This report is a revision/extension of report YALEU/DCS/RR-339, but does not supercede it. New

material is added, and reference is made to material presented in detail only in YALEU/DCS/RR-
339.

Solving Tridiagonal Systems on Ensemble Architectures

S. Lennart Johnsson

Research Report YALEU/DCS/RR-436
November 1985

This work was supported by the Office of Naval Research under Contract No. NO0014-84-K-0043

Table of Contents

1 Abstract L L e e e e e e e e e e 1
2Introduction L L L L e e e e e e e e e e e e e 1
3 Ensemble Architectures L. e e e e 4
4 Elimination Methods on Parallel Architectures 5
4.1 Sparse Elimination e e e e e e e e e e e e 5

4.2 Odd-Even Cyclic Reduction e, 6

4.3 A Computation Graph for Cyclic Reduction 7

5 Finiteness L L L e e e e e e e e e e e e e 8
5.1 Domain decomposition e e e e e e e e 9
5.1.1 Communication aspects of cyclicreduction 9

5.1.2 Gaussién elimination locally, Cyclic Reduction globally 11

5.2 Cyclicstorage i e e e e e e e e e e e e e e e e e e 13

5.3 Divide-and-conquer e e e e e e e e e e 13

5.4 Multiple tridiagonal systems. 0.0 e e e e e e e 15
5.4.1 Multipleright handsides 16

5.4.2 Multiple independent tridiagonalsystems 17

6 Tridiagonal systems solvers on ensemble architectures 18
6.1 Linear arrayst ot e 18

6.2 Two-dimensionalmeshes 20

6.3 Complete binary trees L. e e e e e e e e e e e e e e 21
6.3.1 Inorder embedding oL oL L oL 0oL 21

6.3.2 A proximity preserving path embedding 22

6.3.3 Parallel cyclic reduction, and multiple independent systems 23

6.4 Shuffie-exchangenetworkso Lo 24

6.5 Perfect shuffie networks . . R 26

6.6 Boolean k-cubes e e e 26

6.7 Shared memory architectures L. L. L0 00 e 29

6.8 Programmingissues0 e e et e e ae e 30

- 7 Summary and Conclusionso o oo oo s 30

8 Acknowledgement L e e e e e e e e e e e e e 36
QAPPENdiX e 37
9.1Ameshalgorithm L e e 37
9.2 A Complete Binary Tree Algorithm0, 37
9.3 A boolean k-cube algorithm o oo 0000 39
Bibliography o . e .. 43

ii

Solving Tridiagonal Systems on Ensemble Architectures
S. Lennart Johnsson
Departments of Computer Science and
Electrical Engineering
Yale University
November 1985

1. Abstract

The concurrent solution of tridiagonal systems on linear and 2-dimensional arrays, complete bi-
nary trees, shuffie-exchange and perfect shuffie networks, and boolean cubes by elimination methods
are devised and analyzed. The methods can be obtained by symmetric permutations of some rows
and columns, and amounts to cyclic reduction or a combination of Gaussian elimination and cyclic
reduction, (GECR). The ensembles have only local storage and no global control. Synchronization
is accomplished via message passing to neighboring processors.

The paralle]l arithmetic complexity of GECR for N equations on a K processor ensemble is
O(N/K +logaK), and the communication complexity is O(K) for the linear array, O(/K) for the
2-dimensional mesh, and O(log; K) for the networks of diameter O{logsK). The maximum speed-
up for the linear array is attained at K ~ (N/a)'/? and for the 2-d mesh at K ~ ((N/2a)?)1/3,
where a = (the time to communicate one floating-point number)/(the time for a floating-point
arithmetic operation). For the binary tree the maximum speed-up is attained at K = N, and for
the perfect shuffie and boolean k-cube networks, K = N/(1 + &) yields the maximum speed-up.
The minimum time complexity is of order O{N/2) for the linear array, of order O(N/3) for the
mesh, and of order O(logzN) for the binary tree, the shuffle-exchange, the perfect shuffie and the
boolean k-cube.

The relative decrease in computational complexity due to a truncation of the reduction process
in a highly concurrent system is much greater than on a uniprocessor. The reduction in the
arithmetic complexity is proportional to the number of steps avoided, if the number of processing
elements equals the number of equations. So is also the reduction in the communication complexity
for ensembles configured as binary trees, shuffle-exchange and perfect shuffle networks, and boolean
cubes.

Partitioning the ensemble into subsets of processors is shown to be more efficient for the solution
of multiple independent problems than pipelining the solutions over the entire ensemble. A balanced
cyclic reduction algorithm is presented for the case where each system is spread uniformly over the
processing elements, and its complexity is compared with Gaussian elimination.

Key Words. Odd-even cyclic reduction, Gaussian elimination, tridiagonal systems, parallel
computers, distributed computing, ensemble architectures, MIMD.

2. Introduction

The rapidly developing integrated circuit technology already allows hundreds of thousands of
devices on a single chip or, equivalently, a few microprocessors with local storage. With a small
amount of storage per processor, on the order of 10 16-bit processors can fit on a single chip
in state-of-the-art technology [50]. It is expected that this number will increase by one to two

1

orders-of magnitude within a decade. The low cost of reproduction of an integrated circuit makes
architectures consisting of a large number of identical processing elements sparsely and regularly
interconnected a viable alternative to large mainframe computers. We refer to such architectures
as ensemble architectures. A high nominal performance is attained by using a large number of
processing elements built in standard technology. An excellent overview of the principles guiding
VLSI architectures can be found in [51]. An assessment of the impact of VLSI on computer
architecture is also given in [17].

We assume that each processor executes its own instruction stream and has its own pro-
- gram store. The architectures are of the MIMD type (Multiple Instruction streams Multiple Data
streams) [7]. Synchronization is obtained via message passing. There is a high degree of uniformity
- in the algorithms described in this paper. There are only a few different types of code. The unifor-
mity conceptually simplifies concurrent algorithms, enhances program clarity, simplifies verification
of correctness, and makes program loading more efficient. Identical codes for different processors
can be reproduced within the ensemble. If the encoding of what processors should receive which
code can be made compactly, then the program loading may be particularly efficient [37]. With a
unique program for each processor the loading time might be of a complexity that is of the same
order as the arithmetic complexity of sequential algorithms. The time for program loading may be
a significant fraction of the total time, if the ensemble serves as an attached processor, and only a
few problems are solved for each loading of the program.

In the ensemble architectures we consider, the processing elements with their storage are inter-
connected as linear and 2-dimensional arrays, complete binary trees, shuffie-exchange and perfect
shuffie networks, and boolean cubes. These interconnection schemes have different characteristics
with respect to wiring complexity, extensibility, and communication capabilities between arbitrary
pairs of nodes.” For a feasibility evaluation of these interconnection schemes, it is necessary to
investigate the mapping of typical computations on to the ensembles. Several efficient algorithms
for matrix multiplication, FFT, sorting, and many other problems are known. In this report we
develop efficient distributed algorithms for the solution of tridiagonal systems.

The solution of tridiagonal systems of equations is part of several methods for the solution of
partial differential equations. For instance, fast Poisson solvers employing the method of Fourier
Analysis - Cyclic Reduction (FACR) [19, 20] and the Alternate Direction Implicit (ADI) method
both include the solution of tridiagonal systems. If the number of processing elements is large
enough to allow for one grid point per processing element, then a mapping may be made such
that a processing element stores only one equation and a tridiagonal system is solved in a distinct
subensemble. However, in general, multiple systems have to be solved in a set of processing ele-
ments. In some instances it may be possible to allocate the systems freely, but in other cases each
system may be distributed evenly over a subensemble [23].

We first give a brief characterization of a few mode) ensemble architectures, then review Gaus-
sian elimination and odd-even cyclic reduction [5] in the context of concurrent computation, and de-
fine the optimization of communication in an ensemble architecture as a graph embedding problem.
In section 5 we investigate the arithmetic and communication complexity of Gaussiar elimination
and odd-even cyclic reduction on a parallel computer with ideal communication capabilities, but
finite computational resources. We also investigate the concurrent solution of a tridiagonal system
with multiple right hand sides, and the solution of multiple independent systems. In section 6 we

2

present algorithms for the mapping of odd-even cyclic reduction on to linear and. 2-dimensional
arrays, followed by a complete binary tree algorithm of arithmetic and communication complexity
O(logaN) for a system of N irreducible equations and N processing elements. We use this tree
algorithm to obtain an algorithm of comparable complexity for the shuffie-exchange network. Odd-
even cyclic reduction on a perfect shuffie is discussed next. The boolean cube algorithms we present
have a complexity that is of minimum order, and use properties of Gray codes in the local control
of communication operations. All algorithms have entirely distributed control. Section 7 contains
a summary and conclusions.

Throughout the analysis we consider the performance gain possible through truncated cyclic
reduction, and the solution of multiple tridiagonal systems as well as the solution of a tridiagonal
system with multiple right hand sides.

Independently and concurrently Gannon and van Rosendale [9] have undertaken a similar
study. In the case of finite resources, i.e., multiple equations per processor, they perform local
eliminations according to an algorithm by Sameh et ali [48, 34], which yields a reduced pentadiag-
onal system with two equations per processor. In the case of tridiagonal systems this difference is
insignificant with respect to computational complexity if ;N 3> K. However, in the generalization
of the algorithms described here to arbitrary banded systems the difference becomes significant.
With the partial elimination order determined by a symmetric permutation of rows and columns,
as in nested dissection and the partitioning method of Wang, not only is the arithmetic complexity
lower, but the scheme also preserves symmetry and positive definiteness, should the original matrix
have these properties [29]. We also treat the case where multiple independent tridiagonal systems
shall be solved and describe a balanced cyclic reduction algorithm. We also compare the complexity
of this algorithm with Gaussian elimination and derive the conditions under which one or the other
is of minimum complexity.

In the following, N = 2" — 1 denotes the number of equations in the tridiagonal system, K
the pumber of processors in the ensemble, P the number of tridiagonal systems to be solved, NR
the number of right hand sides, ¢; the time for local data fetching and arithmetic, ¢, the time for
interprocessor communication, & = t./t,, and 7 the time for a communication start-up.

A few sample programs in pseudo code are contained in the Appendix. The programs serve to
illustrate a programming style for multiprocessor systems in which synchronization is obtained via
message passing. All sample programs are written for the case N = K and NR = 1. The programs
also illustrate the degree of program uniformity for cyclic reduction on the various ensembles.

3. Ensemble Architectures

One important property of an ensemble architecture with respect to algorithm performance is
the diameter of its corresponding graph. The diameter gives a lower bound for the time to perform
global communication [10]. Global communication is required for the solution of irreducible systems
of equations, since any component of the solution vector depends on all elements of the right
hand side, and all matrix elements. However, note that the global dependence may be sufficiently
weak to allow for good local approximations, and thereby eliminate the requirement for global
communication. In the case of cyclic reduction the reduction process may be truncated after a few
steps if the system is sufficiently diagonally dominant. Communication is everywhere local.

The diameter of a K node linear array is K/2 and that of a 2-dimensional -mesh with end-
around connections /K. The lower bound of the communication complexity of those two ensemble
configurations is of a higher order than the arithmetic complexity for the solution of tridiagonal
systems on a PRAM [8] model of computation.

The diameter of a complete binary tree of 2*¥ — 1 nodes is 2(k — 1), the diameter of a 2* node
shuffie-exchange graph is 2k — 1 and that of a boolean cube of 2% nodes is k. The lower bound for the
communication complexity for these ensembles is the same as the order of the arithmetic complexity
for the solution of tridiagonal systems on a PRAM model. The ensembles with a diameter of order
O(k) are potentially capable of solving tridiagonal systems in a time proportional to the lower
bound for limited fan-in circuitry. In this paper we devise mappings of cyclic reduction on to these
ensembles such that the system is solved in a time proportional to the lower bound.

In light of the evolving VLSI technology it is conceivable that dedicated circuitry can be used for
tridiagonal solvers. For the design of hardware for tridiagonal solvers in VLSI the area requirement
of the various ensemble configurations is also important. Another important characteristic is the
number of communication channels needed between chips when the ensemble is implemented on
several chips, which is the case in today’s technology. A complete binary tree of K nodes requires
an area of O(K) based on the Thompson grid model {55, 56, 4], if there is no restriction on the
placement of nodes. The area is increased to O(Klogo K) if all leaf nodes are placed on the boundary
[3]. A shuffie-exchange network requires a layout area of order O(K?/log2K) and a boolean cube
an area of order O(K?) [35]. The complete binary tree not only requires the smallest area, but also
allows for a partitioning such that only 4 off-chip channels are required independent of the size of
the subtree that fits on a single chip and the size of the tree being assembled [36, 2]. It also has the
smallest lower bound, O(\/I_f Jloga K) for the maximum length of any wire interconnecting nodes
[40, 47). For a boolean cube the maximum wire length is of order O(K) [35] and the number of
channels required for interchip connections is equal to the number of nodes implemented on-chip
X the number of off-chip dimensions.

