Semantics and Coherence for Parametric Type Classes
Kung Chen

Research Report YALEU/DCS/RR-1003
May 1994

Semantics and Coherence for Parametric Type Classes

Kung Chen

Department of Computer Science
Yale University
Box 8285 Yale Station
New Haven, CT 06520

June 2, 1994

Abstract

In [COH92], we have described a type system for extending Haskell with parametric type
classes. In particular, two type inference systems and a type reconstruction algorithm are pre-
sented. In this report we turn to the problem of associating meaning with well-typed expressions.
One feature of the Haskell-style overloading is that it is possible at compile-time, based on typing
derivations, to translate any program usinging overloaded operators to an equivalent program
that does not. Since our main concern is resolving overloaded expressions, such a translation
scheme can be seen as a semantic specifiction for the source language. Our proprosed parametric
extension maintains this feature, and it requires the same mechanism to realize the translation.

The report consists of two parts. The first part develops a translation semantics for sys-
tems with parametric type classes while the second one addresses the problem of ambiguity, a
problem inherent in overloading. Ambiguity arises when the compiler does not have sufficient
type information to determine the suitable implementation for a particular occurrence of an
overloaded operator. The problem manifests in our translation semantics when an expression
has many different typing derivations, which in turn yield semantically distinct translations;
choosing one would give different results than the other. Nevertheless, like Haskell, there exist
simple syntactic conditions to detect such undesirable expressions. More specifically, we prove
that if an expression’s principal type is unambiguous in a specific sense, it is guaranteed to have
a well-defined meaning.

Introduction

In [COH92], we have described a type system for extending Haskell with parametric type classes. A
small example lamguage Mini-Haskell* is used to illustrate the main ideas. In this report we turn
to the problem of associating meaning with well-typed Mini-Haskell* expressions. One feature of
the Haskell-style overloading is that it is possible at compile-time, based on typing derivations,
to translate a program using overloaded operators to an equivalent program that does not. Since
our main concern is overloading resolution, such a translation scheme can be seen as a semantic
specifiction for the source language. Our proprosed parametric extension maintains this feature,
and it requires the same mechanisms to realize the translation.

The target language of the translation semantics is a version of the polymorphic MAcalculus called
CP that includes explicit constructs to handle overloading. Except those constructs, CP is very
similar to Mini-Haskell*. One of the main uses of CP is to assign meaning to Mini-Haskell* expres-
sions by translating them into CP expressions where overloading is made explicit. The translation
is based on a mapping between typing derivations in Mini-Haskellt and CP. More specifically, we
show that each typing derivation for a Mini-Haskell* expression corresponds to a typing derivation
for a CP expression with explicit overloading, which thereby serves as a translation for the given
expression. In other words, every well-typed Mini-Haskellt expression has a translation and all the
translations obtained in this way are well-typed in CP.

Any approach to overloading must address the possiblity of ambiguity, a problem inherent in
overloading. Ambiguity arises when the compiler does not have sufficient type information to
determine the suitable implementation for a particular occurrence of an overloaded operator. The
problem manifests in our translation semantics when an expression has many different typing
derivations, which in turn yield semantically distinct translations; choosing one would give different
results than the other.

Due to the existence of such expressions in Haskell as well as our parametric extension, we can-
not hope to establish a general coherence theorem [BCGS89] (a property referring to translation
semantics in which all derivations of a given typing judgement yield the same meaning). Instead,
we derive some simple syntactic conditions that are sufficient to exclude those expressions and
thus identify a collection of expressions for which the coherence property can be established. Like
Haskell, the conditions are based on the principal type computed by our type inferencer for any
given expression. Essentially, if an expression’s principal type is unambiguous in a specific sense,
all its translations will be coherent.

This report consists of two parts. The first part describes a translation semantics for Mini-Haskell*
while the second one addresses the problem of ambiguity and presents a conditional coherence result.
Certain knowledge about parametric type classes is assumed; readers are referred to our previous
report this information. Proofs for results of this report can be found in the author’s forthcoming
Ph.D. thesis [Che94].

Part I: Translation Semantics

This part begins with a short introduction to the translation scheme and then leads to the devel-
opment of a formal translation semantics for Mini-Haskellt. For ease of reference, the abstract
syntax of Mini-Haskell* is shown again in Figure 1.

Type variables a
Type constructors &
Types T u= a| ()| nxn|n-on|kT
Type schemes o u= 71 |Val'.o
Class constructors ¢
Type classes v u= c¢T
Class sets I' == {c1m, .., o™} (n>0, ¢; pairwise disjoint)
Programs p = class aiy | where z:0 in p
| inst C= riy where z=e in p
| e
Expressions e = z|ee | Aze|let z=¢ine
Contexts C o= {oquly,...,0nuTy} (n2>0)

Figure 1: Abstract Syntax of Min-Haskell*
1 An Informal Presentation

It is instructive to describe the translation scheme informally before we proceed to the formal
semantics. The complex number example given in [Che94], included in Figure 2, will be used to
illustrate the main ideas.

Class/Instance Declarations

Following [WB89], type classes and their instances are replaced by so called (method) dictionaries
which contain all the functions associated with a class. In particular, each instance declaration
generates an appropriate definition of a dictionary that contains methods for all the (overloaded)
operators associated with a class at a given type. For example, corresponding to the Int::Eq and
Int::0rd instances, we have the dictionaries:

DEqInt = <primEqInt>
DOrdInt <primLeInt, primLeqInt>

Here (e,...,e,) builds a dictionary. The dictionary for Eq contains only the equality method
while the one for 0rd has two methods for (<) and (<=).

If an instance declaration has a context, then it translates into a definition of a dictionary con-
structor whose parameters correspond to the dictionaries required by the context. For example,
the declaration:

inst a::Num => Rect a :: Complex a where ...

class c::Complex a where
real-part,
imag-part,
magnitude,
angle ¢ =>a

--Two representations of complex numbers

data Rect a = MkRect a a

data Polar a = MkPolar a a

instance a::Num => Rect a :: Complex a where
real-part (MkRect x y) = x
imag-part (MkRect x y) = y
magnitude (MkRect x y) = sqrt (square x + square y)
angle (MkRect x y) = atan y x

instance a::Num => Polar a :: Complex a where
real-part (MkPolar r t) = r * cos t
imag-part (MkPolar r t) = r * sin t
magnitude (MkPolar r t) = r
angle (MkPolar r t) = t

-- Arithmetic operations on complex numbers

cAdd z1 z2 = MkRect (real-part z1 + real-part z2)
(imag-part z1 + imag-part z2)
cSub z1 22 = MkRect (real-part zi - real-part z2)
(imag-part z1 - imag-part z2)
cMul z1 z2 = MkPolar (magnitude z1 * magnitude 22)

(angle z1 + angle 22)

cDiv z1 z2 MkPolar (magnitude z1 / magnitude z2)

(angle z1 - anglel z2)

Figure 2: Complex-number Arithmetic

generates the definition of the unary dictionary constructor DComRect:
DComRect dNum = <...>

When given a dictionary for a::Num, this dictionary constructor yields a dictionary for instance
(Rect a :: Complex a). Hence (DComRect DNumFloat) generates a dictionary for Complex with
rectangular form of floating-point numbers.

