Local Uniform Mesh Refinement for
Elliptic Partial Differential Equations

William D. Gropp

Research Report YALEU/DCS/RR-278 A
July 1983

The work presented in this paper was supported in part by the Office of Naval Research under contract
N000-14-82-K-0184 and by the National Science Foundation under grant MCS-8106181.

Abstract

Local Uniform Mesh Refinement is an efficient form of local refinement which has sucessfully been
applied to time dependent problems. Its main advantages are its low overhead and suitability to
vector and parallel machines. We shiow how to apply this approach to finite difference approxima-
tions of elliptic problems. By using the theory of M-matrices, we show that the mesh refinement
approximation converges and that iterative methods based on splittings of the matrix problem
suitable to parallel processors converge. A number of computational examples are provided.

1. Introduction

Many adaptive mesh methods haye been proposed for the numerical solution of partial differential
equations. The advantages are obvious: fewer points will reduce storage requirements and may reduce CPU
time. The disadvantages are more subtle: adaptive methods are more difficult to program, the ad aptivity
often makes the code “unvectorizable”, and there is often little theoretical justification for the form of
refinement. Local Uniform Mesh Refinement [4, 5, 7] is one adaptive technique without these drawbacks
which has been applied to time-dependent problems.
~ The advantages of local uniform mesh refinement lie in its local uniformity. By using locally uniform
grids (rectangles), code can be written which takes advantage of this structure in much the same way as for
a uniform grid. Further, the data structure overhead is much lower, since the basic item is a rectangle rather
than a single point. Finally, because there are only a few fine grids, the theory for this form of adaptive
griding is more tractable.

We will show in this paper how these ideas may be applied to the adaptive solution of elliptic partial
differential equations. We first define our notation and then introduce the alogrithm. Next, we show that the
algorithm gives a convergent approximation and that the resulting matrix problem can be solved by a simple
iterative process which is provably convergent. We will then briefly discuss the data structures necessary
to efficiently implement the algorithm. Finally, we will show some computational examples illustrating the

method.

2. Notation

We wish to find the solution of an elliptic partial differential equation on a region R, with Dirichlet
boundary conditions. We will assume that this region is rectilinear for simplicity, though that is not necessary
for our results. It will also be clear from the discussion that more general boundary conditions (such as
Robbins bounda;'y conditions) can be handled with this technique. We place on this region a discrete
grid G of points {p;}. Again, we will assume that these points are of the form (ih, jh), where & is the
mesh width. G, does not include points along the boundary of R; (but see the remarks after Theorem 1).
Our difference scheme for a point p; is defined by a stencil {p;, pi,,pi, ..., Pi,.}. Thus, in constructing the
matrix representing the difference scheme over G, the :*® row has non-zeros in columns 1, i, 2, ... im.

To refine the grid G), we chose a region R, C R; which is rectilinear and whose boundary vertex points
belong to G;. We place on this region a grid G2 of points {g;}. Again, G, contains no points along the
boundary of R,. o ‘

We also define G as those points in G2 which are in OR;, the boundary of R,, and 85G, as those

points p; € G, whose stencils would include points on 8R;. Define G° as the complement of G.

1

We now divide G| into four disjoint sets of points:

Gie=G, n G3
Gis = Gi[)0G:
Gir = {pilpc € (61162 Gip) and p: € stencil(Gys | Gie))
Gis =G, n(Gls U Gis U Girf
G is the part of the coarse grid exterior to the fine grid, G, g is the part of the coarse grid on the boundary
of the fine grid, Gy is the part of the coarse grid inside of G2 which contributes to the coarse grid stencil of
some coarse grid point exterior or on the boundary of the fine grid, and G5 is the part of the coarse grid
which is no longer needed (values at those points in R; will be taken from the fine grid, and the points are
not needed in any computation on G).
Similarly, the fine grid is divided into two disjoint sets of points:
GgB = 6G2
Gar = G2[\Gip

Each point p; € G11 UG5 U G15 has the same location in R, as some point gy(;) € Gs.

ﬁ’zf:&*%
‘%%w%
el d

Figure 1: Relationships between the coarse and fine grids for a
five point stensil. e are points in G, g |J G5, ® points in Gy, and
X are points in G;s.

