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Abstract

Given an m × n matrix A and a positive integer k, we introduce a randomized
procedure for the approximation of A with a matrix B of rank k. The procedure relies
on applying AT to a collection of l random vectors, where l is an integer equal to
or slightly greater than k; the scheme is efficient whenever A and AT can be applied
rapidly to arbitrary vectors. The discrepancy ‖B − A‖ is of the same order as the
(k + 1)st greatest singular value σk+1 of A, with negligible probability of even moder-
ately large deviations. The actual estimates derived in the paper are fairly complicated,
but simplify when l−k is fixed at a small nonnegative integer. For example, according
to one of our estimates for l − k = 20, the probability that ‖B − A‖ is greater than
10

√
k (k + 20) m n σk+1 is less than 10−17. The paper contains a number of estimates

for ‖B−A‖, including several that are stronger (but more detailed) than the preceding
example. The scheme provides a simple, efficient means for constructing an accurate
approximation to the Singular Value Decomposition of A, and operates reliably in-
dependently of the structure of the matrix A. The results are illustrated via several
numerical examples.

1 Introduction

In many practical circumstances, it is desirable to approximate a matrix A with a sum of
rank-1 matrices. Such an approximation of A often facilitates understanding of the properties
of A. Moreover, if the approximation involves only a small number of rank-1 matrices, then
the approximation also facilitates rapid calculations involving A.

There are at least two classical forms of such matrix approximations. One is an ap-
proximation to a Singular Value Decomposition (SVD), which is known in the statistical
literature as a Principal Component Analysis. The other is an approximation obtained via
subset selection; we will refer to the matrix representation obtained via subset selection as
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an interpolative decomposition. These two types of matrix approximations are defined as
follows.

An approximation to an SVD of a real m × n matrix A consists of nonnegative real
numbers σ1, σ2, . . . , σk−1, σk known as singular values, orthonormal real m × 1 column
vectors u1, u2, . . . , uk−1, uk known as left singular vectors, and orthonormal real n × 1
column vectors v1, v2, . . . , vk−1, vk known as right singular vectors, such that∥∥∥∥∥A−

k∑
j=1

uj σj (vj)T

∥∥∥∥∥ ≤ δ, (1)

where k, m, and n are positive integers, δ is a positive real number specifying the precision
of the approximation, and, for any matrix B, ‖B‖ denotes the spectral (l2-operator) norm
of B, that is, ‖B‖ is the greatest singular value of B. An approximation to an SVD of A is
often written in the equivalent form∥∥A− U Σ V T

∥∥ ≤ δ, (2)

where U is a real m×k matrix whose columns are orthonormal, V is a real n×k matrix whose
columns are orthonormal, and Σ is a real k×k matrix whose entries are all nonnegative and
whose entries off of the main diagonal are zero. See, for example, [18] for a discussion of
SVDs.

An interpolative decomposition of a real m× n matrix A consists of a real m× k matrix
B whose columns constitute a subset of the columns of A, and a real k × n matrix P , such
that

1. some subset of the columns of P makes up the k × k identity matrix,

2. no entry of P has an absolute value greater than 2, and

3. A = B P .

See, for example, [17], [6], or Sections 4 and 5 of [4] for a discussion of interpolative decom-
positions.

Given an algorithm permitting the fast application of a numerically low-rank matrix A,
and an algorithm permitting the fast application of AT, the algorithm of the present paper
provides a simple, efficient way for computing an accurate approximation to an SVD of A.
Moreover, the algorithm provides a similar method for computing an accurate approximation
to an interpolative decomposition of A under the same circumstances.

Our scheme also provides an efficient, robust means for approximating the k greatest
singular values and corresponding singular vectors of any matrix A for which a representation
enabling the fast application of both A and AT is available. The precision δ of the resulting
approximation given by formula (2) is at most a reasonably small multiple of the (k +
1)st greatest singular value of A. In this regard, the algorithm described below should be
compared to the classical Lanczos method (for a description of the Lanczos method, see, for
example, Chapter 9 in [15]).

Unlike the deterministic Lanczos scheme, the algorithm of the present paper is a ran-
domized one, and fails with a rather negligible probability. Examples of the probabilities
involved can be found in (92) and (103) in Section 4 below.
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Some potential applications of the algorithm include finding the eigenmodes of certain
networks, mining digital documents for information via latent semantic analysis, computing
electron densities within the density functional theory of quantum chemistry, simplifying
the implementation of algorithms for fast matrix inversion that are based on the compres-
sion of blocks within matrices, and improving condition number estimation and subspace
determination algorithms that are based on inverse iteration.

We should point out that [16] and [4] motivated many aspects of the algorithm and
analysis of the present paper. Moreover, a number of recent publications address issues
similar to those addressed by the present paper; we refer the reader to [19] and [2], which
describe deterministic methods, and to [1], [7], [8], [9], [10], [11], [12], [13], and the extensive
references contained therein, all of which describe probabilistic Monte Carlo methods.

We do not analyze in detail the effects of round-off upon the algorithm of the present
paper. However, most of the bounds that we discuss have finite-precision analogues. This is
confirmed by both our preliminary analysis and our numerical experiments (some of which
are described in Section 5 below). For simplicity, we discuss only real matrices; the analysis
below extends easily to the complex case.

The present paper has the following structure: Section 2 collects together various known
facts which later sections utilize, Section 3 provides the principal lemmas which Section 4 uses
to construct algorithms, Section 4 describes the algorithm of the present paper, providing
details about its accuracy and computational costs, and Section 5 illustrates the algorithm
via several numerical examples.

2 Preliminaries from linear algebra and the theory of

probability

In this section, we summarize various facts about matrices. Subsection 2.1 discusses the
approximation of arbitrary matrices. Subsection 2.2 discusses the singular values of arbitrary
matrices. Subsection 2.3 discusses the singular values of certain random matrices.

In the present section and throughout the rest of the paper, we employ the following
notation. In accordance with the standard practice, we will denote the base of the natural
logarithm by e. For any matrix A, we define the norm ‖A‖ of A to be the spectral (l2-
operator) norm of A, that is, ‖A‖ is the greatest singular value of A. For any positive
integer n, and real n × 1 column vector v ∈ Rn, we define the norm ‖v‖ of v to be the
root-sum-square (l2 norm) of the entries of v, that is,

‖v‖ =

√√√√ n∑
k=1

(vk)2, (3)

where vk is the kth entry of v. (Of course, the norm of v as viewed as a real n× 1 matrix is
equal to the norm of v as viewed as a real n× 1 column vector.)
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2.1 Approximation of general matrices

The following lemma states that, for any m× n matrix A whose rank is k, where k, m, and
n are positive integers, there exist an m× k matrix B whose columns constitute a subset of
the columns of A, and a k × n matrix P , such that

1. some subset of the columns of P makes up the k × k identity matrix,

2. P is not too large, and

3. B P = A.

Moreover, the lemma provides an analogous approximation B P to A when the exact rank
of A is not k, but the (k + 1)st singular value of A is nevertheless small. The lemma is a
reformulation of Theorem 3.2 in [17] and Theorem 3 in [6].