For each operation in a class, there is an extractor to select the appropriate method from the
corresponding dictionary. Hence for the Complex class, we generate the following selectors:

real-part <el, e2, e3, e4> = el
imag-part <el, e2, e3, e4> = e2
magnitude <el, e2, e3, e4> = el
angle <el, e2, e3, ed> = el

Overloaded Expressions

Having introduced how class/instance declarations are handled, we now turn to overloaded ex-
pressions. Each reference to an overloaded operator is translated into an extraction from some
dictionary variable, which will either be resolved to a concrete dictionary or remain unknown and
become a parameter to the whole expression. For example, the cAdd function given in Figure 2:

chdd z1 z2 = MkRect (real-part z1 + real-part z2)
(imag-part z1 + imag-part z2)

is translated as follows:

cAdd dNum dComl dCom2 z1 z2 =
MkRect ((+ dNum) ((real-part dComl) z1)
((real-part dCom2) z2))
((+ dNum) ((imag-part dComl) z1)
((imag-part dCom2) z2))

Three additional parameters, dNum, dCom1, and dCom2, are generated, corresponding to the required

dictionaries. In general, these dictionary parameters witness the class constraints in the type of an
overloaded function, as demonstrated by the type of cAdd:

Va::Num.Vc1::Complex a.Vc2::Complexa. c1— c2— Recta

Finally, each call of an overloaded function supplies the appropriate dictionary arguments. Thus
the application cAdd (MkRect 1.5 2.5) (MkPolar 4.0 3.5) translates to

cAdd DNumFloat (DComRect DNumFloat) (DComPolar DNumFloat)
(MkRect 1.5 2.5) (MkPolar 4.0 3.5)

let z = e; in ey local definitions

Type variables a
Type constructors K
Types o s=a|()|o1xo3|01—02| ko | VT 0o
Class lists L = ~v,...,7
Expressions e u= =z term variables
| ee applications
| Az.e abstractions
| ed dictionary applications
| Av.e dictionary abstractions
|

Dictionary constructors x
Dictionaries d 2= v dictionary variables

| xdi...d, dictionary construction

Figure 3: Abstract Syntax of CP

2 CP: The Target Language

This section decribes the target language of our translation semantics, a version of polymorphic
A—alculus that include explicit constructs for handling dictionary expressions. We called the system
CP, intended as a mnemonic for ’Constrained Polymorphic A—alculus’. The surface syntax of CP
is designed to be very similar to that of Mini-Haskellt, though, semantically, Mini-Haskell* is a
proper sublanguage of CP.

2.1 Syntax of Types and Expressions

Figure 3 presents CP’s syntax of types and expressions. Compared to Mini-Haskell*, there are
two major differences. First, CP has a more expressive set of types. Following Mini-Haskellt,
quantified type variables may be associated with class constraints I', but there is no distinction of
simple types and type schemes, since quantification of type variables is no longer restricted to be
outermost. Thus types such as (Va::Eq.a — a) — Int are valid in CP. In other words, functions
may take aruguments of polymorphic and/or overloaded types. Section 6 explores this feature to
relate a group of CP expressions whose types are ordered by the instantiation ordering (< ¢) defined

in [COH92).

Second, CP has additional abstraction and application constructs for dictionary expressions. Over-
loaded Mini-Haskell* functions will be translated to dictionary abstractions in CP while applica-
tions of overloaded Mini-Haskell* functions will become dictionary applications in CP. With such
explicit use of dictionary expressions, the order of class constraints on a type variable in the type
of an object (and hence the order of dictionary parameters taken by an overloaded value) can
no longer be ignored. Indeed, expressions such as (ed;)d; may become meaningless if written as

(edy)d;. Thus all notions defined in previous report citeptclass:yale using sets must be replaced
by those using lists, e.g., lists of class, lists of instance assumptions (contexts).

The set of free term and dictionary variables in an expression e are defined in an obvious manner
and denoted by fv(e) and dv(e) respectively. As usual, we use the notation [¢’/z]e to represent
substitution of the free occurrences of a variable z in an expression e by another expression €', and
assume the standard renaming convention for avoiding variable capturing.

2.2 Dictionary Expressions

A dictionary expression is either a dictionary variable or a construction obtained from an instance
declaration similar to that of Mini-Haskellt. After introducing some notational conventions for
writing objects that involve dictionary expressions, this section describes CP’s program declarations
and how dictionaries are synthesized through a straightforward extension of the instance entailment
system given in [COH92].

Notations

Since we will mostly deal with multiple dictionary expressions grouped into separate lists, it is
useful to introduce some notations for writing lists of dictionary expressions. In particular, fonts
are used to distinguish dictionary expressions of different units, as detailed by the following table:

Object expression abbreviation
List of dictionary variables Vi,...,Va v

List of list of dictionary variables VlyeveyUp v

List of dictionary expressions di,...,d, d

List of list of dictionary expressions dj,...,dn, d
Dictionary abstraction AVi.... AV .€ Av.e
Dictionary application (...(edy)...)dy, e-d

We also use u and w to denote dictionary variables. Note that we only deal with lists without
repetitive elements since each dictionary corresponds to a class constraint. Concatenation of lists
is simply expressed by juxtaposition, e.g., vw. In some situations, to emphasize that we are
concatenating two disjoint lists, we use @ as the concatenating operator, e.g., v @ w.

The empty list is denoted by €. The length of a list is denoted by |I|. We use |k for indexing the
kth element in a list object, e.g., v|k = v;. A list [is a sublist of another list ', written IC V', iff
Vi€ 1.|l|,1}i = I'|k for some 1 < k < |I'|. Two list ! and I’ are isomorphic, written ! = I, iff IC I
and I'C 1.

In addition, to describe the dictionary construction scheme, we introduce some notations for com-
biningg instance judgements with dictionary expressions. Given the setting:

Ti = 71,0 %im Lists of type classes

Vi = Vilye.., Vi Lists of dictionary variables

V = U,...,0n List of list of dictionary variables

C = apuly,...,an:T, Context—List of instance assumptions

we define dictionary-augmented contezts as follows:

vic ¥ vi:(a:Th),. .y Ut (@pniTy)
In other words, we pair off lists of dictionary variables v; and instance assumptions a;::I';. The
notation
vi(a:T)

expresses that, for all ¢, 1 < ¢ < ||, dictionary variable v]i is associated with the instance
assumption a::T'|i—namely, one dictionary for one class constraint. And we often overload the
operations involving simple contexts to operate on augmented ones, e.g., membership test v :
(a:T') € v: C and context restriction (v: C)\vi(o:1)- When there is no particular need to explicitly
mention the dictionary variables associated with an augmented context we will often write just C
in place of v:C.

Similarly, we define dictionary-augmented instance predicates as follows:

def

d:P = di:(mulh), ... ydmi(TmiTh)
where
di = di1,...,dig Lists of dictionaries
d = d,...,d, List of list of dictionaries
P = mnuly, ... ,7muly, List of instance predicates

Program Declarations

Like Mini-Haskellt, a CP program consists of a sequence of declarations followed by an expression.
As illustrated in the informal presentation, these declarations introduce overloaded operators (as
extractors) and their dictionary implementations to be used in the main expression. To simplify the
presentation of the translation, however, we make the syantx of CP declarations very similar to that
of Mini-Haskell*. In particular, the declarations are “sugared” as class and instance declarations
that declare overloaded operators and define their implementations respectively, as detailed below:

Programs p = class oy where z;:0q,...,2,:0, in p
| x:inst v:C = r:y where z;=e¢,...,2, = €, in P

| e

Indeed, the syntax is closely modeled on that of Mini-Haskellt. What is new here is the additional
dictionary “annotations”: Each instance declaration is assigned a dictionary constructor X, and
the context C is paired with matching dictionary variables v, which may occur in the method
expressions e;.

The informal meaning of these declarations is as follows: a class declaration introduces an extractor
definition and an instance declaration defines a dictionary using the specified dictionary constructor.
In the simplified case where a class introduces only one operator, every overloaded operator is simply
the identity function and a dictionary is just a function. Essentially, these declarations are merely
syntatic sugars for global definitions. For example, an instance declaration stands for a binding of
a dictionary:

let xv = (e1,...,€,) in p

Viel.|T| (v:C K dli:(r=T|i))
v:CH d:(r:T)

I)

vi(a:T) ev:C
v:CH vli:(a:T]i)

(i=1,...,|T|)

v:C H d:(r:ly)
v:CH xd:(r:y)

(x:"inst v/i(riuly) => 1y €X)

Figure 4: Augmented Instance Entailment System

However, by making their surface syntax similar to that of Mini-Haskellt, we get a simpler de-
scription of the translation, as will be demonstrated in the subsequent sections.

