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A systolic array for computing the Dirichlet product is derived, illustrating our
methodology for designing parallel programs. We show how a straightforward
implementation leads to congested communication channels, and then define a
non-linear domain contraction to “fold” the domain and obtain a solution. The
methodology consists of stepwise transformations using domain morphisms and
refinement. This example reveals the formal aspects of parallel program design
that are automatable and the informal aspects which require insight.

1 Introduction

In this paper we derive a systolic array implementation for computing the Dirichlet product in
Crystal. Through this example, which has an interesting non-linear communication pattern,
we illustrate the program transformation techniques and present our philosophy of designing
parallel programs.

The Dirichlet product (or convolution) [1] of two arithmetical functions b and c is the

function a defined by
a(n) =Y b(k)e(n/k).
kin

Finding a systolic implementation of this function is particularly challenging since the indices
in the terms of the sum are related in a non-linear manner. The existence of such a solution
enlarges the problem domain known to be amenable to systolic implementations. For com-
parison, systolic implementations are known for a related, but simpler, M&bius function [11],
and for the convolution sum, as used in signal processing (where we have ¢(n — k) rather than
¢(n/k)) [7]. The first systolic solution we are aware of was by Quinton [10] using an unusual
non-linear transformation.

In this paper, we use the design methodology presented in [2,5] to derive an entirely dif-
ferent solution for the Dirichlet product which we believe is much simpler than Quinton’s.
The two key notions used in the derivation are fan-reduction refinement and domain mor-
phism. The insight for our solution came from our attempt to distribute two non-linearly
related input sequences over a linear and discrete cartesian space. The key step in the pro-
gram transformation is a non-linear domain contraction that changes the original domain
over which the program is defined into two layers.

In Section 2 we introduce the Crystal language and model. In Section 3, the Dirichlet
product is defined in Crystal and the standard fan-out reductions are applied leading to a de-
sign with communication congestion. In Section 4, we begin again using a non-linear domain
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contraction. This avoids the congestion and leads to the spacetime mapping. The target
implementation can now be described in the this spacetime domain. Finally, we conclude
with a few remarks on our view of parallel program design and programming environment.

2 The Crystal Language and Model

The programs in this paper are expressed in Crystal with mathematical symbols for certain
operators which otherwise would be written as string tokens. Briefly, Crystal is a functional
language where the lambda notation is used for expressing functions. This makes our program
transformations algebraic and amenable to automation. Rather than formally defining the
language, the key notions will be introduced through an example.

Let N denote the type of natural numbers. The equation

0 3
f:A(w,y):NxN.{w> 2t y}:N
z<0—-y—=z

defines a function from pairs of numbers to numbers. The braces represent graphically the
conditional expression. The type of the function is indicated by the typing of the arguments
and the typing of the body of the function using the colon syntax. In this case, the function
has type [N x N — N]. A Crystal program is a set of mutually recursive definitions.

The model of Crystal contains basic data types, functions, and the following special
objects. An indexz domain is a set of indices representing locations. These indices can be
thought of as the addresses of processors, or just abstract indices for accessing composite data
structures. A communication metric indicates the cost of communication between indices. A
simple example of an index domain is the interval domain, denoted I ..r, which consists of all
integers from [ to r, inclusive, with the communication metric being the difference in values.
The empty domain results if I > 7.

Given two index domains A and B, the product domain, denoted A x B, consists of indices
of the form (a,b), a from A and b from B, with the Manhattan communication metric defined
to be the sum of the communication metric in each component. Dually, the sum domain,
denoted A + B, consists of indices of the form (i,e), such that e isin A if i = 1, and e is in
B if ¢ = 2. In general, let I be an index domain and D(3) be an index domain for each i in
I. The sum domain of all D(7)’s, denoted ¥);.; D(3), is an index domain whose elements are
(i,€), such that the component indez i is from I and the element e is in D(3), for each 7 in 1.
When I and each D(3) are interval domains, the function g : l;,; D(s) — I x N taking (i, e)
to (4, e) is clearly an injection. We can use this injection to induce the Manhattan metric of
I x N on l¥;.; D(2).

