A second kind integral equation formulation is presented for the Dirichlet problem for the
Laplace equation in two dimensions, with the boundary conditions specified on a collection
of open curves. The performance of the obtained apparatus is illustrated with several nu-
merical examples. The formulation is a simplification of the equation previously constructed
by the authors.
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1 Introduction

Integral equations have been one of principal tools for the numerical solution of scattering prob-
lems for more than 30 years, both in the Helmholtz and Maxwell environments. Historically,
most of the equations used have been of the first kind, since numerical instabilities associated
with such equations have not been critically important for the relatively small-scale problems
that could be handled at the time.

The combination of improved hardware with the recent progress in the design of “fast”
algorithms has changed the situation dramatically. Condition numbers of systems of linear
algebraic equations resulting from the discretization of integral equations of potential theory
have become critical, and the simplest way to limit such condition numbers is by starting with
second kind integral equations. Hence, the interest in reducing scattering problems to systems
of second kind integral equations on the boundaries of the scatterers has been rapidly growing.

During the last several years, satisfactory integral equation formulations have been con-
structed in both acoustic (Helmholtz equation) and electromagnetic (Maxwell’s equations)
environments, whenever all of the scattering surfaces are “closed” (i.e. scatterers have well-
defined interiors, and have no infinitely thin parts). In this paper, we describe a second kind
integral equation formulation for the Dirichlet problem for the Laplace equation with boundary
data specified on a collection of “open” curves. We start with constructing the right inverse of
the single layer potential operator on a line segment via simple analytic means; then we apply
such operator as a preconditioner for the single layer potential operator on the curve considered

to obtain a second kind integral operator.

Remark 1.1 In a recent paper [7], the authors construct a somewhat different procedure for
the solution of problems of the classical potential theory with data specified on a collection of
open surfaces. While the approach of the present paper is very similar to that of [7], in [7], the
single layer potential is used to precondition the quadruple layer potential from the right; here,
the quadruple layer potential is used to precondition the single layer potential from the right.
For technical reasons, the latter leads to a drastically simplified numerical procedure (and also,

requires simpler analysis); hence, this sequel to [7].




The layout of the paper is as follows. Section 2 contains an informal description of the pro-
cedure. In Section 3, the necessary mathematical and numerical preliminaries are introduced.
In Sections 4, we present the principal analytic result of the paper. In Section 5, we describe
a simple numerical implementation of the scheme. The performance of the algorithm is illus-
trated in Section 6 with several numerical examples. Finally, in Section 7 we discuss several

generalizations of the approach.

2 Informal Description of the Procedure

In this section, we present an informal description of the procedure. We assume that ~ :

[~1,1] — R? is a sufficiently smooth “open” (i.e., v(—1) # (1)) curve with the parametrization
~ (L
10 =7 (% (t+1), (1)

where L is the total arc length of the curve, and 7 : [0, L] — R? is the same curve parametrized
by its arc length. The image of v will be denoted by I'. We consider the Dirichlet problem for

the Laplace equation in two dimensions, with the boundary conditions specified on T, i.e.,

Au=0 in R\T
(2)
u=f on T.

This problem has a unique bounded solution if the Dirichlet data f is sufficiently smooth (see,
for example, [9]). The purpose of this paper is to reduce the problem (2) to a second kind
integral equation on I'.

The tools of the classical potential theory by themselves do not lead to such an integral
equation. Indeed, the standard prescription (see, for example, [9]) is to represent the solution
of a Dirichlet problem by a double layer potential, and the solution of the Neumann problem
by a single layer potential. In either case, the behavior of the singularity near the boundary is
such that an integral equation of the second kind on I is obtained.

However, the classical procedure critically depends on I' being a closed curve. Indeed, the

potential of a double layer on the curve I' experiences a jump when I' is crossed; the magnitude




of the jump is equal to the density of the double layer at the crossing point. This poses no
problem when the curve is a closed one, since the potential is to be represented on only one
(inner or outer) side of the curve. For an open curve, the potential has to be represented on
both sides of the curve; and in most cases, the right-hand side f (viewed as the limiting value of
the solution from both sides) has no jump across I'. Thus, an attempt to represent the solution
of (2) via a double layer potential results in a dipole density that is identically equal to zero.
One could attempt to represent the solution of (2) by a charge distribution on I'. The
resulting potential is continuous across I', and algorithms of this type have been constructed
and used numerically (see, for example, [6]). However, the resulting integral equation is of
the first kind (though, fortunately, with a logarithmically singular kernel), with all the usual

numerical disadvantages. Another option is to use the quadruple layer potential of the form