Instance Entailment and Dictionary Construction

An important step of our translation scheme is dictionary construction whereby overloading is
made explicit. In CP, as an advantage of the syntax similarity discussed above, the set of instance
declarations ¥ in a program forms the basis for both instance constraint inference and dictionary
construction. This is easily achieved by extending the inference rules for Mini-Haskell* instance
entailment given in [COH92] such that the satisfication of an instance predicate is witnessed by a
list of matching dictionaries. More specifically, given I, the extended inference rules presented in
Figure 4 allow us to deduce augmented instance judgements of the form

v:C K d:(r:T),

which assert that from the augmented context v: C it follows that type 7 is an instance of class
list T as witnessed by dictionary list d. If d is a list of dictionaries of proper length for a list of
instance predicates (7;::I';)i=1,, then we use the notation

v:C H d:(raTy)
to represent
Viel.n(v:CH dli:(rizly))
This notation is used in the rule (7) above to synthesize parameterized dictionaries.

The augmented instance entailment system forms the complete engine of overloading resolution:
Any references to an overloaded operator in an expression is checked by the system and, in addition,
if validated, a proper implementation is supplied by the system in forms of dictionaries.

The following properties of the augmented system are easily established.

o If v:CH d:(r:T), then dv(d) C dv(v).

o If viCHd:(r:T), then v:C @ v':C’' K d:(7:T).

o Ifvi:Ci @ vi(axI’) @ vo: Cy K d:(7:T) and a & tv(7) U tv(T), then v;1:Cy @ vo: Gy H-
d:(r:T).

e If vi:Ci@®vy:Cy @ v3:Cs B d:(rul), then vo: Co @ vy:Cy @ v3: Cs K- d: (7).

The lemma of transitivity under substitution presented in [COH92] extends naturally to the aug-
mented system.

Lemma 2.1 For any substitution S, augmented contexts v:C and v':C',if v:C H d:(7:T)
and v:C'H-d':SC, then v':C' K [d'/v]d : S(r:T).

Uniqueness of Dictionary Construction

Since a dictionary constructed from the instance declarations implements certain overloaded opera-
tors, we need to impose, as before, certain restrictions on instance declarations to avoid ambiguity.
In fact, the CP programs we will consider are the translations of valid Mini-Haskellt programs,
and hence maintain all the restrictions stated in [COH92] for MintHaskell*. In particular, for
every pair of type and class constructor (., c), there is at most one instance declaration of the form
X : inst C = k7'i:c T where Furthermore, we require that the dictionary constructor associ-
ated with an instance declaration be unique within a program. It is then easy to show that there
is at most one dictionary that makes a type an instance of a particular class within a program:

Lemma 2.2 When the set of instance declarations ¥ in a program satisfies the two restrictions

discussed above, then the augmented instance entailment system admits unique construction of
dictionaries. In other words, if v:C H d:(7:T') and v:C H d':(7:T), then d = d'.

2.3 Typing Rules for CP

The typing rules for CP expressions and declarations are given in Figure 5 and Figure 6 respectively.
Similar to the case of instance entailment, these rules are derived from those of Mini-Haskell™
([COH92]) by extending them with support for dictionary expressions. Indeed, if we remove all the
dictionary augmentations, we obtain the same sets of typing rules. Note that, as mentioned earlier,
we omit the list of dictionary variables from the augmented context when they are not explicitly
referenced.

3 Translating Mini-Haskell™ to CP

This section presents the formal definition of the translation scheme. We show that every well-
typed Mini-Haskellt program has a CP translation and all translations obtained in this way are
well-typed in CP.

The translation scheme is based on the similarities between the typing derivations in Mini-Haskell*
and CP. As mentioned in the previous section, every Mini-Haskell* type can be treated as a CP
type. Moreover, the typing rules of Mini-Haskellt are just a restricted version of the rules for

10

A(z)=o0

var
(var) A, CFz:0
(V= E) A, CF e:Vaul'o CH d:(r:T)
A, CtF ed:[r]a)o

A, Cdvi(aT)dCo F exo
V-1 a ¢ fv(A)Ureg(C, C:
() A, CiCy F Mv.e:Vaul.o 7 v(4) B(C1C2)
(A —E) A,CF e:0 -0 A, CF e:o

A, C F e e:o

(=1) Az:d',CF e:o

A, C F Aze:0' -0
(let) A, CF ¢:0 Az o/, CF e:0

A, CF (letz=¢eine): o

Figure 5: Typing Rules for CP Expressions

CP, except that typing derivations in the latter involve augmented contexts rather than simple
contexts and require explicit dictionary application and abstraction in the rules (V- elim) and
(V—intro) respectively. Based on these observations, we can easily establish a correspondence
between Mini-Haskellt and CP typing derivations using two auxiliary functions: The first function
Czt maps an augmented context to the corresponding simple context:

Crt(vi:C o v':C") Czt(v:C) U Czt(v':C")

Czt(v:(a:T)) = {oul'}
Czt 0 = 0

The second function Erase maps CP expressions with explicit overloading to Mini-Haskell* ex-
pressions by eliminating all occurrences of dictionary expressions:

FErase(z) = z

FErase(e; e2) = Erase(e;) Erase(ey)

FErase(\z.e) = Az.Erase(e)

Erase(let z = ¢; in e3) = 1let z = Erase(e;) in Erase(ey)
FErase(ed) = FErase(e)

Frase(Av.e) = FErase(e)

The correspondence can then be formally described by the following theorem:

11

(class) Az Viy Ve {y}o, C F p:o

A, C F (class a:y where z:0c in p):o’

A, CF zVa:{y}o A, v:CoOV:C'Fe:[rfaJc A, CF p:o
A, CF (x: instv':C' = 1y vhere z = e in p): o’

(inst)

Figure 6: Typing Rules for CP Declarations

Theorem 3.1 If A, C + e : o in Mini-Haskell?, then there is a CP expression e’ and an
augmented context v’': C’ such that C = Czt(v':C’), e = Erase(e’) and A, v':C' + € :0
using a derivation of the same structure.

In other words, every well-typed Mini-Haskellt expression has a well-typed CP translation that
can be obtained from its typing derivation.

The proof is straightforward, using induction on the length of A, C F e : 0. We thereby define
the expression e’ in the statement of the theorem to be a translation of e and use the notation
A, C F e~ € : o torefer to a translation of an expression in a specific setting. Note that,
in general, a Mini-Haskellt expression will have many distinct translations in any given setting,
each corresponding to a different derivation of A, C + e : o in Mini-Haskell*. The issue of
well-definedness will be addressed in Part II.

This theorem also suggests a more succinct way to describe the translations of Mini-Haskell*
expressions—i.e., by combining the typing rules of Mini-Haskellt and CP expressions, as illustrated
in Figure 7. It is easy to show that A, C F e~ €’ : 0 according to the original definition of
translations above if, and only if, the same judgement can be derived from these rules.

Since the method defined in an instance declaration is also an expression, we can easily generalize
the correspondence result to program declarations. Specifically, we extend the definition of Erase
to declarations as follows:

Erase(class a:y where z:0 in p) = class a:y where z:0 in FErase(p)
Erase(x : inst v':C’' = 1'i'y where z = ein p) =

inst Czt(v':C’) = 7'y where z = Erase(e) in FErase(p)
Then the previous theorem naturally extends to the following result.

Theorem 3.2 If A, C + p : o in Mini-Haskellt, then there is a CP program p’ and an
augmented context v’:C’ such that C = Czt(v': C’), p = Erase(p’) and A4, v/:C' + p': 0
using a derivation of the same structure.

Such a correspondence effectively specifies a translation sematics for Mini-Haskellt. In the next
part, we will extend the syntax-directed system and the type reconstruction algorithm given in

12

A(z) = o

(var)

A CtFz~z o
(V—E) A, CF e~é :Vaulo CH—dv:(T::I‘)

A, CF e~éd:[r/a]o

A, C (D)@ Gy I

(V=1 100 (@D)® G F eme 10 utia) U reg(CiCa)
A, Ci1Cy F e~ dv.e :Va:T.o
(A-E) A, CF eg~ey i =1 A, CF eg~ ey 17
A, CF eeg~eiey it

O-1) Az, CFe~é 71

A, C F Az.e~ Aze i1 > 71

A, CF e~ ey o Az:o, C F eg~ €y i1

(let)

A, C F (letz=¢ ine)~ (letz=¢€11iney) : 7

Figure 7: Typing & Translation Rules for Mini-Haskell* Expressions

earlier chapters to include the calculation of translation, and address the problem of multiple
translations for a single expression.