In order to use the sum domain construction without having to specify the component
index explicitly, we introduce the accompanying notion of the coproduct (or sum) map. Let
Dy and D, be index domains, V' a value domain, and f; : D; — V and f2: Dy — V be a pair
of functions. The coproduct map of f; and f, is a function

[flaf?] : Dl + D2 - Ea
satisfying
[fl,f2]<1vw> = flx and [fl’f2]<2,x) = f2x-

In words, it is a function equivalent to f; if the argument is from D; and equivalent to fo if
the argument is from D,.




The central notion in the Crystal model is that of a data field, a function from an index
domain to some domain of values. The value can again be a data field for representing
hierarchical data structures. A data field whose codomain is an index domain is called a
domain morphism, or just morphism. A domain morphism whose codomain is a sum domain
will be called a domain contraction. Domain morphisms play a crucial role in reshaping
one data field into another and lies at the heart of our program transformation method. A
domain morphism which has an inverse is called a reshape morphism, while one which is
only injective, or one-to-one, is called a refinement morphism. Refinement morphisms are
used, for example, in fan-in and fan-out reductions, since extra indices are used to make
communication local.

3 Dirichlet Product in Crystal—First Attempt

A Crystal program for computing the Dirichlet product of b and ¢ can be written

N = 1..00,
D = An:N.1.n,
a = An:N. Y b(k)X c((n, k)), (1)

k:D(n)

where

k k
= A(n,k): N x N4 Fm—n/kl
—1k|n—+J_

and we let (L) = 0 and ¢(L) = 0.

This program is correct, but its parallel implementation can be highly inefficient. To
obtain a systolic implementation we need to eliminate (1) non-local communication, (2) large
fan-in, and (3) large fan-out communication patterns. In this first attempt, we use fan-in
and fan-out reductions for b and ¢ in the definition of a to eliminate these. For e, however,
the number of communication through some index turns out to be a function of its location
leading to unacceptable congestion.

3.1 Fan-out Reduction for b

In definition (1), an input b(k), for each k € D(n), is needed in computing a(n), for all n in
N such that k|n. If we represent n = ki, then for each k in N, b(k) is needed by all kI, where
l ranges over N. So, the data field

. . l:l-—)b(k)
b _/\(k,l)'NXN'{l>1—+b’(k,l—1)} (2)

distributes b(k) with only local communication, i.e., the communication cost is bound by a
constant (equal to 1 in the Manhattan metric). Unfortunately, the domain of & does not
match the domain of a. What we want is a data field ” defined over the sum domain
U = W,.n D(n), a disjoint union of D(n)’s.

First, define the domain morphism and its inverse

g=AMk,D): NXN(Ixkk)y:U  g7'=Xn,k):Uo.(k,n/k): N x N,
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where Uy = g(N x N), the image under g and a proper subset of U. Next, the desired data
field b” over Uy can be derived from b’ using the methodology developed in [5]. We want g”
such that the following diagram commutes:

NxN-2ev
.‘Iug-l b
Uo

or, in equations, b"” o g = b'. The derivation of the recursive definition of " from that of 4’ is
as follows:

1. Substitute " o g for ¥’ in 1:

I=1— bk
b 0g=Ak,1):N x N. — blk)
I>1—-b"0g(k,l-1)

2. Right compose each side with g~! and simplify:

l= k
b = [,\(k,l):NxN. L= b(k) ]og“1
I>1—-0b"0g(k,l-1)

¥

3. n-abstract the right hand side with (n, k) : Up:

l=1-b(k)

b" = Mn, kY : Ug.|\(k,1): N x N.
( ) 0[( ) {l>1—>b”og(k,l——1)

}](g-l<n,k>)

4. Unfold g=Y(n, k) and B-reduce the inner redex:

n/k =1 b(k) }

b = )\(n, k) : Uo.
nfk>1—b"og(k,n/k—1)

