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Sgéiching ig a fuﬁdaméniéi”operation-of computef scieﬁce; Yet a

' guﬁﬁer'pf'kéy maﬁheﬁétical qﬁéétidns abo#t searching in Eﬁciidian épaces
rehains open. A ﬁumbér of such questiéﬁsbare formulated and answéred héfé'
for searéhing lines‘in the plane. Relationships ﬁetween the reéulté here
and higﬁer dimensional analogs for other problems of interest 2re given.
Ambng the new results’isva mathematical framework in which questions about
éearching can be stated in a more uniform manner than was possible before.
Specific results are also given on the searching complexity of various sets
of lines in the plane. In particular, we show that there are easy and hard

£:%s of lines to search and establish methods of generating upper and lower

“bounds on the szarch complexities of such sets.



I. Imtroduction

,:A'iﬁﬁdamental_operationvpf computer science is searching. FCertainly
the majoriiy of aCtual'comﬁutatiﬁn invol&es the.processing and organization
.‘ﬁf data into sets which are to be sorted in a manner to make repeatéd
éearches as simple as possible. Furthermore, Knuth [5] has devoted an
entire chapter of his encyclopedic work on coﬁputer programming to the
- study of methods of computer searching. Despite this enormous focqs on

searching, a number of key mathematical issues regarding searching remain
either unexplored‘or unansweréd. Among these issues is the key issue of

the searching of a set of geometric objects in Euélidian space. In addition
t;‘the existance of suéh problems as' extensions and embellishments to
Vpreviously studied problems of geqﬁetric complexity (see e.g. 12), 9D,
«this framework apnears to be a.daturéi setting for thergeneratioﬁ of lower
bounds on the knéﬁsack, parfition‘énd trévelling‘saleSman problems és well
Eaé varianté of the sorting problem. Furtherﬁofe, this meﬁhodology haé alsc
produéed many gogd upper bound§ which can be used to solvé-practical’problems-
of such‘éiverse areas as informatibn'fetrieval, numericalvanélygis, and |
'a;tificial intélligence. The Maiﬂ goal of this paper will be to lay the
‘beginnings of a unified framework thrpugh»which all questions of geometfiq
geérching can'bé resolvéé. To give'an‘idéalof the compiexit&AOf éuch a

~ theory wé pause to give an exém§1é>of aﬁ:elemehtary rgsult within this
,theofy which appears Very anomalous. Cénsider the problem of déterminihg
'membership of a pbiﬁt on or among a set of n’lines in the plane which are
in general position. That ié, we ére given a set of n lines in the plane
with the condition that no three have a point in common and each pair has

exactly one point in common (i.e. no two are parallel). We then wish to



' aék questions abopt a new poiht determining at‘each query whether it’lies
“to the left of right of one of the given lines. Our procedure halts after
enough querles have been made to know whether the glven point lles on any |

; of the ‘lines or if not; which lines boond the region in which it lies._-A:
‘reasonable con‘ecture given that any set of n lines of the planebin general
position forms exactly —(n +n+2) reglons, is that the searchlng ‘cormplexity
of any set of n lines in general position is ‘the same. Yet, as we shall

see in subsequent sections of this paper there is a set of n lines which

can be searched in O(logzn)_queries while another set is shown to require

' n'queries,‘an exponential gap. Such anomalies together with the guiding
principle that "intuition about geometric problems is seldom correct"
'characterize this as a difficult problem. »However, recent . »sults [1,2,3,4,9]
cohcerning searchlng complexities and lower bounds tend to characterize
~.,i:'.imse as fruitfullareas_oisresearch.‘ Among the’resolts.reported in inese

’ papers‘are‘upper'bounds‘of'practicalrlmportance on some searchihg‘problems
askhellras lower»boundq of ; n2 and n logn querles cn linear search tree
programs (i.e. each query is f(x) RO where f is an affine funct10ﬂ on the
rinputlz and»R is >, = or < for the knapsack (i.e. Given xl,.r.,xn, b does

,there exist I < {l,...,n} such that = b)vand Element Uniqueness

iilx°
,,(i e. leen xl,...,yn, does there exist 1#3 such that X —xJ) Problems.