Part II. Ambiguity and Coherence

In this part we address the problem of overloaded-operator ambiguity. To begin with, it is neces-
sary to specify when two translations are equivalent. After illustrating the incoherence problem, we
develop a typed equational theory for CP expressions whereby we can formally establish the equiv-
alence between translations. Then, motivated by [Jon92], we define conversions to relate different
translations of an overloaded expresssion based on their types. In particular, such conversions are
CP expressions derived from a type scheme and its generic instances in a way that, when applied to
a translation of an expression, they repackage the dictionaries involved to yield another translation
whose type is less general.

Based on the notion of conversions, we generalize the definition of principal types to that of principal
translations. We extend our type reconstruction algorithm to include the calculation of translations
and show that, analogous to the principal type property, the extended type inferencer computes
the most general translation for any well-typed expressions. In other words, any translation of an
expression can be obtained by applying a conversion to its principal translation. Consequently, the
equivalence of two translations at a given type is determined by the equivalence of the conversions
from which they are derived. We show that when an expression’s principal type is unambiguous,
the conversions that can be derived from the type and any of its generic instances are all equivalent,
thereby establishing the conditional coherence result.

13

4 The Coherence Problem

This section motivates the problem of overloaded-operator ambiguity and identifies it with the
incoherence of our translation semantics.

Usually compilers rely on type information to resolve overloaded operators. For polymorphic lan-
guage such as Haskell overloading resolution is complicated by the presence of type variables. As
described in the preceding part, constarints on type variables and explicit dictionary abstractions
are used to handle unresolved overloaded operators. When demanded, these operators are properly
resolved according to the types at which they are used. As long as the type that instantiates a
type variable satisfies the associated constraints, unique resolution is guaranteed by the restrictions
imposed on instance delcrations (Lemma 2.2).

There are, however, situations under which the type inferencer cannot determine the suitable type
to instantiate a constrained type variable and is therefore unable to supply the proper dictionary
to resolve a particular occurrence of an overloaded operator. Arbitrary instantations of such type
variables may lead to inconsistent resolutions and thus the ambiguity problem.

As an example, consider the following class Parsable that declares two overloaded operations parse
and unparse, which convert strings to/from values of a certain type:

class a::Parsable where
parse : String -> a
unparse : a -> String

Now supposing that just Int and Float areinstances of Parsable, then the expression unparse (parse “123”)
is ambiguous: The composition of parse and unparse creates an intermediate value whose type,

a type variable, is constrained by class Parsable, but does not appear in the type of whole ex-

pression, String. As a result, the type inferencer is not able to determine the intermediate type

via unification; instantiating it to Int or Float will give different results: “123” and “123.0”
respectively.

Our translation semantics exploits an expression’s typing derivations to resolve overloaded opera-
tors; it maps Mini-Haskell™ typing derivations into CP typing derivations whereby overloading is
made explicit. As such, ambiguity occurs when there are many different derivations for a single
typing judgement, which in turn yield many semantically distinct translations. Indeed, the ambi-
guity in the preceding example can be described in this manner: There are two ways to derive the
typing judgement F unparse (parse “123”) : Bool, one using integer parse/unparse functions
and one floating-point parse/unparse functions, and consequently two translations which are clearly
not equivalent:

intUnparse (intParse “123”) and floatUnparse (floatParse “123”)

In general, ambiguity arises in our translation semantics when it is possible to get, from derivations
A, CF e~e:oand A, C F e~ e : 0, translations e; and e; of a Mini-Haskellt expression
e that are not equivalent.

The existence of ambiguous expressions indicates that our translation semantics is not coherent,
i.e., the meaning associated with a typed expression depends on the way that its type is derived.
This also means that the mapping from expressions to translations is not well-defined. Indeed,
ambiguous expressions do not have well-defined semantics and thus must be eliminated. Proposal

14

to make the translation semantics coherent by strictly restricting the type class mechanism has
been made [Wad90], but further study is needed to assess this proposal. Instead, follwing Haskell,
we choose to develop conditions that are sufficient to exclude those expressions and thus ensure
that the semantics of an expression is well-defined.

5 Equality of Translations

As a first step towards the conditions sufficient to guarantee coherence, we need to specify formally
what it means for two translations to be equivalent. This section defines a typed equational theory
for CP expessions; two translations of an overloaded expression are said to be equivalent if they
are provably equal within the theory.

The theory comprises equational judgements of the form:
A, CF e=¢€:0

where we assume that e and e’ have type o in the setting determined by type assumptions A and
instance assumptions C. Intuitively, the judgement A, C + e = €' : o asserts that expressions e
and e’ denote the same element of type o in environments that satisfy A and C. The implicit side-
condition that both A4, C + e:0 and A, C F+ €' : o is necessary since only typed expressions
and their translations are considered meaningful.

The axioms and inference rules of the theory are given in Figure 8 and Figure 9. The axioms in
Figure 8 contain the familar definitions of a-conversion and S-conversion and their extensions to
dictionary-augumented expressions. Also included is a rule of 7-conversion for removing unnecessary
dictionary abstractions.

These axioms, except a-conversion, are often formulated as reduction rules by orienting them from
left to right. As such they have simpler side-condition of well-typedness since it can be shown that
if the expression on the left has type o then the reduced expression on the right also has type o.
This is a consequence of the subject reduction property—reduction preserves typing—which can be
proved using standard techniques as in [HS86].

The second group of axioms and inference rules in Figure 9 make the typed equality an equivalence
relation and a congruence with respect to the expression formation operation. To make the equality
an equivalence relation, we have included the symmetry rule (sym) and the transativity rule (trans).
On the other hand, there is no need to include the reflexivity rule since it is a direct consequence
of the other rules, which are closely modeled on the original typing rules of Figure 5 to make the
equality a congruence by allowing the equivalence of sub-expressions within a given expression.

One may observe from rule (app —d) that the congruence property does not include dictionaries.
This is a consequence of Lemma Lemma 2.2. As discussed in Section 2.2, dictionary construction is
unique within a program when the set of instance declarations in a program satisfies the restrictions
mentioned therein. Hence there is no induced equivalence relation over dictionaries to be included
in rule (app—d).

The following lemma states some useful properties of let —expressions that follow directly from

rule (G- let).

Lemma 5.1 For any CP expressions e, e; and e’ and distinct term variable z and y such that

15

y € fv(Az.e)

() A, C F (Az.e) = (My.[y/z]e) : o
(@a) w ¢ fv(Av.e)
A, C F (Av.e) = (Aw.[w/v]e) : 0
(a—let) y & fv(e)utv(e’)
A, CF (letz=¢ine) = (lety=¢ infy/z]e) : 0
(8) A, C F (Az.e)e’ = [¢'/z]e : o
(Ba) A, C F (Av.e)d = [d/v]e :0o

(B—let) A, CF (letz=¢"ine) = [¢'/z]e : 0

v ¢dv(;z)

d
(n2) A, CF (Avewv)=¢e:0

Figure 8: Equation rules for CP expressions, I
y € iv(e):

1.A,C F (letz =¢; in[e'/z]e;) = (let z =[ey/z]e’ ine) : 0
22A4,C F Ay.(letz=e ine) = (letz =e¢ inly.e;) : 0
3A,CF e(letz=¢ine) = (letz=¢ ine'e) : 0

4. A,C F (letz=e ine)e’ = (letz=¢ inee) : o

To give a flavor of typed equational reasoning in our system, we include here the proof of the first
property of this lemma. In particular, we lay out the equational deduction as follows:

A, C F (letz =e in[e'/z]es) = [er/z]([€'/2]e2) (B—let)
= [ler/z]e'/z]e2 (substitution)
= (letz =[e1/z]e’ iney) 10 (B-—let)
Note that we have also used rules (sym) and (trans) in the deduction. Furthermore, the re-
quired side-condition on types is preserved by the intermediate steps: From the given hypothe-
sis A,C F (let z = e in [€¢//z]ez) : 0 and the subject reduction property it follows that

A, C F [e1/z]([¢'/z]ez) : 0. Hence the first application of (8—let) is justified. Similarly, another
hypothesis A, C + (let z = [e;/z]e’ in e;) : o justifies the second application of (85— let).

