n > 0, let the concatenation, of u,v, abbreviated © ~ v, denote
the sequence < U}, ..., U, V1, .., >. The number m is called the length
of u, and is abbreviated £(u). Assume by way of contradiction, that G does
not pass the YST. Let C = {Cp, : m > 0} be a polynomial size circuit and
P a polynomial such that the following inequality holds for infinitely many
m,

N =

1
IP&G - pSF I 2> Pm)’ (5)

Let M be the set of integers that satisfy (5). For each i < Q(m), define:
P}, = probability the circuit Cp, will output 1 if given as input the sequence

t~< bg,f—l (3), sesy bs.,o(x) >,

where t is a random sequence of bits of length £(t) = Q(m) — ¢ and z € X
is a random seed.
It is then clear from definition 6.8 that

% = pZ® and pRl™ = pGc.
Moreover, using (5), for all m € M one has the following inequalities

1 C,R _ CGC Q(m) _ 0 A +1 ]
U ¢ [ L. W m) < $ -t .
Py SPm PR =R —pn < '2;3 (i - pl)

Hence, for each m € M there exists an ¢ < Q(m), call it ¢, such that

1

.QTT"') ’ (6)

|pin+t - pin| >

where Q'(m) = P(m) - Q(m).
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The polynomial size circuit C’ which will predict the generator G is
defined as follows:

Input: up,...,u;, -1
Step 1: Choose a random v =< Yg(m)~ipn-15--->%0 > of length £(v) =

Q(m) = im.
Output:

) . _ vo if Cm(v~<ugy...,%,-1>)=1
Cm(uOs-.-,ulm—l) - { 1@ vo if Cm(v ~ Uy« ooy Uipy =1 >) =0 (7)

It xs not hard to see that

PrC (oimms (@)oo b0l = Wi (@] 2 5+ s (@)

This completes the proof of the theorem o

|EXERCISES |

1: Show that the circuit defined in (7) satisfies inequality (8). Hint:
show that the left hand side of (8) is > 1/2+ (pim*! - pir)/2.

6.3 Xoring

The notion of xor, to be studied below, enables one to construct predicates,

pseudo random generators and public key cryptosystems with improved se-
curity properties.

Deﬁnitioq 6.11 Given the functions BL,,..., B where for each indezi =
1,...,k, B}, : X}, — {0,1}, the xor By, = B}, @---@ Bk, of the predicates
Bl,...,Bk, is defined for each < z,,...,2m >€ X}, x --- x XE by

Bm(zls . 'szk) = Bvln(zl) DD Bfn(”:)’

Definition 6.12 Given the families of predicates B' = {B! : m > 0},
where i = 0,...,k, the xor family of B!,...,B¥, abbreviated B = B! @
.-+ @ B | is the following family of predicates B = {By, : m > 0}, defined
for each m > 0 by :

Bn=BlLo®---@B:k.
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Definition 6.13 Given an infinite sequence B = {B}, : m > 0}, where
1= 1,2,..., of families of predicates, and a function g with domain the set
of positive integers and range a subset of the set of positive integers, the
g-xor family of B!, B2,..., abbreviated BY9) = {Bsﬂ) :m > 0}, 1s defined
by '

BW =Bl g...0 BI™,

If in the above definition the function g is costant i.e. g(m) = k, for all m,
then the g-xor B(9) will also be denoted by B(¥),

This and the next subsection will be concerned with answering the fol-
lowing

Question: Given an infinite sequence B' = {B!, : m > 0}, where
i = 1,2,..., of families of predicates, and a polynomial size computable
function g with domain the set of positive integers and range a subset of
the set of positive integers, if a polynomial size circuit approximates the
g-xor family B9 = {BS,f) :m > 0}, with a certain advantage, do there exist
polynomial size circuits approximating each of the predicates B!, B2,...
? Do the advantages of the approximations of the predicates B!, B2,...

obtained via the approximation for B(9), amplify the original advantage of
B9 2 :

Theorem 6.3 (The Projection Theorem) Let B9 be the g-zor of the
predicates BY, B2,. .., where g i3 a function with domain the set of positive
integers and range a subset of the set of positive integers. Let C = {Cp, :
m > 0} be a polynomial size circuit and let {e¢y : m > O} be a family of
positive real numbers. If

Prlz € X} x -+ x X&™ : Cm(2) = BO(2)] 2 3+ emy
then for all 1 < ¢ < g(m),
. . , 1 :
Prlz; € Xy : Cn(31) = Bin(ai)] 2 5 + ém-

Proof: It will be assumed, without loss of generality, that for all m,
g(m) = 2. The following picture will be helpful in understanding the proof
that follows.

Fix m > 0. The assumption of the theorem asserts that for at least
a ratio (1/2) + € of the points in the < zj,z2 >-plane, the circuit Cy
correctly predicts the value of the xor B = B! @ B2. Let

p(z1) = Prlz; € X%, : Cm(21,22) = B, (1) @ Bh(22)),
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z2 (22 € X3)

. X1 (31 € thn)

Figure 1: The XOR-predicate

and
p(z2) = Priz € X1, : Cm(21,22) = Bl (z1) ® BZ (z2)].

However, it is true that

Pri< z1,z9 >€ X x X,":, : Cm(21,22) = Bm(21,22)] =
1 1 1
— p\Z1) = s P\x2 2 =+ €m.
Xm| SIE:X.’” ) Xl =2§X% ) 27"

It follows that there exist points z} € X}, 23 € X2, such that

1 w1
p(=1) 2 5+ €msp(23) 2 5 + €m.

