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Abstract

On the Numerical Solution of One-Dimensional
Integral and Differential Equations

Harold Page Starr, Jr.
Yale University
1992

Many problems in mathematical physics can be formulated as one-dimensional integral
equations. Examples include problems in electrostatics, crack problems in elastic bodies,
and two-point boundary value problems for ordinary differential equations. Since most in-
tegral equations arising in applications do not have analytic solutions, there is considerable
interest in the numerical solution of these problems. Unfortunately, discretization of inte-
gral equations leads to dense systems of linear algebraic equations, and the direct solution
of a dense linear system of dimension N requires order O(N3) arithmetic operations. Al-
ternatively, the solution to the linear system can be obtained using an iterative method
such as the conjugate gradient algorithm or the conjugate residual algorithm. When the
condition number of the linear system is small, the amount of work required is reduced to
O(N?), and can be reduced further to O(N) when the iterative method is combined with
an algorithm such as the fast multipole method. However, many problems (including those
formulated as first kind integral equations) yield ill-conditioned linear systems; for these
problems, the cost of an iterative method is prohibitive, even when combined with an algo-
rithm such as the fast multipole method. Recently, wavelet-like bases have been developed
with the property that integral operators in these bases correspond to matrices which are
sparse. When the inverses of these integral operators also correspond to sparse matrices,
the Schulz method becomes highly effective and produces an O(N -log? N) algorithm for
solving a one-dimensional integral equation. Unfortunately, for first kind integral equations
and other problems of interest, the integral operators do not have sparse inverses in these
wavelet-like bases. ;

This thesis is based on the observation that one-dimensional integral operators can
be recursively decomposed into sums of products of operators of low numerical rank. A
complicated analytical apparatus is then constructed which allows for the direct solution of
an integral equation in order O(N) operations. The algorithms of this thesis permit the use
of schemes with extremely high orders of convergence, and are quite insensitive to end-point
singularities. The performance of the methods is illustrated with numerical examples.
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Chapter 1

Introduction

Many problems in mathematical physics can be formulated as one-dimensional integral
equations. From an abstract viewpoint, the advantage of the integral equation formulation is
that many properties of the solution are readily apparent; from a computational viewpoint,
there exist extremely stable, high order numerical methods for the solution of integral
equations. In addition, linear systems which arise from discretization of second kind integral
equations are generally well-conditioned. On the other hand, linear systems arising from
first kind integral equations generally have condition numbers of at least O(NV), where N is
the number of points in the discretization.

Despite their advantages, integral equations are virtually never used as a numerical
tool, since their discretization leads to dense systems of linear algebraic equations, and the
solution of a dense linear system of dimension N requires order O( N3) arithmetic operations,
with N the number of nodes in the discretization. This makes the use of integral equations
extremely unattractive as a numerical tool, despite their desirable analytical properties.

In recent years, a number of algorithms has been developed for the fast application of
integral operators [4], [21], the best known of which are the particle simulation algorithms
developed by L. Greengard and V. Rokhlin. Each algorithm of this class exploits the special
structure of a particular problem by combining interpolation of the function which defines
the matrix elements with a divide-and-conquer strategy, leading to a scheme for applying
the integral operator to an arbitrary vector for a cost proportional to N (or, sometimes,
N -log N), where N is the number of elements in the discretization of the domain of the
operator.

When such a scheme is combined with a conjugate gradient type procedure for the
solution of the integral equation, the resulting algorithm requires (asymptotically) a finite
number of iterations to converge, leading to an order O(N) estimate for the solution of the
original integral equation. Unfortunately, the actual number of iterations required is very
sensitive to the conditioning of the problem being solved. In many cases of interest, this
number is prohibitive.

In [5], orthonormal bases are developed with the property that integral operators in
these bases correspond to matrices which are sparse. When their inverses also correspond
to sparse matrices, the Schulz method becomes highly effective and produces an order
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O(N -log? N) algorithm for the solution of a second kind integral equation. While, formally
speaking, the Schultz technique is an iterative one, in reality it behaves almost like a direct
algorithm, since the number of iterations it requires is proportional to the logarithm of
the condition number k of the matrix (as opposed to vk and k for the conjugate gradient
and conjugate residual techniques, respectively). However, this method can not be used for
operators which do not have sparse inverses (for example, first kind integral operators).

In [22], a direct method was developed for the solution of second kind integral equations
resulting from two-point boundary value problems of second order ordinary differential
equations. For these problems, the integral operators can be recursively decomposed into
sums of products of operators of low rank. A somewhat involved analytical apparatus is
then constructed which allows for the direct solution of the integral equation in order O(N)
operations, with N the number of nodes on the interval.

In this thesis, we construct O(N) algorithms for the direct solution of first and second
kind integral equations. We first extend [22] to permit the fast, direct solution of two-point
boundary problems of systems of first order ordinary differential equations. We then extend
the observations of [5] to construct sparse representations of integral operators with either
weakly singular kernels or a Cauchy kernel, and extend the techniques of [22] and [29] to
apply the inverse of these operators using order O(V) arithmetic operations.

The plan of this thesis is as follows: Chapter 2 describes the algorithms for two-point
boundary value problems for systems of ordinary differential equations (this chapter has
been published previously [29]); Chapter 3 describes the algorithms for integral equations
with singularities; Chapter 4 briefly outlines some generalizations, and presents our conclu-
sions.



Chapter 2

Two-Point Boundary Value
Problems

Second kind integral equations have been a popular analytical tool in the study of ordi-
nary differential equations for nearly a century. When boundary value problems are being
considered, the integral equations which arise are of the Fredholm type. From an abstract
viewpoint, the advantage of this formulation is that many properties of the solution are
readily apparent; from a computational viewpoint, the linear systems which arise from dis-
cretization are generally well-conditioned. An ill-behaved differential equation can often
be reduced to a perfectly tractable integral equation by means of an appropriate choice
of the “background” Green’s function (see Example 2.3 in Section 2.4 below). Standard
finite difference and finite element methods, on the other hand, which discretize the original
differential equation, encounter serious numerical difficulties when the solution possesses
derivatives of large magnitude (boundary layers). A second advantage is that there exist
extremely stable, high order numerical methods for the solution of second kind Fredholm
equations, while the order of convergence of most practical schemes for the solution of
ordinary differential equations tends to be limited, even if Richardson extrapolation and
deferred correction approaches are considered.

Despite all these advantages, integral equations are virtually never used as a numerical
tool for the solution of systems of two-point boundary value problems, since their discretiza-
tion leads to dense systems of linear algebraic equations, and the solution of a dense linear
system of dimension N - n requires order O(N® - n®) arithmetic operations, with N the
number of nodes in the discretization, and n the number of equations in the system. Finite
difference and finite element schemes lead to banded systems of linear algebraic equations,
and the solution of the latter requires order O(N -n®) arithmetic operations. This makes the
use of integral equations extremely unattractive as a numerical tool, despite their superior
analytical properties. A similar difficulty is encountered when spectral methods are applied
to boundary value problems. They yield high order accuracy, but result in dense systems
of linear algebraic equations.

Recently, [22] presented a fast numerical algorithm for solving two-point boundary value
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problems for second order differential equations. By solving the problems as second kind
integral equations, one obtains the superior properties of integral equations over differential
equations. By using the technique of [22], integral equations arising from boundary value
problems are solved in order O(N - p?) arithmetic operations, with N the number of nodes
on the interval and p the desired order of convergence.

In this chapter, we extend the results of [22] by showing that integral equations arising
from two-point boundary value problems for systems of ordinary differential equations can
be solved in O(N - p? - n®) arithmetic operations, with n the number of equations in the
system. We in addition present a Newton method for solving boundary value problems for
nonlinear first order systems in which each Newton iterate is the solution of a second kind
integral equation.

The plan of this chapter is as follows: in Section 2.1 we summarize both the theory
of Green’s functions for first order linear systems and the theory of Newton methods for
first order nonlinear systems, in Section 2.2 we develop the analytical apparatus to be used,
and in Section 2.3 we describe the numerical schemes themselves. The performance of the
methods is illustrated in Section 2.4 with numerical examples.

The present chapter is similar to [22] in that while it is based on a sequence of fairly
simple observations, the details of the algorithm are somewhat involved. We attempt in
this chapter to present both cursory, qualitative descriptions as well as detailed, rigorous
proofs.

2.1 Mathematical Preliminaries

In this section, we summarize the relevant properties of both the boundary value problems
to be addressed and the second kind integral equations to be used for their solution. Most
of the results are classical and can be found, for example, in [11] and [13]. The rest are
straightforward generalizations to systems of ordinary differential equations of well-known
facts concerning second order boundary value problems (see, for example, {14]).

2.1.1 Notation and Definitions

Definition 2.1 A linear first order system of ordinary differential equations is an ezxpres-
sion of the form

¥'(z) + p(z) - 2(z) = f(2), (2.1)
with ® : [a,c] > R" in C'a,c], p: [a,c] = L(R™ ") and f : [a,c] > R™ continuous, and
L(R™ ™) denoting the linear space of all linear operators R* — R™.

Definition 2.2 If f(z) =0, (2.1) assumes the form
®'(z) + p(z) - ®(z) = 0, (2.2)

and is referred to as a linear homogeneous first order system of ordinary differential equa-
tions.
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Definition 2.3 A differentiable function ® : [a,c] — R" is a solution to a linear first order
boundary value problem if it satisfies an equation of the form (2.1), subject to boundary
conditions of the form

A-®(a)+C-8(c) = 7. (2.3)
with A,C € L(R*™"), and v € R™.

Definition 2.4 Ify =0, (2.3) becomes
A-®(a)+C-®(c)=0, (24)
and is referred to as a set of homogeneous boundary conditions.

Definitions 2.5-2.6 are the nonlinear analogues to Definitions 2.1 and 2.3.

Definition 2.5 A nonlinear first order system is defined as an ezpression
?'(z) = F(2(z), z), (2.5)
with ® : [a,c] = R" in C'[a,c], F : R**! — R™ continuous.

Definition 2.8 A differentiable function ® : [a,c] — R" is a solution to a nonlinear first
order boundary value problem if it satisfies an equation of the form (2.5), subject to boundary
conditions of the form

A-®(a)+C-8(c) =1, (2.6)
with A,C € L(R™"), v € R™.

Definition 2.7 A continuous function G(z,t) : [a,c] X [a,c] — L(R™*") is the Green’s
function for a boundary value problem (2.1), (2.4) if

1. Eg(:—’tl is continuous except at ¢ = t,

2. G(z+0,2) - G(z - 0,z) = I, for all z € [a,c],

3. £G(z,1) + p(z)- G(z,t) = 0 for all z,t € [a,c],z # 1,
4. A-G(a,t)+ C-G(c,t)=0 for allt € [a,c].

Remark 2.1 Green’s functions are the principal analytical tools which enable boundary
value problems to be solved as second kind integral equations. However, Green’s functions
are known or computable for very few problems (2.1), (2.4). Fortunately, we can use one
of the known Green’s functions when constructing the second kind integral equation for a
particular boundary value problem. When a Green’s function unrelated to a problem (2.1),
(2.4) is used to convert that problem to an integral equation, we will refer to this Green’s
function as a background Green’s function. O
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Definition 2.8 A function T : [a,c] — L(R"%") is called a fundamental matriz for (2.2)
if it is nonsingular and

T/(2) +p(z) - T(x) = 0 (27)
for all z € [a,c].

We define boundary condition matrices D and Dy to be used in theorems in the re-
mainder of Section 2.1.

Definition 2.9 Given a fundamental solution matriz Y of the system (2.2), and a pair
of matrices A,C given by (2.3), the boundary condition matrices D, Dy € L(R™") are
defined by the formulae

D=A-T(a)+C-Y(ec), (2.8)
Dy=A+4C. (2.9)

We define a residual mapping K and Newton iterates §; to be used in a Newton method
for nonlinear boundary value problems.

Definition 2.10 Given functions Go,po : [a,c] X [a,c] = L(R™ "), we define the residual
mapping K : R*! — R™ by the formula

K(o(z),2) = o(z) - po(z)- /:Go(x,t)-a(t)dt (2.10)

_F ( / * Gola, 1) - o(t) dt,:c) :

Definition 2.11 For any continuous oy : [a,c] — R™, we refer to the continuous functions
0k : [a,c] = R™ as Newton iterates if for each k = 1,2,...,

6k = ok41(z) — ok(2), (2.11)
with each continuous oy : [a,c] — R™ recursively defined via the formula

—‘—aK(?}(f 12) (orna(@) - on(@) = —K(o(a)a)y k=0,1,  (212)

Finally, we define a transposition operator to be used in the chapter.

Definition 2.12 Given an interval [by,by] C R and an operator x : L?[by, by] — L(R"*"),
the transpose xT : (L?[b1,bq])™ — R™ of x is defined by the formula

(@)= [ x(t)-o(t) (2.13)
b ’ )

1

with o € (L),
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2.1.2 Green’s Functions for First Order Systems

Theorems 2.1-2.8 provide the tools for the conversion of first order systems of differential
equations into second kind integral equations. Theorems 2.1, 2.2, 2.5 and 2.6 are well known
and can be found, for example, in [11] and [13]. The authors failed to locate the remaining
theorems in the literature.

Theorems 2.1-2.2 provide conditions for the existence and uniqueness of solutions to
(2.1), (24).

Theorem 2.1 For any continuous function p : [a,c] — L(R"*™), the homogeneous first
order system (2.2) has ezactly n linearly independent solutions.

Theorem 2.2 If the matriz D defined by (2.8) is nonsingular, then there is a unique so-
lution ® to the equation (2.1) satisfying homogeneous boundary conditions (2.4). Fur-
thermore, the solution to the homogeneous equation (2.2) satisfying homogeneous boundary
conditions (2.4) is ®(z) = 0.