16

A, CFe=¢

sym
(sym) A, CFeée=¢:0

A, CFe=¢€:0 A, CrHeée=¢:0
(trans)

A, CFe=¢€:0
A =

(var) (z) = 0

A, CkFz=12:0

A, CF e=¢€ :Yaul'o CHd:(r:T
(app—d) (1)

A, CtF ed=¢€-d:[r]a]o

A, C (el Fe=¢:

(abs—d) 10vi(aD)@C b e=¢ :0 a ¢ ftv(A) U reg(C)

A, CiCy F dv.e = Av.e :Ya:T.o

A, Ct e =¢ 0/ >0 A, CF e =¢ :0

A, CF ereg =e€j€y 10

(»)

Az:d',CFe=¢:0

£
© A, C F dz.e = Az.e :0' =0

A, CF e =¢:0 Az:io,C F e =¢€9:7

A, CF (letz=erine) = (letz=¢€iney) :7

(cong —let)

Figure 9: Equation rules for CP expressions, II

17

Given the typed equality over CP expressions, our task in the subsequent sections is to derive
conditions sufficient to guarantee that:

If A,v:iClF e~e:0and A,v:CF e~ ey:0,then A, v:C F e =€ :0.

6 Ordering and Conversion Functions

This section explores the generic instance ordering between type schemes (<¢) to relate the trans-
lations of an overloaded expression. Following [Jon92], we show that any two translations of an
expression can be related by certain functions if their types are related by the ordering. Such func-
tions are called conversions since they convert one translation to another, whose type is less general.
Furthermore, the notion of conversions between translations naturally leads us to define principal
translations along the lines of principal types. Later in this part we will show that the principal
translation property holds for our translation system. As part of the technical development, we
extend the definition of conversions to type asumption sets.

6.1 Conversions and Principal Translations

Given that each typing derivation for a Mini-Haskell* expression yields a type as well as a transla-
tion, and all the types that we can associate with an expression are generic instances of its principal
type, it is conceivable to consider the relation between the translation obtained from the principal-
type derivation and those from other derivations based on the relation between their types. Indeed,
as we will show immediately, a functional relation between these translations can be established
through a semantic interpretation of the ordering between their types.

Conversions are functions we use to relate translations; they convert a translation of a more general
type to another translation of the same expression whose type is less general. Furthermore, they
can be expressed in our system as CP functions. More formally, given a Mini-Haskellt expression
e and two of its translations e; and e; obtained from the typing derivations A, C + e~ ¢ : 0
and A, C F e~ e;:0' with o/ <¢ 0, we are interested in functions K such that A, C + Ke; =

e 0.

We have, therefore, the following characterizations of the conversions. First, it is clear that the type
for such expressions is ¢ — ¢/, under A and C. Note that this type, in general, cannot be expressed
as a Mini-Haskell* type scheme since it uses the richer structure of CP types. Second, from the
translation semantics we know that E'rase(e;) = e and Erase(e;) = e. Now since FErase(Ke;) =
Erase(K)Erase(e;) and Ke; = ez, we need to ensure that Erase(K)Erase(e;) = Erase(e;). An
obvious choice is to require that Erase(K) be equivalent to the identity function id = Az.z.

The insight of [Jon92] is that we can derive from the definition of generic instance ordering a
“canonical” conversion that suits our purpose. Such conversions, when applied to a translation of
an overloaded expression, repackage the dictionaries involved to yield another translation whose
type is less general. In our system, the idea is embodied in the following definition of conversions:

Definition. (Conversions) Given type assumption set A and context v:C. Suppose that ¢’ =
V(e;:T;).r" and o = V(e;:T;).7 and that none of the o} occurs free in o or C. A CP expression
K of type 0 — o' under A and v:C such that Frase(K) = id is called a conversion from o to

18

o' under A and v : C, written K :0' <4v.c 0, if there are types ;, dictionary variables w, and
dictionary expressions d such that

o 7' = [ri/aq]T
o viC O w:i(o;ul}) B d:[r/ei] (e;:T;) and
e A, v:C +F K=Az w.z-d

Since conversions contain no free term variables and hence only context v: C is significant in the
setting of A and v:C, we will drop the type assumption set A from the subscript of <4v.c. We
will also omit the dictionary application symbol and write z d for z-d in what follows.

It is straightforward to verify that Az.Aw.zd is itself a conversion from ¢ to ¢’ under A and v:C;
clearly Erase(Az.Aw.zd) = Az.z and the following derivation establishes the required typing:

Az:io,v:CF z:0
Az:o, v:C F z:V(auly).r
Az:o, v:COw:(ajul}) F zd:[r/ei]T
Az:o, v:iCOw:i(aull) F zd: 7
Az:io,v:C F Aw.zd : 0’
A, v:iC F Az dw.zd:0— 0

o = Y(a;uT;).7

(V—elim)

v = [ri/ai]T
(V—intro), o' = V(a}:I'}).7'
- (A—intro)

This canonical conversion works by repackaging the dictionaries involved. Also, as noted earlier,
the types of conversion functions utilize the more expressive polymorphism provided by CP.

The following two lemmas state some properties of conversions that will be useful in subsequent
work. The first one is pretty straighforward.

Lemma 6.1 If K : 0’ <y.c 0 and v:CCu:C’, then K : 0’ <y.c' 0.
The second lemma shows when two conversions can be meaningfully composed.
Lemma 6.2 If K':0" 2v.c ¢’ and K : 0’ Zy.c 0 then (K'0 K): 0" <v.c 0.

The introduction of conversions is a key step towards our goal. With the notion of conversion we can
generalize the definition of principal types to that of principal translations, which are translations
obtained from the principal-type derivations and from which all other translations can be derived.
If the principal translation property holds for our system, our task of determining the equivalence of
two translations is reduced to that of the two conversions derived between the principal translation
and the respective translations, which is simpler since conversions are also CP expressions but with
regular structures. The following definition formalizes the notion of principal translations:

Definition. (Principal translations) Given A4, v:C, and e, we call ¢’:0 a principal translation
for e under A and v:Ciff A,v:C F e~ €' : 0, and for every o’,if A,v:C F e~ ¢€” : o' and
K:0'<yv.co,then A,v:C F Ke' =¢" :0'.

19

6.2 Conversions Between Type Assumption Sets

We have seen in [COH92] the extension of the generic instance to an ordering between type as-
sumption sets. Similarly, we can extend the definition of conversions to type assumption sets. The
additional complexity here is that we need to express multiple conversions, one for each pair of
types associated with a term variable in the respective type assumption sets. Since each of these
conversions maps a term variable to an expression, we use ezpression substitutions to define the
conversions between type assumption sets, as suggested by [Jon92).

As a simple example, consider the following two type assumption sets:
A" = {(==):Va:Eq.List a— List a — Bool}
and A = {(==):Va:Eq.a— a — Bool}

Assuming that w:(a:Eq) H- (DEqList w) : (List a :: Eq), one possible conversion between A and
A’ would be a substitution that maps (==) to Aw.(==)(DEqList w), but leaves other variables
unchanged.

The following definition formalizes the idea:

Definition. (Conversions between type assumption sets) A substitution K is a conversion

from a type assumption set A to another type assumption set A’ under context v : C, written
K:A'"<v.c A,if

e dom A = dom A’ and

e For each z € dom A there is a conversion Az.K(z): A'(z) <v.c A(z). On the other hand,
if z ¢ dom A, then K(z) = z.

Note that since every conversion is a CP expression without any free term variables, it follows that

the only free term variable that appears free in the expression of the form K (z) is the variable z
itself. Based on this observation, we can easily establish the following results:

Lemma 6.3 If K:A' <y.c A, then

1. K(Az.e) = Az. Ke,
2. K(let z = e in e;) = (let z = Ke; in K, e3),
3. K:(A.z:0) 2v.c (A'.z:0) for any o, and

4. [e1/z](Kye2) = (K[e1/z])e; for any e; and e,

where K, stands for the substitution such that K,(z) = z and K,e = Ke for any expression e
that z ¢ fv(e).

