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Abstract

The multiparty secret key exchange problem is
to find a k-player protocol for generating an n-
bit random key. At the end of the protocol,
the key should be known to each player but re-
main completely secret from a computationally
unlimited eavesdropper, Eve, who overhears all
communication among the players. The players
are initially dealt hands of cards of prespecified
sizes from a deck of distinct cards; any remain-
ing cards are given to Eve. Considered here is
the case in which each player receives the same
fraction (3 of the cards in the deck, for 8 in the
interval (0,1/k]. The efficiency of a secret key
exchange protocol is measured by the smallest
deck size dy for which the protocol is guaran-
teed of success. A secret key exchange proto-
col is presented with dy = O(n(1/8)*"™). The
best previous bound, by Fischer, Paterson, and
Rackoff (1991), was super-polynomial in 1/3
and only handled the special case of £ = 2 and
n=1.

1 Introduction

The problem of multiparty secret key exchange
is an important problem in cryptography. Con-

*This research was supported in part by National Sci-
ence Foundation grant IRI-9015570.

sider, for example, a certain government agency
that handles security of information on a “com-
munity of interest” basis. For each project
within the agency, a group of people are cho-
sen to work on the project. We call this group
a team. Teams form and dissolve as various
projects are started and completed. All com-
munication regarding the project is intended to
be shared with those on the team, and to be
kept secret from those outside the team. How-
ever, the security of the various communication
channels—the telephone, interoffice mail, elec-
tronic mail, and face-to-face communication—
is not guaranteed. Hence, each team that forms
would like to exchange a secret key, which it can
then use as a part of some cryptographic proto-
col to securely send all further communication
regarding the project. Another place where this
problem may arise is in a distributed system, for
example a computer network linking a corpora-
tion’s headquarters and branch offices.

1.1 Secret Key Exchange

More formally, we consider a multiparty proto-
col between a group of m players. The protocol
of each player is publicly known, but each player
is supplied with some initial private information
before the protocol begins. The vector of initial
values is chosen randomly from some known dis-
tribution, and in general the players’ random



initial values are correlated. In addition, each
player has a private source of independent ran-
dom bits. At some point in time, a team of
k > 2 players P; through Py is selected. The
remaining (m — k) players are assumed to con-
spire against the team, possibly communicat-
ing among themselves via private channels. We
treat them as a single computationally unlim-
ited eavesdropper, Eve, who possesses the ini-
tial information of all of the conspirators and
overhears all communication among the team
members.

An n-bit secret key is an n-bit sequence §
satisfying agreement, secrecy, and uniformity.
Agreement is met if each team player knows S.
Secrecy is met if the eavesdropper’s probability
of guessing S correctly is the same before and
after hearing the communication between the
team players. Uniformity requires that S has
equal probability of being any one of the 2™ pos-
sible m-bit sequences. Once obtained, the key
can then be used for a variety of cryptographic
purposes, for example, as the key in private key
cryptosystems (cf. [DH76]). We would like to
know which distributions of private initial val-
ues allow any team that forms to obtain an n-bit
secret key.

This framework is very general and admits
the trivial solution in which each player is given
a priori a secret key for each team to which
the player might eventually belong. Any team
that forms can use the corresponding preas-
signed secret key, but since there is an expo-
nential number of possible teams, the amount
of initial information is quite high. Also, the
structure of the initial random information is
rather complicated. We desire instead corre-
lated random variables that have a simple struc-
ture and a small amount of initial information.
A familiar example of such correlated random
variables is provided by ordinary card games in
which players are dealt hands from a randomly
shuffled deck of cards. By looking at her own
cards, a player gains some information about
the other players’ hands. Namely, she learns

a set of cards that appear in no other player’s
hand. Peter Winkler developed bidding conven-
tions for the game of bridge whereby one player
could send her partner secret information about
her hand that was totally unrelated to the ac-
tual bid and completely undecipherable to the
opponents, even though the protocol was known
to them [F1i81, Win81a, Win81b, Win83]. Fis-
cher, Paterson and Rackoff [FPR91] carried this
idea further, using deals of cards for secret bit
transmission between two players. We consider
secret bit exchange protocols based on such card
games in the remainder of this paper (see also
[FW92)]).