5. Unfold composition and unfold g:

—k—b
b = An, Y : Up.d ™ = % 7 BF)
n>k—b'(n—k,k)

The occurrence of “n — k” on the right-hand-side indicates non-constant communication,
so we define a new data field b* that extends " to U and which only has unit communication:

Mk - n =k — b(k)
b* = \( ’k)’U'{n>k_>b*<n-1,k)} (3)
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3.2 Fan-out Reduction for c

Similarly, we need to distribute c. From the definition of a, for a particular j in N, ¢(j) will
be used in computing a(n), for all pairs (n,k) in N X N such that j = T(n, k). To determine
all such pairs (n,k) for a given j, let [ be a parameter ranging from —j + 1 to co. Since
j=m(%+1x j,j+1), we are only interested in the pairs (52 + 1 x j,j + 1), for all I. Hence,
the data field

d=AG0:WS1>0-c(j,1-1) ¢, (4)
I<0—c(j5,1+1)

where W = |5 : N.L(j) and L(j) = —j + 1 .. 00, distributes the input sequence ¢ with only
local communication.

The next step is to reshape the domain W of ¢’ to the desired domain U. For this, define
the domain morphism

h= G0 : W2 +1x4,5+1):U.

We can easily check that h is one-to-one, and its inverse is
R = Xn, k) : Uy{n/k, k — n/k),

where Uy = h(W) is a proper subset of U. Next, using the same derivation used for 4", derive
data field ¢” such that ¢/ = ¢ o h:

d"oh = A, 1) :W. I>0—c"oh(j,l—-1)
l<0—c"oh(j,l+1)
I=0-c(j)
"ohoh™ = [A(j,):W.d >0 " oh(j,l—1) ] oh™

l<0—c"oh(j,l+1)

I1=0-¢(y)
¢ = Xn,k): U MG, 1) WA 1> 0 = ¢ o h(j, 1~ 1) o] (h™4(n, k)

1<0—c"oh(j,l +1)

(

k—n/k=0- c(n/k)

" = Mn,k): Uy k—n/k>0— ¢"oh{nfk,k—n/k—1)
| k—n/k<0—c"oh{n/k,k—n/k+1)
(& = /7 — (k)

" = Mn,k):UrS k> /n— c"(n—nfk,k—1)

Lk <vn—c"n+nfk,k4+1)

The occurrence of “n — n/k” and “n + n/k” in the above definition indicates non-local
communication. We need further refinement to eliminate them.
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3.3 Eliminating Non-local Communication

Eliminating non-local communication means eliminating the occurrences of “n — n/k” and
“n+n/k” in the definition of ¢ and using only “n — 1” or “k — 1”. After careful analysis of
the communication pattern and some insight, we formulate suitable guards containing only
the formal parameters, which, when executed, give the desired behavior.

First, define
U'= (D(n)u{n+1}),
n:N
a slight extension of U. The new data field

k=+/n— c(k)

* M k) -, (k=1)|nAn#k(k-1)— c*(n,k—1)
¢ =Mmk): Uy B> n {—u(k—1)]nVn=k(k—1)—-+c*(n—1,k)}

k<yn—c(n+n/kk+1)

(3)

has only local communication when k& > 1/n. The extra index is used for transmitting values
along the grid orthogonal paths.

This program uses two types of local communication (from (n — 1,%) to (n,k) and from
(n,k — 1) to (n,k)) to approximate the non-local communication from (n — n/k,k — 1) to
(n—k). That the guards properly control the local communication is shown by the following;:

Lemma 1 For all n, k in the index domain N defined above, if k > \/n and k|n, then (1)
(k= D|(n—n/k), (2) for all v such that n — n/k < v < n, k > /v and ~(k — 1)|v, and (3)
if n # k(k — 1), then =(k — 1)|n.

Proof: Let | = n/k.
(1) Sincen —l=1xk—1=1x (k- 1), clearly k — 1 divides n — n/k.