1 2
Ro)@) = | 57 Ooelle = 10D -ot)at, ®

with N(t) the unit normal to I" at (t); the resulting equation is not an integral equation at
all, containing a part that is actually a distribution. In engineering literature, such objects are
known as “hypersingular integral equation”. Satisfactory procedures have been constructed for
their numerical solution (see, for example, [3], [10],[11]); however, these are not as simple or as
stable as the many methods available for the solution of second kind integral equations.

This paper is based on the observation that when the curve is the line segment I = [-1,1],
the right inverse of the single layer potential operator (denoted by SI—I) can be constructed by
simple analytic means, where the single layer potential operator Sy : L!'[-1,1] — C[-1,1] is

defined by the formula

1
S1(0)(x) = /_ loglo 1] o). (4)

Furthermore, if S}'l is used as a preconditioner for the single layer potential operator S, :

L'[-1,1] = C(R?) on T defined by the formula
1
5,(0)(a) = [ loglz = 2(8)] ot ®)
-1
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i.e., the solution of the problem (2) is represented in the form
u(z) = Sy 0 87 (n)(2), (6)
then the resulting boundary integral equation is of the second kind.

Remark 2.1 A stable second kind integral equation formulation has also been developed for
the problem (2) in [7]. Two key observations used in [7] are: first, the product of the quadruple
layer potential operator and the single layer potential operator is a second kind integral operator
for the case of a closed curve; second, the case of a line segment can be solved analytically. The

integral representation for the solution of the problem (2) in [7] is of the form

u(z) = Qy 0 Sro (Qro S1)~'(n)(z), (7

where @), is the sum of a quadruple layer potential and a weighted double layer potential with
the weight equal to the curvature, Sy is the single layer potential operator for the line segment
I = [-1,1], and (Qy o S;)~! is (in the appropriate sense) the right inverse of Q; o S;. The
approach of this paper differs from that of [7] in that the roles of Q and S are interchanged,
leading to a simpler scheme. Indeed, straightforward analysis shows that the representation

(6) is equivalent to
u(z) = 8y0Qro (S10Qr) " (n)(z). (8)

In other words, the solution of (2) is represented by a single layer potential on I' preconditioned
by the quadruple layer potential for the line segment I, with a further preconditioning by the

right inverse of S7 o Q7 to eliminate the singularities at the end points.

3 Analytical Preliminaries

In this section, we summarize several results from classical and numerical analysis to be used

in the remainder of the paper. Detailed references are given in the text.




3.1 Chebyshev Polynomials and Chebyshev Approximation

Chebyshev polynomials are frequently encountered in numerical analysis. As is well known,

Chebyshev polynomials of the first kind T, : [-1,1] — R (n > 0) are defined by the formula
Tn(z) = cos(n arccos(z)), (9)

and are orthogonal with respect to the inner product

1
1
,g) = . . dx. 10
(19)= [ 10)-9(e)- =y (10
Chebyshev polynomials of the second kind U, : [-1,1] = R (n > 0) are defined by the formula
Un(z) = sin((n + 1) arccos(a:)), (1)

sin(arccos(z))

and are orthogonal with respect to the inner product

1
(f,9) = / @) 9(a) - V1= (12)

The Chebyshev nodes z; of degree N are the zeros of T defined by the formula

2+ )7
a:,-=cos£—2]—v—)—, i=0,1,...,N - 1. (13)
For a sufficiently smooth function f : [-1,1] — R, its Chebyshev expansion is defined by the
formula
o o)
fl@)=>_Ci-Ti(z), (14)
k=0
with the coefficients Cy given by the formulae
1
Co=1 [ 1) To(o) (1-a*)Ham, (15)
-1
and
2 1 2\ —1
Cr = - f(z) - Ti(z) - (1 — z°) " 2dx, (16)
-1

for all kK > 1. We will also denote by P}V the order N — 1 Chebyshev approximation to
the function f on the interval [-1,1], i.e., the (unique) polynomial of order N — 1 such that
P]{V(xi) = f(z;) for all i =0,1,...,N — 1, with z; the Chebyshev nodes defined by (13).

