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1. Introduction

While the graph isomorphism problem has many applications [3,6], it

is fascinating to computer scientists (i.e. me) because unlike many other
combinatorial problems it has not yet been proved intractable in the sense that
it has not yet been proved to be NP-complete [1,15]. Yet no polynomial time
algorithm is known for it.

Denote by IG(n) the "best" running time of any algorithm for testing
pairs of graphs with n vertices from the class G for isomorphism; I(n) with no
subscript means all graphs. Since our current knowledge about isomorphism is
incomplete -- and perhaps mine is even more so -- only upper bounds and not
exact results can be obtained for IG(n). I believe, however, that the new
bounds given here on IG(n) are interesting in that they supply further insights
into the growth of this function.

In addition to IG(n), it is important to study CG(n), the "best" running
time of any algorithm that computes certificates (sometimes called codes)
of graphs with n vertices from the class G. An algorithm computes certificates
if it assigns an integer to each graph that is unique to that graph up to
isomorphism. This concept arises naturally in many applications such as
chemical compound identification. Let, for example, Gi""'Gm be n-vertex

graphs from G. Then the isomorphic ones can be determined in

m .
(2) . IG(n) time
by using the isomorphism test, but in

mn ° CG(D) time

by using certificates. Clearly, if m is very large and CG(n) is about egqual



to IG(n), then certificates afford a large savings.

Certificates are also related simply to isomorphism tests:
(1) Cgln) 2 Ig(n).

In order to see this, let G and H be graphs in G with n vertices. Then by
definition, G is isomorphic to H if and only if they have equal certificates.
This almost demonstrates (1), but not quite. Actually, to be quite accurate
(1) should be written as c'cG(n) 2 IG(n) for some constant ¢ > 0, but in
general such constants will be suppressed. An important open question is

the partial converse of (1), i.e. for what function f does
>
(2) f(IG(n)) 2 CG(n)?

It would be interesting if f could be a polynomial. It is curious that all
methods known -- at least known to me -- satisfy (2) with f indeed a polynomial.
In order to compare the new results obtained here with the previous

results it may be useful first to review what is currently known. A brute

force search yields I(n) < nz-n!; with more care this can be improved to
2
(3) C(n) £ n"enl!.

The key to this result is to use the lexicographically first adjacency matrix
as the certificate of the given graph. No better result is known for all

graphs. It is widely believed, however, that (3) can be improved to

(4) I(n) < 2 or even to I(n) < nclogn.

(Each ¢ denotes a constant, but the two constants are not necessarily the
same.) The latter improvement would be especially interesting since it would

show that graph isomorphism is quite unlikely to be NP-complete, because if



I(n) < nclogn and yet graph isomorphism is NP-complete, then all of NP would
c'fogn . .
be do-able in time n + which would be quite unexpected.

The literature ([4,6,23) contains several methods of actually doing graph

isomorphism. Most of these methods are based either on backtracking or
heuristics and hence do not yields any bounds on IG(n) or CG(n). I will
therefore exclude them from this discussion. Indeed, recent work [21] suggests
that methods using heuristics that depend on such graph invariants as degrees

and neighborhood structure will fail in general.
For certain classes of graphs, results are known that are better than

brute force. For example, if G1 is the class of cubic graphs, then [21]

(5) I (n) < nZ.2",
1

It appears that a similar result holds for certificates, i.e. for CG (n). More
1
encouraging results are those on GZ' the class of trees, and 63, the class of

pPlanar graphs [13,14):

(6) cGz(n) = O0(n) and IG3(n) = 0(n).

Again it appears that CG (n) = O(n), but I am unaware of any proof of this,
3
although I have seen results that seem to imply it [14]. The separator theorem [18]

implies a much weaker result for G4, the class of graphs of any fixed genus:

(7) I (n) < 2°/;.
4

I conjecture but cannot prove that (7) can actually be improved to IG (n) < n.
4

Recently attention has focussed on the class of random graphs. Let

I(n,A) denote the best running time of any algorithm that determines whether



G and H are isomorphic, where G is a random graph and H, which is selected by

our worst enemy, is a function of G. Moreover, I(n,\) < f(n) is valid if the

2)
algorithm fails to run in time f(n) for at most A2 2 graphs on n vertices.
(Here X = A (n) is a function of n.) 1In a similar way, define C(n,X) for

certificates. Then Babi and Erd#s [2 ] show that

5 A
(8) C(n,\) £ n“ where A = n" 7,

Independently, Karp [16] shows that

(9) C(n,\) < n€ where A + 0 exponentially fast
and Theorem 5 in this paper shows that

(10) C(n,A) < n® where A » 0 exponentially fast.

These results must be considered with the folklore of this area in mind. Most
researchers seem to believe that random graphs are by no means the worst case.
The last result (10) on random graphs rests on a new approach to the
graph isomorphism problem. The key to the approach is the concept of a beacon
set (see section 3). Use BG(n) to denote the worst-case size of the beacon

set of any n-vertex graph in G. Then

(11) CG(n) < k-nk+2 where k = BG(n)

is the main.observation behind the new results here. Clearly, if BG(n) is
"small" then so is CG(n). For example, (10) is proved by showing that a random
graph has a beacon set of size 4 with probability + 1 exponentially fast. In
passing, note that there has been a definition of this concept without equation

(11) and then only as applied to trees [12]. Curiously, while I will show in



a moment that BG(n) is small for many classes of graphs, BG (n) -- recall that
2

n
2

Section 3 develops the beacon method; here I will confine myself to

62 is the class of trees -- is = + 0(1).
listing some of the applications of this method.

One application, which I have been working on with K. Booth, is

nczogn

(12) C(n,A) < where A = —%T-.

Another way of saying this is that thezre is an algorithm for computing

certificates that runs in time nclogn

on the average. This is stronger than
results (8), (9), and (10), since these results imply the existence of an
algorithm that works well only on a large fraction of all graphs -- on the
remaining graphs it may do so badly that its average behavior is n!.
Actually, the beacon set method implies a much stronger result. Let
C*(n,)) denote the running time of the best algorithm that computes the
certificates of a random graph G with the understanding that our worst enemy
is allowed to add as many edges to G or delete as many from G as he wishes,

provided only that he does not add or delete more than o(n) edges incident to

any one vertex. Then (12) can be improved to

cfogn

(13) c*(n,\) < n where A = —i-!- i

Thus there is an algorithm that computes certificates in time n on the

clogn
average even if our enemy can change a large portion of the graph.

One of the folk beliefs of this area is that highly regular graphs, not
random graphs, are the worst case for isomorphism. Miller [19] has addressed
this issue by showing that GS' the class of cubic symmetric graphs, have

certificates that are computable in NP n co-NP. But with the current state

of knowledge about NP, this does not even improve the brute force bound of (5).