(2) It is obvious that k > /n implies k > /v for n — n/k < v < n. For any v in N,
satisfying n — n/k < v < n,

v =IXk—-u
IX(k=1)+ (- u)
=Ix(k-1)+r

where 0 < w < land r =1 —u. Thus 0 < r < l. Since k¥ > /n implies | < k, we have
0<r<k-—1. Hence k — 1 cannot divide ».

(3) If n # k(k — 1), then I # k — 1. But ! < k, thus [ must be less than k — 1, which
implies =(k — 1)|n. [J

We next show that the definition of ¢* in (5) is correct.
Theorem 2 The two data fields c* and ¢” defined above agree on all elements of U;.

Proof: From the definitions of @ and 7, ¢*(n, k) will be called by a(n) only when k|n. Assume
k > +/n, since this is the only branch that is different from c¢”.

From the body of c*(n, k), since k|n, either =(k — 1)|n or n = k(k — 1) by the Lemma.
Hence a call to ¢*(n — 1, k) is made.

Again by the Lemma, for all v, n — n/k < v < n, k > /v and ~(k — 1)|v will hold, so
there will be altogether n/k calls to ¢*(v,k), for n — n/k < v < n. Finally, the condition
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Figure 1: Communication congestion for 4 < n < 8.

(k = 1)|n — n/k holds for the call c*(n — n/k,k), and n — n/k = (n/k)(k — 1) < k(k — 1),
because k£ > /n. Thus the first branch of the conditional will be taken and the subsequent
call will be ¢*(n — n/k,k — 1). Now let n' = n — n/k and k¥’ = k — 1, we have k’|n’. Thus
as long as k' > v/n', the same sequence of recursive calls will be made. Such sequences will
terminate when the boundary condition &' = +/n’ finally holds. The ratio of the amount
decreased in the first component of the index pair to that of the second is always n/k, thus
approximating the non-local communication in ¢”. []

3.4 Communication Congestion

Unfortunately, when k < /n, the part of U satisfying this condition becomes too congested
for local communication to distribute ¢. To see this, consider the part A=1..ux 1..1, for
some fixed u. Without loss of generality, let u be an even number. From the definition of ¢*,
each value of ¢* at (n,1) in A, is transmitted from c* at (2n,2) in U. Figure 1 illustrates the
congestion for 4 < n < 8.

In the subdomain B = u/2..uX1..2, there are at least /2 such in-coming values ¢*(2n, 2),
u/2 < n < u. If all these u/2 communications are made local (and orthogonal to the axes),

we would need at least
uf2

di=

=1

+1)

N |-
N e
~
N8

distinct index elements for routing. But in this subdomain, there are only 2 - (u/2) index
elements, which is roughly a factor of /8 smaller than what is needed for routing. Thus
even with multiple channels for communication for each index element, as long as the number
of channels is constant or independent of the size of the domain U, there cannot be an
implementation in which all communication is local.

4 Dirichlet Product Using Domain Contraction

The insight on how to reduce the communication congestion lies in the “symmetry” of k and
n/k along the curve k = \/n. Briefly, We associate the index (n, k) in U, with k& > /n, with
(n, k'), ' < 4/n, such that ¥ = n/k, when k divides n. This “contraction” or “folding” is
defined in our methodology as a non-linear domain contraction.
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Figure 2: The domains M; and M, after contraction.

4.1 Non-Linear Domain Contraction

We need these index domains:

U = | D(n),
n:N

E = An:N.p(n)..n,
F = An:N{+/n|square?(n)},
M, = H’JE("’)7

n:N

My = [H(E(n)U F(n)),
n:N

where
p=A(n):N. square?(n) — /n+ 1 .
—square?(n) — [/n]
Figure 2 illustrates the domain M; which consists only of the dots, and M, which also contains
the asterisks. The domains are bounded on one side by p, which gives the parabolic shape.
The domain contraction that we use is

= Xn,k):U. M
g (n, k) {ksx/ﬁ—’@’("’m(n’k)))} H

g7 = [(Mn, k) : My.(n,k): U),(Mn,k): My.(n,m(n, k)): U)].