Now, it is easy to see that the following two polynomial size circuits satisfy
the requirements of the theorem:

Cr(21) = Cum(21,23) ® B}, (23), C(22) = Cm(31,72) GBkB.l..(xI) e (9

Theorem 6.3 will be very useful in the sequel, but what makes an XOR
theorem interesting is some amplification of advantage in the passage from
an approximation of the xor of two predicates to an approximation of each
of the predicates which form the xor. Such a theorem is obtained below.
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Theorem 6.4 Let B be an unapprozimable predicate with a friendship func-
tion f, on the family X = {X;n : m > 0}, and g a polynomial time com-
putable function from positive integers to positive integers such that for all
m,g(m) > 2. For each polynomsial size circuit C and each u € Xy, let

pLlC] = Pr [:r € (Xm)?™) : BY)(z) = Cp(z)|u = 1 — st component of z]

If there ezists polynomials P, P' and a polynomial size circuit C such that
for infinstely many m,

{vexn:diorz 3+ 57| 2

then for any polynomial Q there ezists a polynomial size circust c'={Ccl:
m 2> 0} such that for infinitely many m,

1
P'(m)’

IXmI

» am— ! — ———
Pr(u€ Xm: Bm(u) =Cp,(u)] 21 Q(m)
Proof: Assume that C, P, P’ are as in the hypothesis of the theorem
and let Q be an arbitrary polynomial. The circuit C’ is defined as follows:
Input: u.
Step 1: Put k = 4P'(m)P(m)Q(m)3.
Step 2: For each 1 <3¢ < k let v;2,...,%; 4(m)-1 be a random sample,
where each v; ; € X
Step 3: For each 1 = 1,...,k compute

= Cpm (4, fm (vi,2)a ooy Sm (vi,y(m)-l)®
Bm(fm(vi,‘i’)) S @ Bm(fm(vt',g(m)—l))'
Step 4: Compute :
=|{1<i<k:bi=1},Lo=|{1 <i<k:b=0}]

Output:
Cm(")‘{ 0 ifLo> L

To show that the above circuit C’ works notice that if Bm(u) = 1 then
the above experiment is expected to output Ly = (k/2) + k/P(m) many 1’s
and Lo = (k/2) — k/P(m) many 0’s. Thus L, > Lo. Similarly, if Bm(u) =1
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then L; < Lg. Now, the theorem follows from the Weak Law of Large
Numbers o
To give the proofs of the XOR theorems stated below a further property
.of the predicates B = {B,, : m > 0} considered will be needed, called
the Random Generation Hypothesis, abbreviated RGH. A predicate
B = {By, : m 2 0}, where B,, : X, — {0,1}, satisfies the RGH if there
exists an algorithm running in time polynomial in m which on input m will
output a random pair < z,y >, where z € X,, and y € {0,1} such that
Bp(z) =y.

Example 6.3 The predicates in ezamples 6.1 and 6.2 satisfy RGH.

From now on and for the rest of this section whenever Yao’s
XOR theorem is applied to a predicate B it will be assumed that
B satisfies RGH. The necessity of this assumption will be become
apparent in the course of the formal proof of the XOR lemma. In
addition, the set M of indices appearing in the statements of Yao’s
XOR theorems must be such that there is a large enough positive
constant C so that for all m € M, m > C; the size of the constant C
can be easily determined from the formal proof of the XOR lemma.

The most interesting result on xoring is the following

Theorem 6.5 (XOR Theorem, A. Yao) Let M be an infinite set of
integers, let g, h be polynomial time computable functions such that g(m) >
2Mm) Let B= {Bm : m > 0}, By : Xm — {0,1} be a family of predicates
on the family X = {X;, : m > 0}. Further assume that there ezists a
polynomial Q and a polynomial size circuit C = {Cp, : m > 0} such that for
allme M,

2
Q(m)’

Then for any function k such that 2(™ > (log, m)k(m)(14deg(Q)) > O for
all m € M, there ezists a polynomial size circuit C' = {C}, : m > 0} such
that for all but a finite number of m € M, the following inequality holds:

Pr [z € (Xm)'™ : B)(2) = Cm(-")] 2 % +

Pr[z€Xm: Bm(z)=Cp(2)] 21~ k(:")

The above theorem is in fact an immediate consequence of the following
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Theorem 6.6 (XOR Lemma, A. Yao) Let M be an infinite set of inte-
gers, and let 0 < €m,6m < 1, for each m € M. Let B = {By, : m 2> 0},
B : Xm — {0,1} be a family of predicates on the family X = {Xpn : m 2>
0}. If there exists a polynomial size circuit C = {Cm : m 2 0} such that for
gllmeM,

Pr [< z 7 >€ Xm X Xom B,(,?)(z,z') = Cm(zsz')] 2 %+ €m,

then there ezists a polynomial size circust C' = {C!, : m > 0} such that for
agllmeM,
Pr[z € Xpm : Bu(z) =Cp(2)] 2 -;—+(1-6m) . 532-"-.

Proof of the XOR theorem from the XOR lemma: Let B,C,g,Q
satisfy the hypothesis of the XOR theorem. Let P be an arbitrary poly-
nomial. Put §,, = 1/(2k(m)). Using the projection theorem, it can be
assumed without loss of generality that for all m, g(m) = 2#(m), The idea is
for each m to apply the XOR lemma a sufficient number of times, namely

h(m) times, to the predicate p,‘,{’. Indeed, fix m € M; define by induction
€im > 0 and circuits C* = {C}, : m > 0} as follows, for i = 1,...,h(m),

1 -
€1m = m, €ivlm = (1- Sm) - 2 :. VEim-

Assume that the circuits C! = C,C?,...,C" have already been defined. For
each ¢ > 1 apply the XOR lemma to the circuit C* and the xor

(B’(zh(m)-i)) (2 ,
to find a polynomial size circuit C**! such that
: m)—3 ;. 1 -l 1
Pr[BE' ™) (2) = CiF'(@)] 2 5+ (1= 8m) - 27} - fiim = 5 + i41,m.