The binary tree has definite advantages over the shuffle-exchange and boolean cube configura-
tions from a designer’s point of view. Moreover, the shorter wires may allow the clock rate for the
binary tree to be higher than for the other two configurations, giving it a possible edge also with
respect to running time. For our complexity estimates we assume that a processor can perform
one communication on two of its ports concurrently with arithmetic operations. The time for any
arithmetic operation is ¢4, the time for communicating one floating-point number is t., and the
time for a communication start-up is 7.

"~ 4. Elimination Methods on Parallel Architectures

4.1. Sparse Elimination
In this paper we will make use of Gaussian elimination as well as odd-even cyclic reduction.
Odd-even cyclic reduction is equivalent to Gaussian elimination performed on a permuted system of
equations. The relationship between the two methods is easily seen from the graph representation of
- elimination [39]. In this representation a non-zero matrix element is represented by a directed edge
- between two vertices labelled with the indices of the matrix elements. For a symmetric matrix the
edges may be considered as undirected. In the graph model the elimination of variable ¢ corresponds
" to the removal of edges incident on vertex i. New edges are inserted, or the values associated with
existing edges are changed, so that after the elimination of variable ¢ there exist, for each edge j:
incident upon 1, edges from node j to all nodes upon which edges emanating from 1 terminate.
The graph corresponding to a symmetric tridiagonal matrix of order N is a path of N nodes.
The graph corresponding to a tridiagonal matrix is a perfect elimination graph [45], and the elimi-
nation order defined by sequentially eliminating the variables from one end of the path to the other
(or from both ends towards the middle) is a perfect elimination order, i.e., no fill-in is generated.
The cyclic reduction algorithm defines a partial order of elimination. This partial order is
the same as the partial order produced by nested dissection [13, 12], which minimizes the order
of the solution time on a PRAM model of computation [24]. Even though nested dissection is
asymptotically optimal with respect to the order of the arithmetic operations [38], its arithmetic
complexity is approximately twice that of Gaussian elimination for tridiagonal systems (17N -
18logo N+2 compared to 8N —7). Elimination in the partial order defined by cyclic reduction (nested
dissection) yields Jfill-tn, resulting in a higher arithmetic complexity than Gaussian elimination. The
order of the-arithmetic complexity is the same. The partial order of eliminations is often represented
as elimination trees [6], or quotient trees [11]. The elimination trees for Gaussian elimination, 2-way
Gaussian elimination, and cyclic reduction are shown in Figure 1.

*

® »

Figure 1: Elimination trees for Gaussian elimination, 2-way
Gaussian elimination, and cyeclic reduction.

5

In cyclic reduction 277 variables are eliminated in step j = {1,2,...,n—1}. On a uniprocessor
the elimination in each step is performed sequentially. But, in spite of this fact and the higher
arithmetic complexity of odd-even cyclic reduction, it is preferable on most architectures with
pipelined arithmetic units, such as vector architectures. The reason is that in Gaussian elimination
only one {or two) variable(s) can be eliminated concurrently, and the number of operations required
for each such elimination is very limited in atridiagonal system (5 in the forward phase, 3 in the
backsubstitution). Note however that for a banded system of half bandwidth 3> 1 the concurrency
in the elimination of a single variable increases, and the number of variables that can be eliminated
concurrently decreases [28].

To derive estimates of the solution time on an ensemble architecture it is necessary to incor-
porate the communication required for the elimination operations. We consider several cases:

o The ensemble is sufficiently large to hold one equation per processing element.
» Multiple equations per processing element. 4

o Multiple right hand sides.

o Multiple independent tridiagonal systems.

4.2, Odd-Even Cyclic Reduction
A tridiagonal system of irreducible linear equations Az = y, where A4 is of dimension N = 2"-1,

can be presented in matrix vector form as:

by T)1
a; by ¢ x7 Y2
a3z bz c3 z3 ¥3

ay by N YN

Odd-even cyclic reduction proceeds in a reduction phase succeeded by a backsubstitution phase.
Using subscripts for equation numbers and superscripts to denote reduction and backsubstitution
steps, cyclic reduction is defined by the following set of equations:

Reduction
J oo popt—l
a; = €G] 5y
o= fc,’+2,_,

i
b: 4 bJ-l + e,cJ-. J—l + f) .+2,_1
y" yj—l + e.y’ gi-1t+ i +2;-x
e = "l/b'_z,_,

f. = —CJ /b,+2:-1

where 1 = 27,2 x 27,3 x 2/,...,2" — 2/, for reduction steps j = 1,2,...,n — L.
The initial conditions are a = a;, b = b,,c = ¢;, and y? = ;.
After n — 1 reduction steps only one equation of the following form remains:
2n—1x0 + bgv--—l:l:T"1 + 02,,_113211 = ygn—ll

6

A correct solution for zgn-1 is obtained with,zo = zy4; = 0. Remaining variables are obtained
through backsubstitution.

Backsubstitution

n~1 n—1
Tgn~1 = ygn-l/bgn—l

el . gl -1 i1
Iy = (y': 1- af Timai~1 =~ b': I,'+2"—x)/b';

where i = {2/-1,3 x 2771 5 x 2071, 2" — 2"} and j = {n - L,n - 2,...,1}.

In the above algorithm, 12 arithmetic operations are needed per equation in the reduction
computation, and 5 per unknown in the backsubstitution. A careful count gives a total of 17N —
18n + 2 arithmetic operations, disregarding index computations.

If the matrix A is strongly diagonally dominant, then a{ and cf tend to zero with 7. The
stronger the diagonal dominance the more rapid is the convergence. If for j = m, | af: |« € and
| cf [& €, where € is an acceptable error bound, then the reduced tridiagonal system at step m
can be treated numerically as a diagonal system. No further reduction computations are necessary.
Instead, a diagonal system of 2"~™ ~ 1 equations is solved, and the backsubstitution process started.
This truncated cyclic reduction method requires 2m steps. The reduction in the total number of
operations is 16(2"™™ ~ 1) — 18(n ~ m) + 2. Solving partial differential equations by difference
approximation yields matrices for which acceptable precision renders values of m in the order of
10 — 20, independent of the size of the matrix [18].

The reduction phase terminates when one equation with one unknown remains. If several
reduction steps terminating in different equations are carried out concurrently, then the backsub-
stitution phase becomes unnecessary. Hockney describes such a cyclic reduction method and refers
to it as Parallel Cyclic Reduction [18]. The tridiagonal system is extended with equations for ¢ < 1
and ¢ > N such that a; = ¢;, =0 and b; = 1 for i > 1 and ¢ > N. The parallel cyclic reduction
algorithm is of arithmetic complexity O(NlogsN), but needs only half the number of sequential
steps (logo N instead of 2logs N).

4.3. A Computation Graph for Cyclic Reduction

In studying the mapping of computations on to a network of processing elements we represent

the variable dependencies and the operations performed upon the variables by a directed graph.

- Nodes correspond to operations consuming and producing data, and directed edges to communi-
cation of data. Edges are directed from the source towards the sink. Similarly, we describe the
processing ensemble as a graph with nodes corresponding to processing elements with local storage,
and edges to interconnections. The mapping problem becomes a problem of embedding one graph
in another. In general, the embedding problem should be viewed as a dynamic problem due to the
dynamic character of the computation graph.

We represent the coefficients of one equation, the corresponding right hand side(s), and the
unknown(s) corresponding to the column of the diagonal element with one node in the computation
graph. Hence, for one right hand side 5 storage cells are required in each node. The nodes in the
computation graph in Figure 2 are labelled with the equation number, starting from 0. The

. superscript denotes the reduction step during which the equation is modified.

7

Figure 2: A computation graph for odd-even cyclic reduction.

In the interest of conserving storage, nodes in the same column of the computation graph in
Figure 2 can be identified. The storage requirement is approximately half of that required with
the nodes stored in distinct storage cells. The storage conserving scheme is one source of poor
performance of many implementations of cyclic reduction on architectures with primary storage
partitioned into banks [33]. The degradation is easily seen from Figure 3, in. which nodes in the
same column are identified.

3 3

2 2 2
Fer 1010 oml @‘-1-0
8 9 10 11 12 18 14 15

Figure 8: A storage conserving computation graph for cyclic
reduction.

0-1-*@41-0—1 1=0=1

1 2 3 4 5§ 6 7

With 2F storage banks and cyclic storage, as performed by most FORTRAN compilers, all
equations j such that ¢ = jmod2* are assigned to bank . After k reduction steps all equations are
in the same bank. The performance may be degraded further towards the end of the reduction phase
if the storage is pipelined. In such a case, and only few equations participating in each reduction
step, Gaussian elimination may be preferable to cyclic reduction with respect to storage bandwidth.
(It may also be preferable with respect to the time for arithmetic on a pipelined- architecture for
few equations.) With an odd number of storage banks no bank conflicts occur in cyclic reduction.

5. Finiteness

If the number of equations is greater than the number of processing elements, then several
equations have to be identified with the same element (assuming it has sufficient storage). It is
desirable to perform the identification of equations such that the amount of arithmetic is distributed
as evenly as possible throughout the computations, without excessive communications. There are

8

two commonly used schemes for identification: consecutive and cyclic. In the consecutive scheme
all equations 1 = {0,1,.., N — 1} that satisfy the relation p = |{K/N| are identified with partition
p,p={0,1,...,K — 1}. The number of partitions is K. In cyclic storage all equations ¢ that satisfy
the relations p = tmodK are identified with partition p. The consecutive scheme for identification is
also often referred to as domain decomposition or substructuring. The cyclic storage scheme yields
a higher processor utilization for LU-decomposition on dense matrices [21, 30, 26).

Both the consecutive and the cyclic schemes for identification result in quotient graphs with
either [N/K] or [N/K] equations per node. Though this is the best possible balance in the
distribution of equations it does not necessarily translate to an even distribution of arithmetic, as
already mentioned in the.case of banked storage architectures.

We now show that the consecutive scheme for identification is superior for the solution of
tridiagonal systems of equations. The analysis will be carried out first for cyclic reduction, then
for a combination of Gaussian elimination and cyclic reduction, where the Gaussian elimination is

_performed within partitions, as in the substructured Gaussian elimination in [57). Then, we show
the relationship between the consecutive scheme, and the algorithms by Sameh et. al., Wang, and
incomplete nested dissection. '

The set of partitions is denoted P = {P, P, ..., Px—1}. Let the subset of P that is assigned
[N/K| equations be Q = {Q;}, and the subset assigned [N/K] equations be R = {R;}, where
|R| = NmodK. For an ensemble of linearly interconnected processors there is no topologically
natural choice of K. For a 2-dimensional mesh, K is naturally chosen as the product of two
integers, often as a square for reasons of symmetry. For complete binary trees we take K = 2F — 1,
implying that we assign one partition to each node of the tree, not only to the leaf nodes. For
shuffle networks and boolean cubes, K = 2*.

§.1. Domain decomposition

5.1.1. Communication aspects of cyclic reduction -

For the mapping of partitions on to nodes in a complete binary tree, the following observation
is useful. For K = 2¥—~1 and N = 2" - 1, the number of partitions with [N/K equations is equal
to the number of nodes in a tree with nmodk levels, i.e., |[R| = 2"™°% — 1. If [N/K] equations
are assigned to the top nmodk levels of a k-level complete binary tree labelled in inorder [1], then
the first n — k reduction steps results in a reduced system that has one equation per tree node.
Moreover, the difference in the number of equations subject to elimination operations in any pair
of partitions is at most one, throughout the entire reduction phase [25].

For K = 2%, |R| = K - 1, i.e., one partition performs elimination operations on one equation
less than the other partitions during the first n — k reduction steps.

With respect to interpartition communication needs we first establish the following.

Lemma 5.1. In the first n ~ k reduction steps, partition P; only communicates with partition Pj,;
fori={0,1,2,..., K — 2} and partition P;_; fori= {1,2,..., X — 1}.

Proof. The number of indices assigned to a partition is at least [NV/K|. The index difference be-
- tween equations used in the elimination operations is increasing monotonically during the reduction

9

phase, and is 2"~*-! for step n — k. But, the equation index set in each partition is consecutively
ordered and 2"~*-! < |N/K].

By Lemma 5.1 the interpartition communication during the first n — k reduction steps is
entirely between adjacent partitions. However, it is also necessary to establish the direction of
communication, particularly if the direction of communication changes. If the direction of com-
munication is changing from one reduction step to the next pipelining of the communications for
successive reduction steps cannot be used to “hide” the latency associated with long routing dis-
tances, if adjacent partitions are mapped to processing elements far apart. A proximity preserving
path embedding is not necessarily optimal with respect to communication time. For the complete

binary tree a proximity preserving path embedding yields a communication complexity of order
O(log2K) [25).

Theorem 5.1. In the set of partitions P, = 2¢=*=1{1,3,5,...,(2**! = 1)}, s = {0,1,....k — 1},
|P| = 2F — 1 there exists at least one partition which changes direction of communication with one
of its adjacent partitions s + 1 times for every k reduction steps.