The purpose of the following two theorems is to permit the conversion of problems
with inhomogeneous boundary conditions to those with homogeneous ones. Theorem 2.3
concerns linear problems of the form (2.1), (2.3); Theorem 2.4 concerns nonlinear problems

of the form (2.5), (2.6).

Theorem 2.3 If the boundary condition matrices D,Dy defined by (2.8), (2.9) are both
nonsingular, then the solution to the problem (2.1), (2.3) is given by the formula

&(z) = ¥(z) + v, (2.14)
with v € R™ given by the formula
v=(A+C)1.4, (2.15)
and § : [a,c] = R™ in Ca, c] the solution to the first order system
&(a) + pla) - 8(2) = £(z) - p(2) - 1, (2.16)
satisfying homogeneous boundary conditions (2.4).

Proof. Since the matrix D is nonsingular, it immediately follows from Theorem 2.2 that
there exists a unique ® satisfying the equation (2.16). Substituting (2.14) into boundary
conditions (2.3), we obtain

A-(®(a)+v)+C-(¥(c)+v) =7. (2.17)

Now, (2.15) is easily obtained from the combination of (2.17) and (2.4), while (2.16) is a
result of substituting (2.14) into (2.1).
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Theorem 2.4 If there ezists a solution ® : [a,c] » R™ to the problem (2.5), (2.6), and if
the matriz Dy defined by (2.9) is nonsingular, then ® is given by the formula

&(z) = &(z) + v, (2.18)

with v € R™ given by
v=_(A+C)1.9, (2.19)

and ® : [a,c] - R" € Ca, c] the solution to the nonlinear boundary value problem
&'(z) = F(® + v,z) (2.20)
with homogeneous boundary conditions (2.4).
Proof. Substituting (2.18) into boundary conditions (2.6) we obtain
A-(¥(@)+v)+C-(®(c)+v)=17. (2.21)

Now, (2.19) is easily obtained from the combination of (2.21) and (2.4), while (2.20) is a
result of substituting (2.18) into (2.5).

Theorem 2.5 provides an explicit construction for the Green’s function for a boundary
value problem with a known fundamental matrix Y. Given a Green’s function for a homoge-

neous problem (2.2), (2.4), Theorem 2.6 provides an explicit solution for the inhomogeneous
problem (2.1), (2.4).

Theorem 2.5 If the matriz D defined by (2.8) is nonsingular, then there erists a unique
Green’s function G : [a,c] X [a,c] = L(R"*"™) for (2.2), (2.4). G is given by the formula

T(z)- (Y1) + J(¢ t<z),
with J : [a,c] — L(R"*") given by the formula
J(t) = —D71.C-T(c)- T7(2), (2.23)

and T : [a,c] - L(R"*") the fundamental matriz for (2.2) (see Definition 2.8).

Theorem 2.8 Given a Green’s function for the problem (2.2), (2.4), the solution ® for the
problem (2.1), (2.4) can be obtained via the formula

8(z) = / "Gz, 1) f(1) dt. (2.24)

The following two theorems are two of the principal analytical tools used in this chapter.
Theorem 2.7 is used to reduce a linear boundary value problem (2.1), (2.4) to a second kind
integral equation, even when the Green’s function for the problem is not available; Theorem
2.8 is used in the same fashion to reduce nonlinear boundary value problems (2.5), (2.4) to
nonlinear second kind integral equations.
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Theorem 2.7 Suppose py : [a,c] — L(R™*") is continuous, Yy : [a,c] — L(R"*™) is the
fundamental matriz for the equation

?'(z) + po(z) - ¥(2) = 0, (225)

and Gy : [a,c] X [a,¢] = L(R"%") is the Green’s function for the boundary value problem
(2.25), (2.4). Suppose further that the matriz D defined by (2.8) and the matriz Do €
L(R"™*") defined by the formula

Dg=A- T()(a) +C- T()(C), (226)

are both nonsingular. Then the solution ® to the problem (2.1), (2.4) can be obtained via
the formula

(z) = / * Go(z, 1) - o(2) dt, (2.27)

with o : [a,c] = R™ the solution to the second kind integral equation

o(2) + Io(2) ~ m(a)] - [ Gola,0)- o(t) dt = () (223)

Proof. By Theorem 2.2, if matrices D, Dy are nonsingular then the problems (2.1), (2.4)
and (2.25), (2.4) have unique solutions, and therefore the background Green’s function Go
is also unique, and is defined by Theorem 2.4. Now, (2.28) is obtained by substituting (2.27)
into (2.1).

Remark 2.2 If po(z) = p(z), then the solution to equation (2.28) is trivially o = f.
Our working assumption is that for some background problem (2.25), (2.4), the Green’s
function is known or computable, but that for the original differential equation (2.1), (2.4)
the Green’s function is unavailable. o

Theorem 2.8 Suppose @ : [a,c] — R™ is a solution to (2.5), (2.4). Suppose further that
po : [a,c] = L(R™ ™) is continuous, and Yy : [a,¢] = L(R™™") is a fundamental matriz for
the equation

?'(z) + po(z) - 8(z) = 0, (2:29)
and Gy : [a,c] X [a,c] — L(R™ ") is the Green’s function for the boundary value problem
(2.25), (2.4). Suppose finally that the matriz Dq defined by the formula

Dg=A- To(a) +C- T()(C) (230)
s nonsingular. Then ® can be obtained via the formula
C
(z) = / Gol,1) - o(2) dt, (2.31)
a

with o : [a,c] = R™ the solution to the second kind integral equation

o(z) - po(z) - / “Go(a,t)- o(t)dt = F ( / * Go(a, 1) - o(2) dt,:z:) . (2.32)

Proof. Since Dy is nonsingular, the background Green’s function Gy is unique, and there-
fore ® can be obtained from (2.31). Now, (2.32) is obtained by substituting (2.31) into
(2.5).
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2.1.3 Green’s Functions for Particular Equations

Lemmas 2.1-2.4 of this section provide fundamental matrices and Green’s functions for
two particular types of boundary value problems. Lemmas 2.1, 2.2 are easily verified by
substituting formulae (2.34), (2.35) into (2.7), (2.22). Similarly, Lemmas 2.3, 2.4 are verified
by substituting formulae (2.37), (2.38) into (2.7), (2.22).

Lemma 2.1 A fundamental matriz To for the equation
®'(z)=0 (2.33)

is given by the formula
To(z) = In, (2.34)

with n the dimensionality of the problem (2.33), and z € [a,c] (in accordance with standard
practice, I, denotes the unity operator R® — R").

Lemma 2.2 The Green’s function Go corresponding to the equation (2.33) subject to bound-
ary conditions (2.4) is given by the formula

ewer={ a9 ¢ (53
Lemma 2.3 For any A € R, a fundamental matriz Ty for the equation
®'(z)+A-®(z)=0 (2.36)
is given by the formula
To(z) = e - I,, (2.37)

with n the dimensionality of the problem (2.36), and z € [0, 1].

Lemma 2.4 The Green’s function G corresponding to the equation (2.36) subject to bound-
ary conditions (2.4) is given by the formula

=2 . [ D). (A4 e?.C) - C (1< ),
Go(a:,t) = { —eMt-z-1) | (A + e . C)—l .C (t > a:). (2-38)

2.1.4 Linear Transformations for Problems with Singular Dy or Dy

The purpose of Theorem 2.9 is to permit the conversion of a problem (2.1), (2.3) to a
second kind integral equation (2.28). For most problems, Theorems 2.3 and 2.7 allow
such a conversion, but Theorem 2.3 cannot be used when the matrix Dy defined by (2.9)
is singular, while Theorem 2.7 cannot be used when the matrix Dy defined by (2.26) is
singular. We remove these obstacles in this section by providing a scheme which reduces a
problem of the form (2.1), (2.3) with singular matrices Dy, Dy to a problem of the same
form with nonsingular Dy, Dy.

Theorem 2.10 generalizes Theorem 2.9; it permits the conversion of nonlinear problems
of the form (2.5), (2.6) to nonlinear integral equations of the form (2.32).
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Remark 2.3 If only the matrix Dy is singular, one can always choose a new background
Green’s function Gg for which Dy will be nonsingular. However, we have found that for
most problems it is easier to develop a transformation of the type described in this section
than to develop an alternate background Green’s function. o

Theorem 2.9 Suppose ® : [a,c] — R™ is the unique solution to the problem (2.1), (2.4).
Suppose further that Tq : [a,c] — L(R™*") is a fundamental matriz for the background
equation (2.25). Suppose finally that there exists ¥ : [a,c] — L(R"*") such that ¥ €
C'a,c], det ¥(z) # 0 for all z € [a,c), and the matriz

Do=A-¥(a)-Yo(a)+ C-¥(c)- To(c) (2.39)
is nonsingular. Then the equation
I'(z) + U7 () (¥'(2) + p(z) - ¥(2)) - T(z) = ¥ () - f(=), (2.40)
subject to boundary conditions
A-¥(a) - T(a)+C-¥(c)-T(c) = 0. (2.41)
has a unique solution T : [a,c] — R", and
®(z) = ¥(z) - T(2), (2.42)
for all z € [a,c].

Proof. We immediately obtain (2.41) by substituting (2.42) into (2.4). Now, substituting
(2.42) and its derivative into (2.1), we get

V(2) - I(s) + ¥(z) - T'(z) + p(a) - ¥() - I(2) = £(a), (2.43)
and obtain (2.40) by combining (2.43) with the fact that ¥(z) is nonsingular for all z € [a, c].

Remark 2.4 Clearly, the transformed problem (2.40), (2.41) satisfies the conditions of
Theorem 2.7, as Do defined by (2.39) is nonsingular. However, for many problems, the
boundary condition matrix Dy defined by the formula

Dy =A-¥(a)+C - ¥(c). (2.44)

is singular, and therefore the transformed problem fails to satisfy the conditions of Theorem
2.3. If one needs to use the results of both Theorem 2.7 and 2.3, one must choose a
transformation ¥ such that both Do and Dy are nonsingular.

Of course, it is easier to choose transformations ¥ when Do = D . This is true when the
background Green’s function is chosen to correspond to the equation ' = 0. By Lemma 2.1,
the fundamental matrix for this equation is T = I,,; the equivalence for this fundamental
matrix of (2.39) and (2.44) is readily apparent. O
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Theorem 2.10 is the nonlinear analogue of Theorem 2.9; the proofs of the two theorems
are nearly identical.

Theorem 2.10 Suppose ® : [a,c] — R™ is the unique solution to the problem (2.5), (2.4).
Suppose further that Tq : [a,¢] — L(R™") is a fundamental matriz for the background
equation (2.25). Suppose finally that there ezists ¥ : [a,c] — L(R"™*"™) such that ¥ €
C'a,c), det ¥(z) # 0 for all z € [a,c], and the matriz

Do=A-¥(a)-Yo(a)+ C -¥(c)- To(c) (2.45)
1s nonsingular. Then the equation
I'(z) + ¥~ Y(2)¥'(z) - T(z) = ¥~ (2) - F(¥(z) - I'(z), ) (2.46)
subject to boundary conditions
A-¥(a)-T(a)+C-¥(c)-T(c)=0. (2.47)
has a unique solution T : [a,c] — R"™, and
®(z) = ¥(z) - I'(z), (2.48)

for all z € [a,c].

2.1.5 Newton’s Method for Nonlinear Boundary Value Problems

Theorems 2.4, 2.8 of Section 2.1.2 reduce nonlinear boundary value problems of the form
(2.5), (2.6) to nonlinear second kind integral equations of the form (2.32). In this section,
we describe the convergence properties of the well-known Newton’s method as applied to
the latter (Theorem 2.12), and reduce each step of Newton’s algorithm to the solution of a
linear boundary value problem of the form (2.1), (2.4) (Theorem 2.11).

Theorem 2.11 permits each Newton iterate 6; defined by (2.11) to be expressed as the
solution to a second kind integral equation.

Theorem 2.11 Suppose K : R™*! — R" in C[a,c] defined by (2.10) is Fréchet differen-
tiable at every point z € [a,c], and ®i : [a,c] = R" is defined for all k = 0,1,... via the
formula

c
4(z) = / Golz, 1) - ox(t) dt, (2.49)
with oy : [a,c] — R" defined by (2.12), and Gy : [a,c] X [a,c] — L(R™*") the Green’s

function for (2.25), (2.4). Then the Newton iterates 6 : [a,c] — R™ € Ca,c] given by
Definition 2.14 satisfy the equation

§u(2) + () - / * Go(z, 1) - 6(1) dt = gu(c) (2.50)
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for allk =0,1,..., with Q4 : [a,c] = L(R™*") defined for all k = 0,1, ... by the formula
_OF (%i(z),2)

Qi(z) = 5%, po(z), (2.51)
and g : [a,c] = L(R™*") defined for all k = 0,1,... by the formula
9k(x) = po(z) - Bx(z) + F(2i(2), 7) — 0k (2). (2.52)

Proof. (2.50) is obtained by substituting the Fréchet derivative of the function K into
(2.12), and substituting (2.49), (2.51), (2.52) into the resulting equation.

The convergence properties of Newton’s method have been thoroughly studied. Theorem
2.12 is one fundamental result, and can be found, for example, in [23] (in a slightly different
form).

Theorem 2.12 Suppose ® is the unique solution to (2.5), (2.4), & is the solution to (2.32),
and § is the unique solution to (2.50) (so that the linearization (2.50) to the equation (2.32)
is nonsingular at &). Then there ezists € > 0 such that for any og : [a,c] — R" satisfying
the condition

lloo — 58|l <€ (2.53)
and Newton iterates oy : [a,c] > R" defined by (2.11),
1 |lok—d|| <€ forallk=1,2,..,
2. klim o =&,

3. o converges to & quadratically.

2.1.6 A Lemma from Linear Algebra

Given a perturbation of the unity operator Ijz2)a : (L¥)* — (L?)", Lemma 2.5 provides its
inverse. It is normally used when the rank of the perturbation is low, is a particular case
of the Sherman-Morrison formula (see, for example, [19]), and is easy to verify directly.