We use the following terminology. A deck is
a finite set of d cards; a hand is a subset of
the deck. Each player, including Eve, is dealt
a hand of cards. The deck is known to all of
the players, as is the size of each player’s hand,
but the actual cards in each player’s hand are
private to that player. In an (hq, ho,...,hg;e€)-
deal, each team player P; is given a hand H;
from a deck D of size Y h; +e, such that H; C D
and |H;| = h;. The hands are pairwise disjoint,
and Eve is dealt the remaining e cards. We call
the description of the sizes of the hands, £ =
(h1,ha, ..., hi; €), the signature® of the deal. If
all k team players have the same hand size h
in a signature, we write (k*;e). An n-bit secret
key exchange protocol that always succeeds in
obtaining an n-bit secret key for all legal £-deals
is said to work for £&. We also say such a protocol
performs n-bit secret key exchange for &.

1.2 Results

In Section 2, we present a protocol, the trans-
formation protocol, that performs n-bit secret
key exchange for teams of two players who each
receive a fixed fraction G of the cards, provided
the deck is sufficiently large. Fischer, Paterson,
and Rackoff [FPRI1] exhibit a protocol that
solves this case for n = 1, but their required

1 This term is borrowed from algebra, and is not in-
tended to have any connection to digital signatures.




deck size grows super-polynomially in 1/3. Our
protocol works for general n, and the required
deck size is only O(n(1/8)*™). In Section 3, we
analyze the transformation protocol. The anal-
ysis is based on a nontrivial entropy argument.

In Section 4, we derive applications of the
transformation protocol. First, we apply the
transformation protocol to the case where each
of two players holds a constant fraction 8 of
the deck and we show that the required deck
size for the protocol to work for n-bit secret key
exchange is O(n(1/8)%™). Second, we show a
general reduction of the multiparty case to the
two player case. Applying this reduction to the
transformation protocol yields a protocol that
performs n-bit secret key exchange for teams of
arbitrary size k, where each team player receives
fraction § of the cards, provided the deck is suf-
ficiently large. The required deck size is again
only O(n(1/8)*™). If we apply this to the case
where the deck is initially divided evenly be-
tween m players, the deck size needed to guar-
antee that any team that forms will be able to
obtain an n-bit secret key is O(nm?*™).

1.3 Other Approaches

The problem of secret key exchange has been
considered by others in the context of public
key cryptography (cf. [DH76, Mer78]). How-
ever, there are several problems with public key
cryptography. First, even if, for example, one
way permutations are assumed to exist, this
may not be useful, for Impagliazzo and Rudich
[IR89] provide evidence that most of the stan-
dard techniques in cryptography cannot be used
to construct a secret key exchange protocol from
a one way permutation. Second, public key
cryptography is based on unproven assumptions
about the computational difficulty of certain
problems. Even if public key cryptography is
based on a problem that is actually asymptot-
ically hard, it is not at all clear how to choose
a key size in order to get the desired security.
In the setting of multiparty protocols, there are

further complications. If player A wants to send
a message secretly to all the other players, she
can encrypt it using each player’s public key
and send the resulting encryptions. However,
although each encryption by itself gives no use-
ful information to an eavesdropper, all of the
encryptions taken together may divulge some
information about the message. A further prob-
lem is that of authentication.