We omit the proof of Theorem 5.1 and refer to [25]. The theorem states that among the odd
partitions there exists at least one partition that changes the direction of communication with one of
its neighboring partitions k times for every k reduction steps. Figure 4 illustrates the interpartition
communication.

. —— -

q

VNN N

12364's67809101 LR1314151617 18 19 2021 2223 24 25 26 27 X

Figure 4: Partitioning of the computation graph of cyclic
reduction.

Corollary 5.1. The communication for successive reduction steps can only be partially pipelined.

Corollary 5.2. If each partition is assigned 2"~**1 or 2"=F consecutive indices, |P| = 2* — 1, then
the direction of commupication is constant for the first n — k + 1 or n — k reduction steps.

The benefit of modifying the number of equations N to the form 2™ (2* — 1) is that the number
of indices per partition is even for the first several reduction steps and it is possible to pipeline the

10

_ communications.. This'advantage is obtained at the expense of a possible increase in the arithmetic
complexity of at-most a factor of 2 for the first n — &k + 1 steps. The arithmetic complexity is the
same for subsequent steps.

Theorem 5.2. For K = 2* the direction of exchange is constant during the first n — k steps [25].

The number of arithmetic operations performed in sequence is approximately (8+9NR)N/K+
(5+8NR)log K, where NR is the number of right hand sides. For this estimate it is assumed that
the computations required for the elimination operations on the last K rows are shared between
_two processing elements: the one holding the row used for the elimination, and the one holding
the row subject to elimination. It is also assumed that the reduction and backsubstitution is
performed identically on all right hand sides. We will later present a scheme for improved load
- balance during the final k reduction steps. The backsubstitution phase can be implemented with
communications as in a complete binary tree, in which case most communications include two
floating-point numbers, or in a way corresponding to the communication pattern in the reduction
phase. In the latter case each communication only includes one floating-point number per right
hand side.

5.1.2. Gaussian elimination locally, Cyclic Reduction globally

In cyclic reduction the partition assigned equation 2”~! — 1 requires a total of n — 1 commu-
nications. For the first n — k reduction steps the communication is with adjacent partitions, but
during the last k steps with partitions differing in index by 27,7 = {0,1, ...,2""2}. The lower bound
for the communication time is O{logo K') for ensembles with nodes of degree three.

If instead of the partial elimination order defined by cyclic reduction, the elimination order
within partitions is taken to be the order of the equation indices (increasing or decreasing order),
then the communication requirements are reduced to one communication for the first n—k reduction
steps. The reduced system after n—k local eliminations can still be made a tridiagonal system. The
fact that local forward and backward elimination and one communication with adjacent partitions
yield a reduced tridiagonal system was observed by Wang [57]. The method of Sameh et al.
[48, 34] uses no communication in the first n ~ k reduction steps, but results in a pentadiagonal
system. Similar schemes have also been described in [44] and [9]. The advantage of the local
elimination order with one communication, as described below, is that it preserves not only diagonal
dominance but also symmetry and positive definiteness, also when applied to arbitrary banded
matrices [29]. We refer to the algorithm with reduced communication complexity as GECR for
Gaussian elimination - cyclic reduction. It requires log, X communications for the reduction phase.
Algorithm GECR proceeds in three phases:

e Local forward and backward elimination. The backward elimination requires one communica-
tion with an adjacent partition.

e Solve a reduced system of equations with one equation per partition by cyclic reduction.

e Local backsubstitution.

In phase 1 fill-in occurs in columns i x N/K — 1 of partition i, § = {1,2,...,K ~ 1}, and
columns (¢ + 1)N/K — 1 of partition ¢, ¢ = {0,1,..., K — 1}. The last equation of each partition in
this system of equations form a tridiagonal system in the variables corresponding to the columns

11

x x
x x
x x -Processor 1
X x
x X
X x X
x x x
x x x Processor 2
X X X
X X x
X X X
X x X
x X X Processor 3
X X x
X x x
X X x
X X X
x x x Processor 4
X X x
x x

Figure 5: The matrix after phase 1.

({+1)N/K ~ 1,5 = {0,1,2,..., K — 1}. The appearance of the matrix after phase 1 is shown in
Figure 5.

_ The arithmetic complexity of GECR is almost identical to that of cyclic reduction, because
of the fill-in in the forward and backward elimination. Phase 1 of GECR requires 4 arithmetic
operations for each elimination operation on the matrix, except in the first and last partitions,
which yields a total of 8 arithmetic operations for the forward and back elimination. For the first
and last partitions the forward and backward eliminations require a total of 5 arithmetic operations
per equation. There are 2 operations on each right hand side in each of the forward and backward
eliminations, i.é., a total of 4 arithmetic operations per right hand side in phase 1. There are 5
arithmetic operations per right hand side in phase 3. The communication complexity of phase 1 is
1. The number of communication actions for phase 2 is 2(logo K ~ 1). With a symmetric allocation
of matrix elements as described in the section 5.3, the number of arithmetic and communication
operations may change slightly.

Note that if a processing element has pipelined arithmetic units and communication is fast,
then the fact that cyclic reduction “vectorizes” may make it preferable to GECR with respect to
computational complexity. However, if there are many right hand sides, or if multiple independent
problems shall be solved, then “vectorization” across right hand sides, or across different problems,
can be used in conjunction with GECR.

The fact that algorithm GECR preserves diagonal dominance in phase 1 can be exploited for
truncation of the reduction process if the diagonal dominance is sufficiently strong [15, 16, 18, 29,
44]. '

12

5.2. Cyclic storage .

Under the consecutive scheme for identifying equations with partitions, the arithmetic com-
plexity is of order O(N/K + logoK) and the communication complexity for GECR is of order
O(log2 K). The order of either of these two complexity measures cannot be reduced.

With the cyclic scheme for identifying equations, K must be odd in order to keep the balance
of equations subject to elimination operations as even as possible throughout the computations.
However, cyclic partitioning is inferior to the consecutive partitioning scheme with respect to com-
munications. This is true for cyclic reduction, and GECR offers no advantage since successive
equations are in adjacent partitions. There is no locality in data allocation that can be used ad-
vantageously with respect to communication. For a dense system of equations there is no data
locality of elimination operations, and the cyclic storage scheme can be used to balance the load
[21, 30]. In the solution of tridiagonal systems all elimination operations are local. The cyclic
scheme is inherently inferior to the consecutive scheme with respect to computational complexity
for tridiagonal (and banded) systems.

5.3. Divide-and-conquer

In this section we relate the methods of incomplete nested dissection [13], Wang [57], and
Sameh et al [48, 34]. Incomplete nested dissection on the graph of a tridiagonal matrix is a
recursive bisection. The separators are single nodes. The bisection is terminated when there are
K = 2% partitions for K processors. Labeling the bisectors last and in the same order as in the
initial labelling yields an elimination tree as in Figure 6. This relabelling corresponds to row and
.column permutations to yield a system of equations as in Figure 7. The method by Wang can also
be described in terms of a set of separators, and permutation of rows and columns. The elimination
tree is labeled K-section in Figure 6, and the matrix is shown in Figure 8.

Incomplete nested dissection K-section
Figure 6: Partitioning of tridiagonal systems of equations.

The Figures 7 and 8 also indicate the association of matrix elements with partitions. If the
association of matrix elements with partitions is made the same in the method by Wang as in the
nested dissection method, then the elimination operations in the first phase are completely local,
but an “assembly” of the reduced tridiagonal system requires communication. The matrices to be
assembled are 2 X 2 matrices, except for the first which is a 1 X 1 matrix. In case of nested dissection
the last matrix is also of size 1 x 1. The matrices to be assembled are shown as squares in the
Figures 7 and 8. :

13

2

e s
¥
-

X1 . ot
X XX KL
1—--,(—%3(—--5 :X)(' |>(T L
XXX XX R
X xx! %=y -r__.-.;(.).(.._'..._.',%%—-} Px=Py
RS LA oBoee L
- - - N [
xxx L --.’5?1--.__’ e il
P XX X | : : xx X
p XXX s ' XXX vy 00
L L. & b I U S Xy vy 2
X KX 1 XX PRI . 01l
X e B el e 4 R 3
P XXX i it R T K]~
o XX 3 b ek e S -] -
i -~
’ ~ - 4
«° X
K
XX %
% XX
x x X
x XX
x - X X=
x xX
X x X
X X
X X
%X, .. X
X X
™ %X
+ XX

Figure 7: Matrix partioning and permutation for incomplete
nested dissection.

If an even number of partitions are desired, as for boolean cube configured ensembles, then
nested dissection is a convenient partitioning startegy. If the number of partitions is of the form
2k — 1, as in complete binary trees, then the K-section strategy is preferable. With the symmetric
association of matrix elements and partitions, the elimination operations on the reduced system
can take place as the block matrices are assembled, as is common practice in sparse matrix codes,
see e.g. [22], [6]. In the case of nested dissection elimination is performed on pairs of matrices
in the form of a complete binary tree. In the case of K-section one leaf node is missing. The
indicated elimination order corresponds to a particular permutation of the separators. After the
elimination phase follows a backsusbstitution phase that proceeds from the root towards the leaf

nodes. Embeddings of the elimination trees in various ensemble architectures will be discussed in
section 6.

14

Y - -

X
~..-.RLI><....--1J
~

P

w

)

|

WX

s

t

1)

1

]

)

| Y
XX

4

Poxx x

X

X

X
x_ .1

]
|
1]
'
!
]
i
]
t
]
1
-1
'
L]
X
X
=10

- -

x X
X S—
|
]
2
1=
Xy
)
'
'
X

w
X
X

- — -

X
"
POXX XX XX
XXX Xy
XX X '

hd
X
1
X X XX
¥

—-—§<">(
XXX
X X

Figure 8: Matrix partioning and permutation for K-section.

The algorithm by Sameh et. al. cannot be viewed as a symmetric permutation of rows and
columns (PAPPTz = Py), a local solve, global solution of a reduced system, and a local backsub-
stitution. The reduced system is pentadiagonal and of order 2(K — 1). It can be arranged into
a tridiagonal system by pairwise column permutations, but the potential symmetry and diagonal
dominance is lost.

5.4. Multiple tridiagonal systems.

If there is complete freedom in allocating equations and right hand sides, then the computations
could be localized by solving the system for each right hand side (or each independent system) in
a subensemble of [K/N R] processing elements.

We assume that the system of equations with the multiple right hand sides is distributed with
one equation per partition for all right hand sides. For multiple independent tridiagonal systems
we also assume one equation per partition. Evenly distributed tridiagonal systems occur naturally
in the solution of Poisson’s problem on ensemble architectures [30] by so-called fast solvers, and
" in the Alternating Direction Implicit (ADI) method [23]. If the number of equations is greater

15

than the number of partitions, then we assume the consecutive scheme for identifying equations
with partitions, and local forward and backward elimination. We first compare the complexities
of solving a system with NR right hand sides and one equation per partition by either Gaussian
elimination or cyclic reduction, then consider the concurrent solution of P independent tridiagonal
systems. .

The analysis in this section uses an idealized model of computation in which all interpartition
communiction requires one start-up. The results for Gaussian elimination apply to all ensembles
considered in the next section. The arithmetic complexity derived for cyclic reduction also applies
for the ensembles studied next, but the communication complexity is higher, in general.

5.4.1. Multiple right hand sides

For Gaussian elimination the operations on different right hand sides can be pipelined to
keep the processor utilization as high as possible. The parallel arithmetic complexity of 2-way
Gaussian elimination for N = K is (3 + 5NR)(K — 3)/2 + 5 + 6N R without pipelining of the
operations for different right hand sides. The number of elements communicated in sequence is
(14+ NR)(K — 2) and the number of communication actions (start-ups) is K — 2. In the case of
maximum pipelining the arithmetic complexity is 3K + 5N R — 6, the number of element transfers
in sequence is K + 2NR — 1, and the number of communication actions is also K + 2NR — 1.
Optimizing packet sizes, i.e., the amount of data per communication, such that the total time is
minimized yields

2V(K/2 - 2)7(/(NR+2)(tc + 2ta)+ VNR(tc + 3ta)) + (5NR — (K/2 - 1))t + 2N Rt + (K - 4)r.
(5.1)

The optimum packet size in the forward elimination is 1/ WL_W—L—'}K 2{‘7_5"*‘2 _:2‘ and in the backward
< a
sl / NRr
elimination TS LTa)

A naive implementation of cyclic reduction in which the computations for all right hand sides
are treated identically yields an arithmetic complexity of (5 + 8NR)(logr K — 2)+ 5+ 6NR for
N = K, if the operations required for the elimination of the two off-diagonal elements in a row
are distributed over two processing elements. Two communication actions per reduction step are
required. The communication complexity is (3 + NR)(loga X — 2) + 2(1 + N R) and the number of
start-ups is 3(logo K — 1), assuming one start-up per interpartition communication. If all operations
for the elimination of the off-diagonal elements in a row are performed in one processing element,
then the arithmetic complexity is (8 + 9N R)(logo K — 2) + 5+ 6N R and the number of start-ups
is reduced to 2(log2 K — 2).