It will be shown that the circuit C' = CP(m)+! gatisfies the conclusion of the
XOR theorem. It is clear that

' 1
Prlz € Xm : Bu(z) = CH™*(@)] 2 2 + ehmpsrym:

Moreover,
€n(m)+1,m = Tm * Bm - am,
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where

-1/2=1/22—...=1/2k(m)
N = 271/2-1/2 1/240m

B = (1= ) PH/BFUP 41T () 5 2(a-2mhm)

am = (a(l’-n—)-) e . (10)

It is now easy to show that v, > 1/2. Next put ¢ = 1 + deg(Q). It follows
from equation (10) that

_ - _ - lo
am. =9 long(m)/2.h(A) >2 clos-.»'n/z"( ) >1- 0__2_,_._%_'_:_)’_7‘_. (11)

Since by assumption 2*(™) > (log, m)k(m)c, inequality (11) implies that

am 21— TC-(%n-T (12)

In addition one has that
Bm = (1-6,)20-27) 5 1 _o(1 - 27hm))g, > 1-25,,.  (13)

Taking into account inequalities (12), (13) one finally obtains that

1 1 \2_1 1
> S - —— > = .
Chmy+lm = 3 (1 k(m)) =2 k(m)

which completes the proof of the reduction of the XOR theorem to the XOR
lemma e

An immediate corollary of the XOR theorem and the projection theorem
is the following

Theorem 6.7 (Multiple XOR Theorem) Let M be an infinite set of
sntegers and suppose that f,g,h are polynomial time computable functions
such that g(m) > 2M™) for all m € M. For each i, let B' = {Bi : m > 0},
be a family of predicates on X' = {X}, : m > 0} and put L = B?}). Further
assume that there ezists a polynomsial Q and a polynomzial size circuit C =
{Cm : m > 0} such that for all m € M,

1 1

Pr [Lsg) (z) = C,,.(:c)] > 3 + -Q(T)
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Then for any function k such that 2h(m) > (log, m)k(m)(1 + deg) > O for
all m € M, there ezists polynomial size circuits C' = {C, : m > 0} such
that for all but a finite number of m € M the follounng mcquahty holds for
all indices i < f(m),

1

Pr [z, € X}, : Bp(zi) = m(z')] 21- Em) *

|EXERCISES |

1: Show that the circuits defined via (9) satisfy the conclusion of the
projection theorem.

2: Show that the general case of the projection theorem follows from the
special case: for all m, g(m) = 2.

3: Extend theorem 6.4 to xors of more than one predicate.

4: RGH for a predicate B should not be confused with predicting B.
Show that the predicates defined in examples 6.1, 6.2 satisfy RGH.

8.4 Proof of the XOR Lemma

This subsection will be divided into two parts. The first part will be con-
cerned with an intuitive, geometric discussion of the proof of the XOR
lemma. The formal aspects of the proof will be discussed in part two.

PART 1: INTUITIVE PROOF OF THE XOR LEMMA

Assume that the hypothesis of the XOR lemma is true. i.e. M is an
infinite set of integers such that 0 < €4,,6, < 1, for each m € M and
B = {By : m > 0}, By : X;n — {0,1} is a family of predicates on the
family X = {Xm : m > 0}. Assume there exists a polynomial size circuit
C = {Cp : m 2 0} such that for all m € M,

Pr[< 2,2 >€ Xp X Xm : B (2,2) = Cm(=,7)] 2 % + em.

m 2 2-

It is required to find a polynomial size circuit C’' = {C}, : m > 0} such that
for all me M, '

Put

Pr[z€ Xm : Bu(z) =Cp(2)] 2 = + Nme (14)
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For each z € X, put

k(z
k(z) = |{z' € Xm : (2)(3" ') = Cm(z,2)}],p(2) = I.’g )l
p=p(z) =
1
nm-decision easy points
3+ m
) nm-decision difficult points
!i = Im
nm-decision easy points
0 z (:t: € Xm)

Figure 2: Distribution of the 5,,-decision points

Figure 6.4 pictures the difficulty involved in deciding the values of the
predicate B = {By, : m > 0}. One can distinguish the following two cases.

Case 1: (3z € X,»)(|p(z) = 1/2] 2 nm).

In other words, in the language of Figure 6.4, in this case there is an #,,-
decision easy point. Call such a point zg. Define a polynomial size circuit
as follows:

o () = { Cm(20,) ® Bm(z0)  if p(z0) 2 1/2+ 1m
m Cm(70,7) ® Bm(70) @1 if p(20) < 1/2 = im

It is easy to see that C’ satisfies the requirements of inequality 14. Indeed,
on the one hand if p(zo) = 1/2 + 9y, then

p(z0) = Pr{z' € Xpm : Bm(2') =ClL(z)] 2 = + Nms
while on the other hand if p(zo) < 1/2 — 9y, then

1-p(z0) = Priz' € Xpn : Bu(2') =Cl ()] 2 = + Nm-
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Case 2: (Vz){|p(z) — 1/2]| < m)-

In this case it will be assumed that ¢, = |Xm| is an odd integer.
This restriction however, is only technical and will present no difficulties for
the formal proof.

For each z € X, b € {0, 1}, let

K(z) = {1' € Xin : Cm(z,2') = Bm(2')},
Ki(z) = {z € X : Cm(z,2') = B (z,2") @ b},
k(z) = |K ()], ks(z) = | Ks()].

It is not difficult to show that the following properties must hold for all
z € Xn,

1. X = Ko(z) U Ky(z) and t,, = ko(z) + k1(z).
2. K(z) = Kp,(s)(z) and k(z) = kp,, (z)(2).

For each k < t,, define the bucket L(k) = {z € Xj» : k(z) = k} and put
o(k) = |Z(k)]- Figure 6.4 pictures the situation in which the function k(z)
assumes only the values k) < - < kg, in increasing order.