The idea is that g splits the original domain U into two domains, My and My, which will
be aligned as two layers over the processors with the communication cost between the corre-
sponding elements of the two layers defined to be 0.

Next, rewrite a as a function of f:

a=An:N. > f(n,k)

k:D(n)
f = Xn,k): Ub(k) X c(m(n, k)) (6)
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The goal is to derive the data field f from f that makes the following diagram commute:

P

My + M,

or, in equations, f = fog and f= fog~l
The derivation is similar to that of 4" and we begin with definition (6):

fog = Mn,k): Ub(k) x e(m(n, k))
f = (M, k) : Ub(k) X e(T(n, k))) o g~
f = (\n, k) : Ub(E) x c(m(n, k))) o
[(A{n, k) : My.(n,k):U),(Mn,k): My.(n,m(n,k)): U)]
f = [(\n, k) : Ub(k) x c(m(n, k))) o (A(n,k): My.(n,k):U),
(AM{n, k) : U.b(k) x c(T(n, k))) o (A(n, k) : Ma.(n,m(n,k)): U)]
f = [(Mn, k) : My.(A\(n, k) : U.b(k) X c(m(n, k))){(n, k)),
(A(n, k) : My.(M(n, k) : U.b(K) X e(T(n, k))){n, 7(n, k)))]
F = [(\n, k) : My.b(k) x c(T(n, k))),
(A(n, k) : Ma.b(T(n, k)) x e(m(n, m(n, k))))]
f = [(A\(n,k): My.b(k) x c((n, k))), (M(n, k) : Ma.b(T(n, k)) X c(n,k))]
We used the fact m(n, m(n, k)) = k for (n,k) in Mz, to simplify at the last step.
Using the following functions
b = Mn,k): My.b(k) by
61 = /\(n, k) . Mlc('n/k) 62

A(n, k) : M3.b(n/k)
A(n, k) : My.c(k)

Il

we can rewrite f to:

f:KMmth{km*&W“Xﬁ“*%,

—kln — 0

b — bafm, ) x éa )|
—|k]n — 0

(Mn,k): Mg.{

Note that Bi a}nd ¢; are defined without 7, and so the predicate k|n nee@s to be used in the
definition of f, just as in the original definition of a. The reason is that b; and ¢é; should not
be called by a when -k|n.

Next, unfolding fin a and splitting the domain over which k ranges explicitly into three
parts E(n), F(n), and the second copy of E(n), we get

&:)\nN( Z { kl"*bl(n,k)xel(n,k)}_'_

kB | 7kln— 0

5 { k|n_>z32(n,k>xaz(n,k)}+ > { k|n_>i,2(n,k>xez(n,k>}) -
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4.2 Fan-out Reduction

Just as in Section 3 the b(k)’s and ¢(n/k)’s must be distributed for computing a(n) for
different instances of k|n, they need to be distributed to b; and é;. Note that the form in
which by(n, k) and é(n, k) require b(k) and c(k) is similar to that for a(n). Thus by using
transformations similar to those in the derivation of b* (Equation (3)), we derive the fan-out
reduced versions b; and ¢é; below. Also, by(n, k) and & (n, k) require b(n/k) and c(n/k) the
way a(n) requires ¢(n/k), thus the transformations for deriving the fan-out reduced versions
by and ¢ below are analogous to those in the derivation of ¢* (Equation (5)).

Like the domain U’ (an extension of U) defined in Section 3, we need to define a new
domain

Mj = W (B(n)U {n+1} U F(n)),
n:N

a slight extension of M; that includes an index used for the transmission of values. Fan-out
reduction produces:

i)l = /\(’n,k‘)Ml{kzn_)lj(k) }

k<n—b(n-1,k)

k= +n— b(k)

bﬁ_){ (k—1)|nAn;£k(k——1)—>I:)2(n,k—1)}
“(k—-1)|nVn==kk-1)— byn— 1,k)

b2 = /\(n, k)Mé

where we have simplified b(7(n, k)) to b(k) when k = /n.