In the naive implementation of cyclic reduction for multiple right hand sides the.processor
bolding equation 2%~ — 1 is a bottle-neck. It participates in logo K reduction steps for each right
hand side. Balancing the computations such that for I right band sides the reduction phase
in cyclic reduction converges to distinct processors for different right hand sides eliminates this
problem. The balancing is accomplished by adding “virtual” equations at either end of the system
of equations. These virtual equations do not change the solution to the real system, and do not
incur any arithmetic or communication operation. The principle in this balanced cyclic reduction
algorithm is the same as in Hockney’s parallel cyclic reduction [18], but we perform concurrent
reduction processes on different right hand sides.

16

To estimate the arithmetic and communication complexities for the balanced cyclic reduction

... algorithm, one can. proceed from the computation graph in Figure 2. K — 1 computation graphs

of height log2 K and one of height logo K — 1 are superimposed, shifted one step with respect to
each other in the horizontal direction. It is easily seen that each processor performs a number of
arithmetic operations identical to that of one complete cyclic reduction computation. Hence, the
arithmetic complexity is 17K — 18logo K + 2 for every set of K right hand sides, and for N R right
hand sides approximately (17K — 18logo K + 2)[NR/K). The speed-up is linear. It is also clear
from superimposing the computation graphs that the number of communication actions (start-
ups) occuring sequentially is logo K. However, the amount of data communicated increases, and is
approximately. (6K — logo K)[NR/K]. The complexity of the balanced cyclic reduction algorithm
is approximately

(17K = logs K + 2)tq + (5K — logs K)t)[NR/K] + 2logy K. (5.2)

Note that in the balanced cyclic reduction algorithm the operations on the system matrix is
repeated for each right hand side. The parallel arithmetic complexity of cyclic reduction is always
lower than that of Gaussian elimination for NR = 1, K > 3, but for NR > 1 pipelined Gaussian
elimination may be of a lower complexity. The value of N R at which the cross-over occurs depends
on the communication and arithmetic bandwidths, and start-up times. The cross-over point in the
idealized architecture is determined by equations 5.1 and 5.2.

In general, interpartition communication requires more than one communication, as will be
shown in subsequent sections. From the complexity expressions for the idealized architectute it is
- clear that if the start-up time for communication is high, then cyclic reduction is always preferable.
~ On the other hand if the start-up time can be ignored compared to the times for arithmetic or the
data transfer time, then' Gaussian elimination has an advantage for NR sufficiently large. Both
Gaussian elimination and the balanced cyclic reduction algorithm computes the solution in-place.
Another alternative is to perform a transpose of the data, solve the system locally and transpose
back. We will analyse the total complexity of this scheme for the boolean k-cube and compare it
with the tn-place algorithms.

5.4.2. Multiple independent tridiagonal systems
We first establish the following:

Theorem 5.3. If P tridiagonal systems-shall be solved on a K processor ensemble, P < K, and
there is no restriction on data allocation, then partitioning of the ensemble into P subensembles
yields a lower complexity than sharing the entire ensemble for all P problems.

Proof. Assume that the solution processes for the P problems on the entire K processor ensemble
are pipelined. Let the time be oK)+ #P. The first term corresponds to the propagation time, and
the second to the time for arithmetic in one processor. Then, if the ensemble is partitioned into P
subensembles, the time for arithmetic remains constant, since each subensemble must perform P
times the work; but for only one problem instead of P problems. The propagation term decreases
to a(K/P).

|

If each tridiagonal system is distributed evenly over the ensemble, then the same techniques
as were discussed for multiple right hand sides can be applied. For ensembles sufficiently small

17

compared to the number of problems, Gaussian elimination yields a lower complexity than cyclic
reduction, if start-ups can be ignored. In [23] it is shown that the cross-over point ignoring start-ups

is at approximately
K

P= 2(loga K - 2)

For a 2-dimensional N x NV grid problem P is of the form N/K. Cyclic reduction yields a lower
complexity than Gaussian elimination for N < 64 if K = 16, and for N < 512 for K = 64, again
ignoring start-ups. If start-ups are the determining factor, then cyclic reduction is preferable. An
alternative to solving each problem distributed across the ensemble is to perform local forward and
backward elimination, then rearrange the data for the global phase such that for P > K problems
each tridiagonal system is solved locally and then the solution is distributed to the original data
order. We analyze this scheme for the boolean cube.

6. Tridiagonal systems solvers on ensemble architectures

From the analysis above it follows that we only need to consider consecutive partitioning
(domain decomposition, substructuring). The computations proceed in three phases of which phase
1 and 3 are local, and phase 2 requires global communication. In the following we focus on phase
2, and assume that there is one equation per processing element. Depending upon the number
of systems to be solved, ensemble topology, the arithmetic and communication bandwidths, and
start-up times, cyclic reduction or Gaussian elimination may be preferable with respect to time
complexity for phase 2. The mapping of cyclic reduction on to linear arrays, 2-dimensional meshes,
complete binary trees, shuffle-exchange and perfect shuffle networks, and boolean cubes is the
subject of this section. The arithmetic complexity has been given above, and it suffices to consider
the communication complexity for the various mappings.

6.1. Linear arrays

We first assume that partitions are mapped statically to processing elements by identifying
partition indices with processor indices. We refer to the algorithm based on the static mapping
as an in-place algorithm. The communication in reduction step j is with processors at distance
27,7 = {0,1,...,k—2}. Instead of a static map an unshuffie operation can be performed between each
reduction step. The unshuffle operation moves equations subject to further elimination operations
into a subarray, preserving the relative order. We refer to the second algorithm as the shuffie
algorithm.

It is easily verified that the in-place algorithm has X —~ 2 start-ups, the same as 2-way Gaussian
elimination. The shuffle algorithm has 2(X — 3) start-ups. Unshuffie operations on an array of 8
processing elements are shown in Figure 9. The number of elements communicated .are the same
in the ¢n-place and shuffle algorithms, and it follows that the in-place algorithm is superior. The
shuffle algorithm is useful for 2-dimensional arrays, however.

Theorem 6.1. An tn-place algorithm for cyclic reduction on a linear array, with equation indices
identified with indices of consecutively labelled processors, has a lower communication complexity
than algorithms using shuffle operations.

For truncated cyclic reduction the in-place algorithm is even more advantageous than the shuf-
Jle based algorithm. For an #n-place algorithm the communication cost doubles for each reduction

18

1-2-8-4-6-6-7-8
1-8-5-7-2-4-6-8
1-6-8-7-2-6-4-8

Figure 9: Implementing shuffles of decreasing sizes on a linear
array” .

step, whereas the highest communication cost (half of the total) is incurred in the first step of a
shuffle based algorithm.

The total complexity for GECR on a linear array is of the form aN/K + Blog: K + AK. It
follows that the complexity attains a minimum for K of order O(v/N). If instead of cyclic reduction
Gaussian elimination is used for phase 2, then the total complexity is of the form aN/K +~K, and
the order of the optimum size array is the same as for GECR.

In comparing the complexity of Gaussian elimination and cyclic reduction for one right hand
side we derive a complexity estimate for 2-way Gaussian elimination of (4K + 2)t, + (2K — 4)t. +
(K —2)7, and an estimate of (17(log2K — 2) + 14)ts + (9K /4 - 5)t. + (K ~ 2)7 for cyclic reduction.

Theorem 6.2. Cyclic reduction on a linear array always yields a lower complexity than Gaussian
elimination for the solution of one tridiagonal system if a = t./ta < 1. Conversely, Gaussian

—

elimination is of a lower communication complexity if o = t./t, > 16.

The theorem follows directly from the complexity estimates. For a = 4 cyclic reduction is of a
lower complexity for k > 4, and for a > 8 it is of lower complexity for k > 5, assuming K = 2% - 1.

For multiple right hand sides or multiple independent problems a similar analysis can be carried
out. The complexity of Gaussian elimination for multiple independent problems is approximately
(K + 2P —4)(4ty + 2t +), if the communications are pipelined such that one equation is sent per
communication. Without pipelining the complexity is ((4t,+2t.) P+ 7)(K —2), and with optimized
packet sizes for the forward and backward substitution, the complexity becomes approximately

V2(K — 4)Pr(\/3t. + 5ta + V1 + 3ts) + 8Pty + 4Pt. + (K — 4)7. (6.1)

The optimum packet size for the forward phase is \/ m%%m and for the backward
Pr

phase \ BI=9)(t.+3.)

The time for the balanced cyclic reduction algorithm is approximately
(17K ~logo K + 2)ta + (5K — logo K)t.)[P/K] + (K - 2)7 (6.2)

The last term of the complexity estimates (6.1) and (6.2) are approximately equal. Basing the
comparison between the two methods on the remaining highest order terms of the two expressions

yields a cross-over point of P = 0.21%e/ 2+‘/15((11_:':/‘;/)2)(1+"/ 3 16(K —4)r/ty (a=1t./t,).

19

6.2. Two-dimensional meshes

We assume for convenience that the mesh has 2%/2 processing elements in each dimension.
We estimate the communication complexity of in-place and shuffie algorithms for two “serpentine”
embeddings of the partitions.

With a “serpentine” embedding proceeding from the upper left hand corner to the lower right
hand corner of the mesh, an tn-place algorithm requires communication between processors at
distance 2! in reduction step 7,1 € j < k/2. After k/2 steps there is one equation per row
that is subject to further elimination operations. The equations are at opposite ends of successive
rows, and reduction step k/2 + 1 requires communication between processors at a distance of 2k/2,
After yet another reduction step, processors with equations to be part of subsequent reduction
operations are located in every other row of the first column. The linear array algorithm is applied
at this point. The communication for reduction steps 7,k/2+2 < j £ k — 1 are between processors
at distance 2/7%/2=1, The total number of start-ups for the reduction and backsubstitution is
6(\/F ~ 1). With the “serpentine” starting and ending close to the center, as in Figure 10, the
number of start-ups is reduced to 2(2/K — 3), a reduction in start-ups by a factor of 1/3.

62 51 BO 40 48 47 48 45
53 54 55 56 41 42 48 44

60 50 68 57 40 8¢ 38 87
61 62 63 64 33 34 35 36
4 838 2 1828318028
B 6 7 8252627 28
12 11 10 © 24 28 22 21
183 14 15 16 17 18 19 20

Figure 10: An embedding with 2(2v/K ~ 3) start-ups.

The number of start-ups can be reduced further by using a shuffie algorithm for the first
k/2 reduction steps (and last k/2 backsubstitution steps) and an sn-place algorithm for the last
k/2 ~ 1 steps. The resulting number of start-ups for the “serpentine” embedding proceeding from
the upper to the lower left hand corners is 3VEK +1loga K — 4. After the first reduction computation
an exchange operation is performed between distinct pairs of adjacent processors in every other
row. This operation brings equations that are involved in the second reduction step into the same
set of columns. An unshuffie operation on columns moves the columns with even equations into
one half of the array. After ¥/2 communication, reduction, and exchange operations, and k/2 - 1
unshuffie operations of successively decreasing sizes, the equations that are taking part in the last
k/2 — 1 reduction steps are within one column. Figure 11 shows some reduction steps.

If the mesh has end-around connections from the end of one row to the beginning of the next
row, i.e., the mesh is effectively a twisted cylinder, then the in-place algorithm yields 3VK - 4
start-ups, if the equations are embedded from top to bottom in row major order.

Truncated cyclic reduction reduces the communication time, but not in proportion to the
number of reduction steps avoided, because of the nonuniform communication cost.

Parallel cyclic reduction can be implemented on the mesh such that the number of start-ups
is approximately 3v/K — 2. All processors are used throughout the O(logs K) reduction steps.

20

1=2=3=4¢ 1=2-8-4 1-8—2-4 1= =24
Pt Pl B R
878 =5 78 —5—8 7—5—8—8 7—5—6 ~8
I Py (I Pt
9-10-11-12 $-30-11-12 9111012 9-11-10-12
| 11 R Pt
16-15-14-13 15-16-13-14 15-13-16~14 16-18-14~18

reduction exchange unshuffie reduction exchsnge reduction

Figure 11: Odd-even cyclic reduction on a mesh.

The number of start-ups for multiple independent problems, or multiple right hand sides, is
approximately 2(3\/2(- —2). The total number of elements transferred between any pair of processors
is approximately 5N R for N R right hand sides (or N R problems). Note that two problems can
be solved concurrently by mapping one problem to processors 1 through K — 1, and the other to
processors 2 through K. After the first shuffle operation the two problems are confined to half of
the array (left and right in Figure 11).

6.3. Complete binary trees

6.3.1. Inorder embedding

Presnell and Pargas [42] propose a cyclic reduction algorithm of communication complexity
O(log? K) for complete binary tree configured ensembles. They map the equations to leaf nodes and
use rotation operations for communication. In [27] we present an algorithm for complete binary
trees that has a ‘communication complexity of O(logy K).