Lemma 2.5 For any two vectors U,V € (L*)"*™ such that VT - U # I,
(Igeys = U -VIY ' = Ipayn + U - (I, - VT -U)-VTL (2.54)

2.2 The Analytical Apparatus

In the remainder of this chapter, we assume that the solution to the problem (2.1), (2.4)
is being sought on the interval [a,c], and that b is some intermediate point (¢ < b < ¢).
The fundamental observation on which the algorithms of Section 2.3 are based is that the
solution to the integral equation (2.28) on the entire domain [a, ¢} can easily be constructed
from the solutions of two independent integral equations, one defined on [a,b] and one on
[b,c]. This leads naturally to a recursive algorithm, in which independent solutions on a
large number of subintervals are successively merged until the full solution is obtained. A
precise formulation of the construction and the resulting numerical scheme will require some
notation.
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2.2.1 Notation

We will denote the subintervals [a,b] and [b,c] of [a,¢] by A and B, respectively. For
convenience, we write the integral equation (2.28) in the form

o(2) +5(2)- [ Gola,1)- o(t)dt = f(2), (255)

with p(z) = p(z) — po(z), and Gy : [a, ] X [a,c] - L(R"*™) the background corresponding
to the equation (2.25) subject to boundary conditions (2.4).

We define the operator P : (L%[a,c])* — (L?*[a,c])"* corresponding to (2.55) by the
formula

P(o)(@) = o(2) + #(z)- | Gola,1)-o(t) dt, (2.56)

so that we have
Po = f. (2.57)
We will require the four operators
Paa : (L*[a,b])" = (L%[a,B])",
Pag : (L*[b,€])" = (L*a,b])" ,
Ppa ¢ (L[a,b])" — (LB, ])" ,
Ppp : (L2[b’ )t — (L2[ba )

defined by the formulae

Paa(e)@) = o(a)+5(e) [ Gola,)-ol)di (2.58)
Pan(o)e) = Ba): [ Gole,)-o()dt, (2.59)
Poao)z) = #(e)- [ Golast)- o(t) (2.60)
Pep(o)z) = o(c)+#(z)- /cho(z,t)-a(t)dt. (2.61)

We define the operator Q : (L*[a, ¢])"*" — (L?[a, c])"*" by the expression
QU@ = x(@) +5(2) - [ Gole,1)-x(B) ar (262)

We additionally require the four operators

Qaa ¢ (L[a,b])™" — (L?[a,b])™",
Qap & (L[, e])™™ — (L’[a, b])™*",
Qpa @ (L7[a,b)™" — (L[b, )™,
@pp : (L*b,e])™ " — (L?[b, )™,
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defined by the formulae

QuE) = %)+ 5@ [ Gole ) x( (2.63)
Qas(X)(z) = #a)- [Go(z,t)-x(t)dt, (2.64)
a0(E) = B2)- [ Golas ) x(0) b, (2.65)
@sa(0(@) = X(@)+#(a)- [ Gola,t)-x(t)dt (2.66)
We also require the functions 1, vy, vg : [a,¢] = L(R"*") defined by the formulae
¥(z) = B(2)- To(z), (2.67)
o (t) = T3'(t)+Jo(2), (2.68)
ve(t) = Jo(t), (2.69)

with T the fundamental matrix for equation (2.25), and Jp : [a,c] — L(R"*") defined by
the formula

Jo(t) = =Dg* - C - To(e) - T3 (2), (2.70)

with the matrix Dy defined by (2.26), and the matrix C given by (2.4).

Given a function f € (L?[a, c])", we will follow the convention of denoting its restriction
to A and B by fi4 and fip, respectively. Similarly, given a function ¥ € (L[a, c])™*™, we
will denote its restriction to A and B by %4 and 4, respectively. Assuming that the
operators P44, Pgp are nonsingular, we define the functions n4 : A - R", 9 : B - R"
via the formulae

na = Pri(fla), (2.71)
ne = Pgp(fiB)- (2.72)

Similarly, assuming that the operators @,Q44,Q@pp are nonsingular, we then define the
operators

X : [a, c]an —_ L(R‘an)’
¢A . Anxn —_ L(Rnxn)’
¢B . ann —_ L(Ran),

via the formulae

x = Q7'(¥), (2.73)
da Qs (V1a), (2.74)
¢85 = Qzp(¥B)- (2.75)
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Finally, we will define six matrices a2, a4, af, a8, a;,ar € L(R™*") by the formulae

and six vectors 6§4,64,68,6B.6,,65
A
b7

b2
6

A

3

br

with o the solution to equation (2.57).

/a " out) - dalt) dt ,
[ vl -day
/b “ou(t) - $5(t) dt ,
JRZORZOLS
[ um-xoa,
[ o) xwat,

€ R"™ via the formulae

I

/a " wult) - na(t) dt,
[ v na(oy
/b “vs(t) - na(t) dt,
[ oa®)-na(t)at,
[ -,
JRZORIOE

2.2.2 Analysis of the operators P45, Pga

(2.76)

(2.77)
(2.78)
(2.79)
(2.80)

(2.81)

(2.82)
(2.83)
(2.84)
(2.85)
(2.86)

(2.87)

In this section, we observe that each of the operators Psp and Pg4 is of rank n, and give

simple expressions for these operators.

Lemma 2.6 In the notation of the preceding section,

_ T
PAB - wlA'vnv

Ppa=1p-vi.

(2.88)

(2.89)

Proof. We obtain (2.88) by observing that z < t for any z € [a,b],t € [b,c], and by
using (2.59) and (2.69). Similarly, (2.89) follows from the combination of (2.60), (2.69) and
observing that z > ¢ for any z € [b, ], t € [a, }].
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Figure 2.1: The shaded boxes are rank n matrices

Remark 2.5 Just as we decomposed the second kind operator P into two second kind
integral operators (Ps4,Pgp) and two first kind integral operators (P4p, Pp4), we can
similarly decompose each of P44, Pgp into two second kind integral operators and two
first kind integral operators. Clearly, this decomposition can be applied recursively to
yield the structure shown in Figure 2.1, in which each block diagonal matrix is a second
kind integral operator, while the remaining block matrices correspond to rank n operators.
This immediately suggests a recursive algorithm to rapidly obtain solutions to the integral
equation (2.57). We now present the principal lemmas for this algorithm. O

2.2.3 Recursive solution of the integral equation

We now consider the original integral equation (2.57)
Po = f.

The main result of this section is the following lemma, which constructs the solution o
of equation (2.57) from 74, 7B of equations (2.71) and (2.72).



18 CHAPTER 2. TWO-POINT BOUNDARY VALUE PROBLEMS

Lemma 2.7 If, in the notation of Section 2.2.1, all siz operators P, P44, Ppp,Q, QAaa,
QBB are nonsingular, and the matrices A1, Ay € L(R™™) defined by the formulae

Ay =1I,— ot dB, (2.90)
Ay =1I,-aB .ol (2.91)
are also nonsingular, then
o4 =14+ ba- A7 - (of - 67 - 65), (2.92)
o =nB+¢B-A7' - (af - 6F — 61). (2.93)

Proof. Using definitions (2.56) - (2.61), the integral equation

Po=f (2.94)

can be rewritten in the form
Ppa(014) + PaB(018) = fias (2.95)
Ppa(oia) + PeB(0)B) = fiB- (2.96)

The expansions (2.88) and (2.89) for P4p and Pgj, respectively, can then be used
to obtain an explicit solution to the coupled equations (2.95) and (2.96) in terms of the
functions 74, 1B, ¢4, and ¢p defined by (2.71), (2.72), (2.74), (2.75), respectively. Indeed,
applying the operator P} to equation (2.95) and the operator P} to equation (2.96), we
have

o + P14 - Pas(o|g) = Pyi(fia), (2.97)
Pgp - Pea(0)4) + op = Pp(fiB)- (2.98)
Substituting (2.88) and (2.89) into (2.97) and (2.98) yields the formulae

o1a+ Pk ¥4 vy - 01 = 14, (2.99)
Pgh-¥|B-v; <04+ 0| = 1B, (2.100)
or
914+ ¢4 vE - 0|B = N4, (2.101)
$B - v; -0ja + 0|8 = 1B, (2.102)

where we have used the definitions (2.74), (2.75) for ¢4 and ¢p, respectively. Now, multi-
plying (2.102) by ¢4 - v1 and subtracting it from (2.101), we obtain

(Iz2)» — b4 -vy - B V1) - 014 =4 — $4 - vy, - TB. (2.103)
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Similarly, multiplying (2.101) by ¢p - vI and subtracting it from (2.102) results in the
equation

(I(L2)n — ¢B - vf -y - vg) “O|B=1B—¢B " v{ *MA- (2.104)
Due to (2.76), (2.79), and (2.82), (2.85) we can rewrite these equations in the form
(Iz2yn — ¢4 - (ap -v])) <04 = N4 — da - 68, (2.105)
(I(LZ)n - ¢B . (af . vg)) . UIB =nNB — ¢B . 51"}. (2.106)
By application of Lemma 2.5, we obtain
o4 = (Igeyn + ¢4 - (In— @B -v] -¢a)™" - af -0]) - (14— b4 - 87), (2.107)
oip = (Ipzyn + ¢B - (In — of - vk - ¢8) ™" - aff -v3) - (1B — ¢ - 67). (2.108)

The equations (2.92), (2.93) are now obtained from equations (2.107), (2.108) and equations
(2.90), (2.91).

Remark 2.6 Suppose that b; and by are a pair of real numbers such that a < b; < by < ¢,
and that the interval [by,b;] is denoted by C. We will denote by Pcc the restriction
of the operator P to the interval C, and denote by Qcc the restriction of the operator
@ to the interval C. Assuming that Poc,Q@cc are nonsingular, we define the functions
nc :C — R ¢¢ : C — L(R™*™) by
e = Pgi(fic) (2.109)
¢ = Qzt(We) - (2.110)

By applying the above lemma twice (once for the subinterval [a, ;] and once for [a, by)), we
may easily observe that there exists A € R™ such that

o(z) = ne(z) + dc(z) - A (2.111)

for all z € C. The exact expression for the vector A is complicated, but irrelevant for the
purposes of this chapter. The existence of a relation of the form (2.111), however, will be
critically important in Section 2.3. a

The following corollary constructs the solution x of equation (2.73) from ¢4,¢p of
equations (2.74) and (2.75).

Corollary 2.1 If, in the notation of Section 2.2.1, all siz operators P, P44, Ppp, @, Q@ a4,
@ BB are nonsingular, then

Xja = 64-A7'-(I, —ab), (2.112)
xip = ¢B-A7' (I - of). (2.113)

with the matrices af and oB defined by equations (2.76) and (2.79), and the matrices
Ay, A defined by equations (2.90) and (2.91).
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Proof. Substituting in equations (2.107), (2.108) the functions ¢4, ¢p defined by (2.74),
(2.75) for the functions 74, 7p defined by (2.71), (2.72), and the matrices af,aB defined
by (2.76), (2.79) for the vectors 64,62 defined by (2.82), (2.85), we obtain

Xia = ba—da-aB+ds-071 a8 ol —g4-A71-aB -0l b, (2114)
Xp = $B—dp-of+¢p-A7 -af 0B —¢p-AT -0f 0B 0l (2115)

The expressions (2.112), (2.113) are now easily obtained from the equations (2.114), (2.115).

2.2.4 Further Analytical Results

We now collect a number of identities which are necessary for Algorithm A, to be presented
in Section 2.3.

Corollary 2.2 provides analytical expressions for the inner products 6, and é§z defined
by (2.86), (2.87) in terms of the restricted inner products 84,68, 64 and 62 defined by
(2.82)-(2.85).

Corollary 2.2 If, in the notation of Section 2.2.1, all siz operators P, Paas, Pp, @, Qaa,
@ BB are nonsingular, then

c b c
8, = / vu(t) - o(t) dt = / 0u(t) - oy4(t) dt + /b 0, (t) - oyp(t) dt
= 44688 +al A1 (B 64 -6B)+aP AT (a2 - 6B - 6), (2.116)

c b c
bn = / va(t) - o(t) dt = / oa(t) - oa(t) dt + /b oa(t) - o5 (t) dt
= A +6B 1ol Asl. (oB 64— 6B) +oB AT (a2 6B — 64). (2.117)

Proof. Multiplying equation (2.92) by »T and vZ, and equation (2.93) by vI and v}, we
obtain

/b v (t)-opa(t)dt = & +of A -(af -6 - 6D), (2.118)
/b “ou(t)-op(t)dt = 68 +oB AT (oh -8B - 62), (2.119)
/b va(t) - oja(t)dt = 68 +oap A7 -(ab -8 - 6F), (2.120)
/b “n(t) - oy5(t) dt =+l A7 (af 67~ 60). (2.121)

Now, expressions (2.116), (2.117) are easily obtained from (2.118)—(2.121).

