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A Synthesis Approach to
the Design and Correctness of Systolic Computations

Marina C. Chenl

Abstract

This paper presents a methodology for deriving systolic algorithms by a series of transfor-
mations from mathematical problem definitions. A conceptualization of systolic computations,
in terms of mathematical objects rather than merely in terms of implementations, is provided.
The concept of wavefront sequence is introduced to construct timing functions for synchronizing
parallel processes. Its use, however, is not limited to systolic computations but also serves as
a reasoning tool for parallel computations in general. A complete example, from the definition
of matrix multiplication by inner products to the derivation of its four different systolic imple-
mentations, is given. The correctness of the original definition is strictly maintained at each
stage of the transformations.

1 Introduction

Parallel processing is concerned with the effective use of hardware technologies that are inher-
ently highly parallel. In order to expoit its potential fully, parallelism must be used at the
algorithmic level as well as at the hardware level. As a consequence, parallel software technolo-
gies that facilitate the use of parallel hardware play an increasingly more important role in the
arena of parallel processing.

Systolic algorithms, as exemplified by a large body of literature [9], make use of hardware
technology very effectively in several aspects: (1) they avoid the incurrence of high communi-
cation cost by organizing the computation in such a way that only local communications take
place; (2) they avoid large numbers of fan-ins and fan-outs by using networks of fixed degrees
of connectivity; and (3) they use hardware resources effectively by pipelining, i.e., re-using each
component O(k) number of times where k is proportional to problem sizes (e.g. linear or square
root of problem size).

Can such efficiency be incorporated into a program with relative ease or must each systolic
algorithm be obtained painstakingly in an ad hoc fashion? Can the correctness of a systolic
algorithm be ensured in a formal and rigorous manner instead of simulation? Unlike a se-
quential program where the computation it embodies can be modeled as a sequence of state
changes and thus be reasoned with existing programming methodologies, the concurrent and
distributed state changes appearing in a parallel program make the reasoning process a much
more difficult one. A great deal of work in the areas of proof methods, logic of concurrent
programs, and verification techniques for concurrent or parallel programs has appeared [1],
(4], [7], [10], [11], [12], [18]. These methods provide foundations for proving the correctness of
concurrent programs, but they aim at showing the correctness upon being given a concurrent
program rather than allowing an efficient parallel program to be synthesized.

In this paper, we present a synthesis approach for deriving systolic algorithms by a series
of transformations from a problem definition. We illustrate how to extract a “sequence of
execution wavefronts” from a parallel program and use it as a tool for reasoning about the
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program. A problem definition is given in the language Crystal, which is essentially a for-
malized mathematical notation. The correctness of a definition is either self-evident, or it is a
scientifically well-established fact, or else it can be proven correct mathematically with relative
ease. In each step of the transformation, a rule aiming at reducing the underlying hardware
cost in the parallel implementation is introduced, and the correctness of the definition is strictly
maintained.

The remaining parts of this paper are organized as follows: In Section 2, a special class of
Crystal programs that yield systolic computations is defined. In Section 3, examples of prob-
lem definitions are given. Each problem definition, upon being broken down into various parts
of a Crystal program, immediately exhibits the large scale parallelism it contains. In Section
4, notions relating to the ordering of a large scale of processes such as process structures and
wavefront sequences are introduced. In Section 5, the issue of effective utilization of hardware
technologies is addressed. Synthesis rules for transforming programs to ones suitable for im-
plementation are introduced. In Section 6, the synchronization of a large number of processes,
the opitmal timing function, and the space-time mapping of a program are introduced. The
existence and uniqueness of the optimal timing funtion of a program are established. By space-
time mapping, automatic incorporation of pipelining into programs is achieved. A resulting
program has improved efficiency and embodies a systolic computation.

Throughout this paper, the example of deriving several systolic algorithms from the math-
ematical definition of matrix multiplication is used. First, in Section 5.7, a bounded-order and
bounded fan-in and fan-out degree program Py, is derived from the initial matrix multiplica-
tion definition Pp,p,. Next, in Section 6.3, the optimal timing function for P, is constructed.
Several optimal space-time mappings are then constructed from the optimal timing function.
Finally, in Section 7, initialization, inputs, and outputs that suit the implementations of a
two-dimensional network are incorporated into each target program.

2 A Special Class of Crystal Programs

For the scope of this paper, a special class of Crystal programs, the ones with data-independent
process structures 2 is defined. A general definition of a Crystal program can be found in [6]. A
systolic computation, or any fine-grain parallel computation, relies on the parallelism operated
on a large quantity of data. At the very basic level of any formalism for describing such
class of computations, it is important that each datum can be addressed in a structured and
convenient way so that parallelism over the collection of datum can be expressed appropriately.
This property of fine-grain parallelism motivates the following definition:

Definition 2.1 (Index Set) Let A; be a Cartesian product A;; X Ao X - - - X A;q of countable
sets A;j, 1 < j < ¢ and q a positive integer, which are usually subsets of the set of integers.
The set (A;;,C) with the binary relation “approximate” ([14]) on the elements of A;; is a flat
lattice. An index set A is a sum A; + Az + - -+ + A, of Cartesian products (Ai,C) , for some
positive integer r, and any subset of an index set is also an index set.

A Crystal program can be quite a complex object since a parallel program may consist of a
large number of processes each of which is performing a different task and communicating with
others via various communication paths. Informally, a Crystal program can be depicted as
shown in Figure 1, where v; are processes, F; are data streams, X; are external input functions,
my, are elements of the output data structure, and the output mapping function o maps a given
my to a particular process o(myg) at which the value F;(o(my)) are of interest and considered
external outputs of the program. Note that the inputs of a process v; may be the outputs Fi(u)

2Definition in Section 4.



of some other process u, or may be some external input value X; (b), where b is an element
of the domain of X;. Note that here we are taking a functional programming point of view
in which each process performs some local processing function (¢y defined below), and the
data flow is specified by the arrows connecting processes (communication functions 7v defined
below) . A process may start processing as long as all its required inputs are available and
no particular timing constraints are imposed on the collection of processes. Issues of optimal
synchronization or timing are dealt with when processes are mapped to processors in Section
6.3.

Formally, a Crystal program has two parts, the declaration and the program body. Pro-
gram declaration consists of a 9-tuple,

P = (P’ D’ 7’ x’ M’ {¢V}V€P7{N}VGP; L,O),
and the program body is a system of recursion equations
F(v) = ¢v(F(rv(v)), X{c(V))), Vv € P, (1)
where

1. P is an index set, and each element v € P is called a process. The set of processes P
with some ordering of these processes (to be defined later) is referred to as the process
structure of program P.

2. D is a set of domains (data types). Each domain D; € D can be some value domains
such as the set of integers, reals, etc., or it can be some domain of functions, functions of
functions, etc., and (D;,C) is a continuous complete lattice.

3. ¥ is a set of identifiers for data streams, where a data stream is an element of the set
E; ¥ (pC) — (D;, E)] of continuous functions from (P, C) to (D;, C).

4. X is a set of identifiers for input functions. Each input function X; € X is an element of
the set of functions [(B,C) — (D, E)], where D is some data type in D and B is an index
set, called the input data structure of program P.