The following lemma is a direct consequenc of the definition.
Lemma 6.4 If K: A" <y.c A and v:CCu:C’,then K : A’ <4.c' A

20

7 Syntax-directed Translation

The next three sections follow the developments of [COH92] to extend our type inferencer to include
the calculuation of translations for any given expression. To begin with, we extend the syntax-
directed typing rules given in [COH92] to include the construction of translations. Figure 10 gives
the extended inference rules.

Note that although the structure of a derivation A, C F e~ €’ : 7 is uniquely determined
by the syntactic structure of the expression e, it need not be the case for the translation e¢’. The
reason is that in rule (var’), the dictionary expressions d are determined by the types 7; we choose
to instantiate the quantified type variables, and there may be distinct choices for such types and
consequently distinct dictionary expressions. This is exactly where incoherence may occur in the
translation semantics of Mini-Haskellt.

(var') A(z) = Y(oi:ly).7 CHd:([ri/ei](a;izly))
A, CF z~zd i [ri/a)r
(A= BN A, CH eg~é€y i -1 A, CH e~ély : 7
A, C FH e eg~ €1 ey o1
(=1 Az:t', CH e~eé i1
A, CF dze~ Aze 7' =1
(let') A, Vvi:C'H e~ ey i Az:io, v:iC H e~ ey i1y

A, C F (letz=¢ ine)~ (letz = Aw.e/; in€'y) : 7y

where (o, v"':C", w) = gen(m1, A, v':C',¢) and v':C"Cv:C

Figure 10: Syntax-directed Translation Rules

To accommodate dictionary abstractions in translating l1et —expressions, we extend the definition
of function gen as follows:

gen (o, A,v:C,w) = if I3(v:(al))€v:C and a ¢ (fv(A) U reg(C))
then gen (Ya:T.o, A, (v:C)\yy(a:r)» VW)

else (o,v:C, w)
In other words, now gen not only extracts generic type variables from the context but also accu-

mulates the dictionary variables associated with those type variables.

The following three lemmas about the extended gen function can be easily established.

21

Lemma 7.1 If gen(r,A4,v:C,€) = (o,v': C',w) then o = (a;::Ca;)}.7, for some n > 0 such
that (o;) @ C*(fv A) = dom(C) and v=w & Vv'.

Lemma 7.2 If A,v:C F e~ ¢€ : 7 and (o,v':C', W)
e~ w.e :o.

gen(r,A,v:C,¢), then A, v': C' F

Lemma 7.3 Let (o, Ci,w) = gen(r, A, C,¢) and (o', Cy,V') = gen(r,A,v:C @ u:D,e). Then
v/ =uw, Az.\u.r:0' <0 and Aulz.zu:o <yu.po’.

Our goal in the remainder of this section is to show that the set of syntax-directed translation
rules is equivalent to the original set of translation rules given in Figure 7. By a straightforward
induction, we can show that the syntax-directed system is sound with respect to the original one:

Theorem 7.4 If A,v:C FH e~ e :7then A,v:C F e~ €' :T.

To show that the syntax-directed system is also as general as the original one, we need to develop
a series of lemmas about the syntax-directed system. We begin with the following two lemmas
that describe the interaction between the gen function and type substitutions under the common
scenario A, v:C F e~ ¢ : 1.

Lemma 7.5 Let (0,C’',w) = gen(r,A,v: C,¢) and (o’,u’:D’',w’') = gen(St,SA,u: D,e¢). If
o = Y(a;uTI';).7 and there exist dictionary expressions d such that uw: D H d : (e;:T;), then
Az.Au'. w'zd : o’ <y.pr So.

Lemma 7.6 Given gen(7,A4,v:C,¢)= (0,Co,w). If v/:C'Hd : SCy then there is a substitution
R, a context u:D and dictionary expressions d’ such that

RA=S84, u:DH-d' : RC and d = wd.
Furthermore, if gen(R7, RA,u:D,¢) = (o', D', w’) then

So=0', DDCC' and w =w.

The next group of lemmas state the properties of the syntax-directed translation; except the first
one, they are all extended from the properties of the syntax-directed type system in [COH92] by
including the calculation of translations.

Lemma 7.7 If A,v:C F e~ €' :7 then dv(e’) Cv
Lemma 7.8 If A,v:C F e~ ¢€':7 and v:C C v:C',then A,v:C' F e~ €' : 1.
Lemma 7.9 If A,v:C I e~ ¢€':7 and v':C'H-d : SC, then SA,v:C’' ' e~ [d/v]e : 7.

Lemma 7.10 If A/, v:C F e~ €' :7 and K : A’ <y.c A, then A,v:C F e~ €":1 and
A, v:iCF Ke'=¢€":71.

22

Finally, using these lemmas, we can show that the syntax-directed translation system is also com-
plete with respect to the original one in the following sense:

Theorem 7.11 If A, v:C F e~ €' : 0 then thereis a context v/: C’, a type 7’ and ax expression
e’ such that v:CCv':C', A,v:C' F e~ ¢€" : 7 and A,v:C F K(Aw.e") = €' : 0 where
K :0 2v.c 0’ and (0',C",w) = gen(v', A,v': C',¢).

Therefore, any translation derived from the roiginal set of translation rules can also be obtained
by using the set of syntax-directed translation rules.

8 Unification and Dictionary Construction

Before we can extend our type reconstruction algorithm to include the calculation of translations,
we need to develop some mechanisms to synthesize dictionaries that are essentail to the transla-
tion scheme. This section extends the unification algorithm given in citeptclass:yale to incorporate
dictionary construction. As discussed therein, unification of types is associated with a context nor-
malization process to ensure that the underlying context is properly preserved. This normalization
sub-algorithm can be viewed as an implementation of the instance entailment system of [COH92].
We have also shown in Section 2.2 that we can easily extend the instance entailment system to
include dictionary construction using augmented judgements of the form v:C H-d : (7::T'). There-
fore, our main task here is to extend the normalization algorithm to implement the augmented
instance entailment system.

Augmented Constrained Substitutions

We extend constrained substitutions defined in [COH92] with dictionary substitutions to handle
dictionary construction. Similar to the substitutions of type variables by types, a dictionary sub-
stitution is a map from dictionary variables to dictionaries. We use dictionary substitutions to
keep track of the dictionaries that are constructed during type reconstruction to synthesize the
translation. The initial dictionary substitution maps all the dictionary variables to themselves;
as types get unified, along with the associated context normalization process, dictionaries will be
constructed to replace dictionary variables involved in the translation being synthesized, thereby
yielding more refinied dictionary substitutions. At the end, we obtain the complete translation by
applying the resulting dictionary substitution.

Using O to denote dictionary substitutions, we extend the definiton of constrained substitutions as
follows:

Definition. An augmented constrained substitution is a triple (S,v:C,©) where S is a substitu-
tion, v: C a augmented context, and © a dictionary substitution such that C = SC and v = Ov

Consequently, definitions derived from constrained substitutions have to be extended to include
dictionary substitutions. The following definition extends the notion of context preserving to aug-
mented constrained substitutions.

23

Definition. An augmented constrained substitution (S,v: C,0) preserves another augmented
constrained substitution (Sp, vo: Cp, @) if there is a substitution S’ and a dictionary substitution
O’ such that § = 5’08y, ®© = @ 00, and v: C H O'vg : §'Cy. We write in this case
(S,V!C,O) j (SQ,VQ: Cg,@o).

The augmented context-preserving unifiers and normalizers are similarly defined..

Definition. An augmented constrained substitution (S,v:C,0)is a

(a) (So,vo: Co,Oq)preserving unifier of the type expressions 7 and 7’ if S = S7’ and (S,v:
C, 9) j (So, Vo: Co, @0)

(b) (So,vo: Co, Op)preserving normalizer of an instance predicate set P if there exist dictionary
expressions d such that v:CHd : SP and (5,v:C,0) < (So, vo: Co, Qo).

Algorithm

Given the notion of augmented constrained substitutions, we can now extend our unification al-
gorithm to include dictionary construction. Figure 11 presents the augmented algorithms. A few
words on our notations are helpful here. As before, we have used simple contexts where augmented
contexts are meant. Thus expression Ca yields the class list T' associated with a as well as the
matching list of dictionary variables v. Such augmented class lists are denoted by v : ', but we
may simply write I' if there is no need to mention v.