Our results are quite different in flavor from
those of public key cryptography, and avoid
some of the problems mentioned above. Our re-
sults are not based on computational difficulty,
for we place no computational limitations on
our participants. In addition, we require that
our protocols always work for a given signa-
ture, not just with high probability. Because we
allow the eavesdropper to be computationally
unlimited, standard cryptographic techniques
based on computational difficulty cannot be
used. Furthermore, techniques such as those
used by Maurer [Mau91] will not work, since
we require the key obtained to be completely se-
cret from Eve and known ezactly to all the team
players, as prescribed by the secrecy and agree-
ment conditions. In fact, a secret key exchange
protocol is not possible in our model without
the initial random values, for an eavesdropper
could then simulate any team player under all
possible random choices and thereby learn S.
We have not addressed the problem of authen-
tication at this time.

2 The Protocol

Consider a team of size two, and call the two
team players Alice and Bob. A set of cards
S is called an (s,t,j)-portionif ¢ > 1, j > 1,
s> 1+7,|S| = s, S contains exactly ¢ cards from
Alice’s hand, and S contains exactly j cards
from Bob’s hand. The remaining s — (7 + 7)
cards belong to Eve. We say that s is the size
of 5, and we define the function size(S5) = s. We
sometimes refer to an (s, 1,1)-portion simply as
an s-portion, and to any (s, ¢, j)-portion simply



as a portion. Throughout the remainder of the
paper, it is assumed whenever we refer to an
(s,1%,j)-portion that s,4, and j are nonnegative
integers such that s > ¢+ j.

An (s,i,j)-portion S is opaque if Eve does
not know anything about the location of the
cards in S that she does not hold, other than
the information provided by the fact that S is
an (s,1,j)-portion. More formally, given the in-
formation available to Eve, each arrangement of
the ¢ + j cards in S that Eve does not hold, in
which Alice holds ¢ of these cards and Bob holds
the remaining j cards, is equally probable.

If Alice and Bob know an opaque 2-portion
K = {z,y}, they can use it to obtain a 1-bit
secret key S. Namely, Alice chooses randomly
to say either “S = 0if I hold 2” or “S = 0if I
hold y”. Alice and Bob each know the location
of the cards # and y, so they both know §. Eve
considers Alice equally likely to hold either card,
so she has no added advantage in guessing 5.

Fix a signature (a,b;d — (a + b)). Our pro-
tocol, called the transformation protocol, main-
tains a collection C of pairwise disjoint opaque
portions. The portions in C are common knowl-
edge to Alice, Bob, and Eve at all times. C
initially contains a single portion which is the
entire deck, a (d, a,b)-portion. There are three
types of transformations possible on the collec-
tion C, described below. The protocol eventu-
ally obtains n opaque 2-portions, each of which
is then used to obtain a 1-bit secret key as de-
scribed above. The 1-bit secret keys are con-
catenated together to form a single n-bit secret
key. The protocol is simply: while a transfor-
mation is possible on C, apply some transfor-
mation, until n 2-portions have been obtained.
If more than one transformation applies, Alice
randomly chooses which to apply.

The transformations are splitting, combin-
ing, and removal. Splitting replaces an (s,1,7)-
portion in C with several smaller portions, each
of which contains exactly one of Alice’s cards
if ¢ > 7, and exactly one of Bob’s cards other-
wise. Combining replaces two (s, 1,1)-portions

by a single (s',1,1)-portion for some s’ < s. Re-
moval removes a (2,1, 1)-portion from C.

Splitting: An (s,¢,j)-portion S in C can be
split if ¢+ 7 > 3. If ¢ > j, the splitting proceeds
as described below. If j > ¢, the roles of Alice
and Bob are reversed.

1. S is removed from C.

2. Alice randomly partitions S into 7 sets,
each of size |s/i]| or [s/i], such that she
holds exactly one card in each set, and an-
nounces the sets.?

3. Bob announces how many cards he holds
in each set announced by Alice.

4. Each set in which Bob holds no cards is
discarded.

5. Each set in which Bob holds at least one
card is added to C.

Combining: Two (s,1,j)-portions S; and 52
can be combined if = j = 1 and s > 3.