We will also need a bit of matrix notation. If A is a matrix with elements {a;;}, A > 0 means a;; 20
for all 7 and j. A matrix A is an M-matrix if A=! > 0 and a;; £0,7# 7. If A, M, and N are matrices,
A= M ~ N is a regular splitting of A if M~! >0and N >0 [11].

Our algorithm consists of specifying rules for determining equations for each of these sets of points.

3. Algorithm

The algorithm for constructing the matrix equation is:
1. for points in G1g |J G15, use the difference scheme on the coarse grid.
2. for each point p; € Gy, t;se the equation g¢;; = 1, ais(j) = —1. This serves to inject
the values computed on the fine grid values onto the coarse grid.
3. ignore points in G;s.
4. for points in Ggy, use the difference scheme on the fine grid.

e

5. for each point ¢; € G2p, use interpolation from points in G, g.

The [;ractical advantage of this algorithm lies in its local uniformity. We shall also see that it leads to
a provably convergent approximation.

We will not discuss here how to decide where to refine. We shall see that the appropriate choice is
to refine where the local truncation error becomes too large. Deciding where the local error is too large
depends on the problem and the difference approximation used; possible choices for finite differences include
direct approximation to the truncation error and Richardson-like extrapolation (see [8]). For finite element

methods, a posteriori error estimates have been developed [1, 2, 12].

4. Convergence of Approximation

We will prove that this method converges as the local truncation error goes to zero for a significant
class of problems. We do this by showing that the matrix for this method is an A-matrix under weak
assumptions on the difference method used in the interior of the mesh and then applying well-known results

about approximations which give M-matrices.

Theorem 1: For any connected region, let the matrix A; = {a;;} for the interior scheme have the following
properties:

(a) A; is irreducible diagonally dominant;

(b) Ay can be written as A; = D — B, where D is diagonal, D > 0 and B > 0; and

(c) let the set of points Gy; be non-empty.

Let the interpolation method (step 5 in the algorithm) for a point ¢; € Gop have non-zero matrix entries
@i, @j,, Qijy, - -+, Gij,, Where the points corresponding to columns j;, j2, ..., jm are in Gyp. Further, let

ag; > 0 and a5, ..., 6;,j, all be negative, and

n

Y lagsl < aad].

=1
J#i

Finally, for each row ¢ corresponding to points p; € OpG) and for each row i corresponding to points

g; € 05G2, we have

n

> lag] < Jas]

=
(this is natural for Dirichlet boundary conditions). Then the matrix A (not just A;) resulting from the
algorithm is an M-matrix.
Proof:
We show this for a single fine grid. The proof can be applied repeatedly for more grids. Let A, be the
matrix A; for the coarse grid Gy and A, the matrix A; for the interior of the fine grid Go;. Assume that

the region G} — G is connected. Then there is a permutation such that A has the form of the block matrix

1 0 0 st
A= C“ A} 0 0

0 Cho 1 0

0 0 sz 'Ag

where the first row is for points in G, the second row for points in G g |J Gy g, the third row for points in
G2p, and the fourth row for the points in G,;. The matrix Cy; contains at least one non-zero per column
by the definition of Gy;. The matrix Coo contains at least one non-zero per column by the definition of
G2p. The matrix C), contains at least one non-zero per row by the definition of the interpolation method.
Finally, the matrix Cy3 contains one non-zero per row by the definition of Goy. r
To show that this matrix is irreducible, we show how a chain {ai,iy, 8iy0i, - .- ,@i,,.j} can be constructed
for all ¢ and j. First, note the A, and A, are irreducible by hypothesis. Let the partition of A be 1 <m <
na < ng < n (the diagonal blocks are square).
1) 1<i{< ny, ng < j<n. Take first {aii}. Thereis a j; in ng < j; < n such that {aij,} # O (since C3
has one —1 entry per row). From here, there is a chain to J since A, is irreducible.
2) ng < i< n,ny < j< ns. Thereis an {1 in ng < ¢ < n such that {a:,,7} # 0 since Cs. has at least
one entry per column. Since A, is irreducible, there is a chain from § to i.
3) Similarly for np < i < n3, n; < JS<npgand ny < i< ny 1< 5< n,. Since we can compose chains,

we have shown that A is irreducible as long as n; > 1.