The augmented algorithms retain the basic structure of the original algorithms. There are still
four mutually recursive functions: mgu, mgu’, mgn, and mgn’; all follow the same calling patterns
of their predecessors. On the other hand, two major changes are made to incorporate dictionary
construction. First, the common state thread becomes an augmented constrained substitution.
Second, the normalization functions mgn and mgn' are threaded with an additional argument d to
accumulate the dictionaries constructed in checking the satisfiability of the given instance predicate.

More specifically, the context in the augmented constrained substitution keeps track of the class
constraints on the underlying type variables and their associated dictionary variables as well. In the
meantime, any change to those dictionary variables will be recorded in the dictionaty substitution of
the augmented constrained substitution. As in the original algorithm, the call mgu’ a 7 (S, C,0)
will in turn invoke mgn to check the satisfiability of 7::Ca; but, in addition, mgn will return a
list of dictionaries as a witness to the satisfication of this instance predicate and as a source for
updating the dictionary substitution. These dictionaries are individually constructed by function
mgn’ using the augmented context and the given set of instance declarations.

By some straightforward manipulation, we can extend the properties of the original algorithms
to include the construction of dictionaries. Precisely, the following lemmas can be established by
similar induction proofs.

Lemma 8.1 (Soundness of mgu and mgn)

1. If mgun rp (S,v:C,0)=(5,v':C",0), then S’y = §'rp and (§',v': C’,0") X (§,v:
C,0).

2. If mgn 7T (S,v:C,0,d) = (5,v':C’,0',dyd), then v':C' H dy : S'(r::T') and (S’,v’:
C',0) 2(S,v:C,0).

24

mgu:T—>7T—->SXCxO0->5xCx0
mgn:T—oI->5XCx0Oxd—-SxCx0xd

mgu 11 72 (5, C,0) mgu' (Sm1) (S72) (5, C,0)

mgu’ a « = idsxoxe

mgu’ a1 (S,C,0) | agfv(r), vi(axT) € C =
let (5,C"0,d) = mgnt Ca([r/a]oS,[r/a]C\a, O, €)
in (5,C', [d/v]o@)

mgu’' T o (S,C,0) = mguart(S,C,0)

mgu’ () () = idsxcxe

mgu' KT KT = mgutt (S,C,0)

mgu’ (11 X 72) (T X 73) = (mgu)0 (mgu 5 73)

mgu' (1 — 72) (11 — 73) = (mgum 1) o0 (mgu s 73)

mgn T {} = idsxcxexd

mgn T v:(y)(S,C,0,d) = mgn' (ST)v:(SY)(S,C,0,d)
mgn 1 (v1:T1 @ v3:T2) = (mgnTv:T1)o(mgnt vy:T7)

mgn’ avi(cr)(5,C,0,d) = ifIr.wi(cr’)e Ca
then let (5,C',0") = mgur 7' (5,C,0)
in (5,C',0, ud)
else (S,C[Cad®v:(cT)/a],0,vd)

mgn' k1’ 7 (5,C,0,d) | 3" x:inst C' = kF:c7'in T
let S'= match 7 (k7')
(§",C",0") = mgu r (S'7)(S,C,0)
(1l ..., muly) = S'CY
(S1,C1,04, d1d) =
(mgnm Ty (... (mgnt, Ty (S",C" 0" d))))
in (51, (1,04, (xd1)d)

(and similarly for —, x, ())

Figure 11: Augmented Unification and Normalization Algorithms

25

Lemma 8.2 (Completeness of mgu and mgn)
1. Suppose that (5',v': C’,0') < (So,vo: Co,00) and S'my = S’r. Then mgu 1 5 (Sp, Vo:
Co,00) = (8,v:C,0), with 7y = S, and (S,v:C,0) < (§',v':C",0") < (So,vo: Co, Qo).

2. Suppose that (S5/,v': C’,0") < (So,vo: Cp,00) and there exist dictionary expressions d’
such that v': C' # d': S'(ru:T). Then mgn v T (Sp,vo: Co, 0o, d) = (S,v: C,0,dd) with
v:CHdy:§(7=T) and (S,v:C,0) =< (S, v':C",0") < (S, Vvo: Co, o).

Moreover, since the recursive calling patterns are unchanged, the termination property of the
original algorithms carries over to the augmented ones.

Lemma 8.3 (Termination of mgu) For any augmented constrained substitution (S, C,®©) and
types 71, T2, the invocation mgu 7 7 (S, C, ©) either fails or terminates.

Based on these results, we can easily established the following theorem for the augmented unification
algorithm.

Theorem 8.4 Given a constrained substitution (Sp,vo : Co,©¢) and types 1y, o, if there is a
(S0, Co, ©p)-preserving unifier of 7; and 72 then mgu 7 75 (Sp, vo: Co, @) returns a most general
such unifier. If there is no such unifier then mgu 7 72 (S0, vo: Co, ©p) fails in a finite number of
steps.

9 Type Reconstruction and Translation

As the last step towards the coherence result, this section extends our type reconstruction algorithm
to include the calculation of translations, and shows that the augmented algorithm computes the
most general teranslation for any given expressions.

Figure 12 gives the augmented type inferencer. As before, function ¢p proceeds by cases dispatching
on the form of the input expression, but it yields a translation in addition to a type. More precisely,
if tp(e, A, §,v:C,0)=(r,€,5,v':C', 0), O'¢ would be the translation of e at type 7. The
dictionary bindings maintained in the dictionary substitution @’ are acquired through calls to the
augmented unfication algorithm presented in the preceding section.

In the remainder of this section, we will establish the principal translation property for our transla-
tion semantics. We begin with the key property of ¢p that the augmented constrained substitution
produced by tp preserves the input one, as formalized by the following lemma.

Lemma 9.1 If tp(e,A,5,v:C,0)=(r,¢, 5, v':C', ©), then (§',v':C',0")<(S,v:C,0).

The following theorem states that any typing and translation obtained by tp can also be derived
using the rules for the syntax-directed system described in Section 7.

Theorem 9.2 If tp(e, A,5,v:C,0)=(r, ¢, 5, v':C', ©'), then S'A,v:C' F e~ Q¢ : 1.
Combining this result with Theorem Theorem 7.4, we obtain the soundness property of tp:

26

tp(e,A,S,v:C,0) = case e of

z inst (S(Az),z, S, C,0)

€ e : let (m,€1,5,v1:C1,0;) = tp(el,A; S,v:C,0)
(12,€'2,82,v2:C3,02) = tp(eq, A, 51, v1:Cy,0,)
a be a new type variable
(53,v3:C3,03) = mgu (12 = a) (Sz, C2 & (a:x()), 02)
in (S3a, (€e'1€'3), S3, C3,03)

Az.e : let o be a new type variable
(Tl, 8,1,51, Cl, 01) = tp (el,A.x:a, S, C &) (0.‘:2()), (“))
in (S12 — 7m1,()z.€"1), 51, C1,01)

letz=¢ ine: let v:C'=(Ca | a€ C*(fvSA))
u:D = (v:C)\(v': (")
(11,€1,51,v1:C1,01) = tp(e1,A4,5,v':C",0)
(0,ve:Cy,w) = gen (11,514,v1:Ch,€)
(1,€'2,52,v3:C35,03) = tp (e2,A.z:0,51, C2,01)
in (7, (letz = Aw.Oy¢] in €}), S2,v3: C3 ® u: D, 0,)

where
inst (Va:T.o,e',5,v:C,0) = let B, ube new variables
in inst ([8/alo, (¢’ v), S,v:C & u:(f:T), O)
inst (1,€',S,C,0) = (r,€¢,8,C,0)

Figure 12: Type Reconstruction & Translation Algorithm

27

Theorem 9.3 If tp(e,A,S,v:C,0)=(r,¢€,5,v':C’',0), then S'A,v':C' F e~ @'¢ : 1.

Furthermore, any translation derived from the syntax-directed system can be expressed in terms
of the translation synthesized by ip.

Theorem 9.4 Suppose that S'A, v':C' F e~ ¢ : 7' and (S, v':C’,0") < (So,vo: Co, 0p).
Then tp(e, A, Sp,vo: Co,0p) succeeds with (7, ", S, v:C, ©), and there is a substitution R and
dictionary expressions d such that

1. 8’ = RS, except on new type variables of tp(e, 4, So, vo: Co, ©0),
2. 7' = RT,

3. v:C'H-d:RC,

4.