In the current paper, we vill focus our attention on problems
involv1ng searching lines in the plane. Such problems are of interest in
themselves as well as a gateway to problems involv1ng hyperplane vearches
vin higher dimensional Ehélidian spaces. Our goal will be one of classification.

of the complexity of searching different sets of lines. Two distinct cases

exist, in the first only queries may be made of the original lines and in



the second new lines may be added with quetles made with respect to the
",original or new lines. Thus, if we define c(A) and c(A) as the commlexity
: onder'the tirst and seoond measures of searchlng the set of lines A, then
G(A) 4 m%n ¢(AuB) where B is any new set of lines. Aﬁong the teeults
: o ‘

-

presented here are

2 log |A] = e(a) < 3 log |A| for any set A where |A] is the

number-ofplines in A.

'And the existence for each n of sets:A; and Ag_of n lines such that

c(Al) 2

A

1AT)

3/4 log 1

182 = .

..c(A;)

These results leave us unable to make general statements about the c( )
'function as we could about the c( ) function. Hence we concenttate our
efforts on methods for determining for any set A, vthe value of'c(A). To

do so, it is neces;ary to 1ntroduce new ideas to the standard mathematical

- notions of general p031t10n. And it is at thls point whete our work diverges
4 from the standa*d ‘mathematical llterature on this subJect. However, we‘
believe that some of the methods and new ideas introduced here w111 in
additlon to resolv1ng questlons regardlng searchlng lines in planes, |

2

»yield 1n31ght into methods of- extendlng the known lower bound of }-nz Von
.the complex1ty of the knapsack problem in n-dlmen31ons, as the issues.there
are merely higher-dimensional analogs of those 1ntroduced here.

The organization of the paper is as follows. In the next section,

the exact problem which we are considering is presented in detail. The



, Conéeptsvbriéfly spelled out above are concretely defined. Following

that, some definitions and results concerning the geometry of intersectirg

lines in the plane are givén} Some of these results belong to the .

classical mathematical literature on the problem while others were derived

within the context of this problem. Results found by applying these

results to the problems at hand are also surveyed.

II. Problem Statement

Searching problems in the plane will be our focus. Such a problem

consists of a set of lines dividing the plane into regions. Our lines will

‘be in general position, hence no two are parallel and no three have a point
“in - common Thus the number of rogions formed by a set of n such lines will
be E(H +n+2). The searching protlem for lines in the plane then consists

cf determining for a new point in-which of these regiéns it iies. And our

goal“is to determine the complexity of searching any giveh set of lines in

the plane. The algorithmsvwe allow are linear tree proéams which have been

-vgidely used bgfbre [3,7,10,11]. Such prpgrams consist of three tjpes of

statements, branches of the form

Sk: if f(x) R O’thén go to Sm.else go tg Sn’

" and decision statements of the form

-

Sp: point x belongs to one of the lines

Sq: point x belongs to region R and none of the lines
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Hwhere f is a linear function on the inptt’point x, R is one of the relations

A<, .>}, and R is a spec1f1catlon of one of the reglons formed by the

intersecting llnes The complex1ty of such an algorlthm is deflned as the

longest path from its root to,any dec131on statement. S

' Within this model, we consider two complexity measures on the séarﬁhing
of lines. Inbthe first, Fhe function f isvrestricted to represent one of '
the original'lines; 'Thus, the problem‘here is to deteriine to which region
a point belongs with only comparison to the original lines.. We define the
complexity of searching a set of lines, A, under thi's measure as E(A). One
is tempted to believe that c(d) = lA‘, the cardinaltiy of A, but the

following example shows otherwise.

Figure 1: A set of 7 lines to be searched.

We observe that on the 1eft of Ll’ the-linéé’Lé,'Ls, and'L6 do not intersect

and on the right,'lines LZ’ L3 and L. do not intersect. Hence if k'lies

7
to the left of Ll, we can sea;ch LA’ LS’ and Lg by a binary search algorithm

and similarly for LZ’ L3 and L7 if x lies to the right of Ll. Therefore,

in at most 6 comparisons we can search these lines. Since all sets of lines



are taken to bé iﬁ géneral position, it would be reasonable to assume'that‘

' ;(A) is fixedvfot fixed |A|. This is untrye, since a setjéf 7 iines forming

.v.é SeptagonAﬁas.a seércﬁing épmplexity of 7. We shalllsee'in lgter sections
that c(A);varieé gféaﬁly with A for fixéd |A]. = | o .

| The secbnd complexity measure we use allows for the introduction

of new searching objects. The function £ can now be any line-in the pléﬁe.