The beacon set method, however, shows that

(14) g (m) < nctogn
: 5
and
(15) cg () < nC*ogn
6

where 66 is the class of 2-symmetric or distance transitive graphs of a fixed
degree. While this falls short of polynomial bounds, it does demonstrate that
symmetric graphs may not be the worst case for isomorphism. Moreover, it is
important to note that (13), (14), and (15) show that the beacon set method
does not depend on the local irregularity of the degrees of vertices, in
contrast to the results of Babi-Erd¥s and Karp. A striking way to see this is
to observe that the ground rules of (13) allow enough edges to be added to a
random graph (with probability =+ 1) to make it regular. This is why the beacon

set is so powerful. Indeed, I conjecture that CG (n,A) < nczogn where G7 is
7

the class of random regular graphs and A + 0 exponentially fast.
The remainder of this paper is the presentation of the details of the
beacon set method. Several further applications of the method are obtained,

the most interesting of which is perhaps

(16) CG(n) < 2cn(log2n)/d

where either (i) G contains only graphs of degree at least d and girth 2 5

or (ii) G contains only graphs of degree at least d and for any two vertices

X # y the number of vertices adjacent to only x or only y is at least ed for
some € > 0. In particular, this result has applications to cages and strongly

regular graphs, again showing that these graphs are not the worst case.



2. Definitions and Notation

This paper follows the notation of Erd®s and Spencer [9]. If V is a

set, then

|v]l = cardinality of Vv
[v1? = {X: X c V and x| = 2}
[n] =1{1,2,3,...,n}.

A graph G on a set V is a subset of [V]?. The elements of G are the edges;
the elements of V are the vertices. Two vertices x and y are adjacent if they
are edges of a graph G on V, that is, if {x,y} ¢ G. The degree of a vertex is
the number of vertices it is adjacent to. Two graphs G and H are isomorphic
(G = H) if there is a function ¢ from the vertices of G to those of H such that
{x,y} € G if and only if {¢(x),d(y)} € H.

We also need the notions of distance and walks in graphs. A walk of

length m from x to y in graph G is a sequence of vertices VyreeorVog such

that x = Vir ¥ S Vg and, for 1 £ i < m, {vi,v

the number of walks of length m from x to y in G, and let d(x,y) be the

i+1} € G. Let w (x,y) denote

distance from x to y, which is defined as either the smallest m such that

wm(x,y) > 0 or ® if no such m exists.
Random variables will be denoted G, X, etc. (The wavelet is the
typewritten equivalent of boldface.) gn will be the random variable whose

value is a graph on [n]. If {x,y} € [n]z, then
Prob[{x,y} e G ] = 1
! ~n 2

and these probabilities are independent for different edges.

The 0,0 notation is standard. 1In general, n will be used for the number



of vertices in the graph under discussion. The random-access model of

computation is standard [1].




3. Beacons and the Basis of a Graph

The notion of the basis of a graph is easy enough to grasp intuitively.
Imagine that you are an amnesiac pilot who suddenly comes to and finds himself
flying an airplane high over unknown, fogbound territory. Where are you?

Where are you going? You can't figure out where you are from knowing where

you took off and how long and in what direction you've been flying -- you have
amnesia. You can't use landmarks to determine your location -- the view is
featureless. But luckily there are several transmission stations, or beacons,
transmitting signals that you can pick up with your instruments. You don't
know where the beacons are, since they identify themselves only by call letters,
but the one fact you remember in your amnesia is that all beacons transmit at
one given strength. So by using your instruments you can determine accurately
how far you are from any beacon. That means that as long as there are at least
three beacons and they are not collinear you can determine the unique
intersection of their signals at any time; hence you can navigate.

The concept of the basis of a graph is a generalization of this strategy
for navigating. A set of vertices of a graph is a basis if each vertex can be
uniquely named by computing its "distance" to a set of "beacons"; but the
notion of distance is generalized -- f(x,y) is any function defined on pairs
of vertices of a graph, with d(x,y) one case of f(x,y). Now the critical
question becomes how many beacons you need, since smaller sets will imply
faster isomorphism tests and smaller certificates.

Note in the precise definition of this concept that f(x,y) need not be

a metric,

Definition: A set of vertices p,,..., is an f-beacon set for the
_ 1 Py
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graph G if for all vertices x # y in G there is a pi such that f(x,pi) z f(y,pi).

In other words, pl,...,pk is an f-beacon set provided no two distinct
vertices are assigned the same names where the name of a vertex x is defined as
(f(x,pl),...,f(x,pk)). The vertices pl""'pk will be called beacons.

Perhaps at this point it would be worthwhile to Present a simple example.

Consider the graph

Now {1,2} is not a beacon set with respect to f(x,y) = d(x,y), while {1,4} is.
{1,2} fails since d(3,1) = d(4,1) and 4(3,2) = d4(4,2).

It is now possible to demonstrate how graphs with small beacon sets have
fast isomorphism tests and succinct certificates. Assume for simplicity that

all beacon sets are distance beacon sets, beacons with respect to f(x,y) = d(x,y)

The extension to other functions f is straightforward and will be done in

section 4.
+
Lemma 1: IG(n) < c-k-nk 2 where k = BG(n).

Proof: Let G and H be graphs with n vertices and let G have a distance
beacon set of size k. An algorithm first computes the distance functions
dG(x,y) and dH(x,y). Next it searches all lists of k vertices of G until it
finds a distance beacon set, say pl,...,pk. At the same time, it finds the

names of all the vertices of G; let nG(x) be the name of the vertex x. Then
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the algorithm operates on all the lists ql,...,qk of k vertices of H as

follows:

1. First it determines whether qi,...,qk is a distance beacon set.

2a. If it is not, then the next list of k vertices of H is processed; if none

remain, then G and ‘H are not isomorphic.

2b. If it is, the names of all the vertices of H are computed; let nH(y) be

the name of vertex y.
3. Now it checks whether {nG(x): X vertex G} = {nH(y): y vertex H}.

4a. If not, then the next list of k vertices of H is processed; again, if none

remain, then G and H are not isomorphic.
4b. If so, then on to step 5.

5. Finally, the algorithm checks whether ¢ is an isomorphism, where

¢(x) = the unique y in H with nG(x) = nH(y).
6a. If it is not, it processes the next list of vertices, as before.

6b. If it is, then G is isomorphic to H.

Now the proof depends on whether this algorithm is correct. Clearly,
if it ever answers that G is isomorphic to H then it must be correct. Assume
therefore that it answers that G and H are not isomorphic when they actually
are isomorphic. Let ¢ be the function that is the isomorphism from G to H,
and let PyreeesPp be the distance beacon set selected for G by the algorithm.
Then ql,...,qk is also a distance beacon set for H where q; = ¢(pi) for
is= 1,...,qk. This follows directly from the definition of a distance beacon
set and the fact that the disténce between vertices is invariant under
isomorphism. Then nG(x) = nH(¢(x)) and so the algorithm would answer that G
is isomorphic to H; but the algorithm answered that they are not isomorphic.
This contradiction proves that the algorithm is correct.

Now it is possible to estimate the running time of this algorithm on a
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random-access machine. The distance function dG(x,y) and dH(x,y) can be
obtained in time 0(n3) by a shortest-path algorithm [1]. Since the distances
are all precomputed, the test to see whether pl,...,pk is a beacon set can be
done in O(kn + knfogn) time (fLogn is the logarithm of n to base 2; &nn is the
natural logarithm of n) -- the name of each vertex can be obtained in time
O(kn) and then uniqueness can be checked in time O(knfogn). Then nk cases

are executed, and each iequires three tasks. First, the algorithm has to check
whether ql,...,qk is a beacon set and, if it is, compute all the names.
Second, it must check whether the sets of names are equal. Third, it must
verify that ¢ is indeed an isomorphism. As before, the first task can be done
in O(knfogn). The second clearly can be done in time O(knfogn) by sorting.
And the last task can be done in time O(knz). Thus the entire algorithm can

be done in time at most
O(n3) + O(nkknzogn) + O(nk[knﬁogn + kn2])
or at most O(knk+2) time. d

It should be clear that this lemma can be generalized to other
"distances" pro ided (1) that they are graph invariants and (2) that they can

be computed efficiently.
Now, the concept of a beacon set can actually lead to certificates for

graphs. A function F(G) on graphs is a certificate when
G = H if and only if F(G) = F(H).