The following lemma provides an error estimate for the Chebyshev approximation (see, for

example, [4]).




Lemma 3.1 If f € C*¥[-1,1] (i.e., f has k continuous derivatives on the interval [—1,1]),
then for any z € [-1,1],

1
|PN(z) - f(z)| =0 (W) . (17)
In particular, if f is infinitely differentiable, then the Chebyshev approximation converges su-

peralgebraically (i.e., faster than any finite power of 1/N as N — o).

3.2 Miscellaneous Results

In this section, we collect several results from classical analysis to be used subsequently. Lemma
3.2 lists two standard definite integrals; both can be found (in a somewhat different form) in
[6]. Lemma 3.3 states a standard fact from classical potential theory; it can be found in [9).
Finally, Lemma 3.4 states that if the curve ~ is sufficiently smooth, then the restriction of the
kernel of the operator S, — St on I is also smooth (see (4), (5) for the definitions of S; and
Sy).

Lemma 3.2 For any = € (—1,1),

1
1
log |z — t| - ——=dt = —7-log2, 18
[ togle—tl: = : (18)
and
1o
pv. [ —— TVpua(t)- V1-Bdt =7 Tn(a), (19)
for anymn > 1.

Lemma 3.3 Suppose that v : [~1,1] = R? is a sufficiently smooth open regular curve with the

parametrization (1), and that the function o € L'[—1,1] satisfies the condition

/ 11 o(t)dt = 0. (20)
Then the function u : R2 — R defined by the formula

)= [ togle - ~(0)] - oty e

is bounded in R2.




Lemma 3.4 Suppose that v € C*+1[0,L] (k > 1) is an open regular curve parametrized by
“its arc length in R2. Suppose further that the function r : [0, L] x [0, L] — R is defined by the

formula
log |y(z) —(t)| —loglz —t|, z#t
r(z,t) = (22)
0, z=t.
Then r € C*([0, L] x [0, L]).
Proof. Since v is parametrized by its arc length, we have
Y (z)l =1, (23)
for all z € [0, L]. Combining (22), (23), we observe that
T(.’B, t) = log |h($, t)l’ (24)
where the function A : [0, L] x [0, L] — R? is defined by the formula
W@ =10,
h(z,t) = z-—t (25)
v (), z=t

Obviously, h is k times continuously differentiable for v € C*¥*1[0, L] by Taylor’s Theorem.
Furthermore, since y(z) # 7(t) if z # ¢, and |y'(z)| = 1 for all z € [0, L], we have

|h(z,t)] # 0 for all (z,t) € [0, L] x [0, L]. (26)

Therefore, the function r = log |h| is also k times continuously differentiable in [0, L] x [0, L].
a

4 Analytical Apparatus
4.1 Right Inverse of the Single Layer Potential Operator on the Line Seg-

ment
The purpose of this section is Theorem 4.2, providing the right inverse of the single layer
potential operator on the line segment I = [—1,1]. The construction is based on an elementary

integral identity stated in Lemma 4.1.




Lemma 4.1 For any z € (-1,1),

1
To(t)
log |z — t] - —~ceedt = —7 - log 2 - To (@), 27
/_1 g T —t| — 7 - log o(z) (27)

and

1 Tolt) gy 7.
/_110g|x-t|-mdt_—n (), (28)

for anyn > 1.

Proof. (27) directly follows from the combination of the identity (18) and the fact that

To(z) =1 for all z € [—1,1]. To prove (28), we integrate by parts once, obtaining

1 Tn(t) 1 1
—¢l.=m = _ov. | 2 U (1) V1= 24t
/_110g|x f- npv/_Ix_t Un1(t) - V1= 2t (29)

Now, (28) follows from the combination of (29), (19). O

Theorem 4.2 Suppose that the linear operator S : C [—1,1] = LY[—1,1] is defined by its action

on the functions T,, (n > 0) via the formula

_ 1 To(:L‘) n=0
~ w-log2 V1—z2
8(Tn)(e) = i § (30)
T 1=z2 .
Suppose further that the operator Sy : L}[—1,1] = C[~1,1] is defined by the formula
1 .
Si(o)(@) = / log |z — ¢ - o (2)dt. (31)
Then
SroS=1I, (32)

with I the identity operator. In other words, S is the right inverse of S; on the space of

continuous functions.