5. M is the output data structure, which is an index set.

6. In the following definitions, m and k are some positive integers and [ is a non-negative
integer. These are the three natural numbers that specify the number of data streams,
the number of external outputs, and the number of external input functions of a given
Crystal program.

7. If f is a function of variable 2 defined by an expression E, then we use the notation \z.E
to denote f, i.e., f = Az.E, and the functional value f(z) is denoted by (\z.E)(z).

8. A local processing function ¢v = [¢v,1,...,dv,m] is a member of the family of functions
{#v }vep, and each of its component ¢y ;, for 1 <4 < m, is a function

¢v,i: Dy XX Dy x Dy x--+-x D} — D,

and
¢v,i(dis-..ydm,dy,...,d}) = ¢, where d;,¢; € D;, and d; € D!.

9. A commaunication function v = [rv,1,...,7v,m| is a member of a family of functions
{rv}vep, and each of its components 7v ;, for 1 < ¢ < m is a function 7v,i : P — P of the
form Au.E(u). This definition of communication function specializes a Crystal program
to the class of programs with data-independent process structures due to its independence
of any value of any data stream F(v) since 7y ; is a function only of v € P.




Xo (b4)
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Figure 1: A Crystal program consisting of processes, communications between processes, data
streams, external inputs, input mapping function ¢ which maps v, — by, v — by, v; — bg,
vio - by, vs — bs, vg — bg, external outputs, and output mapping function o which maps
m; — Vg, Mg — Vi, M3 — Vg, M4 — V. '



10. X &f [X1,...,X] is a vector of input functions where X; € [B— D!], 1<i <.

1. FY [F1,..., Fp]is avector of data streams where F; € E; (defined in Item 3), 1 <7 < m.

12. F(v) ¥ [ (v),...,Fu(v)] .

13. Function ¢ = [i1,..., 4] is a vector of input mapping functions where each of its compo-
nents ¢; : P — B, 1 <5 <, is an input mapping function which interfaces the input
data structure and the process structure.

14. Function o is a vector of output mapping functions [oy,. .., 0] where each of its compo-
nents o; : M — P, 1< 5 <k, is an output mapping function which interfaces the output
data structure and the process structure.

15. The notation “()” is a short-hand for component-wise function application of a vector of
functions to another vector of functions (or elements), for instance,

F(lui, ug, ..., un)) & [F(w1), Fa(ug), ..., Fr(um)),
X([b1,ba,. .., b)) ¥ [X;(by), Xz (b2),. .., X;(by)].

16. Functions 7v and @v are continuous functions over the specified domains. Thus Equa-
tion (1) is a system of fixed-point equations, and on its right hand side,

¥ EAF v gy (Frv (v)), X(1(v)))
is a continuous function mapping from E; X --- X E,, to Ey X --- X E,p,.

Definition 2.2 (Program Abstraction) Let the least fixed-point of ¢ be denoted by F*°(X),

and the notation o stands for functional composition. The function fp % Am.A\X.coF® (X)(o(m))
is said to be the function ¢mplemented by the parallel program P, where m € M, the output
data structure, implies that each component o;(m) of o(m) is in P, and ¢ is a projection from
D1 X Dg X -+ X Dp,. The value fp(m)(Xo) for any m € M and any vector of input functions
Xy is called a vector of outputs of program P.

The need for the projection € stems from the fact that sometimes a certain data stream F} is
only auxiliary and its values are not of interest, and hence the corresponding component in the
vector of outputs is disregarded.

Remark: (Structured Programming) A Crystal program may contain nested levels of
Crystal programs since any function used in the definition of a program P, such as ¢v, can
be implemented by another parallel program P’.

Definition 2.3 (Program Equivalence) Two programs P and P’ are equivalent if and only
if fp = fps, i.e., they implement the same function.
3 Definitions as Parallel Programs

Many familiar problem definitions with ensured correctness can be viewed as Crystal programs,
and thus be interpreted to perform parallel computations. For example:




Program 1 (Integer Partition)
t=1—1
C(i,j) = 1>5—-C(—-1,7) (2)
i>1—-¢ i=7—-C(Ei—-1,7)+1
i <7 —Cli—1,7) +Cli,j—i).

Its correctness can be verified easily by an inductive argument. It can be seen as a Crystal
program

Pint—par = (N2, {-N}a {O}, {1}’ -N2a {¢(i,j)}(i,j)€}»l23 {T(i,j) }(i,j)GN% €2, Ide),

where N is the set of positive integers; C is a functional variable; 1 is an input constant which
is a function 1: j € N+ 1. The local processing function é(; ;) = [¢(i,5),1, b(i,s),2] Where

i=1—>d3

?(,5),4(d1,d2,d3) = i>j—=d for g = 1,2; 3
(’J)Q( 1,d2,ds) i>1o{ i=jod+1 q ’ (3)
1< j—dy+do

the communication function is

T6,3) = [T6,9),10 Ta,9),2] = [ — 1,9), (5,7 —%));

the input mapping function ez : (7,5) +— 7 is a projection from N? to N which chooses the
second component from a pair of positive integers; the output mapping function is just an
identity function Ide : (7, ) — (7, 5) from N2 to N2, and the program body is

[C,C(3,5) = b(i,5) ([c,c] (T(i,j) (4,0, Le2(4, 1)), V(i,4) € N2, (4)

This system of recursion equations is equivalent to Equation (3) since it defines a pair of
functions [C, C] in which two components are identical. The function fp,,, ... = A(i, 7). o
[C, C]*°(Ide(7, 7)) is implemented by Pint—par, Where €; : (d1,d2) — dy is a projection from N2
to N, and [C,C]® is the least fixed point of Equation (4). Note that for this example, the
three integers m, k, and [ associated with a given Crystal program mentioned in Item 6 of
Section 2 are 2, 1, and 1, respectively.

Program 2 (Matrix Multiplication)
n
C(i,5) = Y Ali, k) x B(k, ) for 1 < 4,5 < n. (5)
k=1

This is the definition of multiplication of two real matrices A and B. The corresponding
Crystal program consists of

Prom = (N2, {%}, {C}a {A, B}a N2a {¢(z’,j) }(i,j)eNza {T(i,j)}(i,j)ENza [O!, ﬂ]a Ide),

where N is the set of positive integers {1,2,...,n}, and R is the type of the elements of the
matrices. The local processing function $(i,5) is defined as

n

def
¢(i,j) (Oa [aily A2y ¢ 0oy Qin, b1j7 b2ja IERX) bn]]) = Z aig X bkj-
k=1




Since the right hand side of Equation (5) contains only inputs, no communication function is
necessary. The output mapping function is just the identity function Ide : (7, 7) — (i,7). The
input mapping function ¢ = [ay,..., an,B1,..., Bs] Where

aliyj) = (i, k), &
Bk (Z, ]) = (k’ j)’ k

and we let X =[A,..., A, B,..., B] be a vector of 2n components in which first n of them are
A’s and the last n of them are B’s. Thus

X{e(3, 7)) = [A(5, 1), A(4,2),..., A(,n), B(1,5), B(2,5), . . ., B(n, )]

ceyn,

’2’
2,...,n,

=1,2,.
=1,2,.

The program body
O(is .7') = ¢(i,j) (C’ X("(iaj)))
is exactly Equation (5). The function fp,,, = A(¢,5).C*(¢,s) is implemented by Ppn,;. Note
that for this example, the three integers m, k, and ! associated with a given Crystal program
mentioned in Item 6 of Section 2 are 1, 1, and 2n, respectively.