Notice that if k & {k1,...,kn} then o(k) = 0. For each k £ t, let

a(k) = Priz € X;p : k(z) = k] = %

i.e. a(k) is the ratio of points in X,, which lie in the bucket Z(k). Put
ar = a(ky), or = o(k,). The r-th rectangle pictured, has a base of length a,,
and height equal to p(z) = k,/tm, for each z € Z(k,). It is clear that

Soa(k) =Y. Priz€ Xp : k(z) = k| = 1. (15)
k==0 k=0

The polynomial size circuit C’ which predicts the predicate B is based on
a comparison of sizes of buckets. To be more specific one defines C}, as
follows:

Input: z

Step 1: Compute k = ko(z)

Output: ,

1) 0 ifo(k)>o(tm —k)

Cm(2) = { 1 i o(k) < o(tm — k)
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p
1
% + m
)
1 —
2 )
1
27 Im
bk ks e kn
y 9 a
0ljar a2 as Gy Qn

Figure 3: Graph of p= Et(;")-,a = Pr[z € Xy, : k(z) = k]

It will now be shown that the circuit defined above satisfies the require-
ments of the XOR lemma. It is a consequence of the definition of C’ that

Pr[z € Xpm : Cl,(2) = Bm(z)] 2 Z/ max{a(k),e(tm — k)}.  (16)
k>tm [2

Indeed, for : =0, 1 put
pi = Pr[Cp,(z) = Bm(2) = 1],
and observe that
Pr(z € Xm : Cly(2) = Bm(z)] =po + 1. '(17)

However,
o= Y. Prlko(z) = k and Bm(z) = 0],
o(k)20(tm—k)
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= >~ Prlko(z) = k and Bn(z) = 1].
o(k)<o(tm—k)

It follows that,

pot+p 2

> Prlko(z) = k and By, (z) = 0]+
k>tm [2,0(k)>0(tm—k)
: 3 Prlko(z) = k and Bp(z) = 0]+
E<tm [2,0(k)>a(tm~k)

> Prlko(z) = k and By (z) = 1]+
k>tm [2,0(k)<o(tm—Fk)

> Prlko(z) = k and Bp(z) = 1.

k<tm [2,0(k)<o(tm~k)
Using the above inequality, the fact

ko(z if By(z) =0
k(z) = { t:.(—)ko(z) if Bmgzg = 1’

and equation (17) it follows easily that
Pr[z € Xpm : Cip(2) = Bm(2)] >

> Pr[k(z) = k]+

k>tm [2,0(k)>0(tm~k)

> Prik(z) = k)=

- k<t [2,0(k)>c(tm—k)

" max{a(k),a(tm - k)},
k>tm [2
which completes the proof of (16).
Let ) denote the area under the pictured graph. The area of the r-th
rectangle is equal to a, - (k./tm). Hence, 2 is equal to the sum of the areas
of the n regtangles. It follows that on the one hand

g_z":ﬁ'.. —‘mi. (k) (18)
= n ar = n a\rj,

r=1"m k=0 "™
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and on the other hand
Q=Pr [< 2,2 >€ Xpn X Xm : B (z,7) = C,,.(z,z’)] > -;-+ ém- (19)

Let d(k) = k/tm—1/2i.e. if the r-th rectangle lies above (respectively below)
the horizontal line of height 1/2 then d(k,) is the positive (respectively
negative) distance of the highest point of the rectangle from the horizontal
line drawn at height 1/2. It follows from (18), (15) and the assumption in
case 2 that

Q=

N

+3 d(k) - a(k) =
k=0

%-}- > d(k)-a(k)+ > d(k)-a(k)=

E>tm/2 E<tm /2

1 S dW e+ T —d)-alte - b) =

kE>tm /2 E>tm/2
1
s+ X d(k)-(a(k) ~altm = k) <
1/24m>k/tm>1/2
1 .
3t m: > la(k) = a(tm = k)| (20)
1/24nm>k/tm>1/2
It follows from (19), (20) that
Z la(k) - a(tm - k)l = (21)
k/tm>1/2
T k) - altm —B)| 2 Sm = VEm
l/2+ﬂm>k/‘m>1/2 m 1 - 6";/2

Using the fact that
|a - @'| = max{a,a'} — min{a,a’},
a+ a' = max{a,a’'} + min{a,a’},

1= a(k)= Y (a(k) +altm - ¥)), (22)

k E>tm/2
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it is easy to show that

3 max{a(k), altm - k)} = % + 3 - la(k) = a(tm — K)|-

E>tm /2 E>tm /2

Using this, as well as inequalities (16), (21) one obtains that

1 1
o d = > - P, Sl (L
Priz € X;p : Cip(2) B,,,(z:)]_2+2 T-6,/222

This completes the intuitive proof.

PART 2: FORMAL PROOF OF THE XOR LEMMA

At this point the reader may find it useful to review the intuitive proof
of the XOR lemma given in part 1 of this subsection. Assume that the
hypothesis of the XOR lemma is true. i.e. M is an infinite set of integers,
0 < €my0m < 1,for each m € M, and B= {By : m 2 0}, Bp, : Xpp —
{0,1} is a family of predicates on the family X = {X,,, : m > 0}. Assume
there exists a polynomial size circuit C = {Cp, : m > 0} such that for all
me M,

B = Pr [< 2,2 >€ X X Xm : B (z,2') = Cn(z, z')] > -;-+ €m- (23)
Fix m € M and put €y, = €,6p = 6, n = 7 = (1 — 6)\/€/2. Also define

log, m § 9
s=2-(l-€'°'s2 ]) +1,6=s

and notice that s is odd. Throughout the proof below z (respectively y)
with subscripts or superscripts will range over elements of X,, (respectively
of {0,1}). Motivated from the previous geometric discussion one defines the
circuit C}, which predicts the predicate B,, with an n advantage as follows:

Input: z

Step 1: Let < 2,9 >,...,< Zp,¥¢ > be a random sample such that
Bm(zi) =y, foralli=1,...,L

Step 2: Let < z{,¥] >,...,< z},v, > be a random sample such that
Bm(z}) =y, forallj=1,...,s.

Step 3: Compute

K'(ziayl') = {j s Cm(zia IS) =¥ O y}}’k’(zia yl') = IK'(zia yl')l’



188 6 TOWARDS A GENERAL THEORY

Tk)y={i<¢: k'(z.-,'y;) = k},d'(k) = |Z'(k)]|. |
Step 4:

. 4.
Casel:(Bise)lE(zf;’yll-%lz(l_g). %

In this case compute
kp = min{k'(z;,y;) asin case 1 :i=1,...,£},
fo=min{i < £:i € T'(ky)}, and
o= { Cm(Ziy, 7) ® ¥i, if kp/s > 1/2
Cm(Zigs2) O yi, @1 if kjf/s < 1/2

! o .
Case 2: (ViSZ)‘iz;’}l)—%l< (1-%). %

In this case compute

K =|{j <8:Cn(z,z}) =y}} and

ae { 0 ifo'(k) 2 c'(s - F)
=11 () <o'(s - K)

Output: Cp(z) =a
The rest of this section will be devoted to a proof of

;1 = Pr [Bp(z) = Cl(2)] 2 -;- + 1. (24)

Let G denote the event C!,(2) = Bm(z), A the event that after execution of
step 3, case 1 occurs in step 4, and let A be the event that after execution
of step 3, case 2 occurs in step 4. It is then clear that

v = a- Pr|A]+ @ Pr[A],

where a = Pr|G|A},& = Pr[G[A].