Proof. Since T}, (n > 0) form a basis for the space C[—1, 1], and the operators Sy, S are linear,

we only need to prove that the identity
S10 8(T)(2) = Tu(e) (33)

holds for all n > 0. Substituting (30) into (31) we obtain

1
1 f log|z —¢| - To(t) dt, n=0
-1

~ T 7-log2 1—¢2
Sto 8(Tn)(z) = s (34)
_z / log |z — t| 10 dt n>0
T Ja g vVi—t2 '
Combining (33), (34), we observe that it suffices to prove the identity
1 —m-log2-To(z), n=0
Tn(t)
log |z — t| - ———==dt = 35
/_1 Vi-t2 - % - Tn(), n>0, (35)
which directly follows from Lemma 4.1. 0O

4.2 Second Kind Integral Equation Formulation

In this section, we reduce Problem (2) to an integral equation of the second kind on the
curve I'; the results are summarized in Theorem 4.4. We start with defining the operator

S, :C[-1,1] = C(R?) via the formula
5,(0)(2) = 8y 0 §(0)(2), (36)

with S5, S defined by (5), (30), respectively. Combining (36) with Theorem 4.2, we easily see
that for arbitrary smooth ¢ : [-1,1] = R and y(z) € T,
5,(0)(1(@)) = 51 0 5(0)(2) + (Sy = S1) 0 5(0) (7(2)) )
= 0(z) + (Sy - S1) 0 §(0)(7(2)),

and the following theorem shows that the operator Py = (Sy — S1) o § is compact.




Theorem 4.3 Suppose that v : [—1,1] — R? is a sufficiently smooth open regular curve with
the parametrization (1). Suppose further that the operator Py : C[—1,1] — C[-1,1] is defined

by the formula

Py(0)(z) = (Sy — S1) 0 S(0)(7(x))

! 5 (38)
= [ (oga(@) = 1(6)| - log |z ~ ) - S(o) (B,
with S, Sr, S defined by (5), (31), (30), respectively. Then P, is compact.
Proof. By Lemma 3.4, the function 7 : [-1,1] X [—1,1] — R defined by the formula
7(z,t) = log|y(z) — 7(t)| —log |z — ¢| (39)

is k times continuously differentiable for any v € C*+1[—1,1]. Obviously, if 7 is expanded into

a double Chebyshev series

o0 o0
F(@t) = Y KmnTn(z)Ta(t), (40)
m=0n=0
then there exists a positive number C such that
C
| Kmnl| < EE (41)

for any m > 0, n > 0. Now, for any N > 0, we will define the operator Py : C[-1,1] — C[-1, 1]

by the formula

1 ~
Pn(0)(z) = / v (z,t) - §(0)dt, (42)
-1
with the function 7y : [-1,1] X [-1,1] — R defined by the formula
N N
N (@) =YY KnnTm(z)Ta(t). (43)
m=0n=0

Obviously, Py is a compact operator since its range is of finite dimensionality. Furthermore,

Py converges to Py as N — oo by (41). Hence, P, is also a compact operator. O

10




We will represent the solution of Problem (2) via the formula
u(z) = 8y (o) (z) + A

1 - (44)
= [_1 log |z — y(t)| - S(o)(t)dt + A,

where A is a real constant to be determined. Combining Lemma 3.3 and Theorem 4.3, we

obtain the principal result of this paper.

Theorem 4.4 Suppose that v : [-1,1] — R? is a sufficiently smooth open reqular curve with
the parametrization (1), and that the function f : [-1,1] — R is continuously differentiable.
Suppose further that the continuous function o : [-1,1] — R and the coefficient A satisfy the

equations
a(z) + Py(0)(z) = f(z) - A, (45)

/ o(z) - mdz:O, (46)

with P, defined in (38). Then the function u : R — R defined by (44) is bounded in R? and is
the solution of the problem

Au=0 inRA\T
(47)
u=f onT.