Corollary 2.3 is similar to Corollary 2.2, but uses y, the matrix valued function defined
by (2.73), in place of o, the vector valued function defined by (2.57). While the two
corollaries concern different objects (the vectors é,, 85 in Corollary 2.2, the matrices a;, ag
in Corollary 2.3), their proofs are nearly identical.
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Corollary 2.3 If, in the notation of Section 2.2.1, all siz operators P, Psa, Ppp, @, Q 4,
@ BB are nonsingular, then

(25

[y x@dt = [ @) xa@de+ [ o) xis0

af <A (I, —af)+af - AT - (I — of), (2-122)

¢ b c
an = / va(t) - x(t) dt = / oalt) - xj4(t) dt + /b on(t) - x5 (t) dt
= aﬁ : A2_1 “(In — alg) + ag : Al_1 “(In - a?) (2.123)
Finally, combining Lemma 2.7 with the expressions (2.112)—(2.113), we have

Corollary 2.4 Suppose that in the notation of Section 2.2.1, all siz operators P, Py,
Pgg, Q,Q 44,088 are nonsingular. Suppose further that the function F is defined by the
formula

F(z)=x-A+o. (2.124)
with A € R™. Then on the interval [a,b],
F(2) = $ae) - 1+ na(a), (2.125)
with p € R™ defined by the formula
p=A7Y A -aB - (A -6 - 6B). (2.126)
Similarly, on the interval [b,c],
F(z) = ¢p(z)- v + 18(2), (2.127)

with v € R™ defined via the formula
v=A7'-(A—ad (A - 6B) - 6. (2.128)
Proof. Restricting (2.124) on the subintervals A, B of [a, c], respectively, we have

FlA = X|A”\+0|A’ (2.129)
F’lB = X|B°/\+0'|B. (2130)

Combining (2.129), (2.130) with (2.92), (2.93), (2.112), (2.113), we obtain

Fa = ¢a-A7 -(In—aB) XA+ (na+oa-A7"-(eh -6 -68)), (2.131)
Fg = ¢5-A7 -(In—a) A+ (np+65-AT" - (of - 65 — 6)).  (2.132)

Now, the expressions (2.126), (2.128) immediately follow from the comparisons of (2.125),
(2.127) with (2.131), (2.132), respectively.
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2.3 Description of the Algorithms

We turn now to the construction of the fast algorithm for the solution of the integral
equation (2.57)
Po=f,

based on the apparatus developed in Section 2.2. The main tool at our disposal is the ability
to merge the solutions of restricted versions of the integral equation in adjacent subintervals
(Lemma 2.7). As this suggests a recursive procedure, we begin by subdividing the whole
interval [a, c], on which the solution to (2.57) is sought, into a large number of subintervals.
For the sake of simplicity, we assume that m is a positive integer and that M = 2™ is the
number of subintervals created. The boundary points of the subintervals are then defined
by a strictly increasing sequence of numbers

bl,bZ,'--’bM, bM+13 (2‘133)

with b = a and bps4; = ¢. For each i1 = 1,..., M, we define the interval B* via the
expression
B:’n = [bi’bi-i-l]’ (2.134)

and create a hierarchy of intervals B;-i by recursively merging adjacent pairs. That is, for
eachj=m-1,...,1,0,and i = 1,... M, we define

= B | By (2.135)

We will refer to each fixed ! as a level. We will also refer to the two intervals B!, and
B as children and to the larger interval B! as a parent.

It is obvious that

B; = [b14(i-1).2m- s b14iam-i]s (2.136)
and that for each level I,
21
[a,]=J B! . (2.137)
=1

2.3.1 Notation

Generalizing the notation of Section 2.2, we will denote by P;; the restriction to the interval
B! of the integral operator P, so that

bl+-‘~2m-'

P i(o)(z) = o(z)+p(x)- Go(z,t) - o(t) dt (2.138)

14(i—1)-2m—1

for any o € L2%(B!)". Similarly, we will denote by Q;; the restriction to the interval B! of
the integral operator @, so that

Q@) = X&) +5E)- [

1+(-—1) gm-1

Gol(z,t) - x(t) dt (2.139)
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for any x € L2(B!)"*™. For each B! we will define the functions 7;; : B} — R™, ¢;;: Bl —
L(R™*") as the solutions of the equations

Pia(mi) = fip, (2.140)

Qii(¢i1) = Yypt, (2.141)

provided the operators P;;,Q;; are nonsingular.

Remark 2.7 Suppose now that the operators P;;,Q;,; are nonsingular on the interval B!
Then, due to (2.111), there exists A" € R™ such that

o(z) = mia(e) + pig(x) - A (2.142)
for all = € B.. o

Foreach 1 =10,1,...,m,and i = 1,2,...,2!, we define the matrices ai’l,a’;il € L(R™*")
by the formulae

. b j.om=—1

o = / T () - dia(t) dt, (2.143)
b1+(i—1)~2m—’

. b jom—i

off = /b T opp(t) - i) dt, (2.144)

14(i=1).2m—!

i

and the vectors 4;, 62{1 € R"” by the formulae

. b i.om=l
st = / e vzypi() - mia(t) dt, (2.145)
b1+(i—1)~2m-l ’
. b jom=1
= [T o) ma at (2.146)
b t

14(i-1)-2m—1

2.3.2 Discretization of the Restricted Integral Equations

Choosing an integer p > 1, we construct the p scaled Chebyshev nodes

= (EL”_) cos [(2’ - 1)”] + (”"“ + b‘) P=1,2,...p  (2.147)
2 2p 2

on each of the intervals B, i =1,2,..., M. We then discretize the two integral equations
(2.140), (2.141) via a Nystrém algorithm based on p—point Chebyshev quadrature (see, for
example, [22]). The resulting approximations to the functions #;;, ¢;; at the nodes ! will
be denoted by

ﬁi,l = (ﬁil,la ﬁ?,la ) ﬁ:l) ’
¢i,l = (¢},I& ¢?,Ia ceey ¢¢p,1) ’

respectively.
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Remark 2.8 It is well-known that the order of convergence of the approximations #; , 43;,1
to the functions 7;, ¢;; is p. Since all subsequent steps in the construction of an approximate
solution & to the integral equation (2.57) are analytic, the convergence rate of the full
algorithm depends entirely on the parameter p. For example, by using 16 scaled Chebyshev
points on each subinterval at the finest level, one obtains a sixteenth order method.

For many boundary value problems (2.1), (2.3), the matrix function p : [a, ] — L(R"*™)
is singular in the interval [a, c] (see Example 2.3 in Section 2.4 below). For such problems,
Chebyshev quadrature will yield acceptable convergence only if the singularity is removed
by means of an appropriate choice of the “background” Green’s function. o

Remark 2.9 The algorithm of this section makes extensive use of the apparatus of Cheby-
shev interpolation, quadratures, composite quadratures, etc. This apparatus is quite well-
developed, and can be found in various forms in [16], [18], [20]. For a detailed description
in the form most convenient for our purposes, we refer the reader to [22]. a

2.3.3 Informal Description of the Algorithm for Linear ODEs

We begin by directly solving the two integral equations (2.140), (2.141) on each subinterval
B!™ at the finest level, as discussed in the preceding section. Equation (2.142) then shows
that o restricted to B* can be expressed as a linear combination of the two solutions
Tims Pim- Thus, it remains only to determine the coefficients Aé™ ¢ R™ for each of the
M subintervals B*. Fortunately, this can be done recursively. To see this, suppose that,
at some coarse level I < m —1, we are given the coefficient A¥# for the subinterval B!.
Then Corollary 2.4 provides formulae for the calculation of the corresponding coefﬁc1ents
AZi=L41 AZil41 ¢ R® for the two child intervals Bit!, and BLf!, respectively. On the
coarsest level we observe that A%! = 0, i.e. the solution of equation (2.140) on the whole
interval [a, ] is simply o.

However, the formulae (2.126) and (2.128) of Coro]lary 2.4 contain the matrices o'
oZi-LiH1 i' 14241 31d the vectors 6271 H'l, §U-LHL g2l 6241 These qua,ntltles
are also computed recursively but in the opposite direction, namely, from the finest level to
the coarsest. They are certainly available at level m directly from the definitions (2.143)-
(2.146). For the interval B! at any coarser level I < m — 1, Corollaries 2.7 and 2.1 describe
how matrices o', a%f' and vectors 6, 6%’
6., 65 of the two child intervals.

To summarize, the algorithm consists of three parts. First, a sufficiently fine subdivision
b1,b2,...,bpr41 of the interval [a,c] is chosen so that, on each of the intervals B; ., the
functions 7);m,®;m can be accurately represented by a low order Chebyshev expansion.
On each of the intervals B;,,, the equations (2.140)—(2.141) are solved (approximately) by
direct inversion of the linear system arising from a Nystrém discretization. Second, the
matrices o, o) and vectors 6%, 64 are computed in an upward sweep, beginning at the
finest level m. Finally, the coefficients A%} are computed in a downward sweep, beginning
at the coarsest level. The desired function o is then recovered on each subinterval from
equation (2.142).

-1 l+1

are obtained from the matrices a, ayr and vectors
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The following is a more detailed description of the numerical procedure.

Algorithm A

Comment [Define the computational grid.]

Create M = 2™ subintervals on [a, ¢] by choosing a sequence of boundary points by, b, ...,
bar,bar+1 with by = a and by = ¢. Choose the number p of Chebyshev nodes on each
interval B™® = [b;, b;41] for i = 1,..., M. Determine the locations of the scaled Chebyshev
nodes 7}, 7Z,..., 77 on each interval B™, and evaluate the functions f, ¢ at these nodes,

obtaining fi m, ¥im-
Step 1.

Comment [Construct the approximate solutions #; m, $;,m on each interval B*.]

doi=12,....M :
(1) Construct the two p-n x p - n linear systems on B! obtained through a Nystrém
discretization of the corresponding integral equation.

(2) Solve the two p - n x p- n linear systems on B! by Gaussian elimination,
obtaining the values %; ;m, ®i m.
end do

Step 2.

Comment [Construct the matrices ay™,a%™ and vectors 5™ §54™ on each interval B at the
finest level.]

doi=12,... .M ' ' _
Evaluate the matrices ay™, a}™ and vectors 6y

Chebyshev quadrature formula.
end do

m ci,m
s R

using the p—point

Step 3 (Upward Sweep).

Comment [Construct the matrices ai", af,;' and vectors 6}:", 6;" for all intervals at all coarser levels

l=m-1m-2,...,0]

do 1= m-1, 0, -1
do i=1, 21
Compute the matrices ai", a‘R’I and vectors 6}:", 6,’;" from the corresponding data in
the two child intervals (aii_l’H'l, af{'—l’lﬂ, a?f"l“, ai““, 6,2""'1’”'1, 6?"1’”1, 6,%"’”'1,
§221) using the results of Corollaries 2.2 and 2.3.
end do
end do
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Step 4 (Downward Sweep).
Comment [Construct the coefficient A»™ for all intervals at the finest level.]
Set A%1 = 0.
do 1=0,m-1
do i=1, 2l

Use Corollary 2.4 to compute the coefficients A+1:24=1 226,141
for the child intervals B;‘fl and B;'E'_ll from the coefficient A* of the parent interval

BL.
end do
end do
Step 5.
Comment [Compute the solution & of equation (2.57) at the nodes 7},72,...,7¥ for each interval

B™ at the finest level ]

doi=1, M
do j=1,p
Determine the values of the solution ¢ of equation (2.57) at the node 1;’ via
formula (2.142).
end do
end do

Step 6.
Comment [Compute the solution ¢ of equation (2.1) from the values of ¢.]

Evaluate the integral (2.27), by using composite Chebyshev quadrature
(see Remark 2.11 below).

Remark 2.10 Inspection of the above algorithm shows that the amount of work required
is of the order O(M - p®-n®). Step 1 involves solving two (p X n) X (p X n) linear systems for
each of the M intervals. Steps 2-5 require no more than O(M -p-n?-(log p+n)) operations.
Since N = M - p is the total number of nodes in the discretization of the interval [a,c],
we can write the CPU time estimate in the form O(N - p? - n®). The cost of evaluating
the solution @ of the differential equation (2.55) from the integral representation (2.27) is
O(N -logp - n) (see Remark 2.11 below). o

Remark 2.11 The final step in the algorithm involves the evaluation of an integral of the
form (2.27) at each of the Chebyshev nodes 7] on each subinterval Bf*, namely

8(rf) = / “Go(rd 1) - o(t) dt. (2.148)
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If these integrals were calculated independently for each T"j , the amount of work required
would be of the form O(N?2-n), and would dominate the construction of the function ®. In
fact, this is unnecessary, for we may write

() = T(T;j)’[/ab‘vz(t)-a(t)dt+ /bT vi(t) - o(t) dt (2.149)
+ /Tj.-p va(t) - o(t) dt + /b " oa(t)- o(t) dt],

where we have used the representation (2.22) and the fact that T,-j lies in the interval B]" =
[5;,b;+1]. Step 6 can then be written in detail as follows:

Step 6 (a).

Comment [Precompute the integrals of v, - ¢ and vg - ¢ on each subinterval B® by Chebyshev
quadrature. These integrals will be denoted I, and Iy, respectively.]

do i=1, M
L(BP) = [ v.(t) - ot) dt.

In(BP) = [} va(2) - o(t) dt.
end do

Step 6 (b).

Comment [March across interval from a to ¢, computing ® at each node in the discretization. The
variables J, and Jx will be used to accumulate the integrals [ : *o.(t)-o(t) dt and fbc.-+1 vr(t)-o(t) dt,
respectively.

Set Jr = Zgz Iz(B").
Set J, = 0.

doi=1, M
do j=1,p
For each 7;-7, compute '
&(r]) =Y(7)- [JL + 7 v (t) o) dt+ [ va(t) - o(t) dt + JR]
end do '
Jo=J.+ IL(B;m)
Je=Tr— IR(Bm.l)
end do

Thus, the amount of work required in Step 6(a) is O(N - n). The integrals required on
each subinterval in Step 6 (b) can be computed by spectral integration (see, for example,
[22]) using O(p - log p - n) work. The total cost is therefore of the order O(M -p - logp - n)
or O(N -logp-n). |
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2.3.4 Informal Description of a Simplified Algorithm for Linear ODEs

Figure 2.1 suggests a simpler version of Algorithm A, in which the solutions 7;,, ¢;; are
obtained for all levels [ = m,m —1,...,0, with the solution ¢ = 7g,;. The time complexity
of the resulting algorithm is O(N -p?-¢®+ N -log,(N)- ¢*); since this compares unfavorably
with Algorithm A, we merely sketch the simplified algorithm below.

Algorithm A’
Comment [Define the computational grid.]