The proof of the theorem will be divided into two claims. In Claim 1 a
lower bound on aPr[A] will be determined and in Claim 2 a lower bound
on @Pr[A).

Claim 1: aPr{A] > (1/2 + (1 — $56)\/€/2) Pr[A] - exp[~/3]
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The proof is in several steps. For each z,y such that B,,(z) = y put
9(z,9) = Pr(Cm(z,2) = y® ¢/|Bm(z) = ],

k,(xsy) = l{] <s: Cm(xax;') =y y}}l
and consider the events

o (45322 (=) i <1 0-2)
e (M523 5 (1-9) VGt » 3 (- 2)

It will be shown that

Subclaim 1: Pr[F; U Fy] < exp(—s%/3).

Since, k'(z,y® 1) = s — k' (z,¥),9(z,y® 1) = 1 - g(z,y) it is clear that
for all z,y such that Bn(z) =y,

<z, y>EFf &<z,y®1>€ Fy,

and hence
PT[Fl] = PT[Fg].

Hence, it is enough to find an upper bound for Pr[F;]. The idea is to think
of ¥'(z,y) as a Monte-Carlo computation of g(z,y). Let § = (6/4) - Ve/2.
Apply Bernshtein’s law of large numbers (see exercise 1) to obtain

F0 = {< z,y>€ Fy : g(z,y) > 1/4}, F} = {< z,y >€ F1 : g(2,y) < 1/4}
and notice that Pr[F)] = Pr[F{] + Pr[F]]. Then, using the definition of s,

- g(xa y)

> 0] < 2exp(—s6?).

Put

Pr[Fy} < Pr [—%—yl - 9(z,y) > 0] < (25)

2
2 exp(—s6%) < 2exp (—%ﬁ) < 2exp(—s3/4).

In addition, it is true that

!
Pr[F}] < Pr [%’Q - i > o].
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Thus, applying the previous argument to the right side of the above inequal-
ity, with g(z,y) = 1/4, it will follow that

Pr[F}] < 2exp(—s*/ Y. (26)

Subclaim 1 now follows from xnequa,lltlw (25), (26).
Consider the events

A ﬂ >1 5 and (¥ € 2(K})) [g(z,,y.) > % (1 - 545) \/g—]
As i‘i < 3 and (Vi € (k) [g(z.,y.) <i_ (1— %) % :

L= AN(A)UAg), and L = the complement of L.

Now it will be shown that
Subclaim 2: PrlANI] < exp(- ﬂ
Indeed, Pr[ANTI] = PrlAn4; N4, <

Ky 1 : ) < 24 (1-38), /¢
Pr [? > E and (32 < £) (g(xuyl) < 2 + (1 4 ) \/D].'-

Pr [k—6< ; and(31<8)(g(z.,y,)> %-— (1-%)\/5)] <
ePr[Fy) + €Pr[F3) <

2% exp (—5%/) < exp(-v/3),

which completes the proof of subclaim 2. Consequently,
Pr|G|L]- PrlANT) < exp(—/5). (27)

To finish the proof of claim 1, notice that from the definition of g one
has that foralli=1,...,s,

9(2i, i) = Pr[Bp(2') = Cp(zi,2') @ Bm(i)].

The definition of C!, implies that

1 35
PriG|L, 4] 2 Elg(zi, yi)|L, A1) 2 5 + (1 - 'Z’) \[2-’

1 36
PriGIL, 42] 2 BlL - g(an )L 42 2 3+ (1- T ) /5
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Thus, using the identity
Pr[G|L) = Pr[G|L,A,] - Pr[Ai|L] + Pr[G|L, As] - Pr[Aq|L]  (28)

it follows that

PrGIL]> 3 + (1 - 3;) : (29)

On the other hand it is clear that
aPr[A] = Pr|G|A]Pr[A] 2 Pr[G|L)Pr[L] =

Pr[G|L](Pr|A) - PrlAnT)) = Pr[G|L]Pr[A] — Pr[G|L)PrlANT]). (30)
Claim 1 is now a consequence of (27), (29) and (30).
Claim 2: @Pr[4] > (1/2 + (1 - 28)\/€/2)Pr[A] — 1/(45%).
For each ¢,5, ¢ = 1,...,5,7 = 1,...,£ consider the £ - s indeperdent
random variables X;; defined by

1 if Cm(z,2) = BB (z,2)
Xij ’ )=
§(@) { 0 if Cp(z, ') £ B (z,7),
and let _ 1
£(z,2') = o '%Xi.j(zal"),

1 X >
q(z,2') = 7 {1 <j<e: EX;J(I,Z’) = k}'
It is clear that g; is the random variable corresponding to the quantity ¢’/ (k).
Setting dy = k/s — 1/2, and using the fact that s is odd, it is easy to see
that
+ Y di- (qe(z,2) = go-i(2,2)). (31)
k>af2

N =

§(z,2') =

Let a}, be the expectation of the random variable g i.e. a} = E[g]. ¢i can
be regarded as a Monte-Carlo computation of a}. It is clear from (23) that
for all 1,7, 8 = E[X;;]. Hence B = E[§], using the expectation theorem. It
follows that,

1
+ Y di-(ap-dig) S5+ > di-laf -l (32)
k>af2 k>a/2

N =

B=E[{]=

Next the following two cases will be considered
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Case 1: There exists k < s such that

Let k be as in case 1. Using the Weak Law of Large Numbers one obtains

that . s 1
- < <
Pr [lak qk| > 5 ] - 42(8 _ 1)2

Consequently, since a} > 1/s%,

1 1 , s—11 _ 1
Pr[qk<;z]=Pr[qk<;za.nd|a,,-qk|> o ]5-——-.