As Miller points out [19], certificates are needed to answer qguestions of

the form

"Is G isomorphic to any of the graphs Hl,...,Hm?"
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Such questions often arise, for instance, in the identification of chemical

compounds. Certificates reduce this question to the standard search problem:
"Is F(G) in the set {F(Hl),...,F(Hm)}?"

Provided F(G) and F(Hf,...,F(Hm) can all be efficiently computed, this question
is much more desirable than the first one. Of course, this last constraint
is the key: We must be able to compute F(G) quickly. So in this paper, let's

say that a class of graphs has succinct certificates if there is a certificate

function for the class that can be computed quickly; this is a slight abuse of

terminology, but a useful one.

Definition: The vertices of G are [n] and, as usual, the adjacency
matrix of G is the nxn matrix A whose (i,j) entry is 1 if {i,j} € G and 0O

otherwise. Now the distance certificate, Fd(G), can be defined as follows:

Let k be the size of the smallest distance beacon set of G. Let Bl""’Bm be
all the distance beacon sets of G. For each Bi (i=1,...,m), let A be the
adjacency matrix of Gi where Gi is the graph obtained from G by reordering
its vertices according to their names with respect to the beacon set Bi in,
say, lexicographic order. Then Fd(G) is defined as Aj where Aj is the

lexicographically first nxn matrix in the set {Al""'Am}°

The key facts about the distance certificate are contained in the next

lemma.
+
Lemma 2: CG(n) < c-k'nk 2 where k = BG(n).

Proof: The algorithm is essentially the same as in Lemma 1. The size
of the smallest beacon set, k, is found by trying all lists PyrecerPy of the

vertices of G (£ = 1,2,...) until a beacon set is found. The time bound for
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this is

k
L+2

z o(ln ) ’

£=1 ’
which is bounded by 0(knk+2). The time to form the adjacency matrices
Al,...,Am is bounded by O(m(knfogn + knz)) and is therefore O(knk+2), since
m < nk. And the time required to find the lexicographically first adjacency

. , 2 k+2
matrix Aj is at most O(mfogm n®), or O(kn" “fLogn).
Clearly, if Fd(G) = Fd(H), then G and H have the same adjacency matrix

up to a permutation and so are isomorphic. Assume that G is isomorphic to H
via the function ¢ but that Fd(G) = Fd(H). Let Bl""'Bm be all the size-k
beacon sets of G and B ',...,Bm' be all the size-k' beacon sets of H with k

1

and k' minimal. Since G is isomorphic to H, it follows that m=m' and k k'.

Let Ai be the adjacency matrix of G sorted according to Bi and Ai' be the
adjacency matrix of H sorted according to Bi' (i=1,...,m). By renaming if
necessary, we can assume that ¢(bi) = Bi' (i=1,...,m). But then Ai = Ai'
since the names of vertices are Preserved by ¢. But then the lexicographically

first matrix in {Al""’Am} must equal the first in {Al',...,Am'}. This

contradiction éhows that Fd(G) = Fd(H). 0

These two lemmas demonstrate the importance of determining whether a
graph has a small beacon set. The next lemma makes it possible to prove the
existence of small beacon sets for many classes of graphs. Again let f(x,y)

denote an arbitrary "distance" function.

Lemma 3; Bg(n) < k provided for all G € G and all X,y distinct vertices
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(*) J{p: £(x,p) = £(y,p)}]| 2 ¢
where
(g)(l- i)k < 1.
In particular, BG(n) < k provided (*) and k > 22%22.
Proof: The proof depends on a Probabilistic argument:
Prob[gl,...,gk randomly chosen vertices make a beacon set] > 0

if (g)(i- i)k > 1. 1If this is true, of course, it establishes the first part

of the lemma. To begin, given x,y vertices of G,

VProb[pi,...,pk not a beacon set]

Probl3x = y, £(x,p;) = fly,py)s i =1,...,k]

IA

I Problf(x,p.) = £ly,p.), i =1,...,k].
Xty i i

But by independence,

Prob[f(x,p.) = £(y,p,), i = 1,...,k]
El El

= Problf(x,p) = f(y,g)]k.
Now,
Prob[f(x,p) = £(y,p)]
- Hp: £(x,p) = £(y,p)}]

n

. n-r
and so is at most - Thus,
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Prob[gi,...,gk not a beacon set]

n\ ,n-r k
= (2) =)

<1,

which proves the existence of a beacon set of size k.

The second part of the lemma follows easily from the inequality

(0 < r <n).

(1- i)n/r < e-l

For then

n _rk n| -rk/n
(23(1 n) S(Z)e v

and for k > 1‘%& it follows that

n r. k
(2)(1— H) < 1. O

The importance of this lemma is that it reduces a proof of the existence

of a small beacon set to a proof that each set
{p: f(x,p) = £(y,p)}

is small. With x,y distinct, let's call this set an f-hyperplane of the given

graph -- or simply a hyperplane when there can be no confusion. Then

all hyperplanes small

=> beacon sets small

=> certificates can be computed fast.

The key to this result is the realization that in many classes of graphs all



hyperplanes are small.

17.
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4. Almost All Graphs Have Small Beacon Sets

Now the task is to prove that almost all graphs have small beacon sets.
It is better to prove this, not with respect to distance, but rather with

respect to f defined by

fix,y) = (wi(x,y) ,w2(x,y)),

wl(x,y) coming into play if and only if x is adjacent to y. In other words,
"distance" is now determined by the number of paths of length 1 and length 2
between x and y. Note that f(x,y) is invariant under isomorphism and can be
computed in time O(n3) for all x,y [11].

The first result in this direction concerns testing a random graph G

against an arbitrary graph H for isomorphism.

Theorem 4: There is an algorithm A that satisfies the following:

(1) A(G,H) accepts if and only if G = H.
%

(2) Prob[A(G,H) runs in time at most 0(n®)] 2 1 - &P

where H is any graph with n vertices.

4

In other words, I(n,\) = O(n6) where A = ¢ % |

fhis result is significantly stronger than many similar statements.
It says that if G is a random graph on n vertices then A(g,H) can be computed
in time O(n6) with probability -+ 1 (exponentially fast) -- no matter how H is
selected. Our worst enemy can choose H isomorphic to G; he can make H only
slightly different from G; he can even make H a function of G. No matter what
he does, for almost all G the algorithm A will run in polynomial time.

Now, the folklore has it that random graphs may not be worst-case for

isomorphism testing [4,23]). But these methods are not limited to random graphs;
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section 6 applies them to many other classes of graphs. While the bound of

theorem 4 is polynomial, it is much too high to be practical. But in section
s s s 3.5

5 it is improved to O(n™"7).

As might be expected, there is also a theorem on certificates.

Theorem 5: There is a function Fw(G) that satisfies the following:
(1) Fw(G), as a bit string, has length n2.
(2) Fw(G) = Fw(H) if and only if G = H.
(3) The run time of Fw(G) equals that of FW(H) provided G = H.