Create M = 2™ subintervals on [a, ¢] by choosing a sequence of boundary points by, b2, ...,
bar,bar41 with by = a and bar4+1 = c¢. Choose the number p of Chebyshev nodes on each
interval B® = [b;, b;41] for i =1,..., M. Determine the locations of the scaled Chebyshev
nodes 7}, 7Z,...,7f on each interval B™, and evaluate the functions f, 1 at these nodes,
obtaining fi m, ¥im.

Step 1.

Comment [Construct the approximate solutions #j; m, &,-,,,, on each interval B .]

doi=12,....M
(1) Construct the two p - n x p - n linear systems on B! obtained through a Nystrom
discretization of the corresponding integral equation.

(2) Solve the two p-n x p- n linear systems on B! by Gaussian elimination,
obtaining the values 7; m, ¢i,m.
end do

Step 2.

Comment [Construct the matrices o™, o™ and vectors §;™,8%™ on each interval B at the
finest level.]

doi=12...M
Evaluate the matrices a?™, o™ and vectors 67’

Chebyshev quadrature formula.
end do

m ci,m
, OR

using the p—point

Step 3 (Upward Sweep).

]

Comment [Construct the solutions 7; 1, ¢; 1, matrices oy, ai;’ and vectors 6};’1, ;{I for all intervals
at all coarser levels [=m —1,m—2,...,0]

do 1= m-1, 0, -1
‘do 1=1, 2l
(1) Compute the matrices o' ob' and vectors §5! 651 from the corresponding data
in the two child intervals (aff—l’H'l, aff—l’l"'l, a%"”l,af{"l“, 6,%"—1’”1, 6,2:_1’”1,

6?’“‘1, 6,2{."“), using the results of Corollaries 3.4 and 3.5. Alternatively, compute
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the matrices a;"l, a’! vectors §51 641 via formulae (2.143)-(2.146) using the p-point
Chebyshev quadrature formula.
(2) Compute the solutions #; 1, 51;,-,1 from data in the two child intervals (72i—1,141,

21,041 260141 g2i—1,041 £2i41 .
N2i 141, P2i—1,141, $2i 141, OL , QR 60 T bR ), using the results of

Lemma 2.7 and Corollary 2.1.
end do
end do

Step 4.
Comment [Compute the solution ¢ of equation (2.1) from the values of 5.]

Evaluate the integral (2.27), using composite Chebyshev quadrature.

2.3.5 Informal Description of the Algorithm for Nonlinear ODEs

The nonlinear algorithm is a straightforward application of Algorithm A described in Section
2.3.3. The solution is obtained using Newton’s method for nonlinear ODEs; each Newton
iterate is obtained by solving the linearized problem (2.50) via Algorithm A.

As with Algorithm A, we subdivide the interval [a, c] into a large number of subintervals
M; for simplicity we assume M = 2™, with m a positive integer. As before the boundary
points by, be,...,bar,bar41 are defined by (2.133), and the intervals Bl,1<l<m),(1<
i < 2!) by (2.134).

On the k" step of the Newton process, Algorithm A is applied to the integral equation

P58, = gi, (2.150)
with the operator P* : (L%[a,c])" — (L?[a,c])" defined by the formula

P*(81)(2) = 6x() + () - / “ Go(z, 1) - 6u(2) dt, (2.151)

with §; the solution of the integral equation (2.50), Qi given by (2.51), and gx given by
(2.52). The integral equations (2.140), (2.141) now assume the form

Pii(mi0) = gkt (2.152)
Q%i(¢i1) = My, (2.153)
with the operator P,-’f, : (L?[a,c])" — (L%[a,c])" defined by the formula
b s2m—i
PE(81)(z) = bk(z) + Qu() - /b e Go(z,1) - 8k(t) dt, (2.154)
14(i—1)-2m—1

and the operator Qf, ;: (L?a, e])™*™ — (L?[a,c])"*™ defined via the formula

k - | [rviam .
Q4()(=) = x(&) + (=) - [ Galz, 1) - x(1)dt. (2155)

14(i—-1)-2m—t
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Once Algorithm A has computed the solution 6; to (2.150), we obtain 041 via (2.11), and
®p4q via (2.49).

The nonlinear algorithm requires an initial approximation ®g, ®] to the solution ® and
its derivative @’ of equation (2.5), and we assume that both are supplied by the calling
program. ay is obtained from ®¢, @}, via the identity

ao(z) = 84(z) + po(2) - Bo(2)- (2.156)

The procedure is terminated when the stopping criterion

loelle
e < (2.157)

is satisfied, with € provided by the calling program. Since Newton’s method frequently fails
to converge, the calling program also permits a certain maximum number of iterations, after
which the algorithm stops, signaling failure.

The following is a more detailed description of the numerical procedure.

Algorithm B

Comment [Define the computational grid.]

Create M = 2™ subintervals on [a, ¢] by choosing a sequence of boundary points by, bz, ...,
bar,bar4+1 with by = a and bas41 = ¢. Choose the number p of Chebyshev nodes on each
interval B® = [b;, b;41] for i = 1,..., M. Determine the locations of the scaled Chebyshev
nodes 7}, 72,..., 77 on each interval B™, and use the initial approximations &g, ®} to
evaluate the initial approximations ®, & at these nodes, obtaining ®; m, 0;m. Choose
tolerance ¢.

Step 1.
Comment [Use Algorithm A to compute Newton iterates &, obtaining the solution & of equation
(2.5).]
repeat

(1) Set d= P s=o0.

(2) Evaluate the functions €2, § at each of the scaled Chebyshev nodes 7}, 72,...,7f on
each interval B[, obtaining Q(,-,m), 3G m)-

(3) Apply Algorithm A to the discretized form of (2.50), obtaining é.
(4) Set o = & + 6.
(5) Compute the solution ® of equation (2.49) from the values of &, using composite

Chebyshev quadrature (see Step 6 of Algorithm A and Remark 2.11 above).
until 1§]2/[z < ¢
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2.4 Numerical Results

FORTRAN programs have been written implementing the algorithms described in the pre-
ceding section. In this section, we discuss several details of our implementation, and demon-
strate the performance of the scheme with numerical examples.

The following technical details of our implementation appear to be worth mentioning.

1. The algorithms described in the preceding section require that the number M of ele-
mentary subintervals on the interval [a,c] be a power of 2. Clearly, this is not an essential
limitation and it can be removed by simple bookkeeping changes. In the version of the
algorithms used for numerical experiments, these changes were made.

2. Algorithm A depends for its stability on the equations (2.140), (2.141) having unique
solutions for all subintervals Bf (l=0,1,....M,i=1,..., 2’), while Algorithm B depends
on (2.152), (2.153) having unique solutions for all subintervals B} and for all Newton it-
erates k. It is easy to construct examples for which these conditions are violated, even
though equation (2.57) or equation (2.32) has a unique solution. In such cases, a different
subdivision of the interval [a,c] can be attempted, such that none of the subintervals BF
of the new subdivision coincides with an interval of the original one. This procedure can
be viewed as a form of pivoting, and it is easy to show that it is always possible to make
it work. It has not been implemented at this point, and we have not so far encountered a
need for it.

3. We have, however, implemented a crude scheme for detecting high condition numbers in
the algorithms. These can occur in two places: in the solution of the linear systems on each
of the finest level subintervals (Step 1 of Algorithm A), and while computing coeflicients
A1, A, defined by (2.90), (2.91) used when merging solutions on two consecutive subintervals
(Step 3 of Algorithm A). In both cases, the condition number of the system being solved is
estimated in the process of solution (we use a standard LINPACK routine), and the largest
of these is returned to the user. When an extremely large condition number is detected
by the LINPACK routine, the resulting solution of the original ODE should be viewed as
suspect. It is easy to show that when the differential operator is positive definite, this
cannot happen. A more complete treatment of this subject requires further study.

4. In the upward sweep (Step 3) of Algorithm A, we evaluate the matrices ai’l,ag for

all intervals B;; and use these matrices to evaluate the vectors 641 64l the vectors A,

and, finally, the solution & of the integral equation (2.57). But the matrices ai’l, ai;l do not

depend on the right-hand side f of equation (2.57), and it is easy to see that their evaluation
accounts for more than 90% of the work. Therefore, whenever the equation (2.57) has to be
solved with multiple right-hand sides, we can precompute the matrices ai’l, ai;l and store
them, saving 90% of the cost of the evaluation of subsequent solutions.

The algorithms of this chapter have been applied to a variety of problems. Five experi-
ments are described below, and their results are summarized in Tables 2.1-2.13.

Tables 2.1-2.11 are associated with examples for which analytic solutions are available.
In each of these tables, the first column contains the total number N of nodes in the
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discretization of the interval [a,c]. The second column contains the relative L2 error of
the numerical solution as compared with the analytically obtained one at 5000 equispaced
points within the interval [a, ¢], where Chebyshev interpolation has been used to evaluate
the numerical solution at each of the 5000 points. The third column contains the maximum
absolute error obtained at any of the 5000 points. The fourth column contains the CPU
time required to solve the problem, excluding the time used to evaluate the solution at
5000 equispaced points, where in all cases the times are given for a SUN SPARCstation 1
computer. Tables 2.9-2.11, associated with a nonlinear example, have in addition a fifth
column which contains the number of Newton steps taken before the stopping criterion
(2.157) has been satisfied, with e = 10719,

Tables 2.12-2.13 are associated with an example for which we did not have analytic
solutions. In this example, we compare each numerical solution with p Chebyshev nodes
and n subintervals against the solution with p Chebyshev nodes and 2-n subintervals. In each
of these tables, the first column contains the total number N of nodes in the discretization
of the interval [a,c]. The second column contains the relative L? error of the numerical
solution as compared with the numerical solution with twice the number of subintervals,
where the comparison is made at each of 5000 equispaced points in the interval [a,c], and
where Chebyshev interpolation has been used to evaluate the numerical solution at each of
the 5000 points. The third column contains the maximum absolute error obtained at any of
the 5000 points. The fourth column contains the SPARCstation CPU time required to solve
the problem, excluding the time used to evaluate the solution at 5000 equispace points.

Remark 2.12 In Example 2.3 below, we solve a system of boundary value problems of
order 2; and in Example 2.5, we solve a problem of order 4. In both cases, the problems
were reduced to canonical first order systems (see, for example, [13]), with the latter solved
by means of algorithms A or B of the preceding section, as appropriate. a

Example 2.1 This example is taken from [6], where it is introduced as a stiff problem.
The equation to be solved is given by the formulae

1(z) — 998 - ¢y(z) — 1998 - gp(z) = 2-7, (2.158)
W(z) 4 999 - dy(2) + 1999 - go(z) = =, (2.159)
subject to the boundary conditions
#1(0) = 1, ‘ (2.160)
#2(1) = —6-e1+5-e7190 1 004-(.999 + .001 - e71%0). (2.161)

We use the results of Theorem 2.3 to reduce the first order system (2.158)—(2.161) to one
subject to homogeneous boundary conditions

$1(0) = 0, (2.162)
$(1) = 0. (2.163)
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Table 2.1: Numerical results for Example 2.1, p = 8.

n E%(®) E>(®) t (sec.)
16 0.962 x10° 0.685 x10! | 0.150 x10°
32 0.244 x10! 0.216 x10% | 0.300 x10°
64 | 0.700 x10~' | 0.272 x10' | 0.560 x10°
128 | 0.255 x10~! | 0.125 x10' | 0.108 x10!
256 | 0.667 x10~2 | 0.342 x10° | 0.214 x10!
512 | 0.805 x10~3 | 0.536 x10~! | 0.428 x10!
1024 | 0.330 x10~* | 0.291 x10~2 | 0.846 x10!
2048 | 0.482 x10~% | 0.529 x10~* | 0.168 x 102
4096 | 0.316 x10~8 | 0.476 x10~° | 0.337 x102
8192 | 0.112 x10~19 | 0.170 x10~% | 0.670 x10?
16384 | 0.115 x10~11 | 0.113 x10~1° | 0.137 x10°%

We apply Algorithm A to this system using equispaced subintervals, with the number of
Chebyshev nodes p = 8,16,24. For this experiment, the background Green’s function is
chosen to correspond to the equation

®'(z) = 0, (2.164)
subject to boundary conditions (2.162)—(2.163). The results of this experiment are presented
in Tables 2.1-2.3.

Example 2.2 We solve the problem (2.158)-(2.161) defined in Example 2.1, but using
an alternate division of the subintervals. Since the solution of this problem has a fairly
sharp boundary layer near the left end of the interval [0, 1], we construct the intervals
B = [b;, bi41] via the formula

b1=0a
1

M+41—:
b = (—) fori=2,...,.M+1,

> (2.165)

so that they become progressively smaller near the left end of the interval [0,1]. As in
Example 2.1, we reduce the problem (2.158)—(2.161) to a first order system subject to
homogeneous boundary conditions (2.162)—(2.163). Algorithm A has been applied to this
problem using the Green’s function corresponding to the equation (2.164) subject to bound-
ary conditions (2.162)—(2.163), and with the number of Chebyshev nodes p = 16 and 24.
The results of this experiment appear in Tables 2.4-2.5, and are most satisfactory.