Note that b appears in both b; and b,. This means that data must be routed from the
outside of a systolic array for both cases.

Since we want to minimize such external communication as much as possible, we use the
fact that for all k, n > k > \/n, by(n, k) = b(k) and replace the occurrence of b(k) in by with
it without changing its behavior:

k=\/7—?,—-> n=1——>b(1)
n>1—+131(n—1,k)

(k=1nAn#k(k—1)— by(n, k— 1)
—l(k— l)InVn = k(k-—- 1) — Bz(n— 1,k)

by = AMn, k) : M},
k>\/’l_l——>

In the new definition of by, b occurs only when n = k = 1, which is the same condition under
which it occurs in b;. Hence no extra external communication is needed. Similarly,

s n=1-¢(1)
k=vm {n>1—->éz(n—1,k)}

k>ﬁ—>{ (k—1)|n/\n;ék(k—1)—>él(n,k—1)}
(k= 1)|nVn = k(k—1) = &(n - 1,k)

62 = )\(’n,k)Mg{k:n_—)c(k) }

k<n—é(n-1,k)

&G = )\(n,k)Mé

Although ¢, is defined over M; (in order to make the communication local) it will only be
called over the subdomain M;. Figure 3 illustrates the flow of b, and é.
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Figure 3: The flow of by and é1.

4.3 Fan-in Reduction

Next, we perform fan-in reduction on the definition of @ which contains a summation over
many arguments. The idea is to accumulate two pairs of product terms to the partial sum
at each time step. Depending on the value of (n,k) there are four boundary cases (either
kin F(n) or E(n), and either k|n or —k|n) for initializing the partial sum. Since the case
k € F(n) and —-k|n never holds, three boundary cases remain. The new data field & defined
below has fan-in degree of at most three:

a = XNn,k): M.

k=+n = by(n,k) x é(n, k)
kln — S k = [v/n] = bi{n, k) X &1{n, k) + ba(n, k) X éx(n, k)

< k> [vn] = aln,k — 1) + by (n, k) X & (n, k) + by(n, k) X éa(n, k) | ¢
s [ VA0
\ k> [va] — a{n, k- 1) J

and is related to the original data field by

a(n) = a(n,n).

4.4 Spacetime Mapping

We now apply a spacetime mapping (which is just another domain morphism) to transform
a data field into a sequence of operations in an array over time. The technique for finding
suitable linear functions for this purpose is well known, see for example [8,9,3]. The choice
of the particular domain morphism g below is in order to generate a systolic array with
“constant” response time, i.e., each element of the output sequence follows the corresponding
element of the input sequence by an amount of time independent of n in N.

To derive the data fields over spacetime, we define two domains, the domain morphism
between them, and a few subdomains:

X = —-1. 00,
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T = 2..00,
h = Xn,k): Mj.(n—k,n+k): X xT,
Sy = h(Mz),

A7l = A(z,t): S3.(HE,152) : M},
S] = h(Ml),
Sy = h(M,).

For convenience, we identify the sum domain |¥;,x T with the Manhattan communication
metric with the product domain X x T. Next, define new data fields b;, &, and & over the
subdomains Sy, 54, and Sz of X x T, respectively.

For example, from b; we can derive b; in the same manner as before.

k=n— b(k)
k<n—byn—1,k)

bioh = )\(n,k):Ml.{k=n—>lj(k) }

v

bl = A(n,k) ZM1.{

k<n—bioh{n—1,k)

biohoh™? [,\(n,k):Ml.{kzn_’If(k) }]oh-1

k<n—bjoh{n—1,k)

k=n — b(k)
k<n—boh{n—1,k)

b = Az,1): 51 {t_wztﬁ‘”}(% )}

—r<—*——>bloh(%‘£—1,t‘—”

by = A(x,t):sl.{””zo'*f’(ﬁ) }

by = Maz,t): Sl.[/\(n,k):Ml.{ }](h_l(z,t))

r>0—bi(z—-1,t-1)