Lemma 1 Suppose that m and n are positive integers, and A is a real m× n matrix.
Then, for any positive integer k with k ≤ m and k ≤ n, there exist a real k × n matrix

P , and a real m× k matrix B whose columns constitute a subset of the columns of A, such
that

1. some subset of the columns of P makes up the k × k identity matrix,

2. no entry of P has an absolute value greater than 1,

3. ‖P‖ ≤
√

k (n− k) + 1,

4. the least (that is, the kth greatest) singular value of P is at least 1,

5. B P = A when k = m or k = n, and

6. ‖B P −A‖ ≤
√

k (n− k) + 1 σk+1 when k < m and k < n, where σk+1 is the (k + 1)st

greatest singular value of A.

Remark 2 Properties 1, 2, 3, and 4 in Lemma 1 ensure that the interpolative decomposition
B P of A is numerically stable. Also, Property 3 follows directly from Properties 1 and 2,
and Property 4 follows directly from Property 1.

Observation 3 There exists an algorithm which computes B and P in Lemma 1 from A,
provided that we require only that

1. some subset of the columns of P makes up the k × k identity matrix,

2. no entry of P has an absolute value greater than 2,

3. ‖P‖ ≤
√

4k (n− k) + 1,

4. the least (that is, the kth greatest) singular value of P is at least 1,

5. B P = A when k = m or k = n, and
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6. ‖B P −A‖ ≤
√

4k (n− k) + 1 σk+1 when k < m and k < n, where σk+1 is the (k +1)st

greatest singular value of A.

For any positive real number ε, the algorithm can identify the least k such that ‖B P−A‖ ≈ ε.
Furthermore, there exists a real number C such that the algorithm computes both B and
P using at most Ckmn log(min(m, n)) floating-point operations and Ckmn floating-point
words of memory. The algorithm is based upon the Cramer rule and the ability to obtain
the minimal-norm (or at least roughly minimal-norm) solutions to linear algebraic systems
of equations (see [17], [6], and [16]).

2.2 Singular values of general matrices

The following technical lemma will be needed in Section 3.

Lemma 4 Suppose that m and n are positive integers with m ≥ n. Suppose further that A
is a real m× n matrix such that AT A is invertible.

Then, ∥∥(AT A)−1 AT
∥∥ =

1

σn

, (4)

where σn is the least (that is, the nth greatest) singular value of A.

Proof. We form an SVD of A,
A = U Σ V T, (5)

where U is a real unitary m×m matrix, Σ is a real m×n matrix whose entries are nonnegative
everywhere and zero off of the main diagonal, and V is a real unitary n×n matrix. It follows
from (5) that

(AT A)−1 AT = V (ΣT Σ)−1 Σ UT. (6)

Combining (6) and the fact that U and V are unitary yields∥∥(AT A)−1 AT
∥∥ =

∥∥(ΣT Σ)−1 ΣT
∥∥ . (7)

Combining (7) and the fact that Σ is zero off of the main diagonal yields (4). 2

The following lemma provides what is known as the Courant-Fischer maximin character-
ization of singular values; Theorem 8.1.2 in [15] provides an equivalent formulation of (8).

Lemma 5 Suppose that m and n are positive integers, and A is a real m× n matrix.
Then, the kth greatest singular value σk of A is given by the formula

σk = max
S⊆Rn: dim S=k

min
v∈S: ‖v‖6=0

‖A v‖
‖v‖

(8)

for all k = 1, 2, . . . , min(m, n) − 1, min(m, n), where the maximum is taken over all k-
dimensional subspaces of Rn, and the minimum is taken over all vectors in S that have
nonzero norms.
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The following lemma states that the singular values of the product G A of matrices G
and A are at most ‖G‖ times greater than the corresponding singular values of A.

Lemma 6 Suppose that l, m, and n are positive integers, A is a real m× n matrix, and G
is a real l ×m matrix.

Then, the kth greatest singular value ρk of the product G A is at most a factor of ‖G‖
times the kth greatest singular value σk of A, that is,

ρk ≤ ‖G‖σk (9)

for all k = 1, 2, . . . , min(l,m, n)− 1, min(l,m, n).

Proof. For any vector v ∈ Rn with ‖v‖ 6= 0,

‖G A v‖
‖v‖

≤ ‖G‖ ‖A v‖
‖v‖

. (10)

Combining (8) and (10) yields (9). 2

The following lemma states that the greatest singular value of a matrix A is at least as
large as the greatest singular value of any rectangular block of entries in A; the lemma is a
straightforward consequence of the minimax properties of singular values (see, for example,
Section 47 of Chapter 2 in [20]).

Lemma 7 Suppose that k, l, m, and n are positive integers with k ≤ m and l ≤ n. Suppose
further that A is a real m× n matrix, and B is a k × l rectangular block of entries in A.

Then, the greatest singular value of B is at most the greatest singular value of A.

The following lemma states that if the norm of the difference of two matrices is small, then
their corresponding singular values are close; Corollary 8.6.2 in [15] provides an equivalent
formulation of (11).

Lemma 8 Suppose that m and n are positive integers, and A and R are real m×n matrices.
Then, the kth greatest singular value τk of the sum A + R and the kth greatest singular

value σk of A differ by at most ‖R‖, that is,

|τk − σk| ≤ ‖R‖ (11)

for all k = 1, 2, . . . , min(m, n)− 1, min(m,n).

2.3 Singular values of random matrices

The following lemma provides a highly probable upper bound on the greatest singular value
of a square matrix whose entries are independent, identically distributed (i.i.d.) Gaussian
random variables of zero mean and unit variance; Formula 8.8 of [14] provides an equivalent
formulation of the lemma.
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Lemma 9 Suppose that n is a positive integer, G is a real n × n matrix whose entries are
i.i.d. Gaussian random variables of zero mean and unit variance, and γ is a positive real
number, such that γ > 1 and

1− 1

4 (γ2 − 1)
√

πnγ2

(
2γ2

eγ2−1

)n

(12)

is nonnegative.
Then, the greatest singular value of G is at most

√
2n γ with probability not less than the

amount in (12).

Combining Lemmas 7 and 9 yields the following lemma, providing a highly probable upper
bound on the greatest singular value of a rectangular matrix whose entries are i.i.d. Gaussian
random variables of zero mean and unit variance.

Lemma 10 Suppose that l, m, and n are positive integers with n ≥ l and n ≥ m. Suppose
further that G is a real l ×m matrix whose entries are i.i.d. Gaussian random variables of
zero mean and unit variance, and γ is a positive real number, such that γ > 1 and (12) is
nonnegative.

Then, the greatest singular value of G is at most
√

2n γ with probability not less than the
amount in (12).

The following lemma provides a highly probable lower bound on the least singular value
of a rectangular matrix whose entries are i.i.d. Gaussian random variables of zero mean and
unit variance; Formula 2.5 in [5] and the proof of Lemma 4.1 in [5] together provide an
equivalent formulation of Lemma 11.

Lemma 11 Suppose that k and l are positive integers with k ≤ l. Suppose further that G
is a real l × k matrix whose entries are i.i.d. Gaussian random variables of zero mean and
unit variance, and β is a positive real number, such that

1− 1√
2π (l − k + 1)

(
e

(l − k + 1) β

)l−k+1

(13)

is nonnegative.
Then, the least (that is, the kth greatest) singular value of G is at least 1/(

√
l β) with

probability not less than the amount in (13).

3 Mathematical apparatus

In this section, we describe the principal tools used in Section 4.
The following lemma states that the product B P of matrices B and P is a good approx-

imation to a matrix A, provided that there exists a matrix G such that

1. the columns of B constitute a subset of the columns of A,

2. ‖P‖ is not too large,
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3. G B P is a good approximation to G A, and

4. there exists a matrix F such that ‖F‖ is not too large, and F G A is a good approxi-
mation to A.