It follows that,

1 i
Pr[A]ZPr[qu 4]>1-.2_§

Hence, the desired inequality (24) follows easily using the result of Cla.xm 1.
Case 2: Forall k < s,

s _2..71 ar =

1
=

Consider the event J deﬁned by
(Vk) (Mg -yl 2 sl2 => a} — a,_;,qk — gs—k have the same sign) .
It is an immediate application of the Weak Law of Large Numbers that
P21~ o, (33)
(see exercise 5.) Thus,
&Pr[A] = Pr|G|A)Pr[A] = Pr|J|Pr[G|4, J|Pr[A] >
Pr{G|4, J)Pr[4] - é.

However, (23), (32) and the assumption in Case 2 imply that

1 8
§+e<ﬂ<2+ > di - |6} ~ aig| + - (34)
1/2<k/e<1 /240
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It follows from (34) that

— 1/82
Y lap-al 2 S (35)
1/2<k/e<1 /240 K
Using the definition of J, and (22), one obtains
Pr[G|4,J] > (36)

max{a}, Gyt }+
1/2<k/s,ja}~a!_,|21/s2

E min{a},a,_;} 2
1/2<k/sjal~a! _, |<1/e3

=k

- max{a}, @, }+
1/2<k/sja}—a!_, |21/s?

> {max{eh,abs} - 5} 2

1/2<k/s,la; ~a! _.l<1/s%
k o=k

1 ‘
> max{ahal gl i =
1/2<k/s
1 1 1
3t3 > Ia’k-a’a-k'-i;
1/2<k/as

This and (35) imply the result in Claim 2.
Now the XOR lemma follows easily from Claim 1, Claim 2 e

|EXERCISES |

1: Show that in subclaim 1, § < g(z,y)(1 - g(z,y)) and hence one can
apply Bernshtein’s law of large numbers.

2: Prove identity (28).

3: Ifb;; € {0,1} foralli=1,...,5,5 = 1,...,€ then show that

£ o 8 .
X b= k- {1<i<e:) b=k}
j=1 =1 k=1 i=1

4: Use exercise 2 to prove equation (31). Hint: notice that

> asla,) =1

k=0
5: Prove inequality (33).
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6.5 Applications of the XOR Lemma

There are three main applications of the XOR theorem. The first two con-
cern unapproximable predicates and pseudo-random generators, and will be
presented in the present subsection. The third one is the notion of strong
(respectively weak) one way functions and will be presented in the next
subsection (6.6).

APPLICATION 1: UNAPPROXIMABLE PREDICATES.

Definition 8.14 Let P be any polynomial. A predicate B = {B,, : m > 0}
defined on the family X = {X;n : m > 0} is 1/P unapprozimable, and
this will be abbreviated UPR(B, 1/P), if there is no polynomial size circuit
C = {Cpm : m 2 0} such that for infinitely many m,

1 1
: = 2 = =
Pr(z € Xm : Bm(z) = Cm(2)] 2 3+ Plm)
Definition 8.15 Let P be any polynomsial. A predicate B = { By, : m > 0}
defined on the family X = {X; : m > 0} is (1/2 — 1/P)-unapprozimable,
and this will be abbreviated UPR(B,1/2 — 1/P), if there is.no polynomial
size circust C = {Cp, : m > 0} such that for infinitely many m,

1
Pr(z€ Xm : Bm(z) =Cnm(2)] 2 1~ Py’
Remark: Notice that the above definition of B is 1/P unapproximable

is equivalent to (VC)(C does not P-predict B) in definition 6.2.
An immediate application of the XOR theorem is the following

Theorem 6.8 Let g,h be polynomial time computable functions such that
g(m) = 2k(™) > (log, m)mP(m). Then for all predicates B the following
holds: )

UPR(B,1/2~1/P) = (VQ)UPR(B1),1/Q)

APPLICATION 2: PSEUDOM-RANDOM GENERATORS.

Recall the definition of pseudo-random generator on the family X =
{Xm : m > 0} given in definition 6.4. To any such pseudo-random generator
G associate the sequence bG o(z), ... ,bg‘Q(m)_l (z) of bits generated by G,

where for each m, bﬁ,.- is the i—th bit generated by G, on input z € X,,.
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Definition 6.16 Let P be a polynomial and G = {Gy, : m 2 0} a pseudo-
random generator on the family X = {Xm : m 2 0}. The generator
G, P-passes the 1/P Blum-Micali Test, and this will be abbreviated by
BMT(X,G,1/P), if for all polynomial size circuits C = {Cp : m > 0}
the following cannot hold for infinitely many m: there ezists an ¢ < Q(m)
such that

1
P(m)’

The Blum-Micali generator theorem (theorem 6.1) shows how to con-
struct from an unapproximable predicate and a friendship function for it a
psuedo random generator that passes the Blum-Micali test. The same re-
sult can now be obtained from a slightly weaker hypothesis. Call a predicate
B = {Bp : m 2 0} on the family X = {X, : m > 0} weakly unapprox-
imable if and only if for any polynomial P, B is 1/2—1/P unapproximable.
It is then clear that for all predicates B,

Theorem 6.9 (3Q)UPR(B,1/Q) = (VP)UPR(B,1/2 - 1/P)

Pr [z € Xm : Cr(630(2)s- - 85i-1(2)) = bmi(#)] 2 5 +

Now the following improvement of theorem 6.1 can be proved.