S'A,Vv':C' F ¢ =[d/v]@e" : 7.
Combining this result with Theorem Theorem 7.11, we obtain the completeness property of tp:

Corollary 9.5 Suppose that S’A, v':C' F e~ €' :0' and (§',v':C’,0") < (S, vo: Co, Op).
Then tp(e, A, So,vo: Co,00) succeeds with (7, e”, S, v: C, ©), and there is a substitution R,
conversion K and dictionary expressions d such that

1. §' = RS, except on new type variables of tp(e, 4, So, vo: Co, o),
2. K:0' <y..c' Ro

3. vV:C'H d: RC" and

4. §S'A,v':C'" F K(Aw.[d/u]@e") =¢ : 0’

where (o,u:C",w) = gen(r,SA,v:C,¢).
As a corollary, we obtain the principal translation result:

Corollary 9.6 (Principal translations) Suppose that dom(Cp) = (Co)*(tv SoA) and tp(e, A, S, vo:
Co,00) = (7, €', S,v:C,0). Then Aw.0Q¢':0 is a principal translation for e under SA and v': C’
where (o,v':C',w) = gen(r, SA, v:C, ¢)

10 The Coherence Result

Having established the principal translation property, we can now proceed to develop the conditions
that are sufficient to ensure coherent translation. This section defines the notion of ambiguous types
and shows that unambiguous principal types entail coherent translations.

The notion of ambiguous types, as first described in the Haskell Report [HJW90], has a rather
intuitive interpretation. For example, the following type is ambiguous:

Va::Parsable.String

28

In this type scheme, the quantified type variable a is constrained by the class Parsable, but does
not appear in the type proper String. Given such a type scheme during type reconstruction,
unification is not able to determine which instance type of Parsable to instantiate a since only
type proper of a type scheme is used in unification. indeed, as discussed in Section 4, overloaded
expressions of this type may have several distinct translations and hence should be rejected.

Our definition of ambiguous types generalizes that of Haskell to include parameterized classes.
Before presenting the formal definitions, it is instructive to consider some examples: The following
type scheme is ambiguous for reasons similar to those of the preceding example on the quantified
type variable k.

Va::{Eq}.Vk::{Collection a}.a — Bool

However, the following one is not consiodered ambiguous:
Va::{Eq}.Vk::{Collectiona}.k — k

In this type scheme, although the quantified type variable a is constrained by class Eq and does
not appear in the type proper, it is, through the constraint Collection a, a dependent of another
type variable k, which does appear in the type proper. Once k is instantiated to some type T
through unification, we can obtain a’s value as a consequence of sovling the instance predicate
7::Collection a.

As illustrated in the examples, quantified type variables manifest the potential ambiguity of a
type scheme. In general, a type scheme is not ambiguous if its quantified type variables that
are constrained by classes are also depended upon, directly or indirectly, by its type proper. This
dependence relation can be expressed through the context closure operation C* defined in [COH92],
which computes, for a given set of type variables A, the set of type variables that are related,
directly or indirectly, to those in A through the class constraints in C'. The following definition of
ambiguous type variables formalizes the idea.

Definition. (Ambiguous type variables) A quantified type variable « in a type scheme o =
V{a;:T;). 7 is ambiguousif C,(a)# 0 and a € C;(tv 7) where C, stands for the generic context,
(a;:T;), of o.

Clearly, a type scheme is ambiguous if it contains ambiguous type variables. Note that in Haskell,
C;(tv 1) = tv 7; therefore, this definition generalizes the notion of ambiguous types described in
the Haskell Report.

For the coherence result, we are more interested in unambiguous types.

Definition. (Unambihuous type schemes) A type scheme o = V(o;::I';). 7 is unambiguous if
none of the a; is ambiguous.

We are now ready to illustrate why unambiguous types entail coherent translation. From Corol-
lary 9.6 we know that any translation of a Mini-Haskellt expression e in a particeular setting
can be written in the form Ke' where €’ is e’s principal translation and K is some suitable con-
version. Now suppose that we have two arbitrary derivations A,v:C F e~ e} : o' and
A,v:C F e~ e :0'. It then follows that:

A, v:CF ef=K € :0' and A, v:C e, =Ky¢ : 0

where K; and K, are conversions from e’s principal type o to ¢’ under v: C. Clearly, the two
translations would be equivalent if v:C + K; = Ks.

29

Assume that o’ = V(aj::T}).»" and 0 = V(o;:T;).v and that none of the o} occurs free in o or C.
It follows from the definition of conversions that

[ri/aslv =1V and v:C & w:(aj:T}) B dy : [ri/ag)(einTy)
for some types 7; and that v:C' + Ky = Az.Aw.zd;. Similarly for K; there are types 7/ such that

[ri/eilv =" and v:C @ w:(aj:T}) K dy: [rf/a;){@i:Ty)
and v:C + K; = Az.Aw.zd,. Obviously, it is sufficient to show that d; = d; to prove that these
two conversions are equivalent. This in turn depends on whether the two instance predicate lists
[7i/ci){e;T;) and [r!/a;](a;:T;) are identical since the dictionaries are uniquely determined by
the instance predicates. But in general this is not true due to the differences between the types ;
and 7.

On the other hand, since [r;/a;]lv = v/ = [r!/e;]v, it follows that 7; = 7/ for all o; € tv(v).
This result can be fruther extended to those type variables’ dependents. Recall the consistency
requirement for parameterized classes:

TicT and T:c Ty implies T = 7.
The requirement enables us to equate more types between 7; and 7. Indeed, a straightforward
inductive reasoning gives 7; = 7/ for all a; € C}(tv v).

Now, if o is unambiguous, for all a;, either Coa; = 0 or a; € C}(a;). The former case needs no
dictionary; the latter one yields the same dictionary since r; = 7/. Consequently, all conversions
from o to any of its instances are equivalent:

Lemma 10.1 If K;, K; : 0’ <y.¢ o are conversions and ¢ is an unambiguous type scheme then
v:C + K] = Kz.

As a corollary, it follows that unambiguous principal type entails coherent translations.

Theorem 10.2 (Coherence) If A,v:C + e~ e :0 and A,v:C F e~ eb : 0 and the
principal type of e under A and C is unambiguous, then A, v:C F ¢ =€} : 0.

The practical significance of this technical result is clear. If the principal type, computed by the
type inferencer, of the given expression is not unambiguous, we cannot guarantee a well-defined
semantics for the expression and hence must reject it. Otherwise, we are sure that the translation
calculated is well-defined.

References

[BCGS89] V. Breazu, T. Coquand, C. Gunter, and A. Scedrov. Inheritance and explicit coercion.
In Proc. IEEE Symp. on Logic in Computer Science, pages 112-129, June 1989.

[Che94] Kung Chen. A Parametric Erstension of Haskell’s Type Classes. PhD thesis, Yale
University, New Haven, Connecticut, September 1994.

30

[COHY92]

[HIW90]

[HS86)

[Jon92]

[Wad90]

[WBS9)

Kung Chen, Martin Odersky, and Paul Hudak. Type inference for parametric type
classes. Technical Report YALEU/DCS/RR-900, Dept. of Computer Science, Yale Uni-
versity, New Haven, Conn., June 1992.

Paul Hudak, Simon Peyton Jones, and Philip L. Wadler. Report on the programming
language Haskell: a non-strict, purely functional language, version 1.0. Technical Report
YALEU/DCS/RR-777, Dept. of Computer Science, Yale University, New Haven, Conn.,
April 1990. Currert version 1.2, March 1992.

R. Hindley and J. Seldin. Introduction to Combinators and A-Calculus, volume 1 of
London Mathematical Society Student Texts. Cambridge University Press, 1986.

Mark P. Jones. Qualified types: theory and practice. PhD thesis, Oxford University,
Oxford, UK, July 1992.

Philip Wadler. Simplified overloading for haskell. Note sent to the Haskell mailing list,
October 1990.

Phil Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc. In

Sizteenth Annual ACM Symp. on Principles of Programming Languages, pages 60-76.
ACM, 1989. :

31