And for by we have:

( 3
t—z _  [idz _, t_-%g=1_’(3(t—2£)
? ? B2 51 S hy(z—1,t— 1)

= Mz,t): 559 t‘Tx>1/t—‘l2'—”_.>

(55 - DI A5 £ 555 - )~ hy(o+ 1,6 - 1)
| - = 2 - )~ B - Li-1) [

In the above, a call by(z, t), with z = 0 and ¢ even, will start the following sequence of calls:
bo(—1,t — 1), b2(0,t — 2), ba(—1,1 — 3), by(0,¢ — 4), ..+, b5(0,2). Since this sequence of calls
does nothmg except copy the same value, it can be s1mp11ﬁed to by(0,1 — 2), bg(O t—4),...,
b2(0,2), in which the same value is copied. This modification does not change the value of
any data field element in S,, but it allows us to restrict by to domain S, resulting in one
less array element (since we don’t need processor —1 in X) in the implementation. The final
data fields are:

= /\(m,t):sl.{zzo_-)?(%) }

z>0—-b(x—-1,t-1)
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by = Az,t): S,
t—z _  [tdz _ %‘g:l_’?(t;zg)
2 g Bz 51 o by(z—1,t—1)

I

z =0 — by(z,t—2)

ps0od CFE-DIEEASE LS ) S bz +1,t-1)
SRV e =25 - 1) S by(e - 11— 1)
61 = )\(w,t):S

2.
t+z _ t— )

t=z _ [ttz _, HE =1 (157)

? 2 He 515Gz —1,t—1)

= > /A |
z=0—¢(z,t—2)

ool | (E-DEEASE 2R ) Sae L
\ ~(5E - DIV HE = 2R - 1) - B - 1o - 1)

Gy = )\(x,t):Sl.{xzo—)c(%) }

>0 &(z—-1,t-1)
a = /\(CII,t):Sg.

2
bz He o by(a,t) X &, t)
[ 2 = [ t—'{;ﬁ-l — bi(z,1) X &(z,t) + ba(z, 1) X &(z, 1)
52> [/82] »a@+1,0-1)+

bi(z,t) X é1(z,t) + ba(z, ) X é(z,1)

=[] -0
| 5> V8] —aer1e-1)
And the output a(n) is obtained at d(n,n) = @ o h(n,n) = &(0,2n).

A straightforward interpretation of the above definitions gives precise description of the
operations of the systolic array. The domain S; (with a proper subset S, ) specifies the number
of array elements and the time steps needed. Each processor stores its identity z, and keeps
a counter for the time step ¢ for computing all of the predicates in the guards. We can apply
standard compiler techniques such as common sub-expression elimination to reduce a great
many of the operations in computing the predicates.

Figure 4(a) indicates the flow of b and ¢ for computing a(12). The nodes h(n, k) are the
image under h of indices (7, k) in U. Each pair of values (b(k) and c(k)) start out at processor
0. The first pair (6(1) and ¢(1)) do not move. The next pair (5(2) and ¢(2)) move across until
they reach h(4,2). From this point on they move at half speed. In general, the pair b(k) and
c(k) begin to move at a slower rate at coordinate h(k?,k). This slower rate of propagating
b(k) and c(k) is achieved by moving in the —z direction for one unit and in the +z direction
for k units as shown in Figure 4(b).