Lemma 12 Suppose that k, l, m, and n are positive integers with k ≤ n. Suppose further
that A is a real m×n matrix, B is a real m× k matrix whose columns constitute a subset of
the columns of A, P is a real k × n matrix, F is a real m× l matrix, and G is a real l ×m
matrix.

Then,
‖B P − A‖ ≤ ‖F G A− A‖ (‖P‖+ 1) + ‖F‖ ‖G B P −G A‖. (14)

Proof. We observe that

‖B P − A‖ ≤ ‖B P − F G B P‖+ ‖F G B P − F G A‖+ ‖F G A− A‖, (15)

‖B P − F G B P‖ ≤ ‖B − F G B‖ ‖P‖, (16)

and
‖F G B P − F G A‖ ≤ ‖F‖ ‖G B P −G A‖. (17)

Since the columns of B constitute a subset of the columns of A, it follows that the columns
of B − F G B constitute a subset of the columns of A− F G A, and therefore,

‖B − F G B‖ ≤ ‖A− F G A‖. (18)

Combining (15), (16), (17), and (18) yields (14). 2

Remark 13 Since the columns of B constitute a subset of the columns of A in Lemma 12,
it follows that the columns of G B constitute a subset of the columns of G A. Conversely,
whenever a matrix S is formed by gathering distinct columns of G A together into S, then
clearly S = G B for some matrix B whose columns constitute a subset of the columns of A.

The following lemma states that, for any matrix A, and matrix G whose entries are
i.i.d. Gaussian random variables of zero mean and unit variance, with very high probability
there exists a matrix F with a reasonably small norm, such that F G A is a good approxi-
mation to A.

Lemma 14 Suppose that k, l, m, and n are positive integers with k ≤ l, such that l < m
and l < n. Suppose further that A is a real m × n matrix, G is a real l ×m matrix whose
entries are i.i.d. Gaussian random variables of zero mean and unit variance, and β and γ
are positive real numbers, such that γ > 1 and

1− 1√
2π (l − k + 1)

(
e

(l − k + 1) β

)l−k+1

− 1

4 (γ2 − 1)
√

πmγ2

(
2γ2

eγ2−1

)m

(19)

is nonnegative.
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Then, there exists a real m× l matrix F such that

‖F G A− A‖ ≤
√

2lmβ2 γ2 + 1 σk+1 (20)

and
‖F‖ ≤

√
l β (21)

with probability not less than the amount in (19), where σk+1 is the (k+1)st greatest singular
value of A.

Proof. We prove the existence of a matrix F satisfying (20) and (21) by constructing one.
We start by forming an SVD of A,

A = U Σ V T, (22)

where U is a real unitary m×m matrix, Σ is a real m×n matrix whose entries are nonnegative
everywhere and zero off of the main diagonal, and V is a real unitary n × n matrix, such
that

Σi,i = σi (23)

for all i = 1, 2, . . . , min(m, n)− 1, min(m, n), where Σi,i is the entry in row i and column i
of Σ, and σi is the ith greatest singular value of A.

Next, we define auxiliary matrices H, R, and P . We define H to be the leftmost l × k
block of the l×m matrix G U , and R to be the rightmost l× (m− k) block of G U , so that

G U =
(

H R
)
. (24)

Combining the facts that U is real and unitary, and that the entries of G are i.i.d. Gaussian
random variables of zero mean and unit variance, we see that the entries of H are also
i.i.d. Gaussian random variables of zero mean and unit variance, as are the entries of R. We
define H(−1) to be the real k × l matrix given by the formula

H(−1) = (HT H)−1 HT. (25)

We define P to be the m× l matrix whose uppermost k× l block is H(−1), and whose entries
in the lowermost (m− k)× l block are all zeros, so that

P =

(
H(−1)

0

)
. (26)

Finally, we define F to be the m× l matrix given by

F = U P = U

(
H(−1)

0

)
. (27)

Combining (25), (4), the fact that the entries of H are i.i.d. Gaussian random variables
of zero mean and unit variance, and Lemma 11 yields∥∥H(−1)

∥∥ ≤ √
l β (28)
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with probability not less than

1− 1√
2π (l − k + 1)

(
e

(l − k + 1) β

)l−k+1

. (29)

Combining (27), (28), and the fact that U is unitary yields (21).
We now show that F defined in (27) satisfies (20).
We define S to be the leftmost uppermost k × k block of Σ, and T to be the rightmost

lowermost (m− k)× (n− k) block of Σ, so that

Σ =

(
S 0
0 T

)
. (30)

Combining (22), (24), and (27) yields

F G A− A = U

((
H(−1)

0

) (
H R

)
− 1

)
Σ V T. (31)

Combining (25) and (30) yields((
H(−1)

0

) (
H R

)
− 1

)
Σ =

(
0 H(−1) R T
0 −T

)
. (32)

Furthermore, ∥∥∥∥(
0 H(−1) R T
0 −T

)∥∥∥∥2

≤
∥∥H(−1) R T

∥∥2
+ ‖T‖2. (33)

Moreover, ∥∥H(−1) R T
∥∥ ≤ ∥∥H(−1)

∥∥ ‖R‖ ‖T‖. (34)

Combining (30) and (23) yields
‖T‖ ≤ σk+1. (35)

Combining (31), (32), (33), (34), (35), and the fact that U and V are unitary yields

‖F G A− A‖ ≤
√
‖H(−1)‖2 ‖R‖2 + 1 σk+1. (36)

Combining Lemma 10 and the fact that the entries of R are i.i.d. Gaussian random
variables of zero mean and unit variance shows that

‖R‖ ≤
√

2m γ (37)

with probability not less than

1− 1

4 (γ2 − 1)
√

πmγ2

(
2γ2

eγ2−1

)m

. (38)

Combining (36), (28), and (37) yields (20). 2

The following lemma is very similar to Lemma 14. Lemma 15 is tighter than Lemma 14
when the singular values of the matrix A decay sufficiently fast, and the numbers j and l in
the lemma are both much less than m.
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Lemma 15 Suppose that j, k, l, m, and n are positive integers with k ≤ l, such that
k + j < m and k + j < n, as well as l < m and l < n. Suppose further that A is a real m×n
matrix, G is a real l ×m matrix whose entries are i.i.d. Gaussian random variables of zero
mean and unit variance, and β and γ are positive real numbers, such that γ > 1 and

Φ = 1− 1√
2π (l − k + 1)

(
e

(l − k + 1) β

)l−k+1

− 1

4 (γ2 − 1)
√

π max(m− k − j, l) γ2

(
2γ2

eγ2−1

)max(m−k−j, l)

− 1

4 (γ2 − 1)
√

π max(j, l) γ2

(
2γ2

eγ2−1

)max(j, l)

(39)

is nonnegative.
Then, there exists a real m× l matrix F such that

‖F G A−A‖ ≤
√

2l max(j, l) β2 γ2 + 1 σk+1+
√

2l max(m− k − j, l) β2 γ2 + 1 σk+j+1 (40)

and
‖F‖ ≤

√
l β (41)

with probability not less than the amount in (39), where σk+1 is the (k+1)st greatest singular
value of A, and σk+j+1 is the (k + j + 1)st greatest singular value of A.