(4) For almost all G on n vertices, Fw(g) runs in time bounded by
o(nszogn), and the probability that G does not satisfy this is
%

-cn
at most e .

In other words, C(n,A) = O(n620gn) where A = ¢ 7 |,

Another way of saying this is that almost all graphs have succinct
certificates. Aand, except for the fogn factor, theorem 5 supplies an
alternative proof of theorem 4. 1In order to determine whether G = H, first
compute Fw(g). Almost all the time, this can be done in O(nelogn), SO assume
that i§ can be. Then begin to compute Fw(H). There are two cases. First,
the computation halts in time 0(n6209n); then G = H if and only if
F Q) = F,(H) . Or second, the computation does not halt in O(nslogn); then
by part (3) of theorem 5, G cannot be isomorphic to H. This demonstrates how
to test whether G is isomorphic to H and, as a bonus, it shows why this method
is independent of the choice of H.

The key to these results is the following lemma on the size of

hyperplanes in random graphs.
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Lemma 6: Let G be a random graph on n vertices. Then for a >

e
-

Prob[@x = y T at least un% bad vertices for x,y] s e O
where a vertex p is bad if f(x,p) = £(y,p). (As usual, C1Cy4Cys... are

constants.)

Proof: Let

<

q = Prob[ T at least an? bad vertices for x,y]
where x,y are distinct fixed vertices of G. The strategy for proving the lemma

is first to show that g = O(e_cn ) and then to observe that
Prob[3x # y T at least ozn!‘5 bad vertices for x,y] < (g)q

Fix x,y as distinct vertices in G. Let A, B, C, D be the random

variables defined by

A = {v: v adjacent to x and not y}

B = {v: v adjacent to x and y}

¢ = {v: v adjacent to y and not x}

D = {v: v adjacent to neither x nor y}.

‘Clearly, a, B, C

~

+ D form a partition of the vertices in G not including x

and y: X y

&
e}

=] 1]
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And let ch be the random variable defined by

YAC - {1 if p is adjacent to the same number of vertices in A as C
~P

0 otherwise

where p is a vertex and A and C are sets of vertices.

2

Next let A(A,B,C,D) mean "Each of the sets A,B,C,D has at least %-- n®

elements." Now we need to estimate

Prob[~A(A,B,C,D) 1.

Intuitively one expects each of these sets to be aboutl% in size. To get the
precise size, first observe that
Prob[~AA,B,C,D]
< prob[]a] > 2 + i ﬂg-or .. Or ... or |D] > n,1l 5%']
4 4 4 4
since Ja] + ]JB] + ]c] + |Jp] = n - 2., Let
1 with probability %
X. =
1 "0 with probability %
be independent random variables. An application of the "central limit theorem"
[10] shows that since A = Byt oeee t X -2
- 1 1.2
Prob[ ]a] > EZE + Z%.x ¢ (n-2)7%] 1 e o
yam
5 1
as n+ ® and x = — (n-2)8. Thus
/3
5 %
Prob[ Ja] > % + % n8] < & €17 |

And then finally, the same argument applied to B, C, and D yields as desired
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5
Prob[~A(a,B,C,D) ] < 4e C1° < g~CID

~ST S

<

Now we can return to the estimation of q. Clearly,

g € Prob[d at least ctn;5 bad vertices for x,y A A(A,B,C,D)]

+ Prob[d at least ozn;E bad vertices for x,y A ~A(A,B,C,D) ]

By our last estimate, it is sufficient to bound the first term on the
right-hand side. Since no bad vertex p can lie in A or C, it suffices to

show that

Prob[d at least 9%— bad vertices for x,y in B A A]

0
]

and

an

9, = Prob[ 3 at least >

bad vertices for x,y in D A A]

have the required upper bounds where A = A(a,B,C,D).

~NTNTRSTS

First we need to estimate q,. Assume that P € B is bad for x,y. Then
1 ~

wz(x'P) = wz(y,p). But

wz(y,p) = 1 = 1 + 1.
z adjacent 2 e z2eB
y and p z adjacent p z adjacent p
Thus,
1 = 1
zZ €A z e C

z adjacent p z adjacent p

or, in other words, g:c = 1 where A = A and C = C. Therefore,

b
q < z Probl £ Y°C 2 5%— AR=RAA...AD=DAA(,B,C,D)]
A,B,C,D peB
with A(A,B,C,D) true
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where the sum is over all A,B,C,D partitions of the vertices of G minus x and

y. Thus,

]
q1 < z Prob[ I XAC > 28, A=AA ... AD-= 2],
A,B,C,D PpEB 2
with A(A,B,C,D) true

The key is that

5 YAC > an

peB P
and
A=A...D=D

are independent events: The first uses only edges with no x,y endpoints, and

the second uses only edges with an x or y endpoint. Hence

b
q < D Probl T Y'C %277 . problA=A A ... A D

a,B,C,D peB 2
with A(A,B,C,D) true

Dl.

Therefore, it will follow that

q, < 3 o(e ) + Prob[A=A A ... AD=D] =o0( ")
a,B,C,D

with A(A,B,C,D) true

provided

4

AC -Cc3n )

227 = 0o(e

Probl Z Y >

peB
where A,B,C,D satisfy A(aA,B,C,D).
Let's therefore assume that A(A,B,C,D) is true. Now, Z;c for p € B are

all independent random variables -- each one uses only edges with an endpoint p.
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And

(171 1cl) 6A%+]]cl)
AC _ _ i il c
Frobtp =t = EOMIRICT T TnTem -

By Stirling's approximation and the fact that the central binomial term is the

largest,
probl¥"C = 17 = A_
~p o2
where

A< 21+ 0(1)).
T

Intuitively we feel that I XAC will exceed its expectation only rarely --
peB '

indeed the Chebyshev inequality demonstrates this. But in order to get tight
bounds on the sum we cannot just apply the inequality. Nor can we use the
"central limit theorem," since the distribution of the random variables depends

on n. But we can use the inequality of Chernoff [9]. This implies that

Prob[ 3 Y°C»-B 37 o 3 Mmoot STt o Witz
~p 2 t/ Po %o
peB an%
£220
2
S %
wherepo=>‘—;5,qo=1-po,m—%+9n8 ©ses1), k=22,
n
2 1
(7 + on8) (=
5y 4 n’
n § _ an_
wl < (4 + én 2 ) in n %- an
2—+®n -“"2-‘

and



n

A (Z + On
1

n;5 an?
2

2
8

)

provided also that k 2 Py, m being the cardinality of B.

25.

In order to simplify these expressions, we need to note that for any

€ > 0 small enough and x 2 0 small enough

1
—_— <
»Qfl'fll =

and

(i+e)x

in(1l-x) < -(1-¢)x.

Then, after fixing € > 0 small and n large,

3 ]
n g _ an
vy < (= + 6n > ) &
and so
3 Y
- 2 8 _ &n . ,_
Wy < (4 + On > Y (1
Hence,
wl <

Also, turning our attention now to w_,

A
- Z-(l-e)n

o

A

2

L | (1+e)e
T

c

n(1-20 4+ @+ oenf -

5

+ o(n

1
c:nn’i 1
n 1
2 an?
2
1 -
E’.-‘. @n%
an
L en8

%) .