To show that A is irreducibly diagonally dominant, we need only to show that some row is strictly
diagonally dominant. Since there either is a coarse grid point adjacent to a boundary which is not refined
or there is a fine grid point adjacent to a boundary, the row corresponding to the stensil for that point will
have a column “missing,” and hence that row will be strictly diagonally dominant. Both of these satisfy the
requirements, so we are done. Finally, we note that a;; S 0 for i # j by the construction of A4, so that A is
an M-matrix.

Now, if A, is not irreducible (ie., the fine grid divides the coarse grid into two or more disconnected
regions), we can still show that a chain can be formed, because by hypothesis, C}; will have enough non-

zeros, since each component connected component of G; must have points whose stencils include points in

4

Gy;. Otherwise, that component can be solved for seperately, which contradicts our hypothesis that G,; is -

non-empty for each connected component.

Remarks) r

1

2

The restriction that G; and G not include any points from the boundary of R, is necessary only to
allow {xs to use M-matrices. This could happen, for example, if the matrix includes diagonal terms for
the points in G, and G2 on 8R, (for simplicity in coding)-. Inclusion of these points does not change
the properties of the matrix which we are interested in: the existence of a non-negative inverse. This is

easy to see by explicit construction of the inverse for the block 2x2 matrix

»-)

where M is an M-matrix, and C < 0.

If Gi; = @, then Cy3 is empty and the matrix is block lower triangular. It is easy to see then that the
solution on the coarse grid G, is independent of the solution on the fine grid G,. We can then solve
the coarse grid approximation first and then use the solution to specify the values at the boundary of
R,. In this case, the accuracy of the solution can be bounded in the usual way by the sum of the error
at the boundary and the local truncation error. Since the error at the boundary of R; depends on the

accuracy of the solution on Gy, solutions of this kind are usually not very useful.

We now state a theorem on the convergence of approximations to a class of elliptic equations. See [9] for the

' proof.

Theorem 2: Consider the elliptic boundary value problem

Lu= —-Qy) Uzz — 2052 Ugy — Goo Uyy — bl Uy — by Uy
where:
Lu= Q(I,y), (I,y)eRl,
ulz,y)=9¥(z,y), (z,y)€OR,
and

an, 412, a2z, by, by € C*°,
g(z,y), ¥(z,y) € C°, and

a;; >0, ayyazp — af, > 0.

Approximate Lu = ¢ with a consistent difference scheme, using the exact values at the boundary. If the

difference scheme results in an Af-matrix, then the approximation converges in the discrete infinity norm.

Further, if the approximate solution is w and the exact solution is u, then

Ay — Av|loo 2 Klu = ©]loc,

5

where K is independent of the stepsize.

Remarks

This is by no means the most general theorem possible. We could quickly extend this result to semi-linear
L’s, approximations at the boundary dR,, and more general boundary conditions of the form u + adu /On =
B. This also gives us criteria for refining, since ||Au = Aw|l = ||Au - gllc = ||Ax = Lu||o. measures the

maximum of the local truncation error over the region.

5. Convergence of Iterative Solution

Now that we have a positive definite, non-symmetric matrix for our approximation, we naturally want
to be able to select a solution method which can be guarenteed to converge.

We show the splitting as made up of 4 x 4 block matrices since each each row and column of the 4 x 4
matrix can be related to our decomposition of the grids in section 2. However, our splittings are all in terms
of 2x 2 partitionings, with each block in the 2x 2 partition made up of a 2 2 piece of the 4 x 4 partitioning.

Perhaps the most natural iteration is to do each grid seperately and then combine the results. This
splitting is suitable for parallel processors, as each grid is done independently. Also, this splitting is simply

a (2x 2) block Jacobi method. For the case above (with one fine grid and G; — G5 a connected set), we split

A into
I 0 0 0 0 0 0 | Cis
A= |Cu | A 0 0|,|0 0 0 0
0 0 I 0 0 [Cpp [0 0
0 0 | Caz | Az 0 0 0 0

or A= N,; — P;. The natural iteration is
NJ$k+l = PJ.‘Ck +b.

We can show that this converges by showing that this splitting is regular and then applying the regular

splitting theorem [11].