Proof. We prove the existence of a matrix F satisfying (40) and (41) by constructing one.
We start by forming an SVD of A,

A = U Σ V T, (42)

where U is a real unitary m×m matrix, Σ is a real m×n matrix whose entries are nonnegative
everywhere and zero off of the main diagonal, and V is a real unitary n × n matrix, such
that

Σi,i = σi (43)

for all i = 1, 2, . . . , min(m, n)− 1, min(m, n), where Σi,i is the entry in row i and column i
of Σ, and σi is the ith greatest singular value of A.

Next, we define auxiliary matrices H, R, Γ, and P . We define H to be the leftmost l× k
block of the l × m matrix G U , R to be the l × j block of G U whose first column is the
(k + 1)st column of G U , and Γ to be the rightmost l × (m− j − k) block of G U , so that

G U =
(

H R Γ
)
. (44)

Combining the facts that U is real and unitary, and that the entries of G are i.i.d. Gaussian
random variables of zero mean and unit variance, we see that the entries of H are also
i.i.d. Gaussian random variables of zero mean and unit variance, as are the entries of R, and
as are the entries of Γ. We define H(−1) to be the real k × l matrix given by the formula

H(−1) = (HT H)−1 HT. (45)
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We define P to be the real m× l matrix whose uppermost k× l block is H(−1), whose entries
in the j × l block whose first row is the (k + 1)st row of P are all zeros, and whose entries in
the lowermost (m− k − j)× l block are all zeros, so that

P =

 H(−1)

0
0

 . (46)

Finally, we define F to be the m× l matrix given by

F = U P = U

 H(−1)

0
0

 . (47)

Combining (45), (4), the fact that the entries of H are i.i.d. Gaussian random variables
of zero mean and unit variance, and Lemma 11 yields∥∥H(−1)

∥∥ ≤ √
l β (48)

with probability not less than

1− 1√
2π (l − k + 1)

(
e

(l − k + 1) β

)l−k+1

. (49)

Combining (47), (48), and the fact that U is unitary yields (41).
We now show that F defined in (47) satisfies (40).
We define S to be the leftmost uppermost k× k block of Σ, T to be the j × j block of Σ

whose leftmost uppermost entry is the entry in the (k + 1)st row and (k + 1)st column of Σ,
and Θ to be the rightmost lowermost (m− k − j)× (n− k − j) block of Σ, so that

Σ =

 S 0 0
0 T 0
0 0 Θ

 . (50)

Combining (42), (44), and (47) yields

F G A− A = U

 H(−1)

0
0

 (
H R Γ

)
− 1

 Σ V T. (51)

Combining (45) and (50) yields H(−1)

0
0

 (
H R Γ

)
− 1

 Σ =

 0 H(−1) R T H(−1) Γ Θ
0 −T 0
0 0 −Θ

 . (52)

Furthermore,∥∥∥∥∥∥
 0 H(−1) R T H(−1) Γ Θ

0 −T 0
0 0 −Θ

∥∥∥∥∥∥
2

≤
∥∥H(−1) R T

∥∥2
+

∥∥H(−1) Γ Θ
∥∥2

+ ‖T‖2 + ‖Θ‖2. (53)
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Moreover, ∥∥H(−1) R T
∥∥ ≤ ∥∥H(−1)

∥∥ ‖R‖ ‖T‖ (54)

and ∥∥H(−1) Γ Θ
∥∥ ≤ ∥∥H(−1)

∥∥ ‖Γ‖ ‖Θ‖. (55)

Combining (50) and (43) yields
‖T‖ ≤ σk+1 (56)

and
‖Θ‖ ≤ σk+j+1. (57)

Combining (51), (52), (53), (54), (55), (56), (57), and the fact that U and V are unitary
yields

‖F G A− A‖2 ≤
(∥∥H(−1)

∥∥2 ‖R‖2 + 1
)

(σk+1)
2 +

(∥∥H(−1)
∥∥2 ‖Γ‖2 + 1

)
(σk+j+1)

2. (58)

Combining Lemma 10 and the fact that the entries of R are i.i.d. Gaussian random
variables of zero mean and unit variance, as are the entries of Γ, yields

‖R‖ ≤
√

2 max(j, l) γ (59)

and
‖Γ‖ ≤

√
2 max(m− k − j, l) γ, (60)

with probability not less than

1− 1

4 (γ2 − 1)
√

π max(m− k − j, l) γ2

(
2γ2

eγ2−1

)max(m−k−j, l)

− 1

4 (γ2 − 1)
√

π max(j, l) γ2

(
2γ2

eγ2−1

)max(j, l)

. (61)

Combining (58), (48), (59), and (60) shows that

‖F G A−A‖2 ≤
(
2l max(j, l) β2 γ2 + 1

)
(σk+1)

2 +
(
2l max(m− k − j, l) β2 γ2 + 1

)
(σk+j+1)

2

(62)
with probability not less than the amount in (39). Combining (62) and the fact that

√
x + y ≤

√
x +

√
y (63)

for any nonnegative real numbers x and y yields (40). 2

Given an m × n matrix A, and a matrix G whose entries are i.i.d. Gaussian random
variables of zero mean and unit variance, the following lemma provides an upper bound on
the singular values of the product G A in terms of the singular values of A; the lemma is
most useful when the singular values of A decay sufficiently fast, and the numbers j and l
in the lemma are both much less than m.

13



Lemma 16 Suppose that j, k, l, m, and n are positive integers with k < l, such that
k + j < m and k + j < n. Suppose further that A is a real m× n matrix, G is a real l ×m
matrix whose entries are i.i.d. Gaussian random variables of zero mean and unit variance,
and γ is a positive real number, such that γ > 1 and

Ψ = 1− 1

4 (γ2 − 1)
√

π max(m− k − j, l) γ2

(
2γ2

eγ2−1

)max(m−k−j, l)

− 1

4 (γ2 − 1)
√

π max(k + j, l) γ2

(
2γ2

eγ2−1

)max(k+j, l)

(64)

is nonnegative.
Then, the (k + 1)st greatest singular value ρk+1 of G A is at most a certain linear combi-

nation of the (k +1)st greatest singular value σk+1 of A and the (k + j +1)st greatest singular
value σk+j+1 of A, namely,

ρk+1 ≤
√

2 max(k + j, l) γ σk+1 +
√

2 max(m− k − j, l) γ σk+j+1, (65)

with probability not less than the amount in (64).

Proof. We start by forming an SVD of A,

A = U Σ V T, (66)

where U is a real unitary m×m matrix, Σ is a real m×n matrix whose entries are nonnegative
everywhere and zero off of the main diagonal, and V is a real unitary n × n matrix, such
that

Σi,i = σi (67)

for all i = 1, 2, . . . , min(m, n)− 1, min(m, n), where Σi,i is the entry in row i and column i
of Σ, and σi is the ith greatest singular value of A.

Combining (66) and the fact that V is unitary yields that G A has the same singular
values as G U Σ.

Next, we define auxiliary matrices H and R. We define H to be the leftmost l × (k + j)
block of the l ×m matrix G U , and R to be the rightmost l × (m− k − j) block of G U , so
that

G U =
(

H R
)
. (68)

Combining the facts that U is real and unitary, and that the entries of G are i.i.d. Gaussian
random variables of zero mean and unit variance, we see that the entries of H are also
i.i.d. Gaussian random variables of zero mean and unit variance, as are the entries of R.