The partial elimination order of cyclic reduction as defined by the elimination tree suggests an
inorder mapping of partitions to processing elements. Such a mapping also allows for conservation
of storage, Figure 3.

With an inorder mapping of partitions to tree nodes, the first step of the cyclic reduction
algorithm requires k — 1 communication start-ups. Partition 2* — 1 is at distance k¥ — 1 from
partitions 2¥ —2 and 2*. Successive reduction steps can be pipelined. Each reduction step following
the first only incurs one additional communication action. The number of communications for the
reduction phase is 2k — 3. Backsubstitution requires k¥ — 1 communications, and the total number
of start-ups is 3logs K — 4. Figure 12 illustrates the inorder mapping of partitions to tree nodes.
The Appendix contains pseudo code for cyclic reduction on a complete binary tree.

In the binary tree algorithm based on an inorder map of equations to nodes of the tree, the
order of the time complexity cannot be reduced for truncated cyclic reduction. It takes k ~ 1
communications to complete the first reduction step. However, fewer communications are required
subsequent to this propagation phase. The backsubstitution phase still needs k¥ — 1 communication
steps, since Zg /9 has to propagate to the leaf level. For m reduction steps the number of start-ups
is 2(k — 1)+ m — 1, and the arithmetic complexity is proportional to 2m + 1.

The reduction in the estimated time complexity is proportional to the reduction in the number
of steps in the reduction process. The constant of proportionality varies from 1 to 1/3. The
relative reduction in time for concurrent cyclic reduction is much greater than on a uniprocessor.

21

fovel

Figure 12: Inorder labelling of a complete binary tree.

This property is a consequence of the fact that approximately half of the number of arithmetic
operations is performed in the first reduction step and the last backsubstitution step, one quarter
in the second step, etc.

6.3.2. A proximity preserving path embedding

The inorder embedding fails to take full advantage of truncating the reduction phase. A
proximity preserving path embedding has the potential to take full advantage of an early truncation
of the reduction phase, but requires O(log2K) communications for the complete cyclic reduction
algorithm. We describe a proximity preserving path embedding derived from the loop embedding
due to Sekanina [53, 46].

The path embedding in Figure 13 is generated by an algorithm that is a simple variation of the
algorithm described by Rosenberg and Snyder [46]. The labelling proceeds irn a depth-first manner.
Every other node is labelled on descent. Nodes are labelled in postorder on ascent, except nodes
on the path from the root to the leftmost and rightmost child which are labelled in inorder.

1. The nodes in the left subtree of the root are labelled in descending order, and the nodes in the
right subtree in ascending order.

2. After having descended one level the right child of a node is always visited before the left child
in the left subtree of the root. The converse is true for the right subtree of the root.

3. The nodes on the paths from the leftmost and rightmost leaf nodes to the root are labelled in
inorder.

The first modification only affects the label assigned to a node. The second modification is
made only to increase the formal similarity with a tree labelled in inorder. The two-labellings gen-
erated by the Rosenberg and Snyder algorithm and an algorithm with only the second modification
are isomorphic. The third modification can be made without the maximum distance between adja-
cent nodes being increased, since we are only embedding a path, not a loop. The distance between
the last labelled node in the left subtree and the first labelled node in the right subtree is of no
concern in the embedding of a path.

Theorem 6.3. The maximum distance between adjacent nodes in the path is 3 when embedded by
the path embedding algorithm.

22

0 | @ 1
o D o ® o

H O OO @ @ @& @ s
OOOOPDEOEOOHE®E®E

Figure 13: Mapping of a path to a binary tree preserving
proximity.

The proof follows that of Rosenberg and Snyder [46]. The modification of the arguments are
simple, and can be found in [25].
Though not used for truncated cyclic reduction, we notice the following property.

Theorem 6.4. The number of communication steps necessary to change the embedding generated
by the path embedding algorithm to an inorder embedding is k — 3.

Proof. The proof is in three parts.

t. The nodes on the paths from the leftmost and rightmost leaf nodes to the root, including the
leaf nodes, are labelled in inorder. The root is initially assigned its final inorder label. Its left child is
labelled after the right subtree of that node is labelled. Hence, itslabel is 2F~1—(2%¥-2—1)~1 = 22,
By induction it is also true for the remaining nodes along the path. The same property is clearly
true for the path to the rightmost leaf node.

#1. The number of communication steps is at least k — 3. In the left subtree of the root one
node at level 2 is labelled 2¥~1 — 1, i.e., it is odd and shall be at the leaf level in an inorder labelling.

#13. It remains to be shown that there is no conflict in data movement. Since the arguments for
the right subtree are symmetric, it suffices to prove that there are no conflicts in data movement
for the left subtree of the root. The left subtree of the node at level 2 that needs to be relabelled
is labelled after its right subtree. The labels start at 2*~? + 1 and end at 3 x 252 — 1. Hence,
no exchange between the left and right subtrees is necessary. The right child of the node at level
2 being considered has the label 3 x 2F~2, since it is labelled last in the right subtree. A local
exchange gives the node at level 2 the correct label. The theorem follows by induction.

6.3.3. Paralle! cyclic reduction, and multiple independent systems

Inorder mapping of equations to processors is not feasible for Hockney’s parallel cyclic reduc-
tion. With all odd equations mapped to the leaves, each step requires O{logoN) time. Pipelining
cannot be performed for all of the parallel reductions.

23

The inorder map allows the reduction phases of independent problems to be pipelined. The
computation of one problem is initiated before the reduction phase of the preceeding problem is
complete. Hence, except for the first problem, the propagation time from the leaves to the root is
masked by computations.

6.4. Shuffie-exchange networks

A shuffle-exchange network can be defined in terms of the binary encoding of the integers
{0,1,2,...,2¥ — 1}. Let (pg—ipi-a----P1P0),pi = {0,1},f = {0,1,...,k — 1} be node addresses. Then,
node (pg—1pk-2....p1po) is connected to node (pr—2pe-3....popk-1) (obtained by a cyclic shift). Fur-
thermore, node (pg-1pi-2....p10) is connected to (pe—1pk—2....p11). The edges obtained by cyclic
shifts are called shuffle edges, and the even-to-odd edges ezchange edges, [35]. Most nodes in a
shuffie-exchange network are connected to three nodes. Nodes (0...0) and (1...1) are only connected
to one other node, since a cyclic shift yields the same number. Nodes with addresses obtained
by cyclic shifts of the same bit string are said to belong to the same necklace. The number of
degenerate necklaces, i.e., necklaces with fewer than k nodes, is of O(VE), whereas the number of
full necklaces is of O(K /log2 K). An 8-node shuffie-exchange network is shown in Figure 14, and a
16-node network in Figure 15.

Figure 14: An 8-node shuffle-exchange network.

=

Figure 15: A 16-node shuffle-exchange network.

The 8- and 16-node shuffle-exchange networks are planar, but arbitrary shuffle-exchange net-
works are in general not planar. The diameter of a shuffie-exchange graph is 2k — 1, i.e., almost
identical to that of a complete binary tree. The maximum distance between consecutively labelled
nodes is 2(k — 2) and occurs between nodes (100..0) and (011..1). In general, the distance between
a pair of nodes is at most twice the number of bit reversals in the addresses.

24

 Theorem 6.5. A binary tree of 2¥ — 1 nodes can be mapped to a shuffie-exchange graph of 2* nodes
_ such that the distance between nodes adjacent in the tree is at most 2 in the shuffle-exchange graph.

Proof. Label the nodes in the tree in breadth-first order, starting at the root and assign it the label
1. The label assigned to the left child of node 1 is 2. The label of the right child is 2 + 1. The
label of the left child can be obtained by a left cyclic shift of the parent’s address. All nodes above
the leaf level have the highest order bit 0, and the left cyclic shift always generates an even address.
- Clearly, if a node of the binary tree is identified with a node in the shuffle-exchange network having
- the same address, then a parent node and its left child are adjacent. The right child of a tree node
- is mapped to the odd processor adjacent to the even processor of the left child. Hence, for every
- node in the tree, its left-child is at distance 1, and its right child is at distance 2.

12 13
&,
~ ~
@, 9
5 10 11
F N
6 7

Figure 16: A binary tree embedding in a 16-node shuffle-
exchange network.

For cyclic reduction on a shuffle-exchange network the partitions are mapped to the processors
as described by the tree embedding algorithm, and the inorder tree algorithm used with minor
modifications.

Equation . 2¥=1 - 1 is stored at a distance of 2k — 3 from equation 2¥~!. The number of
communication start-ups is 5k — 7. The above shuffle-exchange algorithm inherits the properties of
the tree algorithm. Hence, for truncated cyclic reduction there is still a propagation time of order
O(k).

It is possible to embed two trees in the shuffie-exchange network in such a way that for cyclic
reduction the computations for the two trees take place in distinct sets of processors. A processor
may be shared for communication purposes. If one tree is mapped to the shuffie-exchange network
as described above, then the other tree can be embedded by identifying a tree node with a processor
whose address is equal to the bit-wise complementation of the tree node number.

Multiple independent problems can be pipelined in the same way as in the binary tree, in order
to reduce the effects of the propagation time on the performance.

25

6.5. Perfect shuffie networks

A perfect shuffie network differs from a shuffie-exchange network in that an even node is also
connected to the preceeding odd node [54]. Hence, in the perfect shuffie network processors having
successive addresses form a path.

Identify a partition with the processor having the same number. Then, the first reduction
step only requires local communication. After the first reduction step is completed, an unshuffle
(right cyclic shift) operation is carried out, bringing every even, one step reduced, equation into
the processors with addresses in the lower half of the address space. The second reduction step is
now carried out in these processors, requiring only nearest neighbor communication. The reduction
phase is completed after k — 1 reduction steps and k — 2 unshuffle operations. The backsubstitution
requires k equation solutions with nearest neighbor communication (in addresses) and & — 2 shuffle
operations (left cyclic shift).

This simple algorithm is not applicable to the shuffie-exchange network, since processors with
successive addresses are in general not nearest neighbors. The number of communication start-ups
for the perfect shuffle algorithm is 2(2k — 3).

Truncating the reduction after m steps reduces the number of unshuffie operations to m — 1.
The total number of communication steps in each phase of the cyclic reduction computation is
reduced to 2m ~ 1. The number of start-ups is 2(2m — 1).

Parallel cyclic reduction can be implemented on the perfect shuffie with no principal difficulty.

Multiple independent problems can be solved concurrently using the balanced cyclic reduction
algorithm. The number of start-ups is 2(2k ~ 3). After the first shuffie operation half of the
problems are contained in the processors with addresses in the lower half of the address space, and
the other half of the problems in the processors with addresses in the upper half of the address
space. The total number of elements communicated over any interprocessor communication link is
approximately SN R.

6.6. Boolean k-cubes

In a Boolean k-cube, processors can be assigned addresses so that adjacent pfocessors differ
by only 1 bit. Each processor in a k-cube of K = 2* processors has k neighbors. There is a total of
kK /2 connections. The diameter of the k-cube is k. A 3-cube is the common 3-dimensional cube.
A boolean 4-cube is shown in Figure 17.

Boolean k-cube algorithms for cyclic reduction can be obtained by embedding a binary tree in
the cube, and adapting the tree algorithm to the cube. One tree embedding is obtained by assigning
the root of the breadth-first numbered binary tree to processor 0 in the k-cube. Then, for a tree node
assigned to processor (00...0p,pr—1...Pg), its left child is assigned to processor (00...1p,py—;...po), and
its right child to processor (00...15,pr-1...pp), where p, is the complement of p,.. The right child of
a node is at distance 2 from its parent. Another embedding in which some adjacent tree nodes are
at distance 2 when embedded in the cube is obtained by labelling the tree in inorder. Yet another
one is used below. It is also possible to embed a 2F — 1 node binary tree in a 2k-cube such that
adjacent tree nodes are at distance 1 in the cube [31].

We will now briefly describe two k-cube algorithms: an in-place algorithm, and a folding
algorithm. In the first algorithm equations remain in their original location throughout the com-
putations. In the second, computations are performed in cubes of successively lower dimensions by

26

Figure 17: A Boolean 4-cube

properly moving equations to lower dimensional cubes as the computations progress. The folding
algorithm is described in detail in terms of pseudo code in the Appendix. Note that in the k-cube,
processors with successive addresses are in general not neighbors. For instance, processors K/2 — 1
‘and K /2 are a distance k apart. The objective is to embed the graph of Figure 2. For convenience
. 'we number the equations starting from 0. The equations are initially mapped to the processors
- in the cube using a binary-reflected Gray code [43]. Gray codes for successive integers differ by
only 1 bit. This property guarantees that the first reduction step only involves nearest neighbor

communication.
Let G; be the binary-reflected Gray code of 7, and G(k) = (Gop,Gy,...,Gos-1) be a k-bit code.
Then, a binary-refiected Gray code is defined by

G(k + 1) = (0Ge,0G,, wy0G 2k 1, 1Gok 14 ..., 1Gy, lGo)

or

G(k +1) = (Go0,Go1,G11,G10,G20,G21, ...,Gas_11,G 3k _; 0)
The binary-refiected 4-bit Gray code is
G(4) = (0000,0001,0011,0010,0110,0111, 0101, 0100, 1100, 1101,1111, 1110, 1010, 1011, 1001, 1000)

Moreover, let ¢ = (rgrg-1...r0) and G; = (gkgk-1..-91)- Then the encoding and decoding is
given by {43} g; = (r; + rj-1)mod2 (encoding) and r; = (Zf=j+1 gi)mod2 (decoding) (note ry = 0).