) S+ (7 + on® - 22 (1)
n

4
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k 22 (2 + onb) L
an 4 an A -
w, < 5 n on < 2 in 5;.(1 + O(n é)),
and so
_en? 2
w, < > in X (1 + 0(1)), .
Finally,

< (= & _a, 20 % 3
w, +w, < ( + > > &n X In‘ + &n

> | >

where § > 0 is arbitrarily small provided n is large enough and € > 0 is small

enough. Of course, k 2 pym must be true, but it is true provided

8
an A n
_2_2-n—.(z+en)

or a > %-and n is large enough. Since a is any quantity larger than -l-it

yr
follows that o > %-for large n. And an elementary argument shows that
A a a 20
- — —_— - - _— & -
gtz 73y 4

where C, > 0 is a constant. This concludes the estimation of ql, since it

%

is bounded by ew1+w2 or e °“" for n large.
Now we can Cbmplete the proof of the lemma by estimating q,- If peD

is a bad vertex for x and y, then wz(x,p) = wz(y,p) as before, and so

1 = L1
z adjacent 2z adjacent
x and p y and p

or
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I 1 = Z 1
zZ €A zZ e
z adjacent p z adjacent p

C
and so X: =1, where A = A and C = C. The rest of the estimation can proceed

as before, and this completes the proof of the lemma. O

Now we can complete the proof of theorems 4 and 5. The key to both of
them is the following observation: Let G be a random graph on n vertices.
Then by lemma 6 (¢ = 1) with probability exponentially close to 1 we can assume

that for all distinct vertices x,y in G
p: £(x,p) = £(y,p)}| < n%-

And then by lemma 3 it follows that G has a beacon set of size 4. We can then

follow the same strategy as in lemmas 1 and 2 to prove theorems 4 and 5; only

theorem 5 need be done in some detail.

Proof of Theorem 5: Fw(G) is exactly the same as Fd(G) except of course

that distance beacon sets are replaced by f-beacon sets.

1) (Fw(G), as a bit string, has length nz.) This follows immediately from the
construction.

2) (Fw(G) = FW(H) if énd only if G = H.) This follows as in lemma 2. The key
is that f(x,y) is clearly invariant under isomorphism.

3) (The run time of Fw(G) equals that of Fw(H) provided G = H.) Suppose that
G = H via the function ¢. Then the determination of the beacon sets
Bl"”'Bm of minimal size k is do-able in o(knk+2) in both. And the rest
of the two computations, the sorting of the adjacency matrices, runs in the

same bounds in both.
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4) (For almost all G on n vertices, Fw(g) runs in time bounded by O(nslogn),

3

and the probability that G does not satisfy this is at most e °O .) The
last claim follows immediately from lemma 6 with o = 1 and lemma 3 since
they imply that G has a beacon set of size 4 with the required probability.
Note that f(x,y) can be precomputed by one matrix product, and so can be

done in 0(n3). 0

Now you can see why it's so important to be careful in the estimations
in lemma 6. Without that lemma we could conclude the existence of a basis only
of size O(1), not 4. Some initial experiments on random graphs of various

sizes indicate good agreement with the results of lemma 6:

size of n average size of
(number of vertices in G) hyperplane in G
50 2.8
100 3.9
150 4.7
200 5.6

For these values of n the average size of a hyperplane is roughly .4n%. Lemma

6 predicts that as n + = it will approach cm;i where a > SN .318. Thus these
™

experiments suggest that even random graphs of modest size will tend to have

beacon sets of 4.
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S. An Improved Isomorphism Test

This section shows how to improve the isomorphism test result of theorem
4 and, more generally, lemma 1. There are two important points to make about
this improvement. First, it appears to yield only a faster isomorphism test,
not a better certificate method. Second, it requires that we allow
probabilistic algorithms [20]. That is, our algorithms must be permitted to
make probabilistic choices. They have to be correct for any of these choices,

but their running time may depend on the choices they make.

Theorem 7: There is a probabilistic algorithm A that satisfies the
following:

(1) A(G,H) accepts if and only if G = H.

5
(2) A(G,H) runs in time O(n3'5) with probability at least 1 - e °O .

As before, H is any graph with n vertices, i.e., H can actually be a function

Y

of G. In other words, I(n,A) = O(n>">) where A =e . as with theorem 4, the

exact statement of this theorem is noteworthy. With G a random graph on n
vertices, A(G,H) can be computed in time O(n3'5) with probability 1
(exponentially) no matter how H is selected. Again, our worst enemy can choose
H isomorphic to G or not. No matter what he does, for almost all G the
algorithm is very likely to make probabilistic choices that allow it to run in
the required time bound.

We can view statement (2) of theorem 7 alternatively as a sort
of game: First G is randomly selected. Then our enemy chooses H. Finally
the algorithm A randomly makes certain choices. No matter what H our enemy

chooses, we win -- that is, A runs in the required time bound -- almost all the
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time.

Proof: Let G be a random graph on n vertices and let H be any graph
on n vertices -- it may depend on G in any way at all. Then, as in theorem 4,

we can assume that
, 4
[{p: £(x,p) = £(y,p)}] < n

for all distinct vertices x,y where f(a,b) = f(wl(a,b),wz(a,b)). And also as
in theorem 4, we can precompute all the values of f(a,b) for both G and H.

The key to the algorithm is the notion of a good beacon set. Let P, /P,
be vertices in G. Even though Py need not form a beacon set by itself, we can
define the value of f(x,pi) as the name of x modulo p, - In a similar way we
can define the value of (f(x,pi),f(x,pz)) as the name of x modulo Py/P,- Then

Pyrec-1Py is a good beacon set provided

1) Pyre«-1P, is a beacon set for G

2) under the equivalence relation "has the same name modulo pl" p2's equivalence

3

class is smaller than c2n

3) under the equivalence relation "has the same name modulo Pl'p2" p3's
equivalence class is smaller than C3

4) under the equivalence relation "has the same name modulo pl’PZ" p4's

equivalence class is smaller than Sy

Suppose for a moment that p,,...,p, is a good beacon set for G. Then
P 1 4 2

s \ . . 3.
in order to test whether G is isomorphic to H in time O(n 5):

1) Try all 9, in H and see whether

{f(x,pl): x in G} = {f(y,ql): y in H}

as multisets [17]. 1If q1 does not satisfy this, then try the next qq- If none
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are left, then G is not isomorphic to H.

2) Now try all qQ, in H such that f(pz,pl) = f(qz,ql) -- that is, q, has the
same name modulo q, as P, does modulo I For each q, then check to see whether
the multisets of names modulo I and ql,q2 are equal. If not, then try

another q2. If none are left, then as before G is not isomorphic to H.

3) And now, try all q3,q2 in H such that they have the same names modulo ql,q2
aé P3/P, do modulo Py /Py For each such pair, see whether ql,...,q4 is a
beacon set. If it is, check as in theorem 4 to see whether it indu;es an
isomorphism. If it does, then G is isomorphic to H. 1If all q3,q4 fail, then
G is not isomorphic to H.

Now, provided pl,...,p4 is a good beacon set, this procedure will always

be correct and will run in O(n3'5

). Clearly, if it outputs that G is
isomorphic to H, then it has actually constructed the isomorphism and so is
correct. So let's assume that it has output that G is not isomorphic to H.
If this output comes in step (1) or (2), then there is no "counterpart" of
certain vertices of G in H, and so it is correct. If the output comes in step
(3), then the procedure has acted just like the one in theorem 4 except that
it pruned its search by avoiding impossible candidate lists Qqreeerdy-
Therefore the procedure is always correct.