1. S; and S, are removed from C.

2. Alice randomly labels S; and Sy with the
labels P and Q.

3. Alice constructs and announces a new set
R consisting of her card from P, |s/3] —1
randomly chosen cards that are not hers
from P, and [s/3] randomly chosen cards
that are not hers from Q).

4. Bob announces how many cards he holds
in R.

(a) If Bob holds no cards in R, then Alice
announces () — R, which is added to C
(where @ — R denotes set difference).

2In an abstract setting, {r,y} is clearly the same as
{y,z}. In an actual implementation, care must be taken
that the communication of a set does not reveal which
cards came from Alice’s hand.




(b) If Bob holds one card in R, then R is
added to C.

(c) If Bob holds two cards in R, then Alice
announces RN P, which is added to C.

Removal: An (s,t,j)-portion S can be re-
moved if it =j=1and s = 2.

1. S is removed from C.

Theorem 2.1 If the transformation protocol
obtains n 2-portions, it performs n-bit secret key
exchange.

Proof: It suffices to show that at all times, all
the portions in C are opaque. This is initially
true since the original deal is a random (a, b; d—
(a+0b))-deal. Furthermore, each transformation
adds only opaque portions to C. Splitting pro-
duces only opaque portions because the play-
ers choose the partitions randomly. To see that
the portion added to C as a result of combin-
ing is opaque, consider the combining of two
i-portions S and S’. Suppose Alice holds card
z in S and card z’ in S, and Bob holds card
y in S and card ¢’ in S’. Then the sequence
of communication taking place during the com-
bining, as well as the resulting set added to C,
is equally likely to occur in the symmetric deal
where Alice holds y and 3’ and Bob holds z and
z'. Hence the protocol is partially correct.

|

3 Analysis

We use an “entropy” argument to determine
sufficient conditions to guarantee that the trans-
formation protocol can continue until n 2-
portions are produced. Given a portion §, we
define a quantity E(.9), called its entropy. For a
collection C, we define E(C) = Y_gec E(S5). We
show that if C’ results from C by a splitting or
combining transformation, then E(C’) > E(C),
and if C’ results from C via a removal transfor-
mation, then E(C') = E(C) — 2. Thus, if C’

results C via any sequence of transformations,
exactly £ of which are removal transformations,
then E(C') > E(C) — 2{. Finally, we define a
constant W and show that if E(C) > W, then
at least one transformation is applicable to C.
No infinite sequence of transformations can be
applied to any finite collection of portions, since
each transformation reduces the difference be-
tween total size of all portions and the number
of portions. It follows that if C initially con-
tains a single (d,a,b)-portion S and E(S) >
W +2(n —1), then the transformation protocol
will eventually terminate after having obtained
n 2-portions, for until that time, any collection
C' produced must have E(C') > W, so some
transformation can be applied and the proto-
col can continue. The remainder of this section
defines E(S) and proves the above claims.

The constant ¢ = logg/,2 = 1/logy(3/2) <
1.7096 is used throughout the analysis. Given
an (s,1,j)-portion S, we recursively define
E(S) = E(s,4,j) =

2 ifs=2,i=5=1
(s—2)—¢ ifs>3,i=75=1
FE([s/d],1,1) ifi>j,i>2
E(s, j,%) ifi<j

Hence, E(s,i,j) is symmetric in its last two
arguments, and F(s,1,1) is monotonically de-
creasing in s for all integers s > 2.

We will need the following simple fact.

Fact 1 Lety, z be non-negative integers, z # 0.
Then [y/z] <y/z+(z—-1)/z.

Proof: We have y = ¢z + r for integers ¢ and
r such that 0 < r < 2,50 [y/z] = ¢+ 1 <
g+1+(r-1)/z=(qz+r)/z+(2-1)/z =
y/z+(2-1)/=. m

In analyzing the splitting transformation, we
will need the following lemma relating the en-
tropy of an s-portion to the entropy of a [s/b]-
portion.




Lemma 3.1 Let b be an integer such that 1 <
b<s—1. Then

bE(s,1,1) < E([s/b],1,1).