Lemma 6.1. For the binary-reflected Gray code G; and G, ,; differs in precisely 2 bits for j > 0.
Those bits are g; and g,+1, where s is the bit position in which the carry stops propagating when
2/ is added to .

Proof. Let the binary encoding of 1 be (infn-1...,%0) and that of r = ¢ + 27 be (Fpfa=i-es?o)-
* Furthermore let the Gray code of ¢ be G{(n) = (gngn-1..-01) and that of r be H(n) = (hnhn-1...h1).

27

Then im = rm,m = {0,1,..,7 = 1} and rm = im,m = {J,7 + 1,...,8}, where s > 7-is the bit
where the carry stops propagating. It follows from the encoding formula that kp, = gm,m =
{1,2,..,;1. ~-1,74+1, ...,s} and hj = gjaha+l = Gatl-

|

Theorem 6.6. The number of communication steps per reduction step is 2 for the tn-place algorithm,
except for the first step for which it is 1.

Proof. The communication distance for the first step is 1 from the definition of the code, and 2
for the remaining reduction steps by lemma 6.1. It remains to be shown that the communication
paths can be made disjoint. The following routing guarantees disjoint paths:

e Processor G; sends data to processor G;.,; by first sending it to the processor with address
obtained by complementing the lowest order bit that differs in the codes G; and G,,,;.

o Processor G;_,; sends data to processor G; by first sending it to the processor with address
obtained by complementing the highest order bit that differs in G;_,; and G;.

In the tn-place algorithm some processors only serve as routing nodes for all but the first reduc-
tion step. It is necessary to compute the addresses of these processors, and to insert the necessary
communication code, also for the reduction and backsubstitution steps in which no computations
take place. In the folding algorithm there is no need for communication code -when the processor
no longer takes part in the reduction computations.

For the folding algorithm we observe that the equations that participate in reduction step j
have indices in the set M7 = {(m; +1)2’ ~ 1}, m; = {0,1,2,...,27 — 2}. Elimination is performed

-on equations with indices in the set MJ*!, If the equations in M’ are embedded in the cube
with one equation per node, and such that consecutive equations are in adjacent nodes, then from
Lemma 6.1 consecutively ordered nodes in M”*! are at distance 2.

Lemma 6.2. By performing one exchange operation on selected pairs of adjacent nodes between
successive reduction steps the equations subject to elimination operations form a path with succes-
sively higher ordered equations in adjacent processors.

Proof. It is true for j = 0 by construction. From the definition of the binary-reflected Gray
code, it follows that Gaog+1(k — p) = (G4(k — p ~ 1)X), where X = {0,1}, p = 0,1,...,k ~ 2 and
g =0,1,..2F"P=1 — 1, The equations in M’ on which reduction is performed are the ones with
mj = {1,8,..., 2k=J — 3}, i.e., the indices are of the form 2/ +1,:=0,1, W2 -2 Letp=j-1.
Then Gog41(k = (7 — 1)) = (Gg(k ~ 7)X),¢ = 0, 1,...2F77 — 1. Hence, an equation with index in
the set {(2i + 2)27 — 1},¢ = {0,1,..,2F~7 ~ 2} is either in a node with X = 1 or can be moved to
that node by an exchange operation between nodes (G4(k — 7)0) and (G4(k — 7)1). The theorem
follows by induction.
]

From the encoding and decoding formulas and the above lemma it follows that each processor
has sufficient information locally to determine if an exchange is necessary, and with which processor
to exchange data. The necessary information items are: processor address, equation index (which
can be computed from the address), and reduction step index (7). The second reduction step is

28

‘carried out in the subcube (G;1),i = K/2 — 1. The exchange-reduction steps are repeated k — 3
~ additional times on successively smaller subcubes. In the jth step, exchange is performed on the
7th lowest order bit, if the leading k — j bits encode an even integer and g; = 1, or the integer is
odd and g; = 0.

Processor (01...11) computes zqs-1_,. Backsubstitution is then carried out in reverse order
compared to the reduction phase. The number of processors computing z-values doubles for every
step. In the final step half of the processors compute half of the unknowns.

The commmunication complexity is the same for both the in-place and folding algorithm. The
number of start-ups is 2(2k — 3).

In the k-cube algorithms based on binary-reflected Gray codes, full advantage can be taken of
truncated cyclic reduction. Each reduction step is carried out on all relevant equations during the
same time step. Hence, truncating the reduction after m steps reduces the total time proportionally.

Parallel cyclic reduction can be carried out on the k-cube in O(k) time.

Multiple independent problems can be solved by pipelined Gaussian elimination with a com-
plexity of

V2(K — 4)Pr(\/3t; + 5tg + \/Tc + 3la) + 8Pts + 4Pt + (K — 4)r (€3)

and by the balanced cyclic reduction algorithm with a complexity of

(17K ~ log: K + 2)ts + (5K — loga K)t.)[P/K] + 2(2logs K ~ 1)1 (6.3)

‘An alternative to these two in-place algorithms is to transpose the data such that for P > K
- each tridiagonal system is solved locally. If the transpose operation is carried out recursively, then
" logg K steps are required on the k-cube [31]. The communication complexity for the two transpose
operations are (5P/2t, + 27)logeK,P 2 K. Pipelining the communication and optimizing the
packet size in order to minimize the communication time yields a total complexity of

(8 ~ 7/K) Pty + 2/5P(logo K — 1)7t. + 5P /2t + 2(loge K ~ 1)7 (6.4)

In equation 6.4 the same packet size (\/5P7/(4(log2 K —~ 1)t.)) is used in both transpose op-
erations. The number of elements communicated is approximately half of that for the balanced
cyclic reduction algorithm, and so is the arithmetic complexity, since Gaussian elimination is used
locally instead of cyclic reduction. The complexity of the optimally pipelined transpose - local
solve - transpose algorithm TGET and that of the balanced cyclic reduction algorithm compares
approximately as a + b + 2v/ab + ¢ and 2(a + b + ¢) (with a = 2(log2 K ~ 1), b = 5P¢/2, and
¢ = 8Ptg.-

Theorem 6.7. An optimally pipelined transpose - local solve - transpose tridiagonal solver is of a
lower complexity than a balanced cyclic reduction solver by a small constant factor (between 0.5
and 1).

6.7. Shared memory architectures
We have in our computational model assumed that each processor has its own local storage. In
architectures such as the Ultracomputer [49, 14] and the TRAC [52], processors and storage units

-29

are on opposite sides of a switching network. The communication requirements for parallel cyclic
reduction [18] have been analysed for the TRAC architecture by Kapur and Browne [32], and for the
Ultracomputer by Peskin [41]. The communication complexity for the shared memory architectures
increases by a factor proportional to the depth of the switching network, compared to the previously
described ensemble architectures. The sequential dependencies in the cyclic reduction algorithm
are such that communication through the network is required for each reduction step. Pipelining
the switch network does not reduce the effect of the switch latency. The communication complexity
is proportional to log2K . This complexity is higher than for the binary tree, the shuffie-exchange,
the perfect shuffle, and the k-cube by a factor of log2 K.

6.8. Programming issues

All algorithms described above have distributed control, and data is distributed throughout
the storage of all processors. The binary tree algorithm has three kinds of programs: one for the
root, one for intermediate level processors, and one for the leaf processors. The shuffie-exchange
network algorithm also uses three different codes. The boolean k-cube algorithm uses the same code
in all processors. Hence, even though all algorithms are of the MIMD type, the degree of program
uniformity across the ensemble is indeed high. The time for program loading can be made short
for the tree by using recursive program loading, and an encoding of the binary tree as described in
[37]. For a few equations per node the ratio of total program store to data store is significant.

7. Summary and Conclusions

The communication complexity of the tridiagonal system solvers described here is of the same
order as the diameter of the ensemble configuration. Hence, for networks of N processing elements
and a diameter of order O(logaN), the total solution time is of the same order as the lower bound
for the solution of an irreducible system of equations on any circuitry with bounded fan-in.

In the case of one equation per processing element, N = K, and assuming that all elimination
and backsubstitution operations are performed in the processing element storing the row subject
to elimination, the arithmetic complexity of cyclic reduction is the same for all ensembles, namely
17(logy K —2)+ 14 operations. This complexity can be reduced to 13(logs K —2)+11 operations if the
operations are shared between the processing elements storing the pivot rows and the ones storing
the rows subject to elimination. However, this requires additional communication per reduction
phase. The arithmetic complexity can be further reduced to 12(log2 K — 2) 4+ 11 with an additional
communication per backsubstitution step.

In the first case, the number of elements per communication is 4 in the reduction phase and
1 in the backsubstitution phase, except for the binary tree (and the shuffie-exchange) algorithm,
for which 2 elements are communicated between a pair of processors in each step..In all but the
binary tree (and shuffie-exchange) algorithm the two variables needed in the backsubstitution on an
equation can be communicated over different links. If the operations required for the elimination of
a single element is shared between two processing elements, then the maximum number of elements
per communication in the reduction phase is reduced to 3.

With all operations for the elimination of the two off-diagonal elements in a row carried out in
one processor the number of communication start-ups is K — 2 for the linear array and an n-place
algorithm. For the 2-dimensional mesh the number of start-ups is 3VK +1logs K — 4 (or 3VK -4 if
the mesh has end-around connections). The number of start-ups for the binary tree is 3log K — 4,

30 . -

Configuration _ _ Total
Linear array (K - 2)(5/2t. + 1)
2-dim Mesh w/o end-around (3VK +log. K — 4)(5/2t. + 1)
2-dim Mesh w/ end-around (2k — 1)t, + (3VEK — 4)(5/2t. + 1)
Binary tree 10(k — 2)t. + (3k — 4)r
Shuffie-exchange 2(6k — 11)t. + (5k — 4)7
Perfect shuffie (2k - 3)(5t. + 27)
Boolean k-cube (2k — 3)(5t. + 27)

Table 1: Communication complexities (approximate)

5loge K — 6 for the shuffle-exchange network, and 2(2log2 X ~ 8) for the perfect shuffie and boolean
cube networks. The number of start-ups increases by 50% for the linear array, if the operations for
the elimination of a single element is shared between a pair of processors, and doubles if load sharing
is performed as indicated for the lowest arithmetic complexity. For the perfect shuffle and boolean
cube algorithms the corresponding numbers are 25% and 50% respectively. For the binary tree
and shufie-exchange algorithms the load sharing prevents effective pipelining. The communication
complexity increases to order O(logZK).

We conclude that if 7 « t, then the load sharing can be used effectively on a perfect shuffle
and boolean cube. However, if 7 > t,, then load sharing does not pay off (but it may for a banded
matrix [29]). The complexity term distinguishing the ensemble configurations is the communication
complexity which is summarized in Table 1.

For a linear array cyclic reduction is more efficient than 2-way Gaussian elimination if the
communication time is equal to the time for an arithmetic operation. However, if the communication
is at least an order of magnitude slower than the arithmetic (a factor of 16 in our estimates), then
Gaussian .elimination is-of a lower time complexity. -

With a large number of equations per node we use the consecutive scheme for identifying nodes
with processing elements, i.e., substructuring. Moreover, we perform local forward and backward
elimination such that a tridiagonal system with one equation per processing element results, and
the previous analysis applies. The number of local arithmetic operations is approximately 17N/K.
The total complexity for GECR is of order O(N/K + K) for the linear array, O(N/K ++v/K) for the
2-dimensional mesh, and O(N/K + loga K) for the complete binary tree, the shuffie-exchange and
perfect shuffie networks, and the boolean k-cube. The difference in complexity between different
ensemble configurations is insignificant for N 3> K. The speed-up is at first linear in XK. The range
for linear speed-up depends on the type of interconnection, and the ratio o = t¢/t,.

The minimal computational time is O(log2N) for the complete binary tree (and the shuffle-
exchange network), the perfect shuffle and the boolean k-cube. The speed-up has a maximum for
K ~ N/(1+c). The maximum speed-up for a 2-dimensional mesh is obtained for K ~ ((N/2a)?)!/3,
and for the linear array for K ~ (N/a)!/2. The minimal computational times are O(N'/%) and
O(N/?) respectively. Table 2 summarizes the optimum ensemble sizes and the corresponding time
complexities.