Theorem 6.10 Assume that B = {B,, : m > 0} s ¢ weakly unapproz-
tmable predicate on the family X = {X;m : m 2> 0} and let f = {fm : m 2 0}
be a friendsip function for it. Then for any polynomial P there exists o
pseudo random generator G such that BMT(X,G,1/P) e

Proof: Consider polynomial time computable functions g,h such that
g(m) > 28(m) > (log, m)m2. It is an immediate consequence of the XOR
theorem that the predicate B is1 /P unapproximable, for any polynomial
P. Moreover, the permutation 79 of (Xin)?(™) defined by

fi(pf)(xlv" 'axy(m)) =< fm(xl),-' ',fm(xy(m)) >,

is a friendship function for B,(,{). Now the theorem follows by applying the
Blum-Micali generator theorem to the pair B(), f(9) o

6.6 One to One, One Way Functions

" The present subsection includes the third application of the XOR theorem.
Let f = {fm : m > 0} be a family of functions such that each fp, is a
permutation of X,,. .
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Definition 6.17 A polynomial size circuit C = {Cy, : m > 0} weakly
(respectively strongly ) P-inverts the family f if for infinstely many m,

.1
Priz € Xm : Cnlfm(2)) = 21 2 572

(respectively

1
: =z|21—-———7).
Definition 6.18 f = {fm : m > 0} is weak (respectively strong) 1 ~ 1,
one way (or simply one way), if the following holds:

(VP,C)(C does not weakly (respectively strongly) P — invert f).

Theorem 6.11 If the function f = {fm : m > O} is a friendship function
for the unapprozimable predicate B = {B,, : m > 0}, then f = {fm : m 2> 0}
13 weak, one-way.

Proof: Assume that the hypothais of the theorem is true for the unap-
proximable predicate B and its friendship function f, but that the conclu-
sion fails. Let C = {Cy, : m 2> 0} be a polynomial size circuit such that the
following statement holds for infinitely many m,

1
: = D e
Pr [z €Xnm Cm(fm(z)) z] zZ P(m)
Let M be the set of integers m which satisfy the above inequality. For each
bit b € {0,1} let C, be the following polynomial size circuit (due to Mike
Fischer),

Input: z (z € Xpn).

Step 1: Compute y = Cp,(z).

Output:

if fm(y)=zx
Cb - B (.’t) I m
mE =1 i faly) #2

Then the theorem will follow from the following
Claim: For all m € M there exists b € {0, 1} such that

1
2P(m)’

Pt [z € Xm : Bm(2) = Ch(2)] 2 % +
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Proof of the Claim: Let m € M, and choose a bit b € {0,1} such that

Priz € X;m : Bm(2) = b|fm(Cm(2)) #2] 2 =
Put
p= Prjz € Xpm : fm(Cm(z)) = 2].
Then it can be shown that
Priz € Xpm : Bu(z) = CL (2)] =
Pr[Bm(z) = C:, (=) and Sm(Cm(2)) = 2]+
Pr[Bm(z) = Cp(2) and fm(Cm(2)) # 2] =
P"[fm(cm(z)) = z]+
P"[Bm(-"") C,b,,(:r)lfm(Cm(z)) # 2} - Pr{fm(Cm(z)) # 2] =

p+ Pr[Bm(z) = C,(2)| fm(Cm(2)) # 2] - (1 - p) >

1 1 p

Since by assumption
p= Pr[fm(cm(z)) :Ié z] = P( )

it follows that
l 1

Pr[zeXm:Bm(z) Cf,,(z)] 3 2P(m)’

and the proof of the claim is complete. -
Since the set M is infinite, it follows from the claim that there exists a
bit b € {0,1} and an infinite subset M' of M such that for each m € M’,

1
2P(m)’

Pr [a: € Xm : Bm(z) = Cf,,(z)] > 1

Then the circuit
C'={Cf,,:m_>_0},

(2 - P)-predicts the predicate B, which is a contradiction e
The following theorem is very important because it can be used in con-
junction with theorem 6.1 to construct secure pseudo-random generators.
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Theorem 6.12 (One Way Function Theorem, A. Yao) The following
three statements are equivalent:

(1) There is a strong, one way function.

(2) There is a weak, one-way function.

(8) There is an unapprozimable predicate B = {B,, : m > 0} and a
friendship function f = {fm : m > 0} corresponding to it.

Proof: (3) = (2)
This was proved in detail in theorem 6.11.

(2) = (1)

This is immediate from deﬁmtlon 6.17.

(1) = (3)

Let f = {fm : m > 0} be a strong one to one, one-way function such
that f,, : X;n — X» is one to one, and onto. Let B. m : Xm — {0,1} be
the predicate defined by

z — B;m(z) = the i — th bit of f;1(z).
Further, let Ly, : (Xm)™ — {0,1} be the predicate defined by
Lm(z15...5Zm) = Bim(21) @ - - ® Bm,m(Zm).

Finally consider the predicate B = L), where the function g is polynomial
time computable and satisfies g(m) > (log, m)m?2, for all m > 0. It will be
shown that the predicate B is unapproximable with corresponding friendship
function

o Xm)"‘”("‘) N (Xm)mﬂ(m)
defined by
.fy’n(xla- . ',xmg(m)) =
< fm(21)s -y fmn(Zm)s -« o s fm(Zm(g(m)~1))s < - o » fm(Tmg(em)) > -

Using the identity
Lm(.fm(xl), cese a.fm(zm)) =
(1 - st bit of 1) @ (2 — nd bit of 22) @ - - - ® (m — th bit of z,,)
it is not hard to show that f' = {f}, : m > 0} is a friendship function for
the predicate B.

It remains to show that the predicate B is unapproximable. Assume on
the contrary that there exists a polynomial size circuit ¢’ = {C,, : m 2 0}
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and a polynomial Q such that the following property holds for infinitely
many m,

L

Q(m)’

Let M be the set of indices m > O that satisfy the above inequality. The
multiple XOR theorem implies that there exist polynomial size circuits

{Cim : m > ¢ > 1} such that the following property holds for infinitely
many m,

Pr [:r € (X,,.)"‘"("‘) : Bm(z) = C:n(a:)] > % +

(Vi < m) (Pr [4€ Xom : Bim(t) = Cim(u)] 2 1 - —1-) .

m2
It will be shown that the circuit
Cm(u) =< Cl’m(u), seo ’Cm’m(u) >

strongly P-inverts the function f, where P(m) = m. Indeed, foreachm € M
it can be shown that