Theorem 3: N; — P, is a regular splitting for the matrix A in Theorem 1
Proof:
There are two conditions to check: P; > 0 and N"," 2 0. Py 2 0O since all elements of Cy3 and C,, are

negative or zero. To check the second condition, we explicitly construct the inverse of N,:

I 0 0 0

-1_ | =ATTCy, | AfT 0 0

Ny =1-"% 0 T 0
0 0 —A; ' Coo 2!

Now, since A, and A, are M-matrices, they have non-negative inverses. Since Cy; € 0and Coy <0,

N7l >o0.

Another splitting is to solve the problem on the coarse grid, then use that solution in solving on the fine

grid. The splitting for this is

I 0 0 | o© 0100 Cis
A= |Co A0 T o (00 0] 0

0 | Cpo | 1 0 0010 0

0 0 | Czz | A2 000 0

or A= Ng — Ps. The natural iteration is

Ngzkt! = Pgz* +b.

Again, we show that this iteration converges by showing that the sblitt-ing is a regular splitting.

Theorem 4:
Proof:

/c — Pg is a regular splitting for the matrix A in Theorem 1

Pg > 0 since all elements of Cy3 are negative or zero. Again, we explicitly construct the inverse of Ng:

I 0 0 0

N=1 = | =4 Cn AT 0 0
¢ = 0 =Crs T 0
0 A;TCa:Crz | —A;'Caz | AT

Now, since A; and A, are AM-matrices, they have non-negative inverses. The product CooCi2 > 0, since

C22 <0 and Ci2 £0. Since C1; <0and Cp2 <0, N3' > 0.

Since Ng — Pg is a (2 X 2) block Gauss-Seidel method, and the block matrix is consistently ordered and

2-cyclic, we know [11] that the second splitting converges twice as fast as the first.

We can also consider a (2 x 2) block SOR method with the splitting:

I 0 0 0 (w=1) 0 0 wCs
WA = Cll Al 0 0 + (W"" 1)011 (W“I)Al 0 0

0 wCia 1 0 0 0 (w=1)1 0

0 0 022 Ag 0 0 (w - 1)022 (w - I)Ag

The optimal choice of w is not obvious. However, we do know some things about the related block
Jacobi matrix J = N]lPJ. First, J 2 0. Further, J can be written in block diagonal form, with the first
block irreducible and the second identically 0. In this case, we know from the Perron-Frobenius theory that
J has a positive real eigenvalue equal to its spectral radius, and that the associated eigenvector is positive.
We can use this as the basis of a heuristic to get an estimate of the optimal w by computing Jz for a positive

z, and using that to estimate the spectral radius of J. We then use that in the usual formula

2
1+ /1= p%(J)

to get an estimate of the optimal w. However, since J may have complex eigenvalues, the optimal choice of

We =

w is more complicated; see [13] for details. Other estimates of w, are of course possible.

7

6. Data Structure

r

The principle advantage of Local Uniform Mesh Refinement is the computational efficiency of the uni-
form structure of the refined grids. To realize this efficiency we must make a careful choice of data structure.
We discuss here the choice which we have implemented; this is a generalization of the data structure in [7].

The basic item in our data structure is a rectangle. This is a regular grid of points of the form
{ro+ihs,yo+jhy}for1 < i< n,, 1< j< n,. Note thét in contrast to the rectangles of [3], these rectangles
are lined up in the coordinate directions. This choice agrees with the theory developed in section 4 as well
as significantly simplifing the code. There is a cost in terms of more grids and mesh points.

The values of the dependent variables on a rectangle are stored in a contiguous block of memory to
allow for easy access to nearby values (this allows vectorization of many operations). The hard part of this
data structure is the joint where two rectangles abut. Instead of trying to patch two adjacent grids together,
we allow them to overlap at the joint. In figure 2, we see that points 7,8, and 9 of rectangle 1 overlap points

11, 12, and 13 of rectangle 2.

6 7 8 9 10
11 12 13

14 15 16
Figure 2: Rectangle/rectangle joint.

Linked lists are used to describe the joints and other boundaries (such as coarse/fine grid boundaries
and boundaries of the problem). These lists contain information on the relationship between the grids (e.g.,
point 11 in rectangle 2 is at the same (z, y) location as point 7 in rectangle 1), length of the boundary in grid
points, as well as other data useful in setting up the lists.