- For this case, we represeht the compiexity Sf searching a set A of lines as

"%(A). it is easy to see that é(A) = m%n c(AuB) taken over all sets of lines,

B.H In a previous paper [2], we showed that g(a) < 3 loglA] and a simple

‘region counting arguments yields Q(A) > 2 loglAl. However an exact boﬁnd

on é(A) would be of value as this would yield insight into methods of

geherating better than information theoretic lower bounds on searching. In

v a related paper, applications of such results to tight bounds on the knapsack

s m Ao 32 3 P 2T
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: Throughout, we shall use r(A) to dénoteAthe largest numBer of sides

Qf'any polygon formed by intersetions of the lines in A.'FCIeérlyfr(A) is

.-

a lower bound on c(A).

- III. Results

'Iﬁ-this section tﬁe basicvstructure of c(A), Q(A), and r(A) is
',investigated. In addition to pibving a»nuﬁbef of simple but basic fac;s;-we
_.alsq demonstrate that underétanding these.funétions is going to be é,non—
-.'triyial task. This follows for two diffent but rélated reasons;’ First,

the classical literature on‘arrangements of lines in the plane is filled with
simple sounding assertions that are open. Indeed much of this literature is

still trying to answer questions of the form "how many ... are there?". 1In



contrast our researchvrquirés answers to questions of the form ”ho& many
..; are ;here_ggg.wheie are they with respect ;o‘...?". Second, we are able
. to prové ét'least'two results_thét are unexpecte&. Moreover, thesé‘results
show that simple and intuitive argumenfélaﬁout even the function c(A) are
péssibly goihg to be incorrect. In particular we show that complexity
behaves poorly with respect to disjoint union, i.e. there are disjoint

sets A and B such that
c(AuB) << c(A) + c(B)

( << means much smaller. See theorem 5 for details.) This result has a
similar flavor to the result of Schnorr [8] on the corresponding result
for Bookan circuits.

 We first observe the following twd_easy lower bounds on c(A).

Theorem 1: Let A be a set of lines in the plane. Then c(A) 2 r(A) and

':c(A) > log,lAl.

N

Proof: Recall that r(A) is the size of the largeét region formed by A.
Thus, a simple adversary argument déﬁonstrates the lower bound of r(A). The

,nvlower bound valogzlAl is the usual information'theory argument.v gd

" We nqw:study a simple general method of obtaining upper bounds on

c(d), 24y, and r(a).

Theorem 2: Let A and B be sets‘of'lines in the plane. Then

"(i) é(AUB) < c(A) + c(B)

N

(2) r(AUB) < r(A) + £(B).



Proof:
' ~>(1) Ahy search trees for.A.aﬁd,B respectivelyvcén be combined to
. forﬁibne for AUB of size at most c(A) + c(B). (This uses fhe
convexity of the regions fhat A and B form.) a |
(2) We sketch a proof that r(AuB) < r(A) +‘t(B); LeﬁvR be . the iérgest
- region of AuB; let TyseeesTy Be the sides of R. Partition
TyseeesTy into sl;...,sm and tl,...,tn such that each sy is
part of a line from A and each ty is part of a line from B. By
a convexity argument we can show that there is a region with at
leaét m sides in A (alone) and one with at least n sides in B
(alone). Thus, r(AuB) = mtn < r(A) + v(B). The convexity
argument is as follows: Consider the'sides sl;...,sm.‘ Now
extend them; they form a region'w;:h.m sides. The other liﬁas
”Q&rom>g caﬁ.nnt cut .anv QF S L-esieg hv Aofin%r{fp: LO“”?i in A

we must have a region of at least m sides. [

: s s, he
A ' '——+-~c~'v“‘ ';“"‘—"—"1 .- ‘\'}—“ -
i \\
. /7 - -~ s
| . 6
. . 2
\ & i
A /ét a E \\
,‘«'&' ' g : | '% ,"\/
SN 5 A2
Vs - - : . \/
3 : ‘ )
\. i /Ss
) ?(;//} ' ) '>»;’
e N
N /
N 5 i

N

Figure 2: Only the shadowed regions can be cut by other lines of A;

hence, a region of >m sides exists in A.