Combining (68) and the fact that G A has the same singular values as G U Σ yields that
G A has the same singular values as

(
H 0

)
Σ +

(
0 R

)
Σ.

It follows from (67) that ∥∥(
0 R

)
Σ

∥∥ ≤ ‖R‖σk+j+1. (69)
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Combining (11) and (69) yields

ρk+1 ≤ τk+1 + ‖R‖σk+j+1, (70)

where ρk+1 is the (k + 1)st greatest singular value of
(

H 0
)

Σ +
(

0 R
)

Σ, and τk+1 is
the (k+1)st greatest singular value of

(
H 0

)
Σ; ρk+1 is also the (k+1)st greatest singular

value of G A, since G A has the same singular values as
(

H 0
)

Σ +
(

0 R
)

Σ.
Furthermore, ∥∥(

H 0
)∥∥ ≤ ‖H‖. (71)

Combining (9), (71), and (67) yields

τk+1 ≤ ‖H‖σk+1. (72)

Combining Lemma 10 and the fact that the entries of H are i.i.d. Gaussian random
variables of zero mean and unit variance, as are the entries of R, shows that

‖H‖ ≤
√

2 max(k + j, l) γ (73)

and
‖R‖ ≤

√
2 max(m− k − j, l) γ, (74)

with probability not less than the amount in (64).
Combining (70), (72), (73), and (74) yields (65). 2

The following lemma provides an efficient means of computing an SVD of a real m × n
matrix A from a real m× k matrix B and a real k × n matrix P such that A = B P and k
is much less than both m and n. If, in addition, ‖B‖ ≤ ‖A‖ and ‖P‖ is not too large, then
the scheme described by the lemma is numerically stable.

Lemma 17 Suppose that k, m, and n are positive integers with k ≤ n. Suppose further that
A is a real m× n matrix, B is a real m× k matrix, and P is a real k × n matrix, such that

A = B P. (75)

Suppose in addition that L is a real k×k matrix, and Q is a real n×k matrix whose columns
are orthonormal, such that

P = L QT. (76)

Suppose finally that C is a real m× k matrix, U is a real m× k matrix whose columns are
orthonormal, Σ is a real k × k matrix, and W is a real k × k matrix whose columns are
orthonormal, such that

C = B L (77)

and
C = U Σ WT. (78)

Then,
A = U Σ V T, (79)
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where V is the real n× k matrix given by the formula

V = QW. (80)

Moreover, the columns of V are orthonormal (as are the columns of U), and

‖L‖ = ‖P‖. (81)

Proof. Combining (75), (76), (77), (78), and (80) yields (79). Combining (80) and the
facts that W is unitary and the columns of Q are orthonormal yields that the columns of
V are orthonormal. Combining (76) and the fact that the columns of Q are orthonormal
yields (81). 2

Remark 18 The matrices L and Q in (76) can be computed from P as follows. Using the
algorithms described, for example, in Chapter 5 of [15], we construct an upper triangular
real k × k matrix R, and a real n× k matrix Q whose columns are orthonormal, such that

PT = QR. (82)

We thus obtain Q. We then define L to be the transpose of R, that is,

L = RT. (83)

4 Description of the algorithm

In this section, we describe the algorithm of the present paper. In Subsection 4.1, we discuss
approximations to interpolative decompositions. In Subsection 4.2, we discuss approxima-
tions to SVDs. In Subsection 4.3, we tabulate the computational costs of various parts of
the algorithm. In Subsection 4.4, we describe Table 1.

4.1 Interpolative decomposition

Suppose that k, m, and n are positive integers with k < m and k < n, and A is a real m×n
matrix. In this subsection, we will collect together k appropriately chosen columns of A into
a real m× k matrix B, and construct a real k × n matrix P , such that

‖P‖ ≤
√

4k (n− k) + 1 (84)

and
‖B P − A‖ . σk+1, (85)

where σk+1 is the (k + 1)st greatest singular value of A. To do so, we select an integer l with
l > k, such that l < m and l < n (l = k + 20 is often a suitable choice), and make the
following three steps:
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1. Using a random number generator, form a real l × m matrix G whose entries are
i.i.d. Gaussian random variables of zero mean and unit variance, and compute the
l × n product matrix

R = G A. (86)

2. Using the algorithm of [6], form a real l×k matrix S whose columns constitute a subset
of the columns of R, and a real k × n matrix P satisfying (84), such that

‖S P −R‖ ≤
√

4k (n− k) + 1 ρk+1, (87)

where ρk+1 is the (k + 1)st greatest singular value of R. (See Observation 3 for a brief
discussion of the properties of the algorithm of [6].)

3. Using the fact that the columns of S constitute a subset of the columns of R, for any
j = 1, 2, . . . , k− 1, k, let ij denote an integer such that the jth column of S is the ij

th

column of R. Form the real m× k matrix B whose jth column is the ij
th column of A

for all j = 1, 2, . . . , k − 1, k.

The matrices B and P obtained via the preceding three steps satisfy (84) and (85); see the
following remark.

Remark 19 In this remark, we demonstrate that the matrices B and P satisfy (85). Indeed,
combining (86) and Remark 13 yields

S = G B. (88)

Combining (87), (86), and (88) yields

‖G B P −G A‖ ≤
√

4k (n− k) + 1 ρk+1, (89)

where ρk+1 is the (k + 1)st greatest singular value of R. Suppose that β and γ are positive
real numbers such that γ > 1 and

χ = 1− 1√
2π (l − k + 1)

(
e

(l − k + 1) β

)l−k+1

− 1

2 (γ2 − 1)
√

πmγ2

(
2γ2

eγ2−1

)m

(90)

is nonnegative. Then, combining (14), (20), (21), (84), (89), (9), (86), and Lemma 10 yields

‖B P − A‖

≤
(√

2lmβ2 γ2 + 1
(√

4k (n− k) + 1 + 1
)

+ β γ
√

2lm
√

4k (n− k) + 1
)

σk+1 (91)

with probability not less than χ defined in (90), where σk+1 is the (k + 1)st greatest singular
value of A. The bound (91) is a precise version of (85). For example, choosing β = 3/4,
γ2 = 5, and l = k + 20, and combining (91) and (90), we obtain

‖B P − A‖ ≤ 10
√

k (k + 20) mn σk+1 (92)

with probability not less than 1− 10−17. Table 1 contains similar results obtained by taking
other values for l − k, β, and γ.
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Remark 20 When the singular values of A decay sufficiently fast, and l is much less than
m, the factors

√
2lmβ2 γ2 + 1 and

√
2lm in (91) are much larger than necessary. Indeed,

suppose that j is a positive integer with k + j < m and k + j < n, and β and γ are positive
real numbers, such that γ > 1 and Φ + Ψ > 1, where Φ is defined in (39), and Ψ is defined
in (64). Then, combining (14), (40), (41), (84), (89), (65), and (86) yields

‖B P − A‖ ≤ ξ σk+1 + η σk+j+1 (93)

with probability not less than Φ + Ψ − 1, where Φ is defined in (39), Ψ is defined in (64),
σk+1 is the (k + 1)st greatest singular value of A, and σk+j+1 is the (k + j + 1)st greatest
singular value of A, and where

ξ =
√

2l max(j, l) β2 γ2 + 1
(√

4k (n− k) + 1 + 1
)

+ β γ
√

2l max(k + j, l)
√

4k (n− k) + 1 (94)

and

η =
√

2l max(m− k − j, l) β2 γ2 + 1
(√

4k (n− k) + 1 + 1
)

+ β γ
√

2l max(m− k − j, l)
√

4k (n− k) + 1. (95)

When j, k, and l are all much less than m, clearly ξ is much less than η.