The grids for each level of refinement are linked together in another list. Constructing the matrix is
then done by simply moving through this list. Since we allow points to dverlap at a grid/grid joint, we
don’t have to worry about the numbering of the points inside of a grid depending on the exact placement
of nearby grids. The lists describing the boundaries of the grids give us what little information we need in
carrying a difference scheme across a grid/grid joint. Because of the uniformity in the grids, the matrix can
be constructed in a format suitable for vector machines (for example, the matrix can be constructed with

long diagonals suitable for fast matrix-vector products).

7. Computational Examples

In this section we show effective this algorithm is on three selected problems. The first problem is linear
and has a smooth solution. The error is localized in the center of the domain. This example demonstrates
the theoretical results of sections 4 and 5. The second problem has a singular derivative at a point on the
boundary; this problem shows the application of this technique when the theory is not valid. The third
problem is nonlinear and shows the advantage of combining the iterative methods of section 5 with the
solution of the nonlinear problem.

All tests were run on a VAX 11/780 running the VMS operating system; all computations were done in
single precision. The linear systems were all solved with o;thomin and generalized ILU preconditioning [6].
In all examples, iterations were stopped when the residual becaﬁle less than 105, -

The first problem is
V%u = 40 (or® exp(-0or?))

where r=\/(ar:---;-)"’+(y—%)2

on the unit square. The boundary data was chosen so that the exact solution was

u = exp(—or?)

which is smooth. The truncation error is concentrated around (%, %) In all of our tests, ¢ = 20, which gives
the peak a half width of about 0.19.

Table 1 shows the result of a uniform fine grid computation. The error is measured at the coarse
grid points. The error does include the error in solving the difference equations, but this error is a small
contribution to the total error. Note that the error decreases by about a factor of 4 for each halving of the
step size, as we expect. A graph of the computed solution for a uniform grid with step size 0.0125 is shown

in figure 3, and the error in that solution in figure 4.

he €ITor oo time (secs)
1 5.32E-2 44
.05 1.27E-2 1.9
.025 3.10E-3 15.
.0125 6.94E-4 178.

Table 1: Results fo: a uniform grid for problem 1.

Now, in order to test the theory, we use the errors achieved on the uniform fine grids to set the permisible
error for mesh refinement calculations. Further, we will compute the exact error in deciding where to refine.
While this is certainly not realistic for a real calculation, it seperates the issue of error estimation from the
theory we wish to demonstrate. This does affect the timing results, but in many cases the error estimation
used will not be much more expensive than the calculation of the exact error which we used. In addition,

we compute the error which would be committed by linear interpolation along a refined grid boundary, and

9

require that error also be less than the specified amount. This is necessary to assure an accurate solution.
For this first set of data, only one iteration of the (2 X 2) block Gauss-Seidel method was used.

The first calculation uses two levels of refinement and a ratio of grid sizes of 2, so that the finest grid is
} the mesh width of the coarsest grid. The grids were refined where the local error exceeded the “error tol”
given in Table 2. A graph of the error in the solution with k. = 0.05 is shown in figure 5, and the grid for
that solution in figure 6. The results in Table 2 show clearly the advantage of this approach. For example,
a uniform grid calculation which gave an error of 6.94E-4 took 178 seconds, while a 3 level mesh refinement
calculation which gave a smaller error took only 75 seconds, less than one half as much time. This inspite
of the fact that a great deal of the grid was refined (see figure 6). For even relatively coarse grids, the mesh
refinement calculation is more efficient than a uniform grid calculation with tl;e same maximum error.

The next results use one level of refinement and a ratio grid sizes of 4, so that ihe finest grid is also
% the mesh width of the coarsest grid. The results in Table 2 show that, at least on a sequential machine,
the additional overhead in the second level of refinement is more than outweighed by the reduced number

of mesh points. This is hardly surprising, since the number of grids in both cases is fairly small.

he levels ratio erroro error tol time (secs)
1 3 2 3.04E-3 3.10E-3 13
.05 3 2 6.83E-4 6.94E-4 75
1 2 4 3.04E-3 3.10E-3 16
.05 2 4 5.77E-4 6.94E-4 158

Table 2: Results for mesh refinement with 2 and 3 levels for prob-
lem 1. h. is the mesh width of the coarsest grid.