The decrease in speed-up is quite dramatic for a linear array with slow communication as can
be seen in Figure 18. The Figure displays graphically the complexity estimates in Table 4. The tree
algorithm is superior to the perfect shuffle and k-cube algorithms if there is only one equation per

31

Configuration Optimum size Minimum Time |
Linear array O(\/N/c) O(V/N)
2-dim Mesh O(N/2a)*/? O(N?)
Binary tree N/(1+) O(logaN)
Shuffie-exchange N/(1+ o) O(loga N)
Perfect shuffle N/(1+a) O(logaN)
Boolean k-cube N/(1+«a) Oflogo N)
Table 2: Optimum ensemble sizes and time complexities (ap-
proximate)

processor, but inferior if there are multiple equations per processor. The difference is small for fast
communication, but significant for slow communication. The shuffie-exchange algorithm is‘inferior
by a factor of 2, at most. The efficiencies, i.e., the (speed-up)/(number of processors), decrease
fairly rapidly if the number of processors is increased beyond a certain number that depends on
problem size and the relative cost of communication. The dependence on the problem size for the
binary tree, the perfect shuffle, and the k-cube, is illustrated in Figure 19, and the dependence
on the relative communication cost in Figure 20. Figure 21 shows how the ratio of processors to
problem size for a given efficiency decreases as a function of increased relative communication cost.

The ratio increases with the problem size.

Efficlency —

¢ of processors —»

Figure 19: The efficiency for a binary tree, perfect shuffie and
k-cube, o = 1IN =27 -~ 1,219~ 1, and 216 - 1.

Truncated cyclic reduction reduces the total time in proportion to the number of steps avoided
for the binary tree, the shuffie-exchange, perfect shuffie, and boolean k-cube algorithms. The
relative reduction for the binary tree ranges from (k — m)/k for t, < tq to (k —m)/3k for t, > t,.

32

Speedup

«=0,1

ol =]

«=10

« =100

1
4
p
3 e
= 3
<
- o
- @&
=3
4 wi
3
|
103

10?‘. -
b E-3
=
- <
T $
100 < &
' 3
e 3
Z 3
4]
®
&]
v
10-1 . ; .
1% 10t 10? 10° 10°
10
N=2" =] # of processors =
10k r r ver r 3
=g, 1
e <2, el
103‘.— - L
oeemememeanac. . Jurl0
10%} 4
3 3
- 3
e 3
© P b
£ g == Jm100
4107k O o
3
10° . o , .
100 10l 10? 10’ 1* 10°
N=216-1 # of processors

10

hadas

«=0.1

2

=10 b

=100

1c
7
Na2 -] # of processors o
102 «=0,1 3
«nl]
10! 3
o=10 4
10° 3
el 00 <
107,
10°
Ne210_3 ¢ of processors ==
104 ' ' o N B
r 3
o4
!
103 4 ==0.1
L NN 2 ‘\\ ;-.1
10? \ %
< i N . ot
[“ AN -
& ~ N
y‘:" o N “ 5 10
- s N -l .
10 > ot
16° . ‘ ‘.“ | =100
0 1 2 3
10 10 10 10 104 10
“=216~1 ¢ of processors

Figure 18: Speed-upfor N=2"~ 1, N =20~ 1 and N =
a=0.1,1,10, and 100

216 . 1.

33

< 0.6

Lfficiency —>
1.
tfficlency —>
(=)

S

"~

0.2

L 10 102 10 10°
10
Ne27Ve] # of processors -=s N-216-1 # of processors -9

Figure 20: The efficiency for a binary tree, perfect shuffie and
k-cube, N =210 — 1 216 _ 1 o =0.1,1, 10, 100.

4 N . : s
01 1 10 100 o«

Figure 21: Relative number of processors for 80% efficiency
(tree, perfect shuffle, cube).

The relative reduction for the perfect shuffie and the k-cube is (k—=m)/k. For the mesh the reduction
is not linear due to the shuffie operations. Since the tree algorithm benefits from truncated reduction
to a lesser extent than the perfect shuffle and k-cube algorithms, it may lose its edge over those

34

Configuration Complexity
Binary tree (m+ 2)t, + (m — I)maz(ts, t.) + 2(k = 1)t,
Perfect shuffie and k-cube (2m + 1)i5 + 2m(2m — 1)t
Table 3: Estimated complexities for truncated, m-step, cyclic
reduction.
Configuration ~ Complexity ,
(Linear array) - GE V2(K — 4)Pr(\/3t. % 5tz + /1. + 3t;) + 8Pt; + 4Pt + (K — 4)r
Linear array - CR (17K = logo K + 2)t, + (5K — logo K)t,)[P/K|+ (K - 2)r
Boolen k-cube - CR (17K — logo K + 2)ta + (5K — loga K)t.)[P/ K] + 2(2logs K — 1)
Boolen k-cube - TGET (8 = 7/K)Pt, + 24/5P(logo K — 1)7t, + 5P/2t. + 2(loga K — 1)7

Table 4: Estimated complexities for some ensembles, multiple
equations per processor, k > 1

algorithms for truncated reduction. Table 3 gives the complexity estimates for truncated cyclic
reduction on a binary tree, perfect shuffle, and k-cube.

The proportional reduction in computational time offered by truncated cyclic reduction on the
binary tree, the shuffie-exchange, the perfect shuffie and the k-cube is significantly better than on
a uniprocessor. Most operations are performed in the first few reduction steps, and the last few
backsubstitution steps.

For multiple independent problems partitioning makes the most efficient use of the processors
for all investigated topologies. If the data for each problem is uniformly distributed across the
ensemble by domain decomposition (substructuring), then the balanced cyclic reduction algorithm
yields high processor utilization without an increase in the number of start-ups. The parallel arith-
metic complexity eventually becomes approximately twice that of pipelined Gaussian elimination.
The number of elements communicated is only slightly larger for cyclic reduction. We summarize
the compexity estimates for multiple independent problems on a linear array and a boolean k-cube
in Table 4. The complexity of Gaussian elimination is the same for both configurations.

On a linear array Gaussian elimination is of a lower complexity than the balanced cyclic

reduction algorithm for P =~ 0.21+a/ 2+\/15((1f:;;/)2)(1+a/ 8)/ 16(K — 4)7/tq, approximately. Hence, if

the overhead in communication is high relative to the time for a floating-point operation, then
the pipelined Gaussian elimination algorithm is preferable only if P > K. On a boolean cube
an optimally pipelined transpose algorithm, local Gaussian elimination, and another transposition
TGET are of slightly lower complexity than the balanced cyclic reduction algorithm, which in turn
always has fewer start-ups (O(log2X) instead of O(X)) than the pipelined Gaussian elimination
algorithm. If start-ups are ignored, then the piplined Gaussian elimination algorithm is of a lower
complexity than the balanced cyclic reduction if P > K/2(logo X ~ 2). Algorithm TGET is always
of a lower complexity than pipelined Gaussian elimination.

Finally, we note that all algorithms have distributed control. Moreover, even though the
algorithms make use of the MIMD feature of the architecture, only a few different codes are used.
In the binary tree there are three kinds: one for the root, one for the intermediate level processors,
and one for the leaves. For the k-cube all processors execute the same code. The code for these
architectures can be loaded recursively.

35

8. Acknowledgement

This report has benefited from many stimulating discussions with and suggestions by Stanley
C. Eisenstat. Michael J. Fischer suggested the binary tree embedding in the shuffie-exchange
networks. Andrea Pappas and Chris Hatchell helped with the manuscript.

The author also gratefully acknowledges the generous support of the Office of Naval Research
under contract N00014-84-K-0043.

36

9. Appendix .-

© 9.1. A mesh algorithm
Let rows and columns be numbered from 0 to VA —~ 1. Then, the algorithm is:
begin
fori:=1to k/2~14do
begin
Communicate with adjacent processors
Perform a reduction computation
Odd rows execute exchange operations between even columns and the succeeding
odd column
Perform a shuffie operation of size 2%/2-(i=1)
end
end
Communicate with adjacent processor
Perform a reduction computation
Odd rows execute exchange operations between the even column and the succeeding
odd column
invoke the linear array algorithm
end

9.2. A Complete Binary Tree Algorithm
Root processor(i):
o :=0zNn4y =0
=1
m = 1/(2k)
Reduction gomputations
while m is even do
receive {(al,bl,cl, yl,ai—k,bi—k,Ci~k, Yi—k) from the left child
receive (@i4k,bitk, Cit+ks Yi+k,ar,br cr, yr) from the right child
e = —a;/bi—
fi=—ci/bisx
a; =€tk
¢i = fiCivk
bi == b; + eici—k + figi+x
Vi i=¥i + ei¥i-k + Ji¥i+k
k =2k
m:=m/2
enddo

37

The last reduction step
for m odd do
receive (@;—k,bi—k,Ci—k, Yi—k) from the left child
receive (@;4k,bi+k, Citk, Yi+k) from the right child
e = —a;/bi—k
fi = —ci/bisi
a; = €;a;—k
ci = fici+k
bi == b; + eici—k + figi+k
Vi = Yi + &¥i-k + fiVi+k
enddo
Backsubstitution
z; =y /b
send (z;-2k,x;) to the left child
send (z;,z;+2k) to the right child
Intermediate level processor(i):
=1
m = i/(2k)
Reduction computations
while m is even do
receive (al,bl,el,yl,0i—k,bi—k,Ci~k, yi-r) from the left child
receive (@i+k,bitk, Citks Yitk,ar,bryer, yr) from the right child
send (al,bl,cl,yl,ar,br,cr,yr) to the parent
€ = —a;/bi_x
fi = —ci/bisi
a; 1= €;Qjk
¢i = fiCitk
bi 1= b; + eiciek + fiGitk
Vi = Vi + &¥i-k + filVitk
k =2k
m:=m/2
enddo
The last reduction step for node i
for m odd do
receive (aj—k,bi—k, Ci~k, ¥i—k) from the left child

receive (ai+k,bitk, Citk, Yi+k) from the right child

38

send (@j—k,bi—k, Cimk, Yimks @i+k> bitks Civk, Vi+k) to the parent

e = —a;/bi—x
fi = —ci/biti
Qi 1= €Ak
¢ = fici+i

b :=b; + eici—k + fii+k
Vi == ¥i + ei¥iek t+ fivitk
send(a;, b, ¢i, ¥;) to the parent
enddo
Backsubstitution

receive (z;—2k,Zi+2k) from the parent

z; = (Yi ~ 6iZi~2k — CiZi+2k)/b;

send (z;-2k,z;) to the left child

send (i, zi+2k) to the right child

Leaf processor(3):

Reduction computations

send (a;, bici, ¥;) to the parent
Backsubstitution .

receive (z;-1,%;+1) from the parent

z; = (Yi = @;Zi-1 — €iTi41)/b;

9.3. A boolean k-cube algorithm
{Let (9x9k~1...-g1) be the address of the processor in a k-cube, let Gy (k — 7) be the (k — 5)-bit
binary-reflected Gray code of m, and let 7 + 1 denote reduction step.}
j=0
go:=1
Z-1:=0

zg =0

while g; = land j < k-1 do
m := dec(gkgk-1.--j+1) (m is the integer encoded by k — 5 highest order bits (Gm (k-
7)111))

Gm+1(k — j) := enc(m + 1) (address of the processor holding the succeeding integer
in the (k-j)-cube)

Gm-1(k — 7) := enc(m — 1) (address of the processor holding the preceeding integer
in the (k-j)-cube)

39

{even processors in the (k — j)-subcube send their equations to the processors holding preceeding
and succeeding odd integers, except that the processor holding row m = 0 only communicates with
the processor holding the row m = 1, and the processor holding the row m = 2+ k — j — 2 only
communicates with the processor holding row m—1} {processors holding odd integers.communicates
and performs reduction computaions}
if m even and m > O then
send (a;,b;,¢i,¥) to the processor (Gpm—1(k — 7)11...1)
elseif m even and m < 2%~/ — 2 then
send (a;,b;,c¢;,¥;) to the processor (Gm+1(k — 5)11...1)
elseif m odd and mne2¥~/ — 1 then
receive (a;_g;,b;_95,C;05,¥;-g95) from processor (Gpm—1(k — 7)11...1)
receive (@;40;,b,405,Cit05s Yizoi) from processor (G4 (k — 7)11...1)
& = —a;/bi—k
Ji = —ci/bisi
i = €iGik
¢i = ficitk
bi = b; + eici—k + fiti+k
Yi = Yi + eiYi-k + Jilitk
endif
{exchange data so that equations needed for the next reductionstep are in the next lower dimen-
sional subcube (with yet another address bit 1). No exchange is needed when the cube is reduced
to a 2-cube}
if 7 < k ~ 2 then
if m is odd and g;4; = O then
send(a;, b;, ¢;, ¥} to the processor (grgr-1..9j+2111...1)
receive(a;, b;, ¢, %;) from the processor (grgr-1..9j+2111...1)
endif
if m is even and gj4; = 1 then
send(aj, b;, ¢;, y;) to the processor (grge—1..9;+2011...1)
receive(a;, bi, ¢;,¥;) from the processor (gigr—1..g;42011...1)
endif
endif