Proof: Let b be an integer such that 1 < b <
s—1.Ifb=1,then b E(s,1,1) = E([s/b],1,1).
Otherwise, 2 < b < s — 1, and thus [s/b] > 2.
If [s/b] = 2 then

bE(s,1,1) = b(s—2)"°
< (s=1)(s=2)"°
< s —2)1-9)
< 2

E([s/0],1,1)

If [s/b] > 2, then E([s/b],1,1) = ([s/b] —
2)7¢. Since b > 2 and 1 — 1/¢ > 0, we have
1/(6(=1/9)) < 1. Also, calculus shows that 2 <
b1/¢ (14 1/b) for all b > 2. Hence,

s/ 42 < s+ b1 (14 1/b)
so b1/¢(s/b+ (b—1)/b—2) < s — 2. By Fact 1,
(/6] =2 < (s/b+ (b= 1)/b—2)

Therefore, b'/¢(1/(s—2)) < 1/([s/b] —2). Rais-
ing both sides to the ¢! power yields the desired
result. N

Lemma 3.2 Suppose C' results from C by a
splitting transformation. Then E(C') > E(C).

Proof: It suffices to show that the entropy of
the portion to be split is no more than the to-
tal entropy of the resulting portions. Let 5 be
an (s, z,y)-portion, and suppose without loss of
generality that z > y (the case y > z is symmet-
ric). Let S1,95%,...,8; be the portions added
to C as a result of splitting S, where §; is an
(84,1, b;)-portion.

Then s; € {[s/z],[s/z]},s02 < s; < [s/z].
Thus,

biE([s/x],l,l) < biE(si,l,l) (1)

E(s;,1,b;) (3)

where (1) is by the monotonicity of E(s,1,1),
(2) is by Lemma 3.1, and (3) is by the definition

of E(-).
Therefore,
E(s,z,y) = yE([s/z],1,1)
= szE([s/x] ,1,1)
S ZE(Sia 1,b’i)
as desired. [ |

Lemma 3.3 Suppose C' results from C by a
combining transformation. Then E(C') > E(C).

Proof: As before, we need only compare the
entropy of the portions that are combined to
the entropy of the resulting portion.

Let S1 and S3 be s-portions, and suppose S’ is
an s'-portion resulting from combining $; and
S2. In order for combining to be possible, we
must have s > 3. Hence E(51)+E(S2) = 2/(s—
2)°< 2.

Let R be the new set constructed by Alice.
Then |R| = 2 [s/3]. If Bob holds no cards in R,
then an (s—|s/3])-portion is added to C. If Bob
holds one card in R, then a (2 |s/3])-portion is
added to C. If Bob holds two cards in R, then
a (|s/3])-portion is added to C. (Note that it
is not possible for Bob to hold more than two
cards in R.) In all cases, we have s’ < [2s/3].

If ' = 2, then E(S') = 2,50 E(S1)+ E(S52) <
E(5'), as desired. Otherwise, s’ > 2,50 E(S') =
(s'=2)7¢ 2 ([2s/3]-2)7° > (2s/3+2/3-2)7",
by Fact 1. Thus we have

E(S)) > (2s/3+2/3—-2)"°
= @) (s-2)
= 2/(s-2y
= E(S1)+ E(S2)

completing the proof. |

Lemma 3.4 Suppose C' results from C by a re-
moval transformation. Then E(C') = E(C)— 2.




Proof: Removal can only be applied to a
(2,1,1)-portion. Hence the entropy of a re-
moved portion is 2. |

Let W = 3"3251/(s — 2)°. Since ¢ > 1, this
series converges and W is finite. Calculus shows
that W< ¢/(c— 1) < 2.4095.

Lemma 3.5 IfE(C) > W, then some transfor-
mation is possible.