And does the procedure run in O(n3'5)? Let Qi (i=1,...,4) be the

number of values assumed by qy during this algorithm's execution. Then it runs

in at most

2 2 2, _ 2
Q" + Q@0 +2,2,0,0n") = 0(0,0,040,n)

time. Clearly, Q1 = n. Since pl,...,p4 is a good beacon set, it follows that

q, takes on at most czn% distinct values. To see this, note that q2's
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equivalence class under the relation "has the same name modulo g " is smaller

b
on’.
The same argument shows that Q3 < c, and Q4 < Cye Thus the procedure runs in
3.5

than cznk, for the names assigned by Py and q, are the same. Thus Q2 <c

).

O(c2c3c4n
To complete the proof of the theorem, it remains only to show how to

find a good beacon set quickly. The key is that the argument of lemma 3 proves

more than the existence of beacon sets; it proves that any randomly selected

vertices Ryr---1R, are likely to be a beacon set. We can use this to prove

further that
Prob[pl,...,p4 is a good beacon set] 2 § > 0

where § > 0 is an absolute constant. Then the result follows by randomly
selecting pl,...,p4 until we get a good beacon set. Clearly the probability
that this succeeds in at most m selections is at least 1 - 8". The theorem
will then follow once we observe that each candidate beacon set can be checked
in O(nz).
How likely is Ryr---1Ry to be a good beacon set? Let Q,7R3/Q, be the
following random variables:
1) Q5 is the size of the number of elements in the same equivalence class as
B, and Ry
2) 93 is the size of the number of elements in the same equivalence class as
B3 modulo By rBy-

3) Q4 is the size of the number of elements in the same equivalence class as
R4 modulo Ry R2-

Then we must see whether s 2 § where § > 0 is a constant and

3

s = Prob[ < c.n A <c A < c A roeos is a beacon set].
82 < < 35C3 4 <% Ry R4
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If so,

3
s 2 1- Prob[Q2 >cnt A Qi>cy A Q> 4 M Bys--.s/R, DOt a beacon set .
And it follows by the usual argument that

%]

n

0
v

Y
[}

ProblQ, > c,

Prob[Q3 > c.]

3

Prob[Q, > c,]

Prob[gl,...,g4 not a beacon set].

Since the hyperplanes of G are less than or equal to n;5 in size, the argument

of lemma 3 shows that

Prob[gl,...,34 is not a beacon set] < (g)(ig94 < .5.
Therefore, it is sufficient to show that Prob[Q2 > czn%], Prob[Q3 > c3], and
Prob[94 > c4] are all small for C,s €5, and c, large enough.
Let's work first with Prob[Q2 > czng]. Examine the names modulo Ry -
Let gi be a random variable (i = 1,...,n) that is the ith largest equivalence
class with respect to the equivalence relation "have the same name modulo El."

Clearly N,,...,N partitions [n]. Let Y be the number of unordered pairs of

vertices with the same name, i.e.

IN. |
¥ = ?(21)‘
1

Then, as in lemma 3, where E[X] is the expectation of X,

Nfw

1 n
E[Y] = pX Prob[x,y have the same name modulo 91] < (g)(—;? s >
n

X,y
distinct
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By the definition of expectation,

Byl %
> s =,
Prob[y 2 t] < T by
3 1
Hence, ProblY 2 cn?] < 3o + Now it follows that
Prob[Q., > %] <  Probl > & A Y < g] + 2
Ry > cpn™d = Q2 > cpn X<y 2 °

Recall that 92 is the same as the number of elements in the equivalence class

of EZ and so

Prob[Q, > ¢ n%J

2 2
1
< Prob[g2 lies in N, with ]Nil > czné A ¥ < en?]l + 35 -

The first term on the right-hand side is bounded by

. T . Prob[I'1 A P2]
1,.0-, n

partition [n]

where Fl is the event "p2 lies in Ni with lNil > czn%" and P2 is the event
3
"N:1 =Nroeee N, =8 and ¥< cn?." Because these events are independent,

it follows that ProblQ, > czn%] is bounded by

— + z Prob[ril'Probfle

Nl’-.c,Nn

partition [n]

and hence also by
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= + z Prob(l,J*Prob(N. = N, A ... A N =§ ].
2c N,s...,N partition [n] 1 1 1 n " En
IN l) (18,1 3
1 n' | 7
<2 Jroeeet g < em
Il Ingl 3
Now let N.,...,N_ be a partition of [n] with + ...+ < en2.
1 n V2 i 2 /
Then Prob[Pl] is at most
r N, £ N, )2
y 1 y 1
]Ni)>c2n . ]Ni]>c2n
< i
n c,n n
IN, |
i
o (;
< = >
c,n® * n
o e
€2
Putting this all together yields
Prob(Q, > ¢ n%] < =+ D> e Prob[N, = N, A A N =N]
2° ©2 ® 2c N N S5 1° % n - R
1'...’1'1
partition [n]
3 1 4c
and so Prob[Q2 > c,nt s 2¢ ¥ .+ Clearly, for ¢ and c, large we can force

2
this probability to be arbitrarily small. This completes the estimation of

%,

Prob[gz > e.n

2
Now, to estimate Prob[g3 > c3], the argument is essentially the same
as before. This time N, refers to the equivalence relation "have the same name

modulo 21,22." Then
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n\,1 2 n
Ely]l = (2)(—20 s 3.

Therefore, as before,
Prob[Y > cn] s .

We then argue as before that

’ 1 . . .
Prob[Q, > c,] < 55 ¢ Prob[g3 lies in N, with |N.| > c; A X <ecnl
Again this is bounded by
%E + z Prob[l,]*Prob[N, =N, A ... A N_ =} ].
N,,...,N_ partition (n] n
/ \
/ "' LI Y + i fl <
\ 2/ \ 2 cn
where I, is the event "By lies in N, with lNi] > c3." It then follows that
Prob[ri] is bounded by
LN, roIng |
IN,]>c, . IN; |>cy
n c3n
In, |
i
e
< —x
c;n
< 4,
3

Putting this all together yields Probl[ > c,] < i + dc ,» which as before
3 3 2c 5

&ields the desired estimate provided ¢ and ¢, are large.

Finally, the estimation of Prob[Q4 > c4] is exactly the same as the last
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one and can therefore be omitted.

This completes the proof of the theorem. 0

The key to theorem 7 is the ability to prune our search by constantly

checking G against H. This method can be generalized, so that the time bound

k
X +2

of lemma 1 becomes c k!n2 (c some constant) provided (g)(1 _r

—Ok < 1 where
n

[{p: d(x,p) = d(y,p)}| 2 r. Thus for k small the isomorphism test of lemma 1

k2

is improved from O(nk+2) to O(n2 ).
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6. Further Directions

This secfion will explore further applications of the beacon set methods
to various classes of graphs, reducing these results to the graph-theory
question of whether or not a small beacon set exists. Throughout this section
we will work only with distance beacon sets. The key of course is that we must
discover classes of graphs that have small hyperplanes -- that is, for x,y

distinct vertices
[{p: d(x,p) = dly,p)}]

is small. Obviously, many classes of graphs fail in this regard. For example,
in any tree T if x and y are leaves and they are both adjacent to another
vertex, then [{p: d(x,p) = d(y,p)}) = n - 2, where n is the number of vertices
of T. (I note in passing, however, that any such x and y are the "same";
technically there is an automorphism from x to y [5]. Perhaps these methods
can be extended to handle this situation.)