Remark 21 If we choose l = k in the algorithm of the present subsection (instead of
choosing l > k), then we must replace (87) with the formula

‖S P −R‖ = 0. (96)

All other aspects of the algorithm stay the same in the case that l = k. In particular, (91)
and (93) hold in the case that l = k, too.

4.2 Singular Value Decomposition

Suppose that k, m, and n are positive integers with k < m and k < n, and A is a real m×n
matrix. In this subsection, we will compute an approximation to an SVD of A such that

‖U Σ V T − A‖ . σk+1, (97)

where U is a real m × k matrix whose columns are orthonormal, V is a real n × k matrix
whose columns are orthonormal, Σ is a diagonal real k × k matrix whose entries are all
nonnegative, and σk+1 is the (k + 1)st greatest singular value of A. To do so, we first use
the algorithm of Subsection 4.1 to construct the matrices B and P in (84), (91), and (93).
Then, we make the following four steps:

1. Construct a lower triangular real k × k matrix L, and a real n × k matrix Q whose
columns are orthonormal, such that

P = L QT (98)

(see Remark 18 for details concerning the construction of such matrices L and Q).
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2. Form the product
C = B L. (99)

3. Construct an SVD of C, that is,

C = U Σ WT, (100)

where U is a real m × k matrix whose columns are orthonormal, Σ is a diagonal
k × k matrix whose entries are all nonnegative, and W is a real k × k matrix whose
columns are orthonormal (see, for example, Chapter 8 in [15] for details concerning the
construction of such an SVD).

4. Form the product
V = QW. (101)

The matrices U , Σ, and V obtained via the preceding four steps (after first using the al-
gorithm of Subsection 4.1 to construct the matrices B and P ) satisfy (97); see Remark 23
below.

Remark 22 Steps 2 and 4 in the procedure of the present subsection are somewhat subtle
numerically. Both Steps 2 and 4 involve constructing products of matrices, and in general
constructing the product S T of matrices S and T can be numerically unstable. Indeed, in
general some entries of S or T can have unmanageably large absolute values, while in exact
arithmetic no entry of the product S T has an unmanageably large absolute value; in such
circumstances, constructing the product S T can be unstable in finite-precision arithmetic.
However, this problem does not arise in Steps 2 and 4 above, due to (84), (81), the fact that
the columns of B constitute a subset of the columns of A (so that ‖B‖ ≤ ‖A‖), and the fact
that the columns of Q are orthonormal, as are the columns of W .

Remark 23 In this remark, we demonstrate that the matrices U , Σ, and V satisfy (97).
Indeed, suppose that β and γ are positive real numbers such that γ > 1 and χ defined in (90)
is nonnegative. Then, combining (91), (75), (98), (99), (100), (101), and (79) yields

‖U Σ V T − A‖

≤
(√

2lmβ2 γ2 + 1
(√

4k (n− k) + 1 + 1
)

+ β γ
√

2lm
√

4k (n− k) + 1
)

σk+1 (102)

with probability not less than χ defined in (90), where σk+1 is the (k + 1)st greatest singular
value of A. The bound (102) is a precise version of (97). As in Subsection 4.1, if we choose
β = 3/4, γ2 = 5, and l = k + 20, and combine (102) and (90), then we obtain

‖U Σ V T − A‖ ≤ 10
√

k (k + 20) mn σk+1 (103)

with probability not less than 1− 10−17. Table 1 contains similar results obtained by taking
other values for l − k, β, and γ.
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Remark 24 When the singular values of A decay sufficiently fast, and l is much less than
m, the factors

√
2lmβ2 γ2 + 1 and

√
2lm in (102) are much larger than necessary. Indeed,

suppose that j is a positive integer with k + j < m and k + j < n, and β and γ are positive
real numbers, such that γ > 1 and Φ + Ψ > 1, where Φ is defined in (39), and Ψ is defined
in (64). Then, combining (93), (75), (98), (99), (100), (101), and (79) yields

‖U Σ V T − A‖ ≤ ξ σk+1 + η σk+j+1 (104)

with probability not less than Φ + Ψ − 1, where Φ is defined in (39), Ψ is defined in (64),
σk+1 is the (k + 1)st greatest singular value of A, σk+j+1 is the (k + j + 1)st greatest singular
value of A, ξ is defined in (94), and η is defined in (95). When j, k, and l are all much less
than m, clearly ξ is much less than η.

4.3 CPU time and memory requirements

In this subsection, we tabulate the numbers of floating-point operations and words of memory
required by the algorithms described in Subsections 4.1 and 4.2, as applied once to a matrix
A.

4.3.1 Interpolative decomposition

The algorithm described in Subsection 4.1 incurs the following costs in order to compute an
approximation to an interpolative decomposition of A:

1. Forming R in (86) requires applying AT to l vectors.

2. Computing S and P in (87) or (96) costs O(lkn log(l)).

3. Forming B in (88) requires applying A to k vectors, where each vector has a single
entry of 1 and n− 1 entries of 0.

Summing up the costs in Steps 1–3 above, we conclude that the algorithm of Subsection 4.1
costs

CID = k · CA + l · CAT +O(lkn log(l)), (105)

where CA is the cost of applying A to a real n × 1 column vector, and CAT is the cost of
applying AT to a real m× 1 column vector.

4.3.2 Singular Value Decomposition

The algorithm described in Subsection 4.2 incurs the following costs in order to compute
an approximation to an SVD of A from the matrices B and P obtained via the algorithm
described in Subsection 4.1:

1. Computing the matrices L and Q in (98) costs O(k2 n).

2. Forming C in (99) costs O(k2 m).

3. Computing the SVD (100) of C costs O(k2 m).
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4. Forming V defined in (101) costs O(k2 n).

Summing up the costs in Steps 1–4 above, we conclude that the algorithm of Subsection 4.2
costs

CSVD = CID +O(k2 (m + n)), (106)

where CID is the cost in (105) of applying the algorithm described in Subsection 4.1 in order
to obtain B and P .

Remark 25 We observe that in order to form the matrix G A in (86), we need only to take
each column of A and form its inner products with the l rows of G. In order to form B
in (88), we need only to collect together certain columns of A. Thus, we only ever need to
access columns of A, and never need to transpose A explicitly. The data movement required
by the algorithm of the present paper is hence fairly simple.

4.4 Description of Table 1

Tables 1.1–1.6 provide an upper bound Πl−k,β,γ on the probability that

‖U Σ V T − A‖ > ζ
√

klmn σk+1, (107)

where U , Σ, and V are the matrices in the approximation to an SVD of the m×n matrix A
in (102). In (107), k and l are any positive integers with k ≤ l, such that l < m and l < n,
σk+1 is the (k + 1)st greatest singular value of A, and ζ takes on the values specified by the
penultimate columns of the tables. The quantity Πl−k,β,γ is defined by the formula

Πl−k,β,γ = 1− χ, (108)

where χ is defined in (90), and l − k, β, and γ take on the values specified by the first,
second, and third columns of the tables. The quantity ζ is specified by β and γ via (102).
Please note that Πl−k,β,γ depends only on l − k, β, and γ, and provides an upper bound
that is otherwise independent of k, m, n, and A; (103) provides a similar bound. When the
singular values of A decay sufficiently fast, and l is much less than m, the factor of

√
m in

the right-hand side of (107) is larger than necessary; see Remark 24 above.