Proof: Let C be a collection of portions such
that E(C) > W. Since E(C) > 0, C is nonempty.
If C contains a 2-portion, then removal is possi-
ble. If C contains an (s,3,j)-portion such that
t+ j > 3, then splitting is possible. Otherwise,
each portion 5; in C is an s;-portion for some
s; > 3. Then in order to satisfy E(C) > W, it
must be the case that there are two s-portions
in C for some s, since W is the entropy of a col-
lection containing one s-portion for every s > 3.
Thus combining can be applied. ]

Lemma 3.6 Let C be a finite collection of por-
tions. No infinite sequence of transformations
s applicable to C.

Proof: For any collection C, let

M(C)= (Z size(S)) —-|C|

SecC

Since all portions we consider have size at least
2, M(C) > 0. If C’ results from C by any trans-
formation, then M(C') < M(C). Hence, M(C)
is an upper bound on the number of transforma-
tions that can be applied to C before the collec-
tion becomes empty. Thus no infinite sequence
of transformations can be applied to any finite
collection C. |

Theorem 3.7 If E(C) > W+2(n—1), then the
transformation protocol succeeds on C to produce
n 2-portions.

Proof: We show as an induction hypothesis
that for any collection C and any sequence «
of applicable transformations, if C’ results from
C by v, then E(C') > E(C) — 2r(v), where r(v)
is the number of removal transformations in 7.

Proof is by induction on |y|. The base case is
obvious. Let |y| > 1 and assume the induction
hypothesis holds for all 4’ such that |y/| < |7|.
Write ¥ = 4/, where 7 is a transformation. Let
Co result from C by 4'. By the induction hypoth-
esis, E(Co) > E(C)— 2r(v'). If 7 is a splitting
or combining transformation, then r(y) = r(v’),
and E(C") > E(Co) > E(C) — 2r(y) by Lem-
mas 3.2 and 3.3. If 7 is a removal transfor-
mation, then r(y) = 7(y’) + 1, and E(C') =
E(Co) —2> E(C)—2r(y") -2 = E(C) - 2r(y)
by Lemma 3.4. This establishes the induction
hypothesis.

Now, suppose E(C) > W + 2(n — 1) but the
protocol fails to produce n 2-portions. Consider
a sequence v of transformations produced by
a run of the transformation protocol starting
on C. By Lemma 3.6, v is finite. Let C’ re-
sult from C by y. By the induction hypothesis,
E(C") > E(C)—2r(7y). Since the protocol failed
to obtain n 2-portions, then no transformation
is applicable to C’, for otherwise the protocol
would have continued. Hence, E(C') < W by
Lemma 3.5. It follows that

E(C) > E(CH+2(n-1)
> E(C)-2r(v)+2(n-1)

Hence, 7(y) > n — 1, contradicting the assump-
tion that the protocol failed to produce n 2-
portions. Thus, the protocol stops because n
2-portions were produced as desired. |

4 Applications

In this section, we present two applications of
the transformation protocol. The first obtains
a much improved bound for a problem studied
in [FPR91] in which each player holds a con-
stant fraction of the cards. The second uses the




transformation protocol as a building block for
constructing a multiparty secret key exchange
protocol.

4.1 Two Players Each Holding a Frac-
tion of the Cards

We consider the situation in which each of two
players receives a constant fraction § of the
cards in the deck, and the remainder go to Eve.
This situation arises naturally with § = 1/m,
for example, in protocols where the deck is dealt
out evenly to m players. We are interested in
how large the deck must be in order for the
~ transformation protocol to work in this situa-
tion.
We use the following in our analysis.

Fact 2 Let x be a positive integer and ( be
any real number such that Bz > 1. Then

[/ [Bz]1 <2/B+1.

Proof: Let £ be an integer such that £ < fz <
£+ 1. Then £ > 1, so |fz| = £ and [z/{] <
(t+1)/(B6)+1<2/6+1. n

The following shows that the transformation
protocol performs arbitrary n-bit secret key ex-
change for two players each holding a fraction
[ of the cards if the deck is sufficiently large.
The required deck size is only O(n(1/8)tD),
which is polynomial in 1/ and linear in n. Let
e1 = 20D < 6.5411 and ¢; = (W — 2)/2 +
27¢/¢y < 0.2515.