We now illustrate the results of section 5. In each of the following cases, we iterated until the [» norm

of the difference in two successive solutions was less than 10~2,

he. levels ratio errorqo error tol time {secs) iterations

1 3 2 3.80E-3 3.10E-3 108 11

.05 3 2 4.43E-4 6.94E-4 401 7

1 2 4 3.30E-3 3.10E-3 72 5

.05 2 4 8.17E-4 6.94E-4 714 5
Table 3: Results for mesh refinement with iterations between

coarse and fine grids for problem 1.

The increase in the error over the single iteration results in 3 of the 4 cases is an artifact of the
computation. In fact, the graphs of the error in the solution show that the error in the solution with mesh
refinement becomes more similar to the error with a uniform grid with each iteration (note the differences
between Figures 4 and 5). In all cases, the error is less than the bound from the theory (though since
Uzzez = Uyyyy = 4800 at z = y = }, the bound is quite large).

The second problem is V2u = 1 on the L-shaped region in Figure 7.

10

',
e 02000000 04 2%
20202090%0,9:%0, %, AR
ORI IRS

0.‘,’ 200205020 ‘. b.
(25 (K2 " ,’.‘, RHHRD
G20 % "‘ SRR SIS IR

e 0. 25 100.90.20 90,9 0"

%
(A

//
i

B S SIS OINE AL /7 ' ’ (T QURITEEATRY
o S S S X SSKIRT T I L [T]] [) | TR RS 200% 222
ST EsRy ;f;zlllz'lzllo‘%‘.”"."‘ s:‘:s\\g&s\§3§§1§3§3:?$§5§§z?:3?.?:;‘:&-" g
NS e S e A TR U e s e e e ne
S e RS U A NN 00” O AR R e o e T8
s e o L O N L P eSS e
QTS S SISO OST I 7, S S T oL AL
.3:-:53:::3;’5::’-w::";s:,‘_,.-‘:;g:::::f:::.:l,:l,:).:."’." ’ ” . ” ’Q‘Q“:’:":“‘:‘::E""“:‘ = ‘:,::'.“;;:.’:.::‘2:..
SR S E e
R e I K K K N A e e s
ROSITTIIS ‘:“:0‘:“.’.Q"”... QOO OO 9, X
R RS S AKX X KX X K KXXXK
00:.’:. %! ::0““:‘0‘ “. ... ‘.... @, O ‘.
> S

Figure 4: Error in the uniform grid solution to problem 1.

12

QO

SEOSNKN N LA /L2

SRZSTIAR
) 0“35;/%;‘ RN

%%

1.0

Figure 6: Grid for figure 5

14

.8

1.0

(0,2)

(0,0) (2,0)
Figure 7: Domain for problem 2.

he levels | time (secs)
1 1 1.2
.05 1 7.8
.1 2 4.3
.1 3 - 18.

Table 4: Times for solutions of problem 2. The ratio between

levels was 2. The single level results are for a uniform fine grid.
It is well known that the solution has singular .ﬁrst derivative at the interior corner. For this problem,
we will see how well a mesh refinement computation can reproduce the results given by a uniform fize grid

V calculation (wé have no exact solution for this problem, so errors are not computed).
- We can see from Figures 8 and 9 and Table 4 that the mesh refinement solutions produce a good soluﬁon
at significantly smaller cost. For example, a uniform coarse grid solution with A = .05 took 7.8 seconds,
- while a 2 level mesh refinement calculation whose finest grid had h = .05 and whose solution is quite similar
to the uniform grid solutions (cf. Figures 8 and 9) took only 4.3 seconds. The grid for the mesh refinement

calculation in Figure 9 is shown in Figure 10.

The final problem is a small disturbance transonic flow calculation over a thin circular arc airfoil. The

equation is

(ﬁ - (7 + I)Afgoéa) ¢’:z + ¢yy =0

where § = 1— MZ,, v is the ratio of specific heats (1.4 in our examples), and M, is the Mach number of
the flow at infinity. The exact solution of this problem is not known.