4 Ordering Parallel Processes

4.1 Process Structure

Definition 4.1 (Data Dependency) In a program P, a process u € P immediately precedes
a process v € P (u < v), or v immediately depends on u (v > u) when v appears on the
left-hand side of System (1) (the program body), and u appears on the right-hand side of the
system as F(u) where F is one of the data stream in the system. We also say that a process
v € P immediately depends on an input value (x < v) when some input x appears on the
right-hand side of the system while v appears on the left-hand side.

Definition 4.2 (Source Processes) In a program P, if a process v € P depends only on
inputs, and not on any other process u € P, then v is called a source process, or simply, a
source. Let Sr denote the set of source processes.

Definition 4.3 (Dependency Relation) A data dependency relation “precedes”, denoted

*
by “<?, is the transitive closure of the relation “immediately precedes” (“<”).

Definition 4.4 (Process Structure) (P, :) is called the process structure of a program P,
and the program body (System (1)) must be such that the process structure is a well-founded
set, and furthermore, every process can immediately depend on only a finite number of pro-
cesses.

Remark: Process structure (P, -*<) can be drawn as a directed acyclic graph (DAG) with each
node of the DAG being a process and an edge directed from a process u to a process v which
is immediately dependent on u. The finiteness of the number of dependent processes for each
process says that the DAG must have finite fan-in degree at every node. The well-foundedness
of (P, :) says that at any given node in the DAG, the chain of edges leading to the node must
be of finite length. The entire DAG, however, may contain chains of infinite length.

Definition 4.5 (Data-independent Process Structure) Since every component of a com-
munication function 7v ; of program P does not depend on the value of any data stream F(u)

at any process, and it depends only on v € P, therefore (P, -:) is called a data-independent

process structure. In general, 7v; has a more complicated definition and (P,:) might be a
data-dependent process structure.

Remark: Data-independent process structure is not necessarily static since it can be space-
time variant. There is no necessity to incur any run-time overhead for mapping parallel pro-
cesses to processors [2,3,5] for this class of programs since the mapping can be resolved at
compile time.

Definition 4.6 (Partially Ordered Vector Space) Let V be a d-dimensional vector space

*
over the rationals, for some non-negative integer d. A process structure (P, <) is said to be a
(d-dimensional) partially ordered vector space if P C V. In this case, each process v € P is
also called a vector.

4.2 Wavefront Sequence

A wavefront sequence captures essentially the sequence of global state transitions of the ensem-
ble of parallel processes of a program, and thus provides a useful tool for reasoning about the
program.




Definition 4.7 Let (W, <) be a well-ordered set, and 0 be its least element. We say that
n' <o n (n' immediately less than n) if n,n’ € W, n’ < n, and there exists no m € W,
n’ < m < n. We also use the notation n > n’ if n' < n.

Definition 4.8 (Wavefront Sequence) A wavefront sequence
(wi)ie(w,<)

of a program P is defined by (i) wy = Sr, where 0 is the least element of (W, <), i.e., all sources
belong to the first wavefront (z = fD of the sequence, and (ii) For n > 0, wy, C Q, where

Qd--—-e-f {v:Vu,(u < v =u€ w where k <n) and v ¢ w;, where j < n},

i.e., a process may belong to wavefront at n if it does not belong to any previous wavefront at
J, and all of its dependent processes belong to some previous wavefronts at k, k < n. We use
the notation (w;);e(w,<)(P) to denote the sequence of wavefronts defined by a program P.

Proposition 4.9 (Existence of a Wavefront Sequence) There exists a wavefront sequence
for every program P.

Proof: Since the process structure (P, -*<) is a well-founded set with finite fan-in degree in the

corresponding DAG, then the result of a topological sorting on (P, :) is a well-ordered set
(W, <). Then (w;)sg(w,<) With w; = {1} is a wavefront sequence. Note that W is no more than

order type w because of the finite fan-in degree in the DAG of (P, -2) "

Definition 4.10 (Optimal Wavefront) A wavefront sequence (0;);e(w,<)(P) is optimal if it
is a wavefront sequence and for all n > 6, 0; = @, where @ is defined in Definition 4.8.

Proposition 4.11 If (0;);e(w,<)(P) is an optimal wavefront sequence, then for all n > 0:
Vv € 0,,3u,u < v such that u € o,r, where n' <q n.

(In an optimal wavefront sequence, a process belongs to the wavefront at n if all of its dependent
processes belong to wavefronts at k < n, and there is at least one dependent process belonging
to wavefront at n’ that is immediately before wavefront at n.)

The optimal sequence of wavefronts is crucial for devising the timing of a parallel implemen-
tation and for analysing the time complexity of a program. Finding a wavefront sequence for a
program is easy, but ways of finding the optimal sequence of wavefronts may not be apparent.
In Section 6, we illustrate how an optimal sequence can be obtained by an inductive procedure
on a given wavefront sequence. Efficient parallel programs can then be derived based on the
optimal sequence of wavefronts.

The wavefront sequence describes the proceeding of a computation independent of whether
the parallel implementation of the program uses synchronous circuitry or an ensemble of asyn-
chronous processors. Clearly, processes belonging to the same wavefront do not depend on one
another. In an implementation, such processes could be arranged to execute simultaneously as
in a synchronous system. However, such synchronization is not necessary; processes belonging
to the same wavefront may be executed at different instances in real time (creating a “rippled”
wavefront). Nor is it necessary for a process at wavefront w; to be executed at a prior time
than all of the processes at wavefront w;r, ¢ < 4’. Such is the case in a self-timed system [15].




4.3 Complexity of the Naive Parallel Algorithm

In the matrix multiplication example, if we use one processor for each process in Program
Pmm, we obtaih immediately a naive parallel algorithm in which the local processing at each
processor, and the communications between processors, are obtained from the definition as
described in Section 2. Altogether O(n2) number of parallel processors are needed. However,
the computation can be accomplished in a single step. This number of time steps is also exactly
the total number of wavefronts in the optimal wavefront sequence, in this case consisting of
only a single wavefront: wy containing all processess (i, ), for 1 < 4,5 < n, since all of them
are source processes.

As exemplified here by the definition of matrix multiplication, when the constraints in
the underlying hardware implementation are not taken into account in the computations and
communications of a parallel program, the measure of its time complexity is too naive to be
useful. In the next section, we show how to transform systematically a problem definition to a
parallel program that does take into account realistic costs of hardware, and allows the number
of wavefronts to serve as a valid measure of time complexity.

5 Program Transformations

The rules of transformations introduced below are motivated by the constraints imposed by
hardware. These rules are extremely useful and apply to a large number of problems [2].

5.1 Problems with Large Fan-in and Fan-out Degrees

The time complexity of a Crystal program seems to be able to be determined by the num-
ber of wavefronts in the optimal wavefront sequence. However, due to the inherent physical
constraints imposed by the driving capability of communication channels, power consumption,
heat dissipation, memory bandwidth, etc., the time it takes for a process to complete a com-
munication is, unfortunately, not entirely independent of the number of destination processes
to which data must be sent (the fan-out degree), nor of the total number of sources and pro-
cesses from which data must be received (the fan-in degree). We call the amount of time for
completing a single process (single source) to process (single destination) communication a unit
commaunication time. The number of unit communication times incurred for a communication
that has a large fan-out degree, say degree O(n), may become as large as O(n).