Five registers Ry, Rp1, Rp2, Re1, and R,y are needed for each array element in order to
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t t
24 A 24 ¥ §
23 23
22 22
21 21
20 h(16,4) 20
19 19
ij b(4) c(4) f; b(4) c(4)
5| b(6) c(6) 16 | b(6) c(6)
15 15
14 14
13 13
12 12
11 11
1‘; b(3) c(3) 13 b(3) <(3)
8 8
7 7
6 h(4,2) 6 h(4,2)
j b(2) e(2) j b(2) ¢(2)
3 1b(1) ¢(1) 3 1b(1) ¢(1)
2 th(1,1) 2 th(1,1)
1 > T 1 > T

0123 45 6 7 8 910111213 0123456 78 910

Figure 4: (a) The flow of b and ¢ for computing a(12). (b) Simulation of flows using unit
communication.

distribute the data fields &, by, by, &, and Ca, respectively. In addition, processor 0 has an
extra stage of shift register for each of b, and & due to the elimination of processor —1.
Figure 4a illustrates the data flow of these registers where z increases towards the right.
Flows of Ry and R, are to the right, and R, to the left. Flows of Ry and R, can be in
either direction and varies with time as shown in Figure 4(b).

Registers Ry; and Ry load their values from external inputs b and c, respectively, in
processor 0 at every even time step. Registers Ry and R, loads their values from external
inputs b and c respectively in processor 0 at time step 2, and from registers Ry; and Ry

respectively in processor z at time step ¢ when t_T“” =4/ t—‘g—”” and %—x > 1.

Each element a(n) of the output sequence is obtained at processor 0 at time step 2n. Note
that the output a(n) is obtained at the same time step 2n as inputs b(n) and ¢(n) become
available. The delay is the time needed to perform the operations to add the pair of products
b(1) X ¢(n) and b(n) x ¢(1) to the existing partial product.
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5 Concluding Remarks

The derivation of the systolic array for the Dirichlet product began from a simple definition
through a sequence of program transformations each determined by a domain morphism.

The theory of Crystal consists of the parallel computation model as a collection of data
fields defined over index domains with communication metrics, the language constructs which
allow algebraic manipulation, and the concepts of domain morphisms and refinements of a
data fields, and is applicable to any target implementation. For a particular target imple-
mentation, the index domain and communication metric need to be specialized to reflect its
network topology, processor power, communication latency, memory size, etc. For systolic
implementation, we need special refinement and domain morphisms to obtain index domains
which are subdomains of cartesian products of interval domains with the Manhattan metric,
and a communication pattern that is local with constant fan-in and fan-out.

The design process has both formal and informal aspects. The formal aspect, such as
the program transformations, is mechanizable. For example, once a domain morphism is
specified, the derivation of the new data field from the original definition is automatable.
Note that there are no restrictions on the shape of the domain nor on the domain morphism
itself, as long as it has an inverse.

The informal aspect requires insight into the behavior of the algorithm, sometimes even
a lemma or two. For example, finding the appropriate refinement of a data field so as to
achieve constant fan degrees and local communications is often an art. Similarly, except for
very restricted classes of problems, determining which domain morphism is needed to achieve
a given objective requires insight. The non-linear domain contraction is an example where
finding the right lemma to prove is critical.

One may ask how much design activity can be formalized and automated. By severely
restricting the types of programs, we could automate the process of finding domain morphisms
and refinements. For example, for programs falling into a restricted syntactic class, the so
called “uniform recurrent equations” [6], there are algorithms for computing the appropriate
domain morphisms and spacetime mappings. Real life applications, however, demand more.
Short of being able to prove general theorems automatically, the next best thing is to provide
a language and programming environment in which the insight of the programmer can be
expressed and implemented. For example, the specification of domain morphisms to allow
new data fields to be automatically derived, and check the consistency of new data fields
obtained by refinement. The objective of the Crystal metalanguage [5] is to provide such
capabilities.

The concept of reshaping the index domain of data fields proves extremely useful. In this
paper, we have used it throughout the derivation: in the fan-in and fan-out reductions, in the
contraction of the domain, and in the spacetime mapping. Ultimately, a parallel computation
must be carried out by a finite number of processors. Mapping large computation onto
a smaller machine is no more than reshaping the index domain (see [4] for an example).
Different strategies such as partitioning a computation into blocks and assigning each block
to a processor or scattering the computation over processors connected as a toroid are just
examples of different domain morphisms.
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