Theorem 4.1 Let 0 < § < 1/2, and suppose
that d > ¢1(1/8)t(n + ¢;). Then the trans-
formation protocol performs n-bit secret key ex-

change for £ = (|pd], |Bd] ;d—2|Bd]).

Proof: Let 3, d, and £ satisfy the conditions
of the theorem. Then the initial collection C
consists of a single (d, |8d], |Bd])-portion. By
Theorem 3.7, it suffices to show that E(C) >
W+2(n-1).

If [df |8d]] = 2, then E([d/ |8d]],1,1) =
2 > (2/B-1)° If [d/|Bd]] > 2, then by

Fact 2, B([d/ [8d]],1,1) = ([d/ [d]]-2)~° >
(2/B —1)7°. Hence, in either case,

E(C) = E(d,|pd],|Bd])
= |Bd] E(d/ |pd]T,1,1)
> (Bd-1)(2/8-1)"°

Since § < 1/2, it follows that both (26)7¢ > 1
and 2/8 > 1. Using the bound on d and the
definitions of ¢; and cq, we get

Bd—1 > cf(n+e)—1
= Clﬂ_°<n+W_2+2_>—-1
2 Cy
> W—2)

e (n +
(2/8)4(W +2(n—1))

Combining the above, we get

EC) > (Q/Qﬂ/f 1)° (W + 2(n — 1))

> W4+2(n-1)

Hence the transformation protocol succeeds for
€. |

It was shown in [FPR91] that secret bit trans-
mission is possible for two players each hold-
ing a constant fraction 8 of the cards, but the
required deck size grew super-polynomially in
1/B. From Theorem 4.1 for n = 1, it follows
that the transformation protocol can be used
to solve secret bit transmission with a deck size

that grows as only O((1/8)(¢t1).

4.2 Multiparty Secret Key Exchange

We reduce the problem of multiparty n-bit se-
cret key exchange to the problem of 2-party
n-bit secret key exchange by showing how to
construct a protocol P* for signature &* =
(P1,...,hx;d — 3" h;) given an arbitrary proto-
col P for some signature £ = (a,b;d— (a + b)),
as long as each h; is sufficiently large. The con-
struction has the property that if P performs




n-bit secret key exchange for £, then P* per-
forms n-bit secret key exchange for £*. A simi-
lar reduction appears in [FW92]. Applying this
reduction to the 2-player transformation proto-
col yields an efficient multiparty n-bit secret key
exchange protocol.

The basic idea behind this reduction allows
a subset of a team to carry out a protocol P,
designed for signature ¢, when the actual sig-
nature is £'. Let £ = (hq,...,hg;d — Y h;) and
& = (hy,...,hly;d — 3" h}). The construction
works if there is an injection o : {1,...,k} —
{1,...,k'} with the property that h; < h;(i), for
1 <@ < k. Player P,;) plays the role of player 1
in P, using a randomly chosen subset H; of size
h; from her real hand H! .. When carrying out
P, she pretends that she gholds only the cards in
H;. Players P; for j not in the range of o do not
participate. Thus, P works just as it would for
a ¢ deal, and Eve learns nothing about the lo-
cations of any cards not in the simulated hands
of P, allowing those cards to be used later to
carry out another protocol.

Theorem 4.2 Let n > 1 and k > 2, and let
f = (a’b;d— (a+ b)) and é* = (hl,“"hk;d_
> hi) such that hy > a, hy > b, and h; > a+b
for all2 < i< k—1. Let P be an n-bit secret
key exchange protocol that works for £. Then
there is a protocol P* that performs n-bit secret
key exchange for £*.