5.2 Locality of Communications

Locality of a communication is another factor that affects the amount of time it takes for the
completion of a communication. The farther away a communication must travel, the greater
the number of unit communication times it takes. Locality of communications is defined with
respect to a given class of process structures. For instance, with respect to a process structure
that is a partially ordered vector space, locality is defined as:

Definition 5.1 If the process structure (P, 2) is a partially ordered vector space, then the path

length between two processes v & (v1y...,v4) € P and u def (u1,...,u4) € P with respect to
P is defined to be |vy —u3|+ - -+ |vg — u,|, where each component u; and v; fori = 1,2,...,q
are integers.

Given the definition of path length with respect to each class of process structures, locality
can be defined:

10



Definition 5.2 A communication between two processes u,v € P, where u < v, is local if
their path length with respect to P is bounded by a fixed constant.

Definition 5.3 The order of a system of recursion equations (the program body) is defined to
be the maximum path length with respect to P over all pairs of processes u and v in P, where
u < v. We call a system n-th order recursion equations if its order is n. A system of n’th order
recursion equations is of bounded order if n is bounded.

5.3 Measuring Time Complexity at the Abstract Level

From the above discussions, we see that the time complexity cannot be reflected by the number
of wavefronts alone and therefore the time spent for each communication that is implicit in the
program must also be taken into account. However, we really would rather eliminate such low
level consideration from the process of designing parallel programs. Note that the wavefront
number does serve as a measure of time complexity for a program with bounded order and
bounded fan-in and fan-out degrees 3 since a constant number of unit communication times
does not affect the order of the time complexity. Thus if we manage to transform a given
program to one with bounded order and bounded fan-in and fan-out degrees*, then the cost
for implementing the unbounded order or unbounded fan-in and fan-out degrees in the original
program will be rightfully reflected in the new program at an abstract level, and hence there is
no longer any need to consider the communication time.

Thus the elimination of large fan-in and fan-out degrees and high order terms from a program
allows us to ignore implicit cost at the implementation level and measure the cost of a parallel
programs in a realistic way at an abstract level.

5.4 Counting Fan-in and Fan-out Degrees

Definition 5.4 The fan-in degree of a process u is the total number of distinct processes v
and inputs x appearing on the right hand side of a system of equation(s) with u appearing on
its left-hand side.

Conversely,

Definition 5.5 The fan-out degree of a process u (or an input x) is the total number of times
a process v appears on the left-hand side of a system of recursion equations while process u
(or an input x) appears on its right-hand side, each time a distinct v.

Definition 5.6 The fan-in (or fan-out) degree of a system of recursion equation(s) is the
maximum fan-in degree over all processes (and inputs x in the case of fan-out degree) defined
by the system.

5.5 Reducing the Fan-in Degrees

A large fan-in degree comes from an associative function which has a large number of arguments.
The transformation for reducing fan-in degree is that of replacing this function by another
program which has a bounded fan-in degree that implements the associative function. As
long as the replacing program implements the function correctly, the transformed program is
equivalent to the original one.

3Depending on the underlying machine architecture, sometimes a logarithmic fan-in or fan-out degree is
acceptable up to a certain limit.
4or logarithmic fan-in and fan-out degrees.
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Definition 5.7 (Associative Operation) An operation “@”, where y = Du<ic, (1), is
associative if there exists a binary operation @, a function z of variable /, and a function &

det [ l=u— Ideg
@(z,mal,u"v,@) - { u<l$v—>z(l—1)€9m(l)

such that
y=z(v) and

o) = (2, 2,1, u, v, ®) (©)

where Ideg is the identity of “@”, and z(I) has fan-in degree 1+ deg(z(l)) and fan-out degree
1, and where deg(z(l)) is the fan-in degree of z(I), assumed to be bounded.

Thus the high fan-in degree of an n-ary associative operation can be reduced by serializing the
computation as the composition of a sequence of binary operations. Such serialization can be
generalized to using compositions of a sequence of k-ary operations where k is bounded.

5.6 Reducing the Fan-out Degrees

In the case of reducing the fan-out degree of a program, the “broadcasting” function which
transmits a value directly to many processes is replaced by a particular implementation that
transmits the value by a series of communications from one process to the next.

Definition 5.8 (Concurrent Assignment) Let , u, and v be integers. A set of equations
{F(!) = Ei(z) : u <l < v}, contains an n-concurrent assignment {z(I) =2 :u << v} where
n=wv—u—1,if such a z exists and F(I) = E;(2(l)) for u <[ < v.

Proposition 5.9 (Serial Assignment) A (v— u— 1)-concurrent assignment {z(l) =z : u <
I < v} is equivalent to the sequence of serial assignments defined by the recursion equation

z(l) = ¥(z,z,l,u,v,w), where )
l=w—z
\Il(z,a:,l,u,v,w)d—i-f w<l<v—z(l-1)
u<l<w—z(I+1) (8)

for some fixed w, u < w < v.

In Equation (8), fan-out degrees of 2 and z(I) for u < I < w and w < [ < v are all 1, and the
fan-out degree of z(w) equals 2 if u < w < v and equals 1 if w = u or w = v.

Proof: {z(I) = 2 : u <1< v} is the least fixed point of Equation (7).

Remark: The choice of w in Proposition 5.9 concerns the issue of the locality of the communi-
cation between value  and variable z(w). When « is an input, we let w = u, or symmetrically,
w = v. When z is some value F'(g(l)) for some F’ and g that depends on the index I, let w be
chosen so that |g(l) — w| is the minimum over all choices of w.

5.7 Matrix Multiplication with Bounded Degrees

From the definition of matrix multiplication P, the large fan-in and fan-out degrees are
eliminated and an equivalent program P, is obtained. First, we note that Equation (5)
contains an associative operator )" with unbounded fan-in degree n. Applying Definition 5.7
to 37, we obtain the following equation of the form of Equation (6):

C(i,5) = ¢(4,5)(n)  and
é(isj)(k) = Cb(é(i,j), Ak.[A(7, k) x B(k, 7l k,0,n, +)
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Expanding the definition of function ®, and let ¢(z, 7, k) = é(¢, 5)(k), we obtain

C(i,5) = c(i, 4, n) and

.oy k=0—C(s,)) 9
o> s k) = 0<k<n—c@,jk—1)+ A@G, k) x B(k,j) ©)
where Cy(7,7) = 0, the identity of “+”.

Next, by Definition 5.8, Equation (9) contains a total of 2n (2 for each value of k, 0 < k < n)
n-concurrent assignments, since for each k,

{a(s, k)(5) = A(5, k) : 0 < j < n+ 1} such that (3, k)(5) = E;(a(, k‘)(])), 0<k<n
{b(k, 7)(¢) = B(k,4) : 0 <4 < n+ 1} such that ¢(k, 7)(s) = E%(b(k,)(1)), 0 <k <n
where

&(i, k)(5) = ek, 5) () = c(i, 4, k)

Ea~d£f )\2 k:O—#Co(Z,]) N
J "l 0<k<n—ci,jk—1)+Ax B(k,j), and

k=0— Co(l,j)

b'déf B AN
B ’\B'{ 0<k<n—cli,jk—1)+A®i, k) x B.