Theorem 8: BG(n) < Zninn provided for all G € G any two distinct

vertices x,y have at least r noncommon neighborhoods (z is a noncommon neighbor

if it is adjacent to exactly one of x and y).

Proof:; Immediate from lemma 3. O

Even omitting any reference to lemma 1, or better yet to section 5's
improvement to lemma 1, it should be clear that the larger r is, the better the
time bound on the isomorphism test. An interesting variant of this theorem is

based on the concept of girth in a graph, girth being the size of the smallest
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circuit (if any) in G.

Corollary 9: BG(n) < 2§§§§-provided all G € G have minimum degree at

least d and girth g 2 5.

Proof: This follows directly from theorem 8 and the simple observation
that any distinct vertices x and Y can have at most one vertex that they are

both adjacent to; otherwise g < 4. O

Thus if g 2 5 and 4 is large, then G has a nontrivial improvement over
the n! isomorphism test. 1It's also interesting to note that this girth
condition can be replaced by a weaker one based on the number of cubes (cycles
of length 4) in G.

The next set of results depends on a further refinement of our notion

of a beacon set.

Definition: The vertices pl,...,pk are an eulerian beacon set for the

graph G if for all distinct x and y with a common neighborhood (that is, with
a vertex adjacent to both x and y) d(x,pi) z d(y,pi) for some p;. Let EG(n)
denote the maximum-size eulerian beacon set required for any n-vertex graph

in G.

Lemma 10:
1) c5n) < kon*"? where k = Eg(n).
2) If for all distinct x,y with a common neighbor in G, G any graph in G,

H{p: d(x,p) = d(y,p)}] 2 r, then E;(n) < k provided (g)(l - i)k < 1.
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Proot:
1) Let pl,...,pk be an eulerian beacon set in‘G and let ql,...,qk be an

eulerian beacon set in H. First we need to see whether there is a way in
O(nz) time to determine whether there is an isomorphism of G to H such that
pP; maps to q; (i =1,...,k). If so, then as in lemma 1 we can obtain the
required time bound.

Let G' be the multigraph [11] that corresponds to adding another copy
of each edge of G and H' the same kind of multigraph for H. Then it is well
known that G' and H' both have eulerian circuits [11]. Let w1,...,wm be any

such eulerian circuit in G' with p, =w We can obtain this circuit in

1
time at most O(nz). Now we must construct the corresponding circuit in H'
== or at least try to construct it. Let q = wl'. Now assume that we have
already constructed wl',...,wi', with i < m. Let wi+1' be the neighbor of

1 3 .
wi with the same name modulo ql,...,qk as w, modulo pl""'pk° Since

PyrecerPy and ql,...,qk are both eulerian beacon sets, it follows that Wi

must be unique if it exists. If it does not exist, then no isomorphism
exists that maps Py to 9 (i =1,...,k) this follows directly from the
definition of beacon sets. Therefore, assume that wi',...,wm' is
successfully constructed. Define ¢, the function from the vertices of G
to those of H, as follows: ¢(x) = y provided x is first visited on the
circuit wl,...,wm at the same time that y is first visited on the circuit
wl',...,wm'. This is clearly well defined. Then we check whether ¢ is an
isomorphism. And finally, if the desired isomorphism exists, then it must

be ¢.

2) This follows exactly as in lemma 3. 0

As in section 5, we can improve this result by using a probabilistic
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algorithm and, as before, we can obtain certificates. Of course, the importance
of the concept of an eulerian beacon set is that it places a potentially weaker

restriction on the set of beacons.

Lemma 11: Let G be a graph with minimum degree d and girth g; then it

has an eulerian beacon set of size k provided

n r.k
(2)(1 -n) < 1

where
2@ - 1)l9/241 o s,

(@-1)921 g lgyle/a-2

Proof: Let x,y be distinct vertices both adjacent to another vertex z.
Then it suffices to show that
I{p: d(x,p) = a(y,p)}] 2 r.

Let

IA

h,}

]
]

{p: there is a path from x to p of length
and

B

{p: there is a path from y to p of length < h2}

where h, and h, are defined later. Then provided 2h1 < g and 2h, < g, the

1 2

induced graphs of A and B are trees. Let's prove this for A; the proof for B

2

is similar.

The key is to look at all the paths out of x of length h None of

1

these paths can meet except at x; otherwise a circuit of length at most 2h1 <g

is formed. If A and B have no vertex in common that can be reached via paths

that avoid z, with h1 + h2 < g - 2, the lemma is proved. So suppose that they
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do have such a common vertex, and call it w. Then x to w to y to z and back

to x, 2

is a cycle provided we choose w to be the minimal distance from x. But then
the cycle is of length at most g - 1, and this is a contradiction.
Finally, a calculation based on the parity of g and the fact that

r2 (4 - 1)hl + (d - 1)h2 yields the proof of the lemma. 0

Now recall that a graph G is a (d,g9) cage if it has degree d everywhere

and girth g and if it is the smallest such graph. Cages are interesting

because of their uniformity. (Recall that cages need not be symmetric.)

corollary 12: Let G be the class of (d,g) cages with d fixed. Then

1

2
CG(n) < 2cn £ogn.

Proof: Tutte [22] shows that any such graph G has n vertices where

d -1
d -2

Yo (la-091 s @-2)92%4 @ - )
and Biggs [4] shows that

1 +d+d(d-1) + ... + d(d-l)%(g-3), g odd,

1+d+dd-1) + ... +dd-1%E9D g even.

At this point, the proof of the corollary is reduced to nothing more
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than a calculation and an application of lemma 11. gd

It might be interesting to digress for a moment to look at a few

examples of these results. In each case we can get a lower bound on r where
IHp: d(x,p) = d(y,p)}] 2 r

where x,y are distinct vertices with a common neighbor.

The first set of examples is based on graphs defined in Biggs [5]:

number
of vertices
of G degree of G girth of G r
19 4 5 6
30 7 5 12
126 3 12 48
728 4 12 324

Of course, all these bounds on r are only lower bounds. But these estimates
and the probabilistic isomorphism algorithm of section 5 suggest that it may
be feasible to test even the largest of these graphs for isomorphism.

A second set of examples is based on the m-cubes Qm: The vertices of
these graphs are the 2" vectors vi,...,vm) where v, = Oor1l1 (1 <i<m)and
two vertices are adjacent when their vectors differ in exactly one coordinate.
An easy argument demonstrates that r here is at least 2m-1. This supplies an
nlogn isomorphism test (n = 2™) for m-cubes; again section 5 improves this to
O(nkkogn + o(zogn)).

Many other classes of graphs can be shown to satisfy the requirement
that r be large. The rest of this section will explore some more general

examples of such classes. But first I want to point out that one of the great

merits of the beacon method is that it is predictable. That is, we can rapidly
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determine whether r is large by a simple sampling procedure that runs in
o(n3). Thus we can estimate the running times of our isomorphism testing
methods quite accurately without ever running them. This ability should be
of some practical importance.