Proof: Assume the conditions of the theorem
and that P works for £&. We construct a new
protocol P* to perform n-bit, k-player secret
key exchange. P* uses protocol P a total of
k — 1 times. The *" use establishes an n-bit
secret key B; between players P; and Pjtq.
Each team player except P; and Py randomly
divides her hand into three parts. The first
part contains a cards, the second part contains b
cards, and the third (possibly empty) part con-
tains her remaining cards. P; randomly divides
her hand into only two parts, one of size a, the
other of size h; — a Similarly, P; randomly di-

vides her hand into two parts, one of size b, the
other of size h; — b.

In the i*® use of P, neighbors P; and Py
are the active players and participate to estab-
lish a secret key B; that they share. Player P;
uses the part of her hand containing a cards to
play the role of Alice in P. Player P,y uses
the part of her hand containing b cards to play
the role of Bob in P. The other players do not
participate. We call the a + b cards that the ac-
tive players are using the current cards. During
each use of P, all team players behave as if Eve
holds all the cards except the current cards, so
Eve learns nothing new about the location of
any card not among the current cards. Thus it
is possible to use P again with different active
players, provided that the new set of current
cards is distinct from all previous such sets.

After the k—1 uses of P are completed, player
P; becomes the leader and randomly chooses an
n-bit string S to be the team’s secret key. Now
the team transmits S from player to player until
the whole team knows §. When P; learns S5,
she sends F; = S @ B; to P41 publicly. P4y
recovers S by computing F;® B;. In this way, all
players learn S while releasing no information
about S to Eve. Hence, P* works for £*. [ |

We can apply Theorem 4.2 to the transforma-
tion protocol to obtain an n-bit, k-player secret
key exchange protocol that requires the deck
size to be only linear in » and polynomial in
1/a, where a is the fraction of the deck held by
each team player. Recall that ¢; = 2(¢t1) and
Cy = (W - 2)/2 + 2_0/61.

Corollary 4.3 Let 0 < a < 1/k, and suppose
that d > ¢1(2/a)tD(n + ¢3). Then there is
an n-bit secret key exchange protocol for £* =

(lad]*;d — k [ad)).

Proof: Let o and d satisfy the conditions of
the corollary, and let P be the transforma-
tion protocol. From Theorem 4.1, P works for
(1pd], |pd] ;d—2|pd]), where 8 = a/2. Since
2 |pd] < |ad], the conditions of Theorem 4.2




are satisfied. Hence, the protocol P* given by
that theorem works for £*. ]

Corollary 4.4 Assume m divides d, and let
each of m players be dealt hands of size d/m
from a deck of size d. Assume further that
d > c1(2m)(n + ¢;). Then for any team
of size k < m that forms, there is a protocol for
the team that establishes an n-bit secret key.

5 Conclusions

We have developed and analyzed the new trans-
formation protocol for secret key exchange us-
ing deals of cards. The protocol maintains a
dynamically changing collection of portions. It
is analyzed using a nontrivial entropy argument.

The transformation protocol is almost effi-
cient enough to have practical applications. For
example, consider the dynamic case of m play-
ers dealt hands of equal size. The initial deal
of cards could be performed in a centralized,
secure environment, and the hands of the play-
ers written to m portable mass storage media
such as optical disks, one for each player. Af-
ter the disks have been distributed, any subset
of players can form a team and use the proto-
col to obtain a secret key. For m = 100 and
n = 1000, Theorem 4.1 shows that a deck of
size about 1.1 x 10! is sufficient. Each of the
100 hands can be encoded using roughly 10®
bytes (for example, by storing the differences
between successive cards in the hand instead of
absolute card values). Storing 100 Megabytes
on an optical disk is easily within the capabili-
ties of today’s technology.

Naive implementation of our protocol re-
quires a large number of rounds of communica-
tion, but many transformations can be applied
in parallel, greatly increasing its efficiency. An
open problem which we are currently working
on is to further explore the practical applicabil-
ity of these ideas.
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