Now applying function ¥ in Proposition 5.9 to appropriate arguments of Equation (9), two
equations of the form of Equation (7) are obtained:

(e, k)(5) = ®(a(s, k), A(s, k), 5,0,n + 1,0), and
b(k,5)(¢) = ©(b(k, 5), B(k, 5),3,0,n + 1,0).

Expanding the definition of function ¥ and substitute a(¢, s, k) for (s, k)(s), c(7,7,k) for
&(i, k)(4), b(3, 5, k) for b(k, 5)(¢), and c(%, 5, k) for &(k, 5)(z), we obtain

c oy ] 7=0— A(i,k)
a(z,],k‘)—{ 0<j<n+1—a(i,j—1,k)
and
...y _ [ i=0— B(k,j)
b(Z,],k)—{ 0<i<n+1—+b(i—1,j,k) (10)
such that

. ooy J k=0—Co(1,7)
et 5, k) = { 0<k<n—eci,j,k—1)+a(i,s,k) x b(i, 5, k)

Remark: The order of the application of Definition 5.7 and Proposition 5.9 to Equation (5)
can be interchanged.

Note that System (10) is of first order and has fan-in and fan-out degree three. It constitutes
the body of the Crystal program Pp,+ whose interpretation as a parallel computation can be
obtained as illustrated in Section 3.

Proposition 5.10 Program P, is equivalent to Program P,,,.

Proof: By Definition 5.7 and Proposition 5.9.
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6 Incorporating Pipelining by Space-time Mapping

A naive implementation of a program P could use one processor for each process; however, after
the execution of a process, a processor would be sitting idle, which is a wasting of resources.
In general, a system of recursion equations with bounded fan-in and fan-out degrees defined on
a d-dimensional partially ordered vector space consisting of O(n?) number of processes needs
only O(n%~') number of processors. In other words, each processor can be re-used by O(n)
number of processes. The space-time mapping procedure described below achieves the saving
of O(n) number of processors for Program Py,m.

Space-time mapping allows the source program to be purely mathematical and devoid of
any concern about space-time or process synchronization, yet a resulting program after trans-
formation has its synchronization resolved and achieves optimal timing and resource utilization.
When the process structure is data-independent, the task of mapping processes to processors
can be accomplished at compile time, and hence no run-time overhead is incurred.

6.1 Process Synchronization

Definition 6.1 (Synchronization Equalities) Let g be an integer-valued function where
g(v) = go for all source processes v € Sr and go is called the initial synchronization point.
For each non-source process v € (P — Sr) of a program P, suppose process v has k dependent
processes Uy, Ug,...,u; (u; <v), and zv,; for 1 < 5 < k are k positive integers. We call a set
of k equalities

g(v) = g(u)+zv,
= g(uz)+2vz (11)
= g(uk) +2zve

the synchronization equalities (SE’s) at process v.

Proposition 6.2 (Optimal Timing) For a given program P, there exists an integer-valued
function g over P that satisfies the set of synchronization equalities (11) at v with k positive
integers 2zv,;, where 1 < j < k, for every process v € P — Sr of program P, and 9(v) = g0
for all v € Sr, and g is called a timing function of P. If, furthermore, g is minimized over all
timing functions ¢’ with respect to the same initial synchronization point go, i.e., g(v) < d'(v)
for all v € P, and g(v) = ¢'(v) = go for all v € Sr, then g is the optimal timing function for P.

Theorem 6.3 If (o;),-e(w,<)(P ) is the optimal wavefront sequence, then there exists a mapping
¢ : W — T to the set of integers defined as 30(6) = go, where 0 is the least element of (W, <)
and go is an integer, and ¢ <o ©’ = ¢(i') = (¢) + 1. The function g : P — T, defined by
g(v) = ¢(2) if v € o;, is the optimal timing function of P.

Proof: Function ¢ exists because the well-ordered set W is no more than order type w. Note
that go = go(m is the initial synchronization point since for any source process v € Sr, by the
definition of optimal wavefront, v € o5. It follows that g(v) = ©(0) = go. For allv € P — S,

2v,j <f g9(v) — g(uy) for each u; < v. We have g(v) — g(u;) > 0 by the definitions of wavefront
sequence and function ¢, and therefore integer zy ; is positive. Hence g satisfies the SE’s at
every process v € P, and is a timing function of P.

To show that it is also optimal, we assume that, on the contrary, there exists some timing
function ¢’ such that ¢'(v) < g(v) for some v € P — Sr and g(v) = ¢'(v) for v € Sr. Let

5% {v:g'(v) < g(v),v € (P—Sr)}, and choose a least element v € (S, <), i.e., for all u € S,

either v and u are not related or v < u. Since v is a least element of S, g(u;) = ¢'(u;) for
any u; < v. Since (oi);e(W&) is the optimal wavefront sequence, there exists u;, such that
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zv,; = g(v)—g(u;) = 1. Since ¢ also is a timing function and satisfies the SE’s at v, there exists
a positive integer z, such that ¢'(v) = ¢'(u;) + z. Now z = ¢'(v) — ¢'(u;) < g(v) —g(u;) =1
implies that z is not positive, which is a contradiction. Hence g is the optimal timing function.
u

Theorem 6.4 If g is an optimal timing function, then (o,-),-e(W,<) is an optimal wavefront

sequence, where o; = {v : g(v) =i}, and W & {gy(v) : v € P}.

Proof: Since (1) g(v) is integer-valued, (2) g(v) = go < g(u) for any v € Sr and for all u € P,
set (W & {g(v) : v € P}, <) is well-ordered with go being the least element. Since g(v) < g(u)
whenever v < u, (0;);ew is a wavefront sequence.

Since g is optimal, referring to the SE’s it satisfies, for every v € P, there exists some j,
1< < k such that zy ; = g(v) — g(u;) = 1, where u; < v. Otherwise zy ; forall 1< j <k
can be decreased by an equal amount to obtain zy ; < 2v,j, resulting in a contradition that
g is not optimal. For every v € P and such u; < v, if v € o; then u; € 0;—; because
g(u;) = g(v)—1=1i—1. Since 1 — 1 <q %, (0;);ew indeed is the optimal wavefront sequence. m

Theorem 6.5 (Existence of Optimal Timing Function) If there exists a wavefront se-
quence (w,-),-e(wy<) for a program P, then a unique optimal timing function g exists.

Proof: By Proposition 4.9, a wavefront sequence (w;);g(w,<) exists for P. Timing function g
can be constructed from (w;);e(w,<) by the following algorithm:
Algorithm T:

1. Let g(v) = go for all sources v € Sr, where go is an integer-valued constant.

2. Let the SE’/s\ at every process v € (P — Sr) be solved according to the ordering: For each
1 €W, 1> 0, in increasing order of ¢:

(a) solve the SE’s at every v € w; for some k(v) unknown positive integer values zvy,;
for 1'< j < k(v) and zv,; is minimized.

b) assigning g(v) := g(u;) + 2v,;, for some 5 € {1,2,...,k(v)}.
J sJ

By induction on (w;)ig(w,<), g is the optimal timing function. To show its uniqueness, let us
suppose that there exists another function ¢’ # g which is also an optimal timing function.