The motivation for corollary 12 and also for the next two results is
an insight mentioned earlier that is due to Miller [19]. He suggests that
graph isomorphism may be easier rathervthan harder in the case of symmetric
graphs. Locally, parts of a symmetric graph look the same, so testing
isomorphism for these graphs appears intuitively to be hard. Yet Miller's
results suggest otherwise: He shows that isomorphism for these graphs is in
both NP and the complement of NP.

The classes of symmetric graphs we study are l-symmetric, 2-symmetric,

and distance transitive [5]: Recall that an automorphism of G is an

isomorphism from G to G. G is 1-symmetric provided for each X,y adjacent and
x',y' adjacent there is an automorphism ¢ such that ¢(x) = x' and ¢(y) = y'.

G is 2-symmetric if for each two paths X,¥,2 and x',y',2' both of length 2
there is an automorphism ¢ such that ¢(x) = x', ¢(y) =y', and ¢(z) = z'. And

G is distance transitive if for all x,y and x',y' with d(x,y) = d(x',y') there

is an automorphism ¢ such that ¢(x) = x' and ¢(y) = y"'.

Theorem 13: Let G be either the class of 2-symmetric graphs or the

class of distance-transitive graphs of degree d, with d fixed. Then

2ninn
BG(n) < -
where r 2 -2 __, (n-4-1)
d(d-1) :

Proof: Let X, and Yo be two distinct vertices both adjacent to some
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vertex. We have to show that |{p: a(x,,p) # d(yo,p)}l 2 r, since this will

then by lemma 10 imply our result. Define
I'(x) = {a: & shortest path from Y, to a via x}.

Let d(xo,yo) = %; % is clearly either 1 or 2. Now, for any x with d(x,yo)'= L,
Ir(xo)] < |I'(x)]. Let P(xo) contain the distinct vertices ajs-.-,a and let

Vi vi
""" """k,
i

be the required path from Yo to a; via x By the definition of T,

0°
v; = xO for each i and some j. Clearly, since d(xo,yo) =42, j 2 L. But this

path is a shortest path and so j < %; hence v; = X, for all i. By the
definitions of 2-symmetric and distance-transitive, there is an automorphism
o such that a(yo) =Y, and a(xo) = x. Then a(al),...,a(am) are all distinct,

and the theorem will follow if we can show that they all lie in I'(x). Since a

is an isomorphism, a(vg),...,a(v; ) is a path from Yo to a(ak ) = a(ai). And
i i

it is a shortest path since d(yo,ai) = d(yo,a(ai)) = ki' Finally, it goes via

X since a(vz) = a(xo) = X. Therefore a(al),...,a(am) all lie in T'(x); hence our
claim is correct.

The next point is that

1

]P(XO)] >3 m’

(n-4-1).

To see this, let z be any vertex with d(yo,z) 2 L. Then z must be in

U I'(x).
d (yle) =2

For if d(yo,z) 2 £ then there is a shortest path, say, wl,...,wm, from Yo to

2. Then by definition z lies in P(wz) and d(yo,wl) = . Thus
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[{z: dlyy.2z) 2 2} s Ir(xo)l o J{x: dly,.x) = 2},

since the cardinality of all the I'(x) with d(yo,x) = { are the same. Clearly
[ {x: d(yo,x) = £}] < d(d-1) since 2 < 2. Also 1{z: d(yo,z) 228} 2n-4d-1.
So the second claim is proved.

The key to the proof now is the observation that any element of P(xo)
is closer to X, than to Yo The same argument with the roles of X0 and Yo

reversed then completes the proof. g

Corollary 14: Let G be the class of graphs with degree 4 that are

2-symmetric or distance-transitive (d fixed). Then

CG(n) < nclogn.

Theorem 15: Let G be the class of cubic symmetric graphs. Then
BG(n) < 124nn + o(1).

Proof: Let a, b, and c be the three neighbors of a vertex x. Then
since G is cubic and l-symmetric, there is an automorphism, say a, that leaves
x fixed and leaves none of a,b,c fixed. Otherwise the stabilizer of x, the
set of automorphisms that fix x, would be of order 2, which is impossible.

Let H(u,v) = |{p: d(u,p) # d(v,p)}|. Then in order to prove this

theorem we must show that for each x with neighbors a,b,c

H(a,b) 2 %(n-:n ,

H(b,c) 2 %(n-:;),

and
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H(a,c) =2 %{n-4).

Actually, in order to establish this it is sufficient to prove only one of
these inequalities. Assume that H(a,b) = %{n—4). Then let a be the
automorphism that fixes x and leaves none of a,b,c fixed. Without loss of
generality, we can assume that a(a) = ¢, since it's clear that either a(a) or

o (b) must be c. Now a(b) must equal a, and so a(c) must equal b:
a(a) = c, a(b) = a, and a(c) = b.

Thus H(a,b) > 2(n-4), and so H(a(a),a(b)) = H(c,a) 2 2(n-4) and, in the same
way, H(a(c)a(a)) = H(b,c) 2 %{n-4). This clearly follows since H(u,v) is
invariant under isomorphism.

Thus it remains only to prove that one of these inequalities does hold.
First we note that we can assume that G = K4 and therefore that a, b, and c

are not adjacent to each other. Otherwise we can use the automorphism a to

get that G is K As in theorem 13, define

4"
I'(w) = {y: 3 shortest path from a to y via w}l.

Then, again as in theorem 13, we can show that ]JI'(x)] =2 %{n—l):

a

b c

“ - :
Note that this uses only the fact that G is 1-symmetric. Then
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IT(B)] + IT(c)] 2 IP(x)] - 1.

This follows because if v € '(x) and v # x then v € I'(b) u T(c). Then either

IT®) ] 2 2 (T - 1)

or
Ir@] 2 2 Urel - 1.

Since % (IT(x)] - 1) = %-(n-4), we can assume without loss of generality that
IT®)] 2 1 (m-a).

This completes the proof of the theorem; for H(a,b) 2 IT(b)]. g

Corollary 16: Let G be the class of cubic symmetric graphs. Then

CG(n) < nclogn‘

These results support Miller's insight that isomorphism for symmetric
graphs is perhaps easier than the general case.

The final result concerns the isomorphism of points in general position
in eucl}dean space Ed of dimension 4. As usual, we use d(x,y) to denote the
distance between the points x and y. A set of n points in Ed are in general
position if no d+1 of them lie on any common hyperplane [8]. We say that they

are weakly isomorphic is there is a permutation of the indices ¢ such that

d(xi,xj) = d(y¢(i),y¢(j)) for all i and j.
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Theorem 17: Weak isomorphism of sets of n points in general position

in E? can be done in O(nk+2) provided n > d% where k 2 %gz .

Proof: Let XjreeesX and Yyre-.ry, be two sets of points. Weak
isomorphism is essentially equivalent to isomorphism of the underlying complete
graphs with the weight d(a,b) attached to the edge {a,b}. The methods of lemma
1 and lemma 3 can be generalized to this setting to provide an O(nk+2)

algorithm for isomorphism testing if there is a k-beacon set. Now

IA

since the set of points X, equidistant from x; and xj (i 2 j) is a hyperplane.

The result then follows as in lemma 3 since

n d . k
(2) (;0 < 1

provided n 2 & and k > = , g

As in section 5, this result can be improved to an algorithm that runs
in o(n3’34) when n is larger than, say, d3. And the time bound of this theorem
is not nd but a fixed polynomial in n provided only that n is larger than some

nontrivial power of d.
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