10
If the last theorem were tight one might hope that c(A) would be
about 'AI This is of course tr1v1ally false if A conta1ns parallel
"lines. Thus a more. 1nterest1ng question is: Does c(A) equal about ]AI

: for Avln general position’ We know from {2] that for c(A) this is false, i.e.-
A,on
c(A) <3 logzlAl.

We now show that c(A) can also be very small compared to [A!. Note

Vbefore we continue that c(A) = [A] is possible for A in general p031tion
since there are such A with r(A) = [Al.
Theorem 3: For any n there is a set of lines |A] = n in general position

* such that c(4) = 0(log®|a]).

.:2222£}‘ Qe proceed by induction. Let.k'be.a oohstent such that for eéch
A'i<n; thefe is a eet, ii, cf'i lines-with c(xi) S.k iogzlxii, Consoruct‘

A'a set x  as followsi | : | |

I. Choose tﬁo llnes Ll and . L2 whlcb d1v1de the plane 1oto four quadrants..
II. Choose four sets A, B C and D such that each is a copy of x ;2 and

: | | o ' 4 :
'all intersections_between'lines in A ocour within the first quadrant

formed by 1 and_Lz, all B intersections in the,second, .ssy, all D
1ntersectloas in ‘the fourth..

This ylelds the structureA

- _ L1 _ -
all A : all B
intersections - intersections
here here
: — - L,
all D . all C
intersections’ | intersections
here here
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Note that we pﬁt no restricﬁions on.tﬁe locations o? intersections

ofilines from different sets.

| _'Ndw, we may séaréh this set 5y first deterﬁining in-Which quadfant,

‘ thé»point to be seafchéd for lies. Tﬁis ?equires 2 comparisons. 'Assumé
v . . » v

without lcss of gemerality that the point lies in quadrant 1. We then

consider the complexity of searching AuBuCuD in the first quadrant.

However,
¢y (AuBUCUD) < cl(A) + cl(B) + cl(c>_+.él(p)

- where ¢y represents the complexity of searching in the first quadrant.‘
.We observe that cl(B), cl(C) and cl(D) are at most 1og2(222) as the lines

'in each of these sets have no intersections in the first quadrant and

hence are totally ordered here. By inductioh, cl(A) <k logz(E%g). Hence

A

c(x) <2+ 3 log, ) + k log™( 7 ) =

 k log’n + (3-4k) logn + (4k-4) < k log’n  for k = 3/4
Q. E. D.

By methods of Lipton-Dobkin [6] we can use theorem 3_to demonstrate
" that there is a Hierarchy in the following sense:

\Cbrollarx 4: TFor any monotone f(n) such that f(n) < n and —*2—; > @

there is a family {An} such.that_]An] = n and

£(n) < c(An) < 0(£(n)).

As stated earlier we will now show that c(A) behaves poorly with

respect to disjoint union.
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Theorem 5: For any n2l there are 1A] = IB]_= n séts of lines in general
position such that AuB is also in general position and-
(1) c(AuB) = 0(log’n) *
;"(2)‘ c(A) + c(B) > cn for some constant c > Q.

Sketch of Proof: 1Let A be a set of n lines iﬁ general position such that

~

r(A) = n; let R be this region with n sides. Let B be the set of m lines

" constructed in theorem 3 positioned so that all the intersection points
formed by the lines of B lie within R. Now to search AuB we proceed as
follows: First, determine where with respect to B we are. This can be
done in 0(log2m) steps. Second, if we are in a boﬁnded region of B,

then we must lie inside R and we are done. On the other ﬂand, if we are
in an unbounded region we argue as followsf The m+i anounded regions‘of
B can bevarréngedAwith respect to A so‘thﬁt we can determiﬁe where we

_are in at mdst'Q(logzn) additional steps.
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