Remark 4.1 Obviously, the purpose of the constant A in the above theorem is to ensure the
boundedness of the solution u of (2). In certain physical situations, the potentials of interest
are not bounded at infinity, but rather grow logarithmically. In such cases, the solution to (2)

assumes the form

u(z) = §,(0)(2), (48)
with o satisfying the integral equation

o(z) + Py(0)(z) = f(2). (49)

11




5 Numerical Algorithm

In this section, we construct a rudimentary numerical algorithm for the solution of the Dirichlet
problem (47) via the equations (45) — (46). Since the construction of the matrix and the solver
of the resulting linear system are direct, the algorithm requires O(N?) work and O(N?) storage,
with N the number of nodes on the boundary. While standard acceleration techniques (such as
the Fast Multipole Method, etc.) could be used to improve these estimates, no such acceleration
was performed, since the purpose of this section (as well as the following one) is to demonstrate
the stability of the integral formulation and the convergence rate of a very simple discretization
scheme.

By Theorem 4.4, the equations to be solved are (45) — (46), where the unknowns are the
function o and the real number A. To solve (45) — (46) numerically, we discretize the boundary
into N Chebyshev nodes and approximate the unknown density o by a finite Chebyshev series
of the first kind,

N-1
ot)= 3 Gk Th(o), (50)

k=0
with the coefficients Cy, (k = 0,...,N — 1) to be determined. In order to discretize (45), we
start with observing that by (29), the action of the operator S on the function o is described

via the formula

N-1
~ 1
S(0)(x) = —=—= Y _ Bk Cx - Tk(z), (51)
Vi-z? =
where the coefficients By, (k =0,...,N — 1) are given by the formulae
1
0= T rlog2’

T (52)
By=—— 1<k<N-1
s
Next, we approximate the kernel 7(z,t) (see (40)) of the operator S, — Sy with an expression

of the form
N-1N-1

fa,t) = > Y Kij - Ti(z) - T; (). (53)

i=0 j=0

12




Clearly, the coeflicients K;; have to be determined numerically, since the curve I' is user-
specified, and is unlikely to have a convenient analytical expression. Thus, we obtain the
coefficients K;; by first constructing the N x N matrix R = (7¥(zi,¢;)) (5,5 =0,1,...,N — 1)
with z;,t; the Chebyshev nodes defined by (13) then converting R into the matrix K = (Kj;)
(,7=0,1,...,N — 1) by the formula

K=U-R-UT, (54)
with N x N matrix U = (U;;) defined by the formula

1
UOJ=—‘T0(z]), j=0717""N—1’

N (55)
2
Ui'=ﬁ'1}(a’j)7 1:=1,...,N—-1, j=0’1""’N_1’

Finally, we approximate the prescribed Dirichlet data f by its Chebyshev approximation of
order N —1
N-1
f#) = Y fi- Tel®), (56)
k=0
where the coefficients fk can be obtained by first evaluating f at Chebyshev nodes z;, then
applying to it the matrix U defined by (55), i.e.,

N-1
Fe=Y_ Usi- f(zs). (57)
=0
Combining (51), (53), (56), we discretize (45) into the equation
Co 1 f:o
~ C 0
ol RGN (58)
Cn-1 0 fN—1

with N x N matrix A defined by the formula

A=Iy+K-B, (59)
with Iy the N x N identity matrix, and B the diagonal matrix defined by the formula

Bij = B; - &j. (60)

13




Furthermore, (44) leads to the equation
Cy =0, (61)
Finally, (58) and (61) together form a linear system of dimension N + 1 to be solved.

Remark 5.1 The generalization of the above scheme to the case of several disjoint open curves

is straightforward, and has been implemented by the authors (see Example 4 in Section 6).

6 Numerical Examples

A FORTRAN code has been written implementing the algorithm described in the preceding
section. In this section, we demonstrate the performance of the scheme with several numerical
examples. We consider the problem in electrostatics: the boundary is made of conductor and
grounded, the electric field incident on the boundary is generated by the sources outside the
boundary. For these examples, we plot the equipotential lines of the total field and present

tables showing the convergence rate of the algorithm.

Remark 6.1 In the examples below, the problems to be solved via the procedure of the preced-
ing section have no simple analytical solution. Thus, we tested the accuracy of our procedure
by evaluating our solution via the formula (44) at a large number M of nodes on the boundary
T’ (in our experiments, we always used M = 2000), and comparing it with the analytically
evaluated right-hand side. We did not need to verify the fact that our solutions satisfy the

Laplace equation, since this follows directly from the representation (44).