Then there exists some v such that g(v) # ¢'(v), and the function f(v) ef min(g(v), ¢'(v))

instead of g or ¢’ should be the optimal timing function, which is a contradiction. m

Corollary 6.6 (Existence of the Unique Optimal Wavefront Sequence) The unique op-
timal wavefront sequence (0;)ie(w,<) for any program P exists.

Proof: By theorem 6.5 the unique optimal timing function g can be constructed. By The-
orem 6.4, (0;)ig(w,<) is the optimal wavefront sequence, where o; = {v : g(v) = i}, and

W (y(v):ve P} u

6.2 Mapping Processes to Processors

Let S denote a set of processors, and T be a subset of the set of non-negative integers. We
call each execution of a process by a processor an invocation of the processor. Let t € T be
a non-negative integer for labeling the invocations so that the processes executed in the same
processor can be differentiated. Let each invocation of a processor be denoted by (s,t) where
8 € S is a processor. Let S x T denote the set of all invocations. The concept of pipelining and
a space-ltime mapping can now be defined as follows:
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Proposition 6.7 (Pipelining Function) Let R be a subset of the set of processes P. There
exists a one-to- -one function A : R — T that is strictly monotonic from (R, <) to (T, <), i.e.,

h(u) < h(v) if u < v. We say that processes in R are pipelined through a processor s. The
pipelining factor of a processor s is |R|, the cardinality of R, and h is called a pipelining function.

Definition 6.8 (Space-time Mapping) A space-time mapping g = (gg, gr) of a program
P is a pair of functions gs : P — S and gr : P — T such that for every Rses, where

R, ¥ {v : gs(v) = s}, all of the processes v € R, pipeline through s with pipeline function
gr|Rs, the restriction of gr to R, C P.

Proposition 6.9 A space-time mapping g is a one-to-one function, and its inverse g 1is
well-defined.

Definition 6.10 An optimal space-time mapping g = (gs, gr) of a program P is a space-time
mapping such that gr is the optimal timing function of P.

Remark: An optimal space-time mapping g = (gs,gr) of a program P is not unique, in spite
of the uniqueness of the optimal timing function gr, because there could be many choices for
gs-

Remark: The method of space-time mapping suits particularly well the class of programs that
have partially ordered vector spaces as process structures. For this class of programs, there
exists a method for finding function gs in a systematic manner, which is dealt with elsewhere.
Remark: The efficiency of a program can be determined by its optimal timing function or
optimal wavefront sequence. The more elements each wavefront contains gives rise to more
parallelism and fewer number of wavefronts and better time complexity for the program. A
more refined comparison of the efficiency of each of the pipelined programs derived from the
same original program can be made by measures such as the pipelining factor.

Definition 6.11 (Optimal Pipelined Program) Given a program
P= (P’ D,7,X, M, {¢V}V€Pa {TV}VGPa L,O)

and its optimal space-time mapping g : P — S x T, a derived program
= (S xT,D, f’ X, M, {qg(sa t)}(s,t)ESxTa {7&('5” t)}(s,t)GSxTa & 6)

F(s,) = Go ) (F(#(s,0) (5,)), X(i(s,8))), ¥(s,t) € S X T, (12)

where

FdefFog 1

B(st) = AV.v (871 (s,1))
71(3 t) (83 t) = /\V.Tv(g_l(s, t))

~ def -1
I =1o0g

5 def

5%
is called an optimal pipelined program with respect to P by g.
Proposition 6.12 Program 2 is equivalent to program P.

Proof: v= (g log)(v) =g 1(s,t). =

16




6.3 Space-time Mapping for Matrix Multiplications

The following is an example of synthesizing several efficient parallel programs from the bounded
order and bounded degree matrix multiplication program Pm. Four space-time mappings
g1, .-, 84 are constructed for Py An optimal pipelined program 7, with respect to Py
by g, for each 7, 1 = 1,2, 3, 4, is obtained.

Proposition 6.18 Function ¢(7,,k) = ¢ + j + k is the optimal timing function of program

Pram-

Proof: Let

2(5,5,k),(0,0,1) = 2(4,5,k),(1,0,0) = 2(35,k),(0,1,0) = 1 (18)
First we show that g is the optimal timing function by showing that it satisfies the SE’s at
every (1, 7, k) with positive integers defined in Equation (13).

9(3,3, k)

= g(z’ .7.3 k— 1) + 2(4,5,k),(0,0,1)
=i+5+(k-1)+1

= g(i — 1,5, k) + 2(:,5,k),(1,0,0)
=@-1)+7+k+1

=g(¢,7 — L, k) + 2(i,5,k),(0,1,0)
=i+(G-1)+k+1

=i+7+k
Note that if k = 0, the term associated with k — 1 in the equality disappears, and likewise for
the cases ¢ = 0 and j = 0. It is optimal because any positive integer 2(i,5,k),d 2sSumes the least

possible value for all (7, 7, k) and any d € {(0, 1,0), (1,0,0),(0,0,1)}. =
Remark: By Proposition 6.5, the timing function g can be obtained constructively.

Proposition 6.14 Let gs1 be defined as g1(%,5,k) = (2,9) = (i,5), and g be the optimal

timing function in Proposition 6.13. Then g; def [9s1, 9] is an optimal space-time mapping of
program Ppu.

Proof: Let R j et {(,3,k) : (4,4,k) € Py} for any given (¢,7), where (P, -:) is the
process structure of P,,,,,. The function g(s, 7, k)|R(,~,J~) is one-to-one because whenever k # k',
g(i, 7, k) # g(ia J,k'). Furthermore, if (Za Js k) < (4,4, k,)a then g(7, 4, k) < g(is Js k,)a S0 gIR(i,j)
(the restriction of ¢ to R(;,5)) is a strictly monotonic function. Thus (7,7, k) € Ry;,j) pipeline
through (7, 7) with pipeline function 9|R(;,5). Hence gy is a space-time mapping. It is the
optimal mapping because g is the optimal timing function. =

Proposition 6.15 Let g,z be defined as g,2(7,5,k) = (z,y) = (i + k,5 + k), and g be the

optimal timing function in Proposition 6.13. Then g, &f [gs2, 9] is an optimal space-time
mapping of program Py,..'.

Proof: Let R,y et {(zy) : (x,9) = G+ k,j+k),(t,5,k) € Pppm}, where (Pmmr,:) is
the process structure of Pppm. The function g(z, 7, k)]R(x’y) is one-to-one because whenever
two different processes (7,7, k) and (¢',s',k') are mapped to the same processor (z,y), i.e.,
s=i+k=149+k,y=7+k=75+Fk, and (i,5,k) # (¢',5', k'), then 9(4, 5, k)| Rz y) =
C+E)+(+k)—k=z+y—k#z+y—Fk = 9(¢',5',k')|R(z,y). Furthermore, if two

different processes are mapped to the same processor (z,y), then (4,7, k) 7*4 (¢, 5", k') and
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(¢, 5", k") 72 (4,4, k) because whenever ¢ < ¢’ then k > k' (or ¢ > 4’ then k < ¥’) and similarly
whenever 5 < j’ then k > k' (or > 5’ then k < k'). Consequently, 9| R(z,y) is trivially a strictly
monotonic function, and thus (¢, j, k) € R(,,y) pipeline through processor (z,y) = (i +k, 5 + k)
with pipeline function g|R(x,y). Hence g3 is a space-time mapping. It is the optimal mapping
because g is the optimal timing function. m

Proposition 6.16 Let gs3 be defined as g,s3(s,7,k) = (z,y) = (6 — k, 5 — k), and g be the

optimal timing function in Proposition 6.13. Then gg et [9s3, 9] is an optimal space-time
mapping of program Pp,m.