Example 2.3 The purpose of this example is to demonstrate the performance of the
method when the coefficient p of the equation (2.2) is singular at the ends of its inter-
val of definition, while the particular solution being sought is smooth. We solve the Bessel
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Table 2.2: Numerical results for Example 2.1, p = 16.

n E%(®) E>(®) t (sec.)
16 | 0.567 x10° | 0.436 x10' | 0.310 x10°
32 | 0.251 x10! 0.192 x10% | 0.540 x10°
64 | 0.340 x10~! | 0.139 x10' | 0.950 x10°
128 | 0.744 x10~2 | 0.344 x10° | 0.179 x10?
256 | 0.798 x10~2 | 0.389 x10~! | 0.345 x10?
512 | 0.164 x10~* | 0.930 x10~2 | 0.686 x10!
1024 | 0.364 x10~7 | 0.243 x10~% | 0.137 x10?
2048 | 0.992 x10~11 | 0.817 x10~° | 0.274 x10?
4096 | 0.942 x10~13 | 0.776 x10~2 | 0.532 x10?
8192 | 0.214 x10~12 | 0.164 x10™'! | 0.107 x103

Table 2.3: Numerical results for Example 2.1, p = 24.

n E%(®) E>(®) t (sec.)
24 0.511 x10° 0.373 x10T | 0.690 x10°
48 0.251 x10° 0.244 x10' | 0.116 x10*
96 | 0.591 x10~2 | 0.240 x10° | 0.209 x10!
192 | 0.496 x10~3 | 0.214 x10~! | 0.387 x10!
384 | 0.546 x10~5 | 0.258 x10~3 | 0.765 x10*
768 | 0.274 x10~8 | 0.129 x10~° | 0.147 x102
1536 | 0.105 x10~12 | 0.335 x10~11 | 0.295 x10?
3072 | 0.663 x10~13 | 0.624 x10712 | 0.578 x10?

Table 2.4: Numerical results for Example 2.2, p = 16.

n E%(®) E>(d) t (sec.)

16 | 0.567 x10° | 0.436 x10T | 0.310 x10°
32 | 0.251 x10! 0.192 x10% | 0.540 x10°
64 | 0.790 x10~2 | 0.360 x10° | 0.950 x10°
128 | 0.992 x10~1' | 0.818 x10~° | 0.177 x10!
256 | 0.244 x10~12 | 0.261 x10~!1 | 0.352 x10!
512 | 0.243 x10~12 | 0.261 x10~! | 0.681 x10!
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Table 2.5: Numerical results for Example 2.2, p = 24.
n E%(®) E>*(d) t (sec.)
24 0.511 x10° 0.373 x101 | 0.710 x10°
48 0.251 x10° 0.244 x10' | 0.117 x10!
96 | 0.496 x10~2 | 0.214 x10~! | 0.209 x10!
192 { 0.293 x10~12 | 0.227 x10~!! | 0.387 x10}
384 | 0.294 x107'2 | 0.227 x10~! | 0.758 x 10
equation system
n? —
dll(z) +Z — ¢,,(a:) + = ¢y-1(2) =0, (2.166)
—n? + n
u—~l( ) + ¢,,_1(.’D) + - ¢u-—2(-’v) =0, (2167)
2 —n? 4 5 n—
5_2(27) - ; . ¢,,_1(2)) + ) . ¢u—2 =0, (2168)
(see, for example, [1]) on the interval [0,600] with the boundary conditions
$v(0) = ¢u-1(0) = ¢,—2(0) = 0, (2.169)
#.,(600) = 0.030598170290372796, (2.170)
¢,_,(600) = 0.015416721257492013, (2.171)
#,_,(600) = —0.025526503991812874, (2.172)

and v = 100. The difficulty of this problem is due to the fact that the two linearly inde-
pendent solutions to each of equations (2.166), (2.167), (2.168) are J,(z), Y, (z); Ju-1(2),

Y,-1(z); and J,—2(z), Yi—2(x), respectively, (Bessel functions of the first and the second
kmds) As is well known, J,,(z), Ju,—1, and J,_3 behave in the v1c1mty of zero like z¥,z""!,
and z"~2, respectively, while Y, (z),Y,_;, and Y,_; behave like 27,2~ (-1, and :v‘("‘z)
respectively; most methods have trouble finding the decaying solution. In addition, this is
a fairly large-scale calculation, since the the solution to (2.166)—(2.168) contains almost 100
wavelengths in the interval [0, 600].

We reduce the problem (2.166)—(2.168) to a first order system, and apply Algorithm A to
this system using equispaced subintervals, with the number of Chebyshev nodes p = 16,20
and 24. For this experiment, the background Green’s function is chosen to correspond to
the equation

®'(z)=0

subject to boundary conditions (2.169)—(2.172). The results of this experiment are presented
in Tables 2.6-2.8.

(2.173)
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Table 2.6: Numerical results for Example 2.3, p = 16.

n E%(®) E>(®) t (sec.)
128 0.133 x 101 0.415 x10° | 0.193 x10°
256 0.958 x10° 0.110 x10° | 0.384 x10?
512 | 0.758 x10=2 | 0.779 x10~3 | 0.764 x102
1024 | 0.203 x10~5 | 0.213 x10~¢ | 0.152 x10°
2048 | 0.632 x10~1° | 0.661 x10~* | 0.301 x103
4096 | 0.823 x10~1! | 0.126 x10~!! | 0.609 x10°

Table 2.7: Numerical results for Example 2.3, p = 20.

n E%(®) E>~(®) t (sec.)
160 | 0.185 x10! 0.558 x10° [ 0.330 x10?
320 | 0.216 x10! 0.392 x10° | 0.655 x102
640 | 0.373 x10~* | 0.388 x10~% | 0.130 x10°
1280 | 0.493 x107° | 0.522 x10™1° | 0.260 x103
2560 | 0.111 x10712 | 0.220 x10~*3 | 0.520 x103
5120 | 0.142 x1071° | 0.186 x10~!! | 0.104 x10*

Table 2.8: Numerical results for Example 2.3, p = 24.

n E%(®) E>(9) t (sec.)
96 0.125 x10* 0.431 x10% | 0.262 x10%
192 0.133 x10! 0.277 x10° | 0.527 x10?
384 | 0.718 x107! | 0.797 x10~2 | 0.104 x10°
768 | 0.728 x10~7 | 0.765 x10~8 | 0.206 x103
1536 | 0.308 x10~'2 | 0.555 x10~13 | 0.409 x10°
3072 | 0.551 x10~12 | 0.397 x10~13 | 0.818 x103
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Example 2.4 We consider a system of Jacobian elliptic functions sn,en,dn : {0,10-K] = R
(see, for example, [1]) which are solutions to the equations

sn'(z) = en(z)-dn(z), (2.174)
en'(z) = —sn(z)-dn(z), (2.175)
dn'(z) = -m-sn(z)-cn(z), (2.176)

with m = % in our experiments, subject to the boundary conditions

sn(0) = 0, (2.177)
en(0) = 1, (2.178)
dn(40-K) = 1, (2.179)

with K given by the expression

2 dé
K= @150

We use for an initial guess the solution to (2.176), (2.179) for m = 0, which is defined
by the formulae

sn(z) = sin (2 .WK . :c) , (2.181)
en(z) = cos (2 .WK . :c) , (2.182)
dn(z) = 1. (2.183)

We use the results of Theorem 2.4 to reduce the system (2.174)-(2.176) to one subject
to the homogeneous boundary conditions

sn(0) = 0, (2.184)
en(0) = 0, (2.185)
dn(40-K) = 0, (2.186)

and then apply Algorithm B to this system using equispaced subintervals, with the number
of Chebyshev nodes p = 8,16 and 32. For this experiment, the background Green’s function
is chosen to correspond to the equation

®'(z) = 0,

subject to boundary conditions (2.184)—(2.186). The results of this experiment are presented
in Tables 2.9-2.11.

Example 2.5 This example is taken from [28]. Its purpose is to demonstrate the perfor-
mance of the method when the equation to be solved contains fourth order derivatives. The
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Table 2.9: Numerical results for Example 2.4, p = 8.

n E*(®) E>(9) t (sec.) | Steps
128 | 0.211 x10~T | 0.551 x10~T [ 0.167 x102| 9
256 | 0.158 x10~2 | 0.416 x10~2 | 0.258 x102 | 7
512 | 0.849 x10~° | 0.226 x10~* | 0.439 x10%2 | 6
1024 | 0.106 x10~7 | 0.330 x10~7 | 0.883 x102 6
2048 | 0.313 x10719 | 0.984 x10~1° | 0.175 x10% | 6
4096 | 0.147 x10™12 | 0.469 x10~12 | 0.348 x10% | 6

Table 2.10: Numerical results for Example 2.4, p = 16.

n E*(®) E>(8) t (sec.) | Steps
64 | 0.162 x10° | 0.505 x10° [ 0.177 x10%2 | 10
128 | 0.422 x10~! | 0.108 x10° | 0.246 x102| 7
256 | 0.181 x1073 | 0.476 x10~3 | 0.409 x102| 6
512 | 0.441 x10~7 | 0.120 x10~° | 0.851 x102 | 6
1024 | 0.425 x10™2 | 0.125 x10~11 | 0.164 x10® | 6
2048 | 0.115 x10~12 | 0.317 x10~12 | 0.324 x103| 6
4096 | 0.569 x10713 | 0.152 x10"12 | 0.653 x10® | 6

Table 2.11: Numerical results for Example 2.4, p = 32.

n E%(®) E>(®) t (sec.) | Steps
256 | 0.148 x10~> | 0.388 x10~° | 0.163 x10% | 6
512 | 0.124 x10~2 | 0.395 x10~° | 0.322 x103 | 6
1024 | 0.450 x10~12 | 0.119 x1071 | 0.632 x103 | 6
2048 | 0.266 x10~12 | 0.703 x10~12 | 0.126 x10* | 6
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deflection of a beam under a uniform load ¢, with the beam built in at the left end (z = 0)
and simply supported at the right end, is given by the formula

k q
" _ .

subject to the boundary conditions
y(0) = y'(0) = y(L) = y"(L) = 0, (2.188)

with k the force per unit deflection per unit length of beam, and E - I the flexural rigidity
of the beam. The values of the constants used are

L = 1.2x10? in., (2.189)
k = 2.604 x 103 psi, (2.190)
¢ = 4.34x10* Ibs/in., (2.191)
E = 3.0x10" psi, (2.192)
I = 3.0x10® in4 (2.193)

(see [28], p. 174). The L? norm of y, the solution to (2.188), is approximately 10° times
larger than the L% norm of y””. Combined with the high number of derivatives in (2.187),
this tends to present difficulties for finite difference methods. We reduce the problem (2.187),
(2.188) to a first order system, and then use the results of Theorem 2.9 to express ® by the
formula

®(z) = ¥(z) - I(2),
with ¥(z) : [0, L] — L(R***) given by the formula

Iz 9 2 ¢
U(z) = g (1) g (1) (2.194)
-1 0 1 0
and T : [a,c] = R™ the solution to the equation
[(z) + ¥7(z) - (¥(2) + p(a) - ¥(2)) - T(@) = ¥ N(a) - f(a),  (2.195)
subject to boundary conditions
1 000 0000
PRI B TOR ORI B TOBOE ) (2.196)
0000 1000
with p: [0, L] — L(R*%4) defined by the formula
0 -1 0 0
@)= o o o Al (2197)
2 0 0 0
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Table 2.12: Numerical results for Example 2.5, p = 4.
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n E%(®) E>(®) t (sec.)

4 | 0.115 x10° | 0.672 x10~T [ 0.110 x10°
8 | 0.755 x10~2 | 0.506 x10~2 | 0.220 x10°
16 | 0.474 x10~3 | 0.369 x10~3 | 0.400 x10°
32 | 0.269 x10~* | 0.249 x10~* | 0.780 x10°
64 | 0.185 x10~3 | 0.162 x10~5 | 0.153 x10*
128 | 0.117 x10~% | 0.103 x10~% | 0.303 x10*
256 | 0.891 x10~8 | 0.652 x10~8 | 0.603 x10!
512 | 0.306 x10~8 | 0.170 x10~% | 0.120 x102

Table 2.13: Numerical results for Example 2.5, p = 8.

n

E*(®)

E>(®)

t (sec.)

8
16
32
64

0.130 x10~°
0.792 x10-8
0.465 x10~8
0.916 x10~8

0.816 x10™°
0.510 x10~8
0.235 x10~8
0.463 x10~8

0.280 x10°
0.530 x10°
0.105 x10*
0.201 x10!

and f: [0, L] — R* defined via the formula

0
0

f@=| g

yon

We apply Algorithm A to this problem using equispace subintervals, with the number
of Chebyshev nodes p = 4 and 8. For this experiment the background Green’s function is
chosen to correspond to the equation

$'(z) =0,

subject to boundary conditions (2.188). The results of this experiment are presented in
Tables 2.12-2.13.

The following observations can be made from Tables 2.1-2.13, and are corroborated by
our more extensive experiments.
1. The practical convergence rate of the method is consistent with the theoretical one. For

larger p, the exact numerical verification of the order of convergence tends to be difficult,
since the precision of calculations is exhausted before the behavior of the scheme becomes
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asymptotic. However, this is often encountered when dealing with rapidly convergent algo-
rithms.

2. For small-scale problems (such as in Example 2.5) and large p, the algorithm produces
essentially exact results with a small number of nodes. For large-scale problems, double
precision accuracy is achieved at approximately 20 nodes per wavelength with p = 20, at
12 nodes per wavelength with p = 24, and at 10 nodes per wavelength with p = 32. The
optimal timings are achieved at p between 24 and 32 (provided that about 10-12 digits of
accuracy are desired).

3. The condition number of a Nystrom discretization of a second kind integral equation
is asymptotically bounded, and our results reflect this fact. The relatively poor accuracy
(8-11 digits) obtained in Example 2.5 is due to the ill-conditioning of the original ODE, as
opposed to that of the numerical scheme used.

4. The algorithm is completely indifferent to the stiffness near the left end of the interval
[0, 1] of equations (2.158), (2.159) in Examples 2.1-2.2.

5. It is easy to use the algorithm in an adaptive manner, as demonstrated in Example
2.2. However, a fully adaptive version of the scheme has not been implemented. The
intervals B™ in Example 2.2 were provided by the calling program (as opposed to having
been constructed by the algorithm itself).