In each of those tables, the first column contains the total number N of nodes in the
discretization of each curve. The second column contains the condition number of the linear
system. The third column contains the relative L? error of the numerical solution as compared
with the analytically evaluated Dirichlet data on the boundary. The fourth column contains
the maximum absolute error on the boundary. In the last two columns, we list the errors of the

numerical solution as compared with the numerical solution with twice the number of nodes,

14



Table 1: Numerical results for Example 1.

N K E(T) E>(T) E?(u) E*(u)

8 0.200E+01 0.703E—-01 O0.178E+00 0.296E — 02 0.528E — 02
16 0.222E+01 0.759E — 02 0.212E — 01 0.641E — 04 0.114F — 03
32 0.212E401 0.165E—03 0.486E —03 0.556E —07 0.991E — 07
64 0.206E+01 0.147E — 06 0.446E —06 0.835E —13 0.150E — 12
128 0.203E+01 0.225E —12 0.690E —12 0.355E — 15 0.222F — 14
256 0.202E 401 0.935E —15 0.214E—13 0.343E-15 0.200F — 14

where the solution is evaluated at 1000 equispaced points on a circle of radius 3.3 centered at
the origin; the fifth column contains the relative L? error, and the sixth column contains the

maximum absolute error.

Example 1: In this example, the boundary is the line segment parametrized by the formula

{ z(t) =t

y(t) =-02 (62)

-1<t<L1.

The Dirichlet data are generated by a unit charge at (0,0). The numerical results are shown

in Table 1. The source, curve and equipotential lines are plotted in Figure 1.
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Figure 1: Source, curve, and equipotential lines for Example 1.
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Table 2: Numerical results for Example 2.

N K E (D) E®T) E*(u) E®(u)

32 0.195E + 01 0.271E -0l 0.864E — 01 0.658E — 02 0.469E — 02

64 0.187E+01 0.240E—02 0.847E —02 0.146E — 03 0.104E — 03
128 0.182E+01 0.422E—04 0.157E—03 0.135E—06 0.955E — 07
256 0.179E+01 0.307E —07 0.117E—06 0.245E —12 0.173E — 12
512 0.178E+01 0.431E—13 0.160E—12 0.971E—15 0.133E — 14
1024 0.177E+01 0.304E —14 0.450E—13 0.941E —15 0.122F — 14

Example 2: In this example, the boundary is a sinusoidal arc parametrized by the formula

{z(t) = 0.5t

The Dirichlet data are generated by one positive charge of unit strength at (0,1.5) and another

negative charge of unit strength at (0,0). The numerical results are shown in Table 2. The

y(t)

3

- —<t<
= cos(t) 2_t“

3
5

sources, curve and equipotential lines are plotted in Figure 2.

2 25

Figure 2: Sources, curve, and equipotential lines for Example 2.

Example 3: In this example, the boundary is a spiral parametrized by the formula

02<t<3.2

{ z(t) =tcos(3.37t) — 0.1 (64)

y(t) =tsin(3.37t)
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Table 3: Numerical results for Example 3.

N K FZ0n) EX(T) E2(u) E®(u)
32 0.704E +03 0.594E—01 0.125E+00 0.233E +00 0.685E — 01
64 0.657E+02 0.108E—02 0.665E—02 0.417E—02 0.201E — 02
128 0.523E+02 0.904E —04 0.653E —03 0.101E — 03 0.575E — 04
256 0.394E+02 0.213E—05 0.183E—04 0.179E—06 0.125E — 06
512 0.279E+02 0.313E-08 0.272E—07 0.156E —11 0.123E —11
1024 0.196E+02 0.184E—13 0.147E—12 0211E—13 0.933E — 14

The Dirichlet data are generated by a unit charge at (0,0). The numerical results are shown

in Table 3. The source, curve and equipotential lines are plotted in Figure 3.

Figure 3: Source, curve, and equipotential lines for Example 3.

Example 4: In this example, we consider the case of several open curves. The boundary

consists of three elliptic arcs parametrized by the formulae

z1(t) = —tcos(3.3nt) — 1.45
2<t<1.
{ vi(t) = —tsin(3.3nf)+055 O2Sts12 (65)
zo(t) =tcos(3.37t) — 0.1
{ yo(t) = tsin(3.37t) — 1.2 0.2<t<12, (66)
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