Proof: Similar to Proposition 6.15. =

Proposition 6.17 Let gs4 be defined as g,4(z, 5, k) = (2,y) = (¢ — 7 + k, k), g be the optimal

timing function in Proposition 6.13. Then g, % [gs4, g] is an optimal space-time mapping of
program Prp.

Proof: Let R, ) def {(z,9) : (z,y) = (¢ — 5+ k, k), (4,5, k) € Pram }, where (P, -*<) is the
process structure of Ppm. If two different processes (1,7, k) and (&', 5, k') are mapped to the
same processor (2,y) = (¢ — j + k, k), then k = k' and whenever 5 < ¢’ then j < 7, and hence
(¢,7,k) X (¢',5', k') ( similar for the case ¢ > 4’, which implies j > j*). Therefore 9lR(z,y) is
strictly monotonic, and g(7, 7, k) # g(’, 5, ¥') and consequently 9|R(z,y) is one-to-one. m

Figure 2 illustrates the process structure P in the original coordinate system with indices
(747, k) and in the new coordinate systems with indices (zi,yi,t) where (z4,vi,t) = g:(s, 5, k)
for each space-time mapping g;, ¢ = 1,2, 3, 4.
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Figure 2: Process structure in the original coordinate system, and the new axis x;, y;, and ¢
after space-time mapping g; for ¢ = 1, 2, 3, 4.
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7 Derivation and Comparison of Target Programs

7.1 Target Pipelined Programs

Having obtained the space-time mapping g;, 1 = 1,2,3,4 for program Py, target pipelined
programs ﬁmm‘. can be obtained as described in Definition 6.11. Explicitly, the transformation
is performed as follows: Taking g as an example, the target program ﬁmmz is derived by using
the following identity:

Proposition 7.1 Let é = cg; 1 where 2o ! is the inverse of g2 as defined in Proposition 6.15.
Then

c(¢,4,k) = é(z,y,t), and c(é,5,k — 1) =é(z — 1,y — 1,t — 1) for all (4, 5,k) € P. (14)
Proof: By definitions of go and ¢, and functional composition,
c(i,5,k) = c(gz '82(1, 5, k) = (87 (i +k, j+k,i+5+k)) = c(g5 " (,u,t)) = cg3 (2, 9, t) = é(x, y, ).
Similarly,
c(ijok—1)=cgz'(i+ (k—1),5+ (k—1),i+j+(k—1)) =cgz (z— 1L,y — 1,t — 1)
=éz—-1Ly—1,t—1). =
Similarly,
Proposition 7.2
a(i, 5, k) = a(=,y,t), and a(i,j — 1,k) = a(z,y — 1, — 1), (15)
b(i,5,k) = b(z,y,t), and b(s — 1,5, k) = a(z — 1,y,¢ — 1). (16)

Proposition 7.3 The following identities hold under space-time mapping (z,y,t) = g2(¢, 7, k) =
(C+k,g+ki+g+k):

A(zsk) = A(t_yaw'*'y'—t)a B(kaj) = B(x+y—t,t-—a:), O(i’j) =O(t'—yst'—z)° (17)

Proposition 7.4 The following identities between predicates hold under space-time mapping
(z,9,t) =g2(5,5,k) = (G + b, g+ kyi + 7 + k):

(G=0)=(t=2),(0<j<n)=(z<t<n+a)
(=0)=(t=9),0<i<n)=(y<t<n+y) (18)
(k=0)=(t=2+y),(0<k<n)=(z+y—n<t<z+y).

Substituting the identities (1 <n+1) = ({ < n), (f < n+1) = (5 < n), and Identities (14),

(15), (16), (17), and (18) into System (10), the program body of P, we obtain the body of
the new pipelined program Pp,y,,:

. _Jt=z— Alz-y,y)
a(w,y,t)—{ z<t<n+z—d(zr,y—1,t-1)

. _ [ t=y— B(z,y—2)

dayyt) = { L=2 Ty~ Cole,9) .
Y c+y—-n<t<z+y—ér—1,y—1,¢—1)+a(z,y,t) X b(z, y,t).
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Proposition 7.5 The set of processes Pmmz of Program ﬁmma is
pmn'tz = {(z,9,t): (z,y,t) € Q—-(n-1)<z-y< ("_1)’ (z+y)<t< n+(a:+y)},
a subset of the index set Q &' {r:1<e<2n}x{y:1<y<2n}x{t:2<¢t<3n}.

Proof: (z,y,t) = g2(s,75,k) =

7.2 Initialization of a Program

For practical reasons, it is often preferable to initialize a parallel program at some initial time
t = to for all processes at once rather than allow the initialization to be space-time variant as
described by the predicates t = «, t = y, and ¢ = z + y in System (19). Such initialization can
be achieved by program transformations in which an input assigned to an invocation (z,y,t)
with ¢ > ¢o is moved in space and time by translation to another process (z/,y/, to).

In the following, we choose to = 0.

Proposition 7.6 Recursion equation

. _[t=0—A(-yz+y)
a(x,y,t)——{ 0<t<z— a(e,y—1,t—1) (20)
implies
(2, 0,%) = Az — 3,) &)

Proof: By Equation (20),
a(z,y,0) = A(—y,z + y) by the case ¢ = 0 of Equation (20)
= a(x,y + z,z) by the case ¢t > 0 of Equation (20).

Let y' = y+, then a(z, ¢, z) = A(—(y —z),z+ (¥ —z)) = A(z—y',y’) which is just Equation
(21) with y' as a formal parameter instead of y. m
Similarly,

Proposition 7.7 Recursion equation

t=0— B(z+y,—2)

bt ={ (T2 PN bl ban ) = Bla,y o). (22)

Proposition 7.8 Recursion equation

t=0— Co(~y,—2)

c(w,y,t) = { 0<t<z+y— é(:l)— 1,y—1,¢— 1) implies c(w,y,a:+y) =00(2‘,y)- (23)

Incorporating the above propositions into System (19), we obtain the program body of
Pmm’ .
2

) [ t=0— A(-y,z+y)
a(x,y,t)—-{ 0<t<n+z—a(z,y—1t—1)

5 _ [ t=0—B(z+y,—2)

b(w’y’t)"‘{0<t§n+y—+i)(a‘—1,y,t—1) (24)
t=0— Co(—y,—x)

ézyy,t) = 0<tLz+y—é(z—1y—1,t-1)

gty—n<t<z+y—é(e—Ly—1,t—1)+a(z,vy,t) X bz, y,t).
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Note that Equation (24) implies Equation (19) but not the other way around, which says
that the set of processes Pmm2 of the original program is a subset of the set of process Pmm
of the new program. The function each of them implements can be made equivalent if the
vector of outputs of the new program are those obtained from elements m of the output data
structure M such that o(m) are in the original set of processes P, only.