6. If the function p : [a,c] — L(R™%™) given by (2.1) is singular in the interval [a, c], then
the choice of a background Green’s function can dramatically affect the numerical results
(see Remark 2.8). When p is not singular in the interval [a, c], the numerical advantages
of one background Green’s function over another are usually minor. However, using the
Green’s function given in Lemma 2.2 results in a slightly faster algorithm. This is because
this Green’s function is constant in each of the intervals (z < t),(z > t), which provides
in Step 2 of Algorithm A faster evaluation of the matrices ay™, oy given by equations
(2.143)—(2.144) and vectors §;™,863™ given by equations (2.145)-(2.146), and provides in
Step 6 a faster evaluation of the solution ® of equation (2.27).

7. The algorithm can solve systems of high order equations with no numerical difficulty, as
demonstrated by Example 2.5.
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Chapter 3

One-Dimensional Integral
Equations

3.1 Introduction

In this chapter, we consider the problem of determining a function o : [a,c] — R which
satisfies the integral equation

X-o(z) + / “K(z,1) - o(t) dt = f(z), (3.1)

where the free term f : [a,¢] — R and the kernel & : [a, c] x [a, c] = R are known functions,
and 0 < A < 1 (so that (3.1) is a first kind equation when A = 0, and is a second kind
equation when A = 1). We assume that the kernel k£ contains a singularity of the form

s(z — 1) =log|z -, (3.2)
or of the form
s(z—t)=lz—t|% (0<]a]<1), (3.3)
or of the form )
—1) = . 3.4
s(@—1)= —— (3:4)

When s is given by (3.2) or (3.3), equation (3.1) is a weakly singular integral equation; for
a singularity given by (3.4), equation (3.1) is a Cauchy integral equation, and its integral is
evaluated in the principal value sense.

For purposes of analysis, equations of the form (3.1) are usually divided into three
classes:

(1) Second kind integral equations with singularities of the form (3.2) or (3.3).
(2) First and second kind integral equations with singularities of the form (3.4).
(3) First kind integral equations with second singularities of the form (3.2) or (3.3).

43
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Generally speaking, integral operators for any of these classes have eigenfunctions with
end-point singularities, so that an integral equation will have a smooth solution only if the
solution is orthogonal to such eigenfunctions. Each class of equations also has its own set of
theorems governing the existence and uniqueness of solutions. When second kind integral
equations with weak singularities are considered, Fredholm’s theorems govern the existence
and uniqueness of solutions, and the linear systems arising from discretization are generally
well-conditioned. When first and second kind integral equations with Cauchy singularities
are considered, Fredholm’s theorems apply in an extended sense (see Remark 3.3), and
the discretized linear systems are also generally well-conditioned. Fredholm’s theorems do
not apply to first kind integral equations with weak singularities, although some first kind
integral equations are known to have unique solutions. First kind integral equations also
yield ill-conditioned linear systems: the condition number of the discretized system is at
least O(NN') where N is the dimension of the problem.

When an integral equation is discretized using a Nystrém scheme, the order of conver-
gence of the method is equivalent to the order of convergence of the underlying quadrature
formula. Standard quadrature formulas yield extremely poor convergence for the integral
equations considered in this chapter, due to the kernel singularities in these equations. Spe-
cial quadrature formulae have been developed for these types of integral equations. When
the kernel has a Cauchy singularity, the methods presented in [8] and [9] yield quadrature
formulas with superalgebraic convergence. When the kernel contains a weak singularity,
the quadrature formulas developed in [27], [3] yield up to eighth-order convergence.

In this chapter, we construct two rapidly convergent, order O(N) algorithms for the
direct solution of first and second kind integral equations containing weak singularities or
Cauchy singularities. The first algorithm is designed for integral equations with end-point
singularities in the solution, while the second algorithm is designed for integral equations
with smooth solutions. We extend the observations of [5] to construct sparse representations
of the integral operators; we then extend the techniques of [22] and [29] to construct fast,
direct, rapidly convergent solvers. In addition, we extend the methods of [27] and [3] to yield
superalgebraically convergent quadrature formulas for equations with weak singularities.

The plan of this chapter is as follows: in Section 3.2 we review the relevant properties
and tools of Chebyshev approximation, in Section 3.3 we apply Chebyshev analysis to
the integral operators of interest, in Section 3.4 we develop superalgebraically convergent
quadrature formula for integral operators with weak singularities; in Section 3.5 we develop
the analytical apparatus for the algorithm for solutions with end-point singularities; in
Section 3.6 we develop the analytical apparatus for the algorithm for smooth solutions;
Sections 3.7 and 3.8 describes the numerical schemes for the algorithm for solutions with end-
point singularities and the algorithm for smooth solutions, respectively; finally, in Section
3.9 we illustrate the performance of the algorithms with several practical examples.
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3.2 Chebyshev Approximation

In this section, we define operators and summarize results from Chebyshev approximation
theory. Most of the results are classical and can be found, for example, in [16], [18], [20].
Much of our discussion follows the presentation given in [22].

3.2.1 One-Dimensional Chebyshev Approximation
Given a function f € C "[—1, 1], we define the vector V € 12 of Chebyshev coefficients by

the expression
1) -Tit)
dt, 3.5
e [ )
where T; denotes the ith Chebyshev polynomial. The function f can therefore be represented
by the expression

f(@) = ¥() -, (3.6)
with ¥ : [2 — L%[—1, 1] the Chebyshev interpolation operator given by
U(z) -V =) Ti(z) Vi (3.7)
i=0
Let v € R? be defined by
v = Vvﬁ
fori=0,1,...,p— 1, and let % : R? — L%[—1,1] be the interpolation operator given by
p—-1
P(z) - v= Z Ti(z) - v;. (3.8)
=0

We denote the transpose interpolation operator 97 : L?[-1,1] = R” by the expression

@I(=)- fi=V;, (3.9)

fori=1,...,p, where V; is given by (3.5).
The following lemma proves that a Chebyshev expansion converges rapidly for suffi-
ciently smooth functions, and is proved, for example, in [20].

Lemma 3.1 If f € C¥[-1,1], v € RP is given by (3.5) fori =0,1,...,p—1, and 3 : R? —
L%[-1,1] is defined by (3.8), then for any z € [-1,1],

1) = $(2) -0l = 0 (). (3.10)

Lemma 3.2 proves that, given a vector f € R? representing the function f discretized
at the roots the pth Chebyshev polynomial, the vector v € RP given by (3.5) for i =
0,1,...,p — 1 may be obtained from f via a discrete cosine transform. A proof of this
lemma may be found in [20].
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Lemma 3.2 Suppose that f € C*[0,1], v € R? is given by (3.5) fori = 0,1,...,p—1, and
f € RP is given by the expression 3
fi= (), (3.11)

with t; the ith root of the Chebyshev polynomial Tp(z). Suppose further that a € RP is given
by the formula

a =C(f), (3.12)

where C denotes the discrete cosine transform of dimension p. Then

1

lvi — aill = O (—k) . (3.13)
r

Remark 3.1 Since the discrete cosine transform of a function may be obtained via the

Fast Fourier Transform, the vector of Chebyshev coefficients o may be obtained from the

function values f using O(p-logp) arithmetic operations. 0

While, strictly speaking, Chebyshev interpolation is defined only for the interval [—1, 1],
we can define an interpolation operator ¥, 4 : R? — L?[a,c] for the interval [a,c] via the
formula

V(%) = -(-c;—a) PO+ @ (3.14)
so that
z € [a,¢] <= t € [~1,1] (3.15)

(see, for example, [15]). Similarly, we define the transpose operator Q,b[ic] : L%[a,c] = R?
via the formula

Wge) = 2D g7 4 €ED

Given a function ff,  : [, c] = R, we denote the Chebyshev coefficients for that function
by v[g,q, s0 that

(3.16)

"»b[a,c] * Va,d (317)

is an approximation to fi, j. Given the p roots ¢; of the Chebyshev polynomial Tp(t), we
define roots #;, , for the interval [a, ¢] via the formula
_(c—-a) (a+¢)
ti[o,c] - 2 ¢ ti + 9 ’ (3°18)
fori=0,1,...,p—1.

Let b = (a+c)/2 denote the midpoint of [a, c], and let 9o 3 : R? — L?[a,b], Y, : RP —
L%[b, c] denote the interpolation operators for the intervals [a, b] and [b, ¢], respectively. We
consider the problem of obtaining the expansions Va5 and v g, given the expansion v .
If the function f associated with V[, i sufficiently smooth, then we may use v[, 4 to
obtain the approximations f(t,-[a,b]) and f(t,-[b,c]). Then, v, is obtained from f(t,'[g,b]) via
the cosine transform described in Lemma 3.2, and similarly vp, g is obtained from f(%;, ;)-
Thus, each of the mappings v[, o = v[o,b) and V[, — vp,q is obtained via the application of
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an interpolation operator and a cosine transform operator. Let C4,Cg : R? — R? denote
the operators which perform the mappings V[a,d] = V[a,p) a0d Vg, — Vg, respectively, so
that

Ca- Y[a,c] = Ya,b]» | (319)
CB VYo, q = U q- (3.20)

C4,Cp are nonsingular (see, for example, [5]); we now define the inverse operators Cp, Cy :
R? — R? via the expressions

Cp=Cj', (3.21)
Cy =Cg'. (3.22)

3.2.2 Two-dimensional Chebyshev Approximation

Given a function K(z,t): [-1,1] X [-1,1] = R, the following three lemmas provide the
methods by which K may be approximated via Chebyshev approximation, and define the
circumstances under which these approximations are rapidly convergent. The lemmas are
direct consequences of Lemma 3.1.

Lemma 3.3 Given a function K(z,t) : [~1,1] x [-1,1] — R, suppose that for fized t,
K(z,t) € C*[-1,1]. Let My : L*[-1,1] x L*[-1,1] — I x L?[-1,1] be defined for all
t € [-1,1] via the formula

M,(K,t); = /_11 &x’ltz\/___%(x_)

so that for each t, M,(K,t) yields a Chebyshev expansion in z which approrimates K(z,t).
Let my : L*[—1,1] x L%[-1,1] = R? x L?*[—1,1] be given by the expression

dz, (3.23)

ml(Kat)i = Ml(Kat)ia (324)

Jori =0,1,...,p— 1 and for all t € [~1,1]. Finally, let ¥ : R? — L*[—1,1] be the
interpolation operator defined by (3.8). Then, for any z,t € [-1, 1],

1K (2,1) = b(a) - ma(K, 0] = 0 () (3.29)

Lemma 3.4 Let K(z,t) : [-1,1] X [-1,1] —» R, and suppose that for fired z, K(z,t) €
C*-1,1]. Let My : L?[-1,1] x L*[-1,1] — L*[-1,1] x {2 be defined for all z € [~1,1] via
the formula

My(K,z)i = / K@D T, (3.26)

-1 V1-1¢2 ’
so that for each x, My(K,z) yields a Chebyshev expansion in t which approzimates K(z,1t).
Let mg : L2[—1,1] x L*[-1,1] = L*—1,1] x RP be given by the ezpression

mo(K,2); = My(K,z);, (3.27)
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Jor i = 0,1,...,p~1 and for all z € [-1,1]. Finally, let yT : [?[~1,1] — R? be the
interpolation operator defined by (3.9). Then, for any z,t € [-1,1],

1K (2,1) = ma(,2)- $70)]) = 0 () (3.28)

Lemma 3.5 Given a function K(z,t) : [-1,1] x [-1,1] — R, suppose that for fized z,
K(a: t) € C¥[-1,1]. Suppose further that for each fized t, K(z,t) € C¥[-1,1]. Let M3 :
L?[-1,1] x L?[-1,1] = I?> x I? denote the two-dimensional Chebyshev ezpansion defined by

the formula
1 ( /1 K(z,1)-Tj(t) dt)_ Ti@)_ g, (3.29)

(k= [ ([ Sios i

for each i x j € {0,1,..} x{0,1,...}. Let m3: L?[-1,1] x L*[-1,1] — R? x RP be given
by the expression

m;;(K),_, = M3(K),‘j, (330)

for alli =0,1,...,p—1 and for all j = 0,1,...,p — 1. Finally, let ¢ : R? — L?*[-1,1],
$T : L?[-1,1] — RP be the interpolation operators defined by (3.8), (3.9), respectively.
Then, for any z,t € [~1,1],

1K (@,) = $(a) - ma(K) - 7] = O (55 ) (33)

Remark 3.2 Let K(z;,t;) : R® — R” € L(R™ ") denote an n X n discretization of K,
and suppose that n > p. Suppose further that 1, : R? — R™ is the operator mapping a
Chebyshev expansion in z to function values at n points z;, and suppose %1 : R* — R? is
the operator mapping function values at n points in ¢; to Chebyshev expansions in t. Then,
using Lemmas 3.3-3.5, we may represent K in one of four ways:

Case 1: If for fixed z, K(z,t) € Ck[ 1,1], and also for fixed t, K(z,t) € C*¥{—1,1], then
by Lemma 3.5 we may represent K by the formula

K =, - ma(K) - T, (3.32)

with m3 defined by (3.30). Thus, K can be approximated by ma, and 1/1,1,1/1” are merely
used to obta.m values of K at specific points z,t. We have reduced the n? representation K
to the p? representation ms.

Case 2: If for fixed t, K(z,t) € C¥[—1,1], then by Lemma 3.3 we may represent K by the
formula

k= Yn - ﬁll(K, t)7 (3'33)

where 1y : R — R" denotes the operator m; given by (3.24), discretized at the n pomts
. K can therefore be represented by 7, usmg n - p coefficients; this is less than the n?
coefﬁc1ents used in K, but more than the p? coefficients used to represent mg in Case 1.



3.3. CHEBYSHEV APPROXIMATION FOR SINGULAR INTEGRAL OPERATORS 49

Case 3: If for fixed z, K(z,t) € C¥[—1,1], then by Lemma 3.4 we may represent K by the
formula )
K (z,t) = my(K,z)- 9T, (3.34)

where 73 : R® — RP” denotes the operator m;, given by (3.27), discretized at the n points
z;. The number of coefficients required to represent K using 7y is p - n— the same as the
number required in Case 2, but more than the number required in Case 1.