Prlu€ Xm:Cn(u) # fi(w)] <

gPr [t € Xm : Cim(t) # Bim(v)] < ; # = ;}I

It follows that for all m € M,

Pr [u € Xm :Cm(v) = f,',',l(u)] 21~ ;1;,

which is a contradiction. This completes the proof of the theorem e
Recall that in theorem 6.12 the passage from a strong one way function
to a friendship function and its associated unapproximable predicate was
accomplished by passing to a space of higher dimension, namely (X,,)™.
However, the answer to the following question seems to be open.
Question: Is every weak or strong one way function the friendship
function of an unapproximable predicate?

|EXERCISES |

1: Show that the predicate B defined in the course of the proof of (1)
= (3) of theorem 6.12 satisfies RGH.
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2: The circuit C’ considered in the course of the proof of theorem 6.11
was defined nondeterministically. Show that if the function f = {fm : m 2
0} is a friendship function for the unapproximable predicate B = {By : m >
0} and satisfies Pr[Cm(fm(z)) = z] 2 1/2 + 1/P(m) for infinitely many m,
then the deterministic circuit pictured below satisfies the conclusion of the
claim in theorem 6.11:

z-+ Cp, Bm Ofm"Bm(fm(Cm(z)))

6.7 Bibliographical Remarks

Most of the results of this section are the work of A. Yao and are outlined
in cite [Y1]. The formal proof of the XOR lemma is partly based on [Y2].
Theorem 6.1 can be found in [BM]. Additional information on the security
of public key cryptosystems as well as a different approach to the proof of
the XOR lemma can also be found in the unpublished [Rac].
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A% Springer Verlag.
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Throughout the text the symbol e is used to indicate the end of the proof
of a theorem, lemma or claim. The rest of the symbols used are listed below
according to the section they first appeared.

| Quantifiers, Connectives, Sets and Functions]

Mathematical Symbol Ezplanation

3 there exists

v for all

d3z<y there exists z < y

Vz<y forallz<y

dz >y there exists z > y

Vz2>y forallz >y

\" or

A and

- not

= implies

& if and only if

|A] cardinal or number of elements of set A
0 the empty set

a€EA a belongs to the set A

ACB A is a subset of B N
AUB union of sets A, B

ANB intersection of sets A, B

A-B difference of sets A, B

Ax B cartesian product of sets A, B

A" cartesian product of n copies of set A
f:A— B a mapping of a set A into a set B
T—y the mapping carries a point z to a point y
fisi-1 (¥na)(f(5) = f(z) = z=2)
fHa} ={z: f(z) = a}

<z, ¥> ordered pair

® addition modulo 2

® multiplication modulo 2
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Mathematical Symbol

VAIVIAR

Irl

[a, b]

(a,b)

[a,b)

(a, b]

logy

9(z) = 0(f(2))
9(z) = Q(f (=)

Mathematicql Symbol
R
zly
ged(a, b)
lem(a, b)
- 2=y modn

- (zly)

z,
Zy(+1)
Za(-1)
QR,
QNR,
w(n)

A

7(n)

FREQUENTLY USED NOTATION

{Real Numbers|

Ezplanation

set of reals
less than or equal

greater than or equal

less than
greater than

absolute value of r
={z€eR:a<z< b}
={z€R:a<z<b}
={z€eR:a<z<b}
={zeR:a<z<b}
logarithm with base b of =
M > 0(lg(z)| < M - |f(2)])
M > O(lg(z)| 2 M - | f(=)])

{Number Theory |

Ezplanation

= (1+ v/5)/2; golden mean

z divides y

greatest common divisor of a,b
least common multiple of a,b
z congruent to y modulo n

Langrange-Jacobi symbol of the integer z with
respect to the integer y

= {0 <z < n:gecd(z,n) =1}

= {z € Z}: (z|n) = +1}

={z€Z;: (z|n)=-1}

set of quadratic residues modulo n
set of quadratic nonresidues modulo n
= | Z}|; Euler’s function

Carmichael’s function

number of primes < n
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Mathematical Symbol
indexp 4(z)
[2]
lz] = [2]
n!
¥

Mathematical Symbol
F,=2"+1
My,=2"-1

order, (z)

Vm(t)
ERH

Mathematical Symbol
E

EuF

EnF

E-F

Pr|[E]

Pr4[E) = Pr[E|A]

E[X]
VarlX]
D[X]
B,(E)

Fu(E)

[Number Theory |

Ezplanation

index of z with respect to the generator g €
Z;, where z € Z;

ceiling of z

floor or integral part of

=1-2.--n; n factorial

= n!/k!(n = k)!; n choose k

| Primality Tests|

Ezplanation

n-th Fermat number
Mersenne number corresponding to prime p

=least k>0 such that 28 =1 modm, where

T E€Zp,

= largest k such that m*|t
Extended Riemann Hypothesis

[Probability Theory]

Ezplanation
complement of event E
sum of events E, F
product of events E, F
difference of events E, F
probability of event E

conditional probability of the event E with
respect to the event A

expectation of the random variable X
variance of the random variable X
divergence of the random variable X

number of occurrences of the event E in n
indepedent trials

= B,(E)/n; frequency of E in n independent
trials
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{Pseudo Random Generators |

Mathematical Symbol Eazplanation

LGEN Linear Generator
PGEN 1/p Generator
QRGEN Quadratic Residue Generator
INDGEN Index Generator
APR Advantage for Predicting a Generator
APAR Advantage for Parity
AQR Advantage for Quadratic Residuosity
ALOC Advantage for Location ;
QRA(N) Quadratic Residuosity Assumption for the
family N
QRA Quadratic Residuosity Assumption
AIND Advantage for Index
AB Advantage for the Function B, ,
- APQR Advantage for Principal Square Root
DLA(N) Discrete Logarithm Assumption for the family
o N
DLA Discrete Logarithm Assumption.

| Cryptography and General Theory |

Mathematical Symbol Ezxplanation

PKC Public Key Cryptosystem

NPKC Nonpublic Key Cryptosystem

RSA Rivest, Shamir, Adleman cryptosystem

QRS Quadratic Residue System

AQRt Advantage for Quadratic Residuosity, assum-
ing that a quadratic nonresidue is known

RGH ‘ Random Generation Hypothesis

BMT Blum-Micali Test

PSST Polynomial Size Statistical Test
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