From Equation (24), various parts of the body of Program Pmm2 , such as the local processing
function, communication function, etc., can be obtained as illustrated in Section 3, which can
then be used for either generating multiprocessor object code or translating to an architectural
level specification for direct VLSI 1rnplementat10ns Figure 3 illustrates the projection of the
process structure Pmm: defined by Program Pmm: to the plane t = 0. This projection results
in the processors conﬁgured as an array of processors [16] shown in the figure, where arrows
indicating the direction of the data flow, and the initialization of the input data, are also shown.
Note that set Pmm2 defined in Proposition 7.5 is a subset of Pmm’2 and its projection to the
plane ¢ = 0 tells where all the processors are located. Similarly, from space-time mapping gs, a
different Program Pmm [8] can be obtained and its implementation diagram is shown in Figure

4. Readers are encouraged to derive Programs P’mm’l and Pmm; and draw diagrams similar to
Figures 3 and 4.

7.3 Comparison of Target Programs

We now discuss some features that dlstmgmsh the resulting parallel implementations. The two
implementations compared are Program Pmm: by space-time mapping go and Program Pmm
by space-time mapping gs.

7.3.1 Pipelining Factor

Now consider both Program }’mmr2 and Program Pmmr each as a black box (a processor at the
next higher level), and each of the input matrices A, B and Cp on the whole as a “packet” of
inputs. Suppose there are a large number of matrix multiplications that need to be performed.
They can be pipelined through either Program ﬁmm; or Program Pmm For this purpose, do
these two programs have the same efficiency?

What is noteworthy is the initialization of inputs as shown in Figures 3 and 4. The input
matrix element Co(n n) is n units away in the diagonal direction from Cp(1, 1) in Program
Pmmz, however, it is 3n units away from Cp(1, 1) in Program Pmm A similar situation holds
for A(n,n) and B(n,n). Consequently, in a fixed number of steps — say, k-n steps — there
can be k packets of inputs taken by Program Pmmr in each direction, whereas only £ 3 packets

of inputs can be taken by Program Pmm Hence the pipelining factor of Program Pmm'2 is k

whereas that of Program Pmmg is .

We can conclude that when a large number of matrix multiplications must be preformed by
each program, Program Pmm; is 3 times more efficient than Program Pmm , in spite of the
fact that they both perform a single matrix multiplication in 3n steps.

7.3.2 Processor Utilization

Another indicator of the efficiency of a program is how often each processor is utilized during
a computation. To find out if each processor (a:, y) is active at each of its invocations (z,y,t),
the inverse space-time mappings g5 ! and g3 are used:

5The loss in efficiency of this program by a factor of three can be recovered if three input matrices are
interleaved in each packet of inputs. The correctness of such interleaving can again be verified algebraically as
illustrated in this paper.
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Figure 3: The systolic network and inputs using space-time mapping g.
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Proposition 7.9 In Program ﬁmm'za a processor (z,y) which executes process (¢, 7, k) at time
t will execute (1 + 1,7+ 1,k—1) at timet+1if ¢+ 1,7+ L,k—1) € Pmm;.

Proposition 7.10 In Program ﬁmmg , a processor (z,y) which executes process (¢, 7, k) at time

t will execute (1 + 1,5+ 1,k +1) at time ¢t +3if 1+ 1,7+ 1,k+ 1) € IA’mmg. No process is
executed at (z,y,t + 1) or (z,y,¢+ 2) in processor (z, y).

By comparison, each processor is busy at every time step in Program ﬁ’mm’27 but only busy one

out of every three time steps in Program ﬁmmg . This comparison of processor utilization agrees
with the above comparison of pipelining factors.

Comparisons made among the different pipelined programs illustrate one of the most inter-
esting facets — the multi-dimensional programming space — of parallel programming which
does not have a counterpart in sequential programming.

8 Concluding Remarks

In this paper, we have shown that efficient parallel programs can be synthesized by a series of
mathematical tranformations with guaranteed correctness. The mathematics used are, in fact,
quite conventional and straightforward. It is interesting, perhaps even surprising, to see that
the approach of taking straightforward mathematical definitions as initial specifications could
yield such powerful results in synthesizing efficient parallel programs.

As we recall, very often a sequential program over-specifies a problem in the sense that
extraneous data dependency is introduced due to the constraint imposed by the sequential
model of computation. A mathematical definition of a problem, on the other hand, is a relatively
“pure” description strictly for the purpose of commmunicating the ideas it embodies; it is void
of any extraneous dependency. Because parallelism is what needs to be exploited in order
to gain high performances, and because fewer dependencies imply more parallelism, it might
therefore not be a coincidence that a simple mathematical definition can serve so well as an
initial specification of a parallel program.

The efficiency of a naive parallel program, which is obtained from the problem definition
by interpretation, is improved by taking into account the constraints imposed by the hardware
technology. For instance, bounded fan-in and fan-out degrees and locality of communications
are realistic constraints imposed by parallel machines and the VLSI technology. They can be
formulated mathematically and incorporated into programs by algebraic transformations. The
result is a realistic parallel program with improved efficiency.

Another interesting aspect of a parallel computation, which does not have a counterpart
in the sequential case, is that of the many design possibilities in a multi-dimensional space of
processors and time, as demonstrated by the two final parallel programs. Now the possible
solutions to a given problem can be different not only in the algorithmic sense. The same
algorithm can have many different realizations in multi-dimensional space and time; each has
different properties and may be suited for different purposes.

This property of the multi-dimensional design space of parallel programs has a more funda-
mental implication: modeling a parallel computation as a composition of sequential processes,
where each sequential process is modeled by a sequence of events (as in CSP), is somewhat
biased, and may prevent a truly high-level view of a parallel system. Such modeling imposes
an asymmetry in space and time because it presupposes a sequential process (consisting of
events occurring through a sequence of time steps in a particular point in space) as being an
interesting logical unit. Many interesting parallel computations, however, have as a logical unit
a sequence of events “moving” in both space and time, whereas all events in a given sequential
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process are, in fact, unrelated, as with those illustrated by two systolic matrix multiplication
programs above.

Once the prejudice against the new element in parallel computations — the space component
— is eradicated, an event can then be modeled as a purely mathematical object, because the
very symmetry of space and time allows us to disregard them totally while programming. To
develop an implementation of a parallel program, a space-time mapping of events then ensues,
and a single program may yield many different implementations. On the contrary, when the
sequential process model is used while programming, a different program must be written for
each different implementation. Thus by taking a symmetrical view of both space and time in
Crystal, the programming effort is elevated to a level that is beyond a particular space-time
implementation of a program.

Another implication we can draw from this work on systolic computation is that efficient
task decomposition and distribution to parallel processes may not be as hard as it seems. This
certainly is encouraging for us in investigating programming methodologies for various other
classes of computations.
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Figure 1: A Crystal program consisting of processes, communications between processes, data
streams, external inputs, input mapping function ¢ which maps vz — by, vg = bg, v; — bg,
vio — by, vg — bs, vg = bg, external outputs, and output mapping function o which maps
m; /= Vg, M2 — Vi, M3 — Vg, My > Vg.
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Figure 2: Process structure in the original coordinate system, and the new axis z;, yi, and ¢
after space-time mapping g; fort = 1,2, 3, 4.
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