On Scheduling Transmissions in a Network

Dan Gusfield
YALEU/DCS/TR 481
June 1986

Research funded in part by ONR grant N0O0O14-82-K-0184

- On Scheduling Transmissions in a Network

Dan Gusfield
Yale University, Department of Computer Science

1. Introduction

In the paper “Scheduling Transmissions in a Network”, A.Itai and M. Rodeh [IR] give two
algorithms to optimaly schedule, for a given objective function, the transmission of data from k
nodes in a network to a single destination. The first algorithm runs in time O(k|E||V|?), and the
second in time O(k?|E||V|log|V|), where V is the node set and E is the edge set. The algorithms

are complicated modifications of two particular’known network flow algorithms.

In this note we point out that the transmission problem can be solved by performing at most
k+1 network flow computations, where any network flow algorithm can be used. Hence the
transmission problem can be solved in O(k|V|?) time for dense graphs, or O(k|E||V]log|V]) time
for sparse graphs, using any of several well known network flow algorithms. This improi'es the
two time bounds, gives a more direct and simpler solution to the problem, and permits the
immediate application of any future improvements in network flow algorithms to speed up the
solution of the transmission problem. The solution here is a direct application and extension of a
result by H. Stone [S] concerning parametric network flow.

2. Problem Statement and Background

We refer to [IR] for the full formal model and generality of the transmission problem, and the
formal definitions. In place of the general model, we illustrate the general problem with a special
case that is easy to describe.

Graph G is a capacitated directed graph with nodes set V and edge set E, where k nodes of V
are designated as emitters, and one node t of V is designated as the sink. Associated with each
e:nitter v; is a fixed number ¢;. A pumber T is called feasible if it is possible to flow a total of
;‘::-‘:ci/T bits per time unit to the sink, where each emitter v; puts out exactly c./T bits per time
unit. That is, each emitter v; will send exactly ci/T bits per time unit in a continuous stream,

along some fixed paths to the sink, and no edge will attempt to carry more than its capacity. Of

course, T will be infeasible below some value, and so the problem is to find the smallest feasible
value of T. That is, find the smallest period T such that in every T time units, each emitter v,
emits exactly < bits in a continuous flow, and the bits from all the emitters flow to t without

violating any of the edge capacity constraints.

In [IR] the above problem, as well as the full transmission problem defined in [IR], is shown to
be solvable as the following parametric network flow problem. G is a directed graph with a
source node s and a sink node t, with a directed edge of capacity ci/’l‘ running from s to each of
k nodes Ve Ve Vi in V, where T is a parameter; each of the other edges has its owku fixed
capacity. The problem is to find the minimum value of T such that an s-t flow of value iL:ci/ T is

feasible, or equivalently, to find the minimum value of T such that the edges out of s form a

minimum cut.

For any fixed value of T, the question of whether T is above, below or equal to the optimal
value of T can be answered by a single network flow computation on G, and hence the
transmission problem can be solved by some forin of bisection search over the possible values of
T. However, as pointed out in [IR], the number of tests in such methods depend on the size of
“_"thi, and hence the needed number of network flow computations would not be expressible in |V
;nd |E| alone. The bounds in [IR] are independent of ici, and their methods arc not based on
search over T. In this note we point out that efficicntpscarch over the feasible values of T is
possible; the key theorem was developed in earlier applications of parametric network flow [S],

and similar results appear in [ES].

2.1. Parametric Network Flow

Definition: Let H be a graph where every edge from source node s to node v, has
parameterized capacity f(z), which is an increasing function of z; each other edge in H has its
own fixed capacity. For an st cut C, let s(C) be the nodes on the s side of C and t(C) be the
nodes on the t side of C. Note that either s(C) or t{C) alone define C.

The following theorem is the key to efficient search.

Theorem 1 [S]: If z; < z, then for any s-t cut C, in H which is minimum for z = z, there
exists an s-t cut C, which is minimum for z = z,, such that s(C,) C s(C,). Hence there exists a
sequence of no more than |V|-1 s-t cuts such that for any value of z, one of these cuts is a

minimum cut for z.

This theorem was originaly stated only for increasing linear functions of z, but the proof in [S]
actually shows the stronger result above.

3. Solving the Transmission Problem
In this section we apply Theorem 1 to the transmission problem.

Definition: Let S be the cut consisting of all the edges out of node s.

First, we transform the transmission problem by letting the parameter z replace 1 /T. Then
each edge in G from s to v; has parameterized capacity zc;, all other edges have their original
constant capacites, and hence the transmission problem is to find the mazimum value of z such
that the minimum s-t cut has capacity zf_"ci, i.e. so that the S is a minimum cut. Graph G now
satisfies the conditions of Theorem 1, an.d we will use the theorem to bound the number of of
minimum cuts that must be examined.

Defintion: Given parametrized graph G as above, let F(z) be the value of the maximum s-t
flow as a function of z, and given an s-t cut C, let 2(C) be the capacity of the cut C as a function
of z.

Hence, for any s-t cut C, z(C) is a linear function of z, and F(z) is the lower envelope of the

supperposition of the linear functions corresponding to all the s-t cuts. Hence,
Fact [ES], [G]: F(z) is a piecewise linear, convex, increasing function of z.
Defintion: The points where F(z) changes slope are called breakposnts.

K
At z =0, S is a minimum s-t cut, and z(S) = z;_'.:ci, so the transmission problem is really the
problem of finding the first breakpoint of F(z) to the right of z=0. We call that breakpoint the
le ftmost breakpoint. See figure 1.