Remark 26 Due to (91), the quantity Πl−k,β,γ defined in (108) also provides an upper bound
on the probability that

‖B P − A‖ > ζ
√

klmn σk+1, (109)

where B and P are the matrices in the approximation to an interpolative decomposition of
the m× n matrix A in (91).

5 Numerical results

In this section, we describe the results of four numerical tests of the algorithm of the present
paper. Table 2 summarizes the numerical output of the examples described in the present
section.
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Tables 2.1–2.4 display the results of applying the algorithm of the present paper once
to a real n × n matrix A, for the indicated values of n. The matrix A is defined at the
end of the present section. The numbers k and l are those from Section 4; k is the rank
of the approximations to A, and l is the number of rows in the matrix G whose entries
are i.i.d. Gaussian random variables of zero mean and unit variance (the algorithm uses the
product G A). The displayed times refer to the seconds of CPU time used by the algorithm to
compute both the approximation to an interpolative decomposition and the approximation
to an SVD of A. (Please note that our implementation is optimized for accuracy and for
analyzing the numerical properties of the algorithm, and is probably not very efficient.) The
numbers σk and σk+1 are those from the definition of A below; furthermore, σk+1 appears in
the bounds (91) and (102) on the errors of the approximations. The number δID is the norm
of the difference between A and an approximation B P to an interpolative decomposition of
A, that is,

δID = ‖B P − A‖, (110)

where the matrices B and P are those from (91). The number δSVD is the norm of the
difference between A and the approximation U Σ V T to an SVD of A, that is,

δSVD = ‖U Σ V T − A‖, (111)

where the matrices U , Σ, and V are those from (102).
We define δrel. max. as follows. First, we define auxiliary vectors t1, t2, . . . , tj−1, tj, and

τ 1, τ 2, . . . , τ j−1, τ j, where j = 30 in Examples 1 and 2, j = 110 in Example 3, and j = 6 in
Example 4. We choose the test vectors t1, t2, . . . , tj−1, tj to include a variety of deterministic
and random vectors (specifically, we set every entry of t1 to be 1, and use a random number
generator to generate t2, t3, . . . , tj−1, tj so that their entries are i.i.d. Gaussian random
variables of zero mean and unit variance). For any i = 1, 2, . . . , j − 1, j, we define τ i to be
the vector resulting from the application of B P − A to ti, that is,

τ i = (B P − A) ti, (112)

where the matrices B and P are those from (91). Then, we define δrel.max. via the formula

δrel. max. = max
i=1,2,...,j−1,j

(
maxp=1,2,...,m−1,m |(τ i)p|
maxq=1,2,...,n−1,n |(ti)q|

)
, (113)

where (τ i)p is the pth entry of τ i, and (ti)q is the qth entry of ti.
All estimates displayed in Table 2 are the maximum values obtained from three indepen-

dent realizations of the random variables involved.
The values of δID and δSVD displayed in Tables 2.2, 2.3, and 2.4 are those obtained via the

power method for estimating the norm of a matrix, after the estimates stabilized to three
significant figures. The values of δID and δSVD displayed in Table 2.1 are those obtained after
100 iterations of the power method. The estimates of δID and δSVD summarized in Table 2.1
did not stabilize to three significant figures after 100 (or any other number of) iterations,
undoubtedly due to round-off.

We performed all computations using IEEE standard double-precision variables, whose
mantissas have approximately one bit of precision more than 16 digits (so that the relative
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precision of the variables is approximately .2e-15). We ran all computations on a 2.8 GHz
Pentium Xeon microprocessor with 512 KB of L2 cache and 2 GB of RAM. We compiled the
Fortran 77 code using the Lahey-Fujitsu compiler, with the optimization flag --o2 enabled.

In our implementation, we computed SVDs using 2-sided plane (Jacobi/Givens) rotations
(see, for example, Chapter 8 in [15]). We used an algorithm based upon pivoted “QR” de-
compositions to compute the matrices S and P in (87) and (96) (see, for example, Chapter 5
in [15] for a description of “QR” decompositions, and [6] for further details regarding our
particular implementation).

In Examples 1, 2, and 3, we use a pseudorandom number generator to construct real
n × 1 vectors µ1, µ2, . . . , µj−1, µj, and ν1, ν2, . . . , νj−1, νj, such that their entries are a
realization of i.i.d. Gaussian random variables of zero mean and unit variance, with j = 20
in Examples 1 and 2, and j = 60 in Example 3. We orthonormalize µ1, µ2, . . . , µj−1, µj

via the Gram-Schmidt process with reorthogonalization (see, for example, [3]) to obtain real
n × 1 vectors u1, u2, . . . , uj−1, uj, and do the same with ν1, ν2, . . . , νj−1, νj to obtain
real n × 1 vectors v1, v2, . . . , vj−1, vj. We denote by σ1, σ2, . . . , σj−1, σj the positive real
numbers displayed in Figure 1 (we use the numbers in Figure 1.1 for Example 1, the numbers
in Figure 1.2 for Example 2, and those in Figure 1.3 for Example 3). We define A to be the
n× n matrix given by the formula

A =

j∑
i=1

ui σi (vi)T. (114)

Clearly, the rank of A is j. Since u1, u2, . . . , uj−1, uj are orthonormal, as are v1, v2, . . . ,
vj−1, vj, the ith singular value of A is σi, for all i = 1, 2, . . . , j − 1, j. Table 2 displays the
results of applying the algorithm of the present paper to A, for various values of n (Table 2.1
displays the results for Example 1, Table 2.2 displays the results for Example 2, and Table 2.3
displays those for Example 3).

Example 4 is designed to illustrate that factors of the order of
√

4k (n− k) + 1 are
necessary in bounds such as (91), (93), (102), and (104). This example is identical to
Examples 1, 2, and 3, using the same matrix A defined in (114), but with n assumed to be
divisible by 8, with j = 4, and using the numbers σ1, σ2, σ3, and σ4 displayed in Figure 1.4
(σ1 = 1, σ2 = 1, σ3 = .1e-7, and σ4 = .1e-7), and with the following vectors u1, u2, u3, u4,
and v1, v2, v3, v4:

(u1)T =
1√
n

(
1 1 . . . 1 1

)
, (115)

(u2)T =
1√
n

(
1 −1 1 −1 . . . 1 −1 1 −1

)
, (116)

(u3)T =
1√
n

(
1 1 −1 −1 1 1 −1 −1 . . . 1 1 −1 −1 1 1 −1 −1

)
,

(117)

(u4)T =
1√
n

(
1 1 1 1 −1 −1 −1 −1 . . . 1 1 1 1 −1 −1 −1 −1

)
,

(118)

(v1)T =
1√

n− 1

(
1 1 . . . 1 1 1 0

)
, (119)
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(v2)T =
(

0 0 . . . 0 0 0 1
)
, (120)

(v3)T =
1√

n− 2

(
1 −1 1 −1 . . . 1 −1 1 −1 0 0

)
, (121)