J=J+1

enddo
{the reduction is now completed for equation i. j is the index of the last reduction step in which
the processor participated. The reduction phase is complete when 7 = n — 1 for a subcube of
dimension 2.}

40

{ The backsubstitution starts with processor (0111...1) computing zx-1. Processors (0011...1)
and (1111...1) then compute Zor-2_; and Zg,ps-z_; respectively. For computation of additional
unknowns it is necessary successively increase the dimensions of the cube, and make the proper
exchanges reversing the exchanges in the reduction phase.}

while 7 2 0 do
{ Solve for Zgk-1_y, ZTor-2_; and zz,pi-2_; in the 2-cube of the final step of the reduction
phase}
if =k — 1 then
{ Solve for zg4-1.; in processor (0111...1)}
if m =1 then
z; = y; /bi
send(z-1,2;) to processor (Gm-111...1)
send(z;,zx) to processor (Gm4111...1)
endif

{Solve for zgs-2_,}

if m = O then
- receive(Z;_gk~2, Z; or~2) from processor (Gm+111...1)
zi 1= (Vi = Ci%jmgh-3 = CiTiyph-2)/bi
endif
{ Solve for z3,95~2..1}
if m = 2 then
receive(z;_qk-2, Z; o¢-2) from processor (Gp-111...1)
z; i= (Yi — ;T gk—2 ~ CiZiyok—2)/b;
endif
Ji=j5-1
endif
{Reverse the exchange of equations that occured during the reduction phase}
gi=35-1
m = dec(grGk—1---k~5)
Gm-1 = enc(m - 1)
Gm+1 = enc(m + 1)
if m is odd and g;4; = O then
send(a;, b;, ¢;, y;) to the processor (grge—1..9542111...1)
réceive(a,-,b;,c,-,y,-,:c;) from the processor (gggi-1..g;2111...1)
endif

if m is even and g;4; = 1 then

41

send(a;, by, ¢i, ¥, %i) to the processor (9¢ge-1.-95+2011...1)
receive(a;, by, ¢i, ¥;) from the processor (grgi-1..9;4+2011...1)
endif
{Processors with m even receives z;_g;+1 from processor (Gm-;(k = 7)11...1), except if m = 0.
Processors with m even receives 5+ from processor (Gm+1(k — 5)11...1), except if m = 2F~J - 2}
if m is odd and m < 2¥~J — 1 then
send(z;) to processor (Gp-311...1)
send(z;) to processor (Gm+111...1)
endif
if m is even then
if m > O then receive(z,_5;+:) from processor (Gpm-1(k ~ 7)11...1)
if m < 2%~ — 2 then receive(z; ,;1) from processor (Gm+1(k — 7)11...1)
Zi = (Yi = G;Timgit1 — CiZipoi+1)/bi

endif
enddo

42

References

[1] Abho A.V., Hopccroft J.E., Ullman J.D., The Design and Analysis of Computer Algorithms,
Addison-Wesley, 1974.

[2] Bhatt S.N., Leighton F.T., A Framework for Solving VLSI Graph Layout Problems, J. of
Computer and System Sciences, 28 (1984), pp. 300-343.

[3] Brent R.P., Kung H.T., On the Area of Binary Tree Layouts, Information Processing Letters,
11/1 (1980), pp. 44-46.

[4] Browning S.A., The Tree Machine: A Highly Concurrent Computing Environment, Technical
Report 1980:TR:3760, Computer Science, California Institute of Technology, January
1980. .

[5] Buzbee,B.L., Golub, G.H., Nielson, C.W., On Direct Methods for Solving Poissons’s Equations,
SIAM J. Numer Anal, 7/4 December (1970), pp. 627—656.

[6] Eisenstat S.C., Schultz M.H., Sherman A.H., Applications of an Element Model for Gaussian
Elimination, Sparse Matriz Computations, Academic Press, 1976, pp. 85-96.

[7] Flyno M.J., Very High-Speed Computing Systems, Proc. of the IEEE, 12 (1956), pp. 1901-1909.

[8] Fortune S., Wyllie J., Parallelism in Random Access Machines, Proc. 10th ACM STOC, 1978,
pp. 114-118.

[9] Gannon D., Van Rosendale J., On the Impact of Communication Complexity in the Design of

Parallel Numerical Algorithms, IEEE Trans. Computers, C-33/12 December (1984),
pp. 1180-1194.

[10] Gentleman W.M., Some Complezity Results for Matriz Computations on Parallel Processors,
J. ACM, 25/1 January (1978), pp. 112-115.

[11] George A., Liu W.H., Algorithms for Matriz Partitioning end the Numerical Solution of Finite
Element Systems, SIAM J. on Numer. Anal., 15/2 (1978), pp. 297-327.

[12] George A., Liu J.W., Computer Solution of Large Sparse Positive Definite Solutions, Prentice-

: Hall, 1981. - :

[13] George A., Nested dissection of a regular finite element grid, SIAM J. on Numerical Analysis,

10 (1973), pp. 345-363.

[14] Gottlieb A., Grishman R., Kruskal C.P., McAuliffe K.P., Rudolph L., Snir M., The NYU
Ultracomputer - Designing an MIMD Shared Memory Parallel Computer, IEEE Trans.
Computers, C-32/2 (1983), pp. 175-189.

[15] Heller D., Stevenson D.K., Traub J.F., Accelerated Iterative Methods for the Solution of
Tridiagonal Linear Systems on Perallel Computers, J. ACM, 23 (1976), pp. 636-654.

[16] Heller D., Some Aspects of the Cyclic Reduction Algorithm For Block Tridiagonal Linear
Systems, SIAM J. Num. Anal, 13/4 (1976), pp. 484-496.
[17] Hillis W.D., The Connection Machine, MIT Press, 1985.

[18] Hockney R.W., Jesshope C.R., Parallel Computers, Adam Hilger, 1981.

[19] Hockney R.W., A Fast Direct Solution of Poisson’s Equation using Fourier Analysis, J. ACM,
12 (1965), pp. 95-113. |

[20] =—————, The Potential Celculation and Some Applications, Methods Comput. Phys., 9
(1970), pp. 135-211.

[21] Ipsen I.C.P., Saad Y., Schultz M.H.. Complezity of Dense Linear System Solution on a
Multiprocessor Ring, Technical Report RR YALEU/DCS/RR-349, Dept. of Computer
Science, Yale University, January 1985.

43

[22] Irons B.M., A Frontal Solution Program for Finite Element Analysis, Int. J. Numerical Methods
in Engineering, 2 (1970), pp. 5-32.

[28] Johnsson S.L., Saad Y., Schultz M.H., Alternating Direction Methods on Multiprocessors,
Technical Report YALEU/CSD/RR-382, Yale University, Dept. of Computer Science,
August 1985. To appear in Communications of Applied Numerical Methods.

[24] Johnsson S.L., Gaussian Elimination on Sparse Matrices and Concurrency, Technical Report
4087:TR:80, Caltech Computer Science Department, December. 1980.

[25] ———, Odd-Even Cyclic Reduction on Ensemble Architectures and the Solution Tridiago-
nal Systems of Equations, Technical Report YALE/CSD/RR-339, Department of
Computer Science, Yale University, October 1984.

[26] ~————, Fast Banded Systems Solvers for Ensemble Architectures, Technical Report YALEU/
CSD/RR-379, Department of Computer Science, Yale University, March 1985.

[27) —————, Cylic Reduction on a Binary Tree, Computer Physics Communications, 37 (1985),
pp- 195-203. '

[28] ————, Band Matrix Systems Solvers on Ersemble Architectures, Algorithms, Architecture,
and the Future of Scientific Computation, University of Texas Press, 1985. Technical
report YALEU/CSD/RR-388, Yale University, Dept. of Computer Science.

[29] , Solving Narrow Bended Systems on Ensemble Architectures, ACM TOMS, 11/3
(1985). Also available as Report YALEU/CSD/RR-418, November 1984.
[30] , Data Permutations and Basic Linear Algebra Computations on Ensemble Architec-

tures, Technical Report YALEU/CSD/RR-367, Yale University, Dept. of Computer
Science, February 1985.

[81} —————, Communication Efficient Basic Linear Algebra Computations on Hypercube Archi-
tectures, Technical Report YALEU/CSD/RR-361, Dept. of Computer Science, Yale
University, January 1985.

[32] Kapur R., Browne J.C., Block Tridiagonal System Solution on Reconfigurable Array Computers,
International Conference on Parallel Processing, IEEE Computer Society, 1981, pp.
92-99.

-[33] Kershaw D., Solution of Single Tridiagonal Linear Systems and the Vectorization of the ICCG
Algorithm on the CRAY-1, Parallel Computations, Academic Press, 1982, pp. 85-92.

[34] Lawrie D.H.,Sameh A.H., The Computational and Communication Complezity of o Parallel
Banded System Solver, ACM Trans. Math. Software, 10/2 June (1984), pp. 185-195.

[35] Leighton F.T., Complezity Issues in VLSI: Optimal Layouts for the Shuffle-Ezchange Graph
and Other Networks, MIT Press, 1983.

|36] Leiserson, C.E., Area-Efficient VLSI Computation, MIT Press, 1982.

[37] Li, P., Johnsson, L., The Tree Machine: An evaluation of program loading strategies, 1988
International Conference on Parallel Processing, IEEE Computer Society, August
1983, pp. 202-205.

[38] Lipton R.J., Rose D..J., Tarjan R.E., Generalized nested dissection, SIAM J. Numerical
Analysis, 16 (1979), pp. 346-358.

[39] Parter S., The use of linear graphs in Geussian elimination, SIAM Review, 3/2 (1961), pp.
119-130.

[40] Paterson M.S., Ruzzo W.L., Snyder L., Bounds on Minimax Edge Length for Complete Binary
Trees, Proc. of the 18th Annual Sympasium on the Theory of Computing, ACM, 1981,
pp- 293-299.

44

[41] Peskin C.S., Ultracomputer Implementation of Odd-Even Cyclic Reduction, Technical Report
Ultracomputer note#19, New York University, Dept. of Computer Science, January
1981.

[42] Prespell, H.A., Pargas, R.P., Communication Along Shortest Paths in a Tree Machine,
Proc. of the 1981 Conference on Functional Programmming Languages and Computer
Architecture, ACM, 1981, pp. 107-114.

[43] Reingold E.M., Nievergelt J., Deo N., Combinatorial Algorithms, Prentice Hall, 1977.

[44] Reiter E., Rodrigue G., An Incomplete Cholesky Factorization By a Matrix Partitioning
Algorithm, Elliptic Problem Solvers II, Academic Press, 1983, pp. 161-174.

[45] Rose, N.A., Oldfield, J.V., Printed- Wiring-Board Layout by Computer, Electronics and Power,
Oct (1971), pp. 373-380.

[46] Rosenberg A.L., Snyder L., Bounds on the Costs of Data Encodings, Mathematical Systems
Theory, 12 (1978), pp. 9-39.

[47} Ruzzo W.L., Snyder L., Minimum Edge Length Planar Embeddings of Trees, VLSI Systems
and Computations, Computer Sciences Press, 1981, pp. 119-123.

[48) Sameh A.H., Kuck D.J., On Stable Parallel Linear System Solvers, JACM, 25/1 January
(1978), pp. 81-91.

[49] Schwartz J.T., Ultracomputers, ACM Trans. on Programming Languages and Systems, 2
(1980), pp. 484-521. :

[56] Lutz C., Rabin S., Seitz C.L., Speck D., Design of the Mosaic Element, Proceedings, Con/. on
Advanced research in VLSI, Artech House, 1984, pp. 1-10.

[51] Seitz C.L., Concurrent VLSI Architectures, IEEE Trans. Comp., C-33/12 (1984), pp. 1247-1265.

[52] Sejnowski M.C., Upchurch E.T., Kapur R.N., Charlu D.P.S., Lipovski G.J., An Overview of the
Texas Reconfigurable Array Computer, Proceedings, National Computer Conference,
IEEE, 1980, pp. 631-641.

[53] Sekanina,M, On an ordering of the set of Vertices of ¢ Connected Graph, Publ. of the Faculty
of Science of the University of Brno, /412 (1960), pp. 137-142.

[54] Stone, H.S., Parallel Processing with the Perfect Shuffle, IEEE Trans. Computers, C-20 (1971),
pp. 153-161.

[65) Thompson C.D., Area-time Complexity for VLSI, Proc. of the 11th ACM Symposium on the

Theory of Computing, ACM, 1979, pp. 81-88.

, A Compezity Theory for VLSI, Technical Report, Dept. of Computer Science,

Carnegie-Mellon University, 1980.

[57) Wang H.H., 4 Parallel Method for Tridiagonal Equations, ACM Trans. Math. Software, 7/2
‘ June (1981), pp. 170-183.

[56]

45