Murman-Cole differencing is used [10], and the nonlinear problem is solved by lagging the ¢, term
and iterating. This iteration to solve the nonlinear problem is combined with the iteration over the grids;
the iteration is stopped when the change in two successive solutions is less than 10~* The domain was
=25<7r<25 0Ly <20 My =009, and the thickness ratio of the airfoil was 0.12. The coarsest grid
is uniform (the step sizes in z and y are constant).

We can see from Figures 11 and 12 that the solutions are quite similar. Comparisions of the pressure
over the airfoil also show the similarity of the solutions. As the mesh refinement solution took less than one

third the time (cf. Table 5), this approach is clearly suitable for problems of this kind.

15

1.2

1.4

1.6

1.8

2.0

.8 1.0 1.2

Figure 10: Grid for figure 9.

18

1.4

1.6

1.8

2.0

he levels time (secs) iterations
1 1 113 5
.05 1 3152 10
1 2 910 13

Table 5: Times for solutions of problem 3. The ratio between
levels was 2. The single level results are for a uniform fine grid.

Acknowledgements

.

I would like to thank M. Schultz and M. Smooke for several helpful discussions.

19

D

"00:0,,lo’:::;:::;;zllt”’ ‘\\\“‘
S5 SET50 Il;:;;;l’—l’;;l N
20 o250, t":lc,;::’llll;;;;[[/&Q*‘\“
Y

Figure 11: Solution to problem 3 with a uniform grid with step
size 0.05.

19

SO
20292

»'
OO O
\\\\‘ “ﬂ o

o:’EE:o::;’Eo.::::Z:E:‘03'2:"-—;:“.;3‘.‘...,: eyt \) &S ‘.. ’ . ' 0 '
e =) L0030 %00 0000070, 0. %%
AT H LIS AT I LT AR b b 7 AT S XSO OX) 0.95°9, .' o,
NS
s 3 D sy oyt
NN RRRRESRIRGI XX XICNL
TN 00 %00, 0.0.70.9.
RSN
R
R ,:. l

Q)
RN
\\\“‘\‘ “ ’ ‘
e

Figure 12: Solution to problem 3 with 2 levels of refinement; the
finest grid has step size 0.05.

20

-2.0

Figure 13: Grid for figure 12

21

1.0

1.5

2.0

2.5

Bibliography

[1] 1. Babuska and W. C. Rheinboldt, “Error Estimates for Adaptive Finite Element Computations,” SIAM
J. Num. Anal., 15 (1978), pp. 736-754.
[2] 1. Babuska and W. C. Rheinboldt, “A Posteriori Error Analysis of Finite Element Solutions for One-
Dimensiona! Problems,” SIAM J. Num. Anal., 18 (1981), pp. 565-589.
[3] M. J. Berger, Adaptive Mesh Refinement for Hyperbolic Partial Difierential Equations, Ph.D Thesis,
Stanford University, 1982.
[4] M. J. Berger and J. Oliger, “Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations,”
Stanford University Numerical Analysis Project NA-83-02, 1983.
[5] John H. Bolstad, An Adaptive Finite Difference Method for Hyperbolic Systems in One Space Dimension,
Ph.D Thesis, Stanford University, 1982,
[6] S. Eisenstat, H. Elman, M. Schultz, and A. Sherman, “The (New) Yale Sparse Matrix Package,” Yale
University Department of Computer Science, Research report 265, 1983.
{7] W. D. Gropp, “A test of moving mesh refinement for 2-D scalar problems,” SIAM J. Sci. Stat. Comp.,
1 (1980), pp. 191-197.
[8] W. D. Gropp and J. Oliger, “Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations:
Convergence Theory and Error Estimation,” in preparation.
[9] T. Meis and U. Marcowitz, Numerical Solution of Partial Differential Equations, Springer-Verlag, New
York, 1981.
[10] E. Murman and J. Cole, “Calculation of Plane Steady Transonic Flows,” AIAA J., 9 (1971), pp. 114-121.
[11] R. S. Varga, Matrix Iterative Analysis, Prentice Hall, New Jersey, 1962.
[12] A. Weiser, Local-Mesh, Local-Order, Adaptive Finite Element Methods with A Posteriori Error Estima-
tors for Elliptic Partial Diflerential Equations, Ph.D Thesis, Yale University, 1981.

[13] D. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.