(v4)T =
1√
2

(
1 0 −1 0 0 0 . . . 0 0

)
, (122)

that is,

1. (a) every entry of u1 is 1/
√

n,

(b) entries 1, 2, . . . , n− 2, n− 1 of v1 are 1/
√

n− 1, and entry n of v1 is 0,

2. (a) every even entry of u2 is −1/
√

n, and every odd entry of u2 is 1/
√

n,

(b) entries 1, 2, . . . , n− 2, n− 1 of v2 are 0, and entry n of v2 is 1,

3. (a) the first pair of entries of u3 is 1/
√

n, the second pair of entries is −1/
√

n, the
third pair of entries is 1/

√
n, the fourth pair of entries is −1/

√
n, and so on (with

each successive pair of entries alternating sign),

(b) every even entry of v3 except for entry n is −1/
√

n− 2, every odd entry of v3

except for entry n− 1 is 1/
√

n− 2, and entries n− 1 and n of v3 are 0,

4. (a) the first quadruplet of entries of u4 is 1/
√

n, the second quadruplet of entries is
−1/

√
n, the third quadruplet of entries is 1/

√
n, the fourth quadruplet of entries

is −1/
√

n, and so on (with each successive quadruplet of entries alternating sign),
and

(b) entry 1 of v4 is 1/
√

2, entry 2 of v4 is 0, entry 3 is −1/
√

2, and entries 4, 5, . . . ,
n− 1, n are 0.

For this example (Example 4),

u1 σ1 (v1)T + u2 σ2 (v2)T =
1√

n (n− 1)



1 1 · · · 1 1
√

n− 1
1 1 · · · 1 1 −

√
n− 1

1 1 · · · 1 1
√

n− 1
1 1 · · · 1 1 −

√
n− 1

...
...

...
...
...

...
...

...
1 1 · · · 1 1

√
n− 1

1 1 · · · 1 1 −
√

n− 1


. (123)

Clearly, u1, u2, u3, and u4 are orthonormal, as are v1, v2, v3, and v4. Therefore, the ith

singular value of A is σi, for all i = 1, 2, 3, 4. Table 2.4 displays the results of applying the
algorithm of the present paper to A, for various values of n.

Remark 27 All numerical data that we have examined — including the data displayed in
Table 2, as well as the data from further experiments — appear to satisfy the bounds (91),
(93), (102), and (104). However, we are not entirely certain that bounds such as (91), (93),
(102), and (104) must necessarily contain factors of the order of

√
m and

√
4k (n− k) + 1.

We would not be surprised if tighter bounds were possible.

24



The loss of precision displayed in Table 2.1 as n increases is probably largely due to round-
off (compare Table 2.2), whereas the loss of precision displayed in Table 2.4 as n increases
suggests that any bounds such as (91), (93), (102), and (104) must contain a factor of the
order of

√
4k (n− k) + 1. In contrast, in many practical situations the bounds mentioned

in Remarks 20 and 24 are effectively independent of m.
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l − k β γ2 ζ Πl−k,β,γ

0 10 3 102 .15e-0
0 88 4 103 .18e-1
0 790 5 104 .21e-2
0 6,600 7 105 .18e-3
0 58,000 9 106 .19e-4

(1.1)

l − k β γ2 ζ Πl−k,β,γ

1 7.9 5 102 .85e-2
1 72 6 103 .11e-3
1 620 8 104 .15e-5
1 5,500 10 105 .17e-7
1 53,000 11 106 .19e-9

(1.2)

l − k β γ2 ζ Πl−k,β,γ

2 7.9 5 102 .37e-3
2 66 7 103 .61e-6
2 589 9 104 .85e-9
2 5,300 11 105 .12e-11
2 51,000 12 106 .14e-14

(1.3)

l − k β γ2 ζ Πl−k,β,γ

2 1.02 3 10 .18e-0
4 0.88 4 10 .16e-1
8 0.88 4 10 .10e-4
16 0.79 5 10 .16e-12
32 0.72 6 10 .59e-32

(1.4)

l − k β γ2 ζ Πl−k,β,γ

0 10 3 100 .15e-0
1 7.9 5 100 .85e-2
2 7.9 5 100 .37e-3
4 7.2 6 100 .44e-6
8 6.6 7 100 .12e-12
16 6.6 7 100 .55e-28
32 6.2 8 100 .83e-63

(1.5)

l − k β γ2 ζ Πl−k,β,γ

0 10 3 1,000 .18e-1
1 72 6 1,000 .11e-3
2 66 7 1,000 .61e-6
4 62 8 1,000 .93e-11
8 58 9 1,000 .37e-21
16 55 10 1,000 .73e-44
32 53 11 1,000 .14e-93

(1.6)

Table 1 (See Subsection 4.4.)
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k l n time (sec.) σk σk+1 δrel. max. δID δSVD

10 10 102 .29e-03 .232e-15 .200e-15 .162e-14 .533e-14 .534e-14
10 10 103 .27e-02 .232e-15 .200e-15 .211e-14 .286e-14 .934e-14
10 10 104 .42e-01 .232e-15 .200e-15 .844e-14 .187e-13 .187e-13
10 10 105 .16e+01 .232e-15 .200e-15 .181e-13 .530e-13 .189e-12
10 10 106 .12e+02 .232e-15 .200e-15 .856e-13 .121e-12 .683e-11

(2.1)

k l n time (sec.) σk σk+1 δrel. max. δID δSVD

10 10 102 .28e-03 .152e-07 .100e-07 .139e-06 .156e-06 .156e-06
10 10 103 .28e-02 .152e-07 .100e-07 .953e-07 .806e-07 .806e-07
10 10 104 .40e-01 .152e-07 .100e-07 .104e-06 .242e-06 .242e-06
10 10 105 .16e+01 .152e-07 .100e-07 .165e-06 .182e-06 .182e-06
10 10 106 .12e+02 .152e-07 .100e-07 .102e-06 .134e-06 .134e-06

(2.2)

k l n time (sec.) σk σk+1 δrel. max. δID δSVD

30 30 50,000 .41e+01 .206e-08 .100e-08 .179e-07 .482e-07 .482e-07
30 31 50,000 .42e+01 .206e-08 .100e-08 .213e-07 .348e-07 .348e-07
30 32 50,000 .41e+01 .206e-08 .100e-08 .114e-07 .304e-07 .304e-07
30 34 50,000 .43e+01 .206e-08 .100e-08 .139e-07 .201e-07 .201e-07
30 38 50,000 .45e+01 .206e-08 .100e-08 .104e-07 .144e-07 .144e-07
30 46 50,000 .48e+01 .206e-08 .100e-08 .805e-08 .863e-08 .868e-08

(2.3)

k l n time (sec.) σk σk+1 δrel. max. δID δSVD

2 2 .48 · 102 .19e-04 .100e+01 .100e-07 .128e-06 .757e-07 .757e-07
2 2 .48 · 103 .13e-03 .100e+01 .100e-07 .374e-06 .260e-06 .260e-06
2 2 .48 · 104 .22e-02 .100e+01 .100e-07 .728e-05 .663e-05 .663e-05
2 2 .48 · 105 .16e-01 .100e+01 .100e-07 .853e-05 .714e-05 .714e-05
2 2 .48 · 106 .18e-00 .100e+01 .100e-07 .152e-04 .114e-04 .114e-04
2 2 .48 · 107 .28e+01 .100e+01 .100e-07 .306e-04 .216e-04 .216e-04

(2.4)

Table 2 (See Section 5.)
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Figure 1 (See Section 5.)
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