Note that the breakpoints of F(z) are well defined. Note also that Theorem 1 implies there can
be at most [V|-1 breakpoints of F(z). To see this, let C; be an s-t cut which is minimum to the
left of breakpoint z°, but not to the right of z’, and let C, be a cut which is minimum to the
right of z’. By Theorem 1, we can assume that s(Cl) - s(Cz). However, equality of those set
would imply that the C, and C, are the same cut, which is impossible, since C, is not a
minimum cut to the right of z°. Hence s(C,) C s(C,), and it follows that F(z) has at most |V]-1
breakpoints. This can be improved as follows:

Lemma 1: For the transmission problem, F(z) has at most k breakpoints, and k+1 line
segments.

Proof: Let C, and C, be two s-t cuts as above; then s(C,) C s(C,), and C, and C, are
minimum s-t cuts for different values of z. Consider the situation in figure 2, which shows C,. A
node which is connected to node s is called an s-node, and the others are called interior nodes. If
s(C,) - 5(C,) contains only interior nodes, then z(C,) = q, + zw, and 2(C,) = g, + 1w, where w
is the same constant for both. So either z(Cl) = z(Cz), or these two linear functions never

intersect. They can’t be the same, since then both cuts C, and C2 would be minimum cuts in the
same range of z. Hence 2(C,) and z(Cz) cannot intersect, so at least one of the cuts C, or C, will
be a minimum s-t cut for no values of z. This contradicts the assumption, and so s(C,) - s(C,)
contains an s-node, and since G has only k s-nodes, F(z) has at most k breakpoints. O

3.1. Efficient Search for the Leftmost Breakpoint

A method for finding all the breakpoints of any parametric network flow problem, when each
edge capacity is a linear function of a commom parameter z, is given in [ES])'. If there are k
breakpoints, this method uses at most 2k+1 network flow computations. However, we will shcw

below how to find the leftmost breakpoint using only k+1 network flow computations.

Definition: For any network flow problem with fixed capacities, if C and C’ are minimum s-t
cuts, then C is said to be left of C’ if s(C) C s(C’). A minimum s-t cut which is to the left of

all other minimum s-t cuts (for a problem with fixed capacities) is called le ftmost.

Theorem 2 [FF): For any network flow problem with fixed capacities, there always exists a
leftmost minimum cut, and given a maximum s-t flow, it can be found in O(E) time.

For the transmission problem, if c, and 02 are two s-t cuts, where C, is to the left of C,, and
2(C,) = q; + zw,, and z(C,) = q, + zw,, then w, < w,. The importance of this in the
transmission problem is that if, for a fixed value of z, there is more than one minimum cut, the
leftmost minimum cut has the largest slope, so the minimum cut with largest slope can easily be

found.

Algorithm for Finding the Leftmost Breakpoint

0. Let C be any s-t cut other than S.

1. Compute the intersection point, z*, of z(S) and z(C),
the linear capacity functions of the two respective cuts.

2. Fix the capacities of all the edges in G out of s by setting z to z*.
With these fixed capacities, compute the maximum flow and find the
leftmost minimum s-t cut C*. :

K
3. If F(z*) = 2*Xc, (i.e. S is a minimum cut at z*),
then z* is the Jeftmost breakpoint of F(z); terminate.

Actually the method is very general and finds the breakpoints for any linear parameterized optimization problem.

4. Else, set C to C*, and go to step 1.

Figure 3 illustrates the working of the algorithm.
Theorem 3: The algorithm finds the leftmost breakpoint in at most k+1 iterations.

Proof: After every execution of step 2, C* is the s-t cut with largest slope that is a minimum
cut for z*. Hence the line segment of F(z) to the left of z* is supported by z(C*), i.e. that part of
F(z) runs along the line z(C*). If F(z*) $ z‘Z’c in step 3, then F(2*) < z‘fc and C 5 C*.
Hence each iteration either terminates in step 3 or finds a new line segment of F(z). So
termination occurs after at most k+1 iterations. When F(z*) = z“Ll‘c 2* must be the leftmost
breakpoint; S is a minimum s-t cut for both =0 and z=:z*, and s0 n must be a minimum s-t
cut for all values of z between them, but S is not minimum to the right of z*, since C £ S has
smaller capacity to the right of 2*. 0

If an arbitrary minimum cut had been used in step 2, then 3k/2 iterations can be forced.
When 2* is a breakpoint and C* is not the minimum cut of steepest slope, then it can take two
iterations to discover a new edge of F(z). This can be made to happen for every other
breakpoint.

4. Acknowledgement
I thank Baruch Awerbuch and Andrew Goldberg for bringing this problem to my attention,
and Baruch Awerbuch for suggesting the transformation z = 1/T, which simplified an earlier

exposition.

5. References
[ES] M.Eisner and D. Severence. Mathematical Techniques for the Efficient Record
Segmentation in Large Shared Databases. JACM, vol. 23, no. 4 (1976).

[FF] L. Ford and D. Fulkerson. Flows in Networks. Princeton press, 1962.

[G] D. Gusfield. Parametric Combinatorial Computing and a Problem in Program Module
Distribution. JACM vol. 30 no. 3, July 1983, pp. 551-563.

(IR] A. Itai, and M. Rodeh. Scheduling Transmissions in a Network. Journal of Algorithms 6,
409-429 (1985).

[S] H. Stone. Critical Load Factors in Two-Processor Distributed Systems. IEEE Transactions
on Software Engineering, vol. se-4, no. 3, May 1978.

F(2)

1.

“ieftmost breakpoint

S is minimum in
this range.

F(z) is shown with a hatched line. There are three
break points on F(z).

s(Cy) t(C1)

s

leftmost initialize 2%
breakpoint
found in three network flow computations.