Case 4: If for fixed z, K(z,t) ¢ C*¥[-1,1], and for fixed t, K(z,t) ¢ C*¥[-1,1], then
we cannot use Chebyshev approximation to reduce the number of coefficients needed to
represent K. We require n? coefficients to represent K, more than the p - n coefficients
required in Cases 2 and 3, and more than the p? coefficients required in Case 1. |

3.3 Chebyshev Approximation for Singular Integral Oper-
ators

In this section, we present techniques for the efficient representation of integral operators
with singularities, with the result that a dimension N discretization of an integral operator
with a singularity may be accurately represented using only O(N) elements.

We assume the kernel & : [a, ¢] X [a,¢c] — R is of the form

k(z,t) = ki(z,1) - s(z — 1) + k2(z, 1), (3.35)

where the singularity s defined by one of (3.2)—(3.4), and ky, k2 : [a,¢] X [a,¢] = R €
C*[a,c] x [a, c]. For convenience, we define the operator P : L%[a,c] — L?[a,c] by

P(o)(z) = A~ o(z) + / k(z,1)- o(t) di, (3.36)
so that the equation (3.1) assumes the form
Po = f. (3.37)

Remark 3.3 While P is defined as an operator yielding solutions in L?[a, c], the existence
and uniqueness of solutions in L?[a, c] depends on the class of the integral operator under
consideration. If P is a second kind integral operator with a weak singularity, then by the
Fredholm Alternative, either there exist unique solutions o € L?[a, c], or the homogeneous
equation

Po=0 (3.38)

has a nontrivial solution.

For Cauchy integral equations, existence and uniqueness of solutions also depends on the
index x of the operator (as defined in [25]). For the integral operators under consideration,
x € {—1,0,1}. When x = 0, the operator is a Quasi-Fredholm operator, and the Fredholm
Alternative is applicable. When x = —1, and the adjoint of the homogeneous equation
has no nontrivial solutions, then a solution o € L%[a,c] exist, but is unique only up to a
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constant. When x = 1, then the adjoint homogeneous equation has at least one nontrivial
solution, and a solution o € L?[a,c] exists only if the free term f is orthogonal to the
solutions of the adjoint homogeneous equation.

When the operator P is a weakly singular first kind integral operator, then there may
not be a solution ¢ € L?[a,c], since for this class of integral equation P is a compact
operator. However, if such a solution exists, and the operator is positive definite, then the
solution is also unique (see [26]). o

We will require the four operators

Ppy Lz[a’,b]_')L2[a,b],

Psp : L2[b,c]_')L2[a”b],

Pgy : IL2[a,b]— L2[b,q],

Pgp : L?b,c]— L%b,q],

defined by

Paa(e)e) = X-o(e)+ [ K(z,t)-olt)d, (3.39)
Pap(o)(@) = /b “K(z,1)- o(t) dt, (3.40)
Ppa(o)(z) = / " K(a,0)- o(t) (3.41)
Pep(o)(z) = A-o(z)+ /b “K(z,1)- o(t) dt. (3.42)

The integral equation (3.37) can therefore be rewritten in the form
Ppa(014) + Pa(oiB) = fia, (3.43)
PBA(UIA)+PBB(U|B) = f!B' (344)

We denote subintervals [¢;, ¢] and [dy, d3] of [a, ¢] by C and D, respectively, and assume
that C and D are disjoint. We define Ppp : L2(D) — L?(C) via the formula

d2
Pop(o)(z) = / k(z,t) - o(t) dt, (3.45)
dy
so that Pop is the operator P restricted to the domain C x D.
Theorem 3.1 determines the circumstances under which Pop may be represented via
Chebyshev approximation. Proofs may be found in [21] and [5], with the most general proof
located in [10].

Theorem 3.1 Suppose [c1, ¢3], [d1,d2] are disjoint subintervals of [a,c], and let ¢; = ¢3 —
¢1,d; = dy — dy, and r = min{|e; — da|,|c2 — d1]|}. Suppose further that Pcp is given by
(3.45), with a kernel of the form (3.35), and the interpolation operators 1, %T are given
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by (3.8), (3.9), respectively. Suppose finally that Chebyshev nodes t;,,t;;, are defined by
(3.18). If my, my, m3 given by Lemmas 3.3-8.5, then

1. If ¢t < v (the interval [¢1, co] is well-separated from [dy,d3]), then

| Pcp = % - mi(Pep)lj = O (#) . - (3.46)

2. If di < r (the interval [dy,dy)] is well-separated from [c1,¢]), then

|Pop — ma(Pep) - $7|| = O (;,;1_—1> . (3.47)

3. If ¢y < r and also d; < r (each of the intervals [cq, ¢2] and [dy,d;] is well-separated from
the other), then
1
VPop - - ma(Pop) - #7ll = 0 (7 ). (3.48)
Let b = (a + ¢)/2 denote the midpoint of the interval [a,c]. We denote the subintervals
[a,b] and [b,c] of [a,c] by A and B, respectively.

Remark 3.4 The purpose of this section is to develop efficient representations for the
discretized operators 13,43, Pg 4. Since A and B are not well-separated intervals, we cannot
apply Theorem 3.1 to the operators themselves. However, there are subintervals of A and
B which are well-separated. We now proceed to decompose P4g, Pp4 into operators acting
on smaller subintervals, so that Theorem 3.1 applies to these restricted operators. o

Suppose that we are given positive integers g4, ¢p, and that r4,7p are defined by the
equations

b—a

o= &9 (3.49)
c—b

rg = (2q3-1)' (3.50)

If g4 > 1, then we denote the subintervals [a,b — r4] and [b — r4,b] of A by A; and Ao,
respectively, and similarly if gg > 1 we denote the subintervals [b,b+ rg] and [b+ rp,c] of
B by Bg and Bj, respectively. If g4 > 2, then we denote g4 — 1 subintervals A,,..., A,, of
Aj, via the formulae

A = [b—rs 2701272 (i=2,...,qa— 1), (3.51)
A, = [a,b—ra-29872),

Similarly, if gg > 2, then we denote the g — 1 subintervals By, ..., B, of B; using the
formulae

B; = b+rg-2"%b4rp-271 (i=2,...,q8 — 1), (3.52)
B‘IB = [b +rg- 243_2,61.
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When ¢4 = 1, we define both A; and A; to be the interval [b,b]; when ¢ = 1, we define
B, and Bj; to be the interval [b,b]. When g4 = 2, we define A, to be equivalent to A,, and
similarly we define By to be equivalent to By when ¢g = 2. Thus, for all values of ¢4, ¢B,

gA
A = U4, (3.53)

i=2
9B

B = |JB. (3.54)
=2

Given operators P4p, Ppa defined by (3.39), (3.40), respectively, we may express Psp
and Pg4 via the sums

qA aB
PsB(0jB) = PayBo(01,)+ D Paio(oiB,) + D PaoB;(915;) (3.55)
=2 j=2
dA 4B
+ Z Z Pa;B;(918;),
1=2 j=2
qA B
PBA(914) = PByao(014,) + D PBiao(d1a,) + Y PBoa;(04;) (3.56)
=2 J=2
dB 4A
+ Z Z PB,‘A,‘(U]AJ')'
=2 j=2

The following theorem is the principal analytical tool of this chapter. It permits factor-
izations of P4 and Pg4 which approximate these operators to high accuracy. Corollary
3.1 then proves that for the discretizations of interest, few coefficients are required in the
discretization of these factorizations.

Theorem 3.2 Suppose 1y, : L2(Ap) x RP(14-1) _, [2(A) is given by the expression
VA,

Vag,
¢1 A= ., ’ (357)
Ya,
14,
where I4, denotes the identity operator for the interval Ag, and suppose further that v, :
L*(By) x RP(18=1) . [2(B) is given by the expression

Iz,
¥B, v
Pop = VB, ) (3.58)

VB,
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Then
1
1Pap = b1, Mas ¥, = O (). (3.59)
1
1Poa =2y Moa-vE,l = O (55) (3.60)
where Mg : L%(Bg) x RP(35=1) 5 [2(Ag) x RP(94=1) is given by the ezpression
mi(Pa,, B,) ma(Pa,,B) ma(Pag,B,) -+ m3a(Pa,,B,)
ml('PAqA-IBO) ma('PAqA—lB2) ma('PAqA—IBS) e m3(PAqA—-1BqB)
Msp = : : et )
m1(P4,B,) m3(Pa,B,) m3(Pa, B,) Tt m3(PAquB)
P4, B, mZ(PAoB2) m2(PAoBs) tec mZ(PAquB)
(3.61)
and where Mp4 : L*(Ao) x RP(94~1) . [%(By) x RP'(45-1) s given by the expression
my(Pod,,) M2(PBoa,,—) c+r ™M2(PBoa;)  PBoso
m3(Ppya,,) ma(PBag,—.) 0 m3(PBay)  mi(PB4,)
Mgy = | m3(PBaa,,) ma(PBya,,—,) - ma(PBea,) mi(Pria,) |, (3.62)

m3(PB,gA,,) M3(PBigAg,—1) **° m3(PBega,) mMi(PBgga0)
and where my : L2 x L? - RP X L2, my : LI* x L? — L?* xRP, m3 : [? x L? — RP x R? are
defined by (3.24), (3.27), (3.30), respectively.

Proof. Foreach ¢ = 2,...,q4, A; is well-separated from By. Therefore, by Theorem 3.1 we
may represent operators P4,p, and Pg 4, to O(1/ p¥~1) accuracy using the approximations

Pyp, = 4 - m1(Pa;B,), (3.63)

Ppoa; ~ ma(Ppoa;) Vi, (3.64)
for each ¢ = 2,...,94. In addition, each subinterval B; is well-separated from Ag, for
i = 2,...,98. Therefore, by Theorem 3.1 we may represent operators P4,p; and Pp; 4, to
O(1/pF1) accuracy using the approximations

PayB; ~ ma(PayB;) - ¥p, (3.65)

Ppia, =~ B, - mi(PB;4,), (3.66)
for each ¢ = 2,...,¢qg. For each i = 2,...,q4 and for each j = 2,...,¢B, each of the

subintervals A; and B; are well-separated from the other. Therefore, by Theorem 3.1 we
may represent operators P4, p; and Ppg,4; to O(1/ pk‘l) accuracy using the approximations

PA.‘Bj = "bA,' : m3(PA.'BJ') * ¢£j’ (367)
PBjA.' ~ '¢’Bj . m3(PBjA.‘) ‘ ’¢’;11‘,'a (368)
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for each i = 2,...,q4 and for each j = 2,...,¢p. The approximations (3.59), (3.60) are

now obtained from the approximations (3.63)—(3.68) and from equations (3.55), (3.56). O
The particular values of the integers g4 and ¢g used in this section are discretization

dependent. In this chapter, we will be using the following three discretizations:

Discretization C1: Both A and B contain n points, n = p-k, where k is a positive integer.
Ao and By contain p Chebyshev roots #; 492 bin,» Tespectively. The remaining n — p points
for A and B are placed in A, and B, as fo]lows:

1. p Chebyshev nodes are contained in the subinterval [(a + b — )/2,b — r] of A2 and p
nodes are contained in the subinterval [b + r,(2b+ r)/2].

2. For i =2,...,k — 2, both the subinterval [(a + b — 7)/2,(a + b — 7)/2""!] of A; and the
subinterval [(2b+ r)/2'1,(2b + r)/2/] of B, contain p Chebyshev roots.

3. Finally, the subinterval [a,(a+ b — r)/25~2] of A, and the subinterval [(2b + r)/2%~2, ]
each contain p Chebyshev roots.

Thus, for Discretization C1, ¢4 = qg = 2.

Discretization C2: The structure of Ap and A, are the same as in Discretization C1.
However, there are only p points in the interval B, located at the p Chebyshev roots ;.
For this discretization, g4 = 2, and ¢gg = 1.

Discretization D: Both A and B contain n points, where n = p - 2, for some integer
k. The number of points in each of the subintervals A; and B; is proportional to the size
of the subinterval. Ao and By contain the p Chebyshev roots ¢;, and ¢;, o) respectively,
where the Chebyshev roots are defined by (3.18). A2 and B; each conta.ln the p Chebyshev
roots t;, ,tip, , respectively. For the subintervals A3 and B3, we have p Chebyshev roots in
each half of the subinterval, for a total of 2p points in the subinterval. For the remaining
subintervals A; and B;, for i = 3,...,q, we divide each subinterval into 29~! pieces, and
place the p Chebyshev roots in each piece (so that the total number of points is p - 2971).
Thus, for Discretization C, g4 = gg =k + 1.

Corollary (3.1) directly follows from Theorem 3.2 and from Discretizations C1, C2, D.

Corollary 3.1 Suppose Map and Mpy4 are given by (3.61) and (3.62). Then,

1. When Msp and Mpa are discretized vza Discretization C1, then the corresponding
discretized operators Mg, M require 4 - p? coefficients each.

2. When Msp and Mgy are discretized via Discretization C2, then the corresponding
discretized operators Map, Mg 4 require 2 - p? coefficients each.

3. The discretization of both Msp and Mp, via Discretization D requires p* + p? - k + p? -
k+ p?-k? coefficients. Equivalently, each operator M p, Mp 4 requires p? - (log,(n/p) + 1)?
coefficients for this discretization.

Remark 3.5 The analytical apparatus of this chapter strongly resembles the analytical
apparatus of Chapter 2. This is largely because for both chapters the observations of
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Remark 2.5 apply— that just as P was decomposed into operators P44, Pgp and low-rank
operators Pap, Pg4, so we can decompose each of P44 and Pgp into four operators, two of
which are of low numerical rank. If this process is continued, we obtain the structure shown
in Figure 2.1. However, while the integral operators of Chapter 2 were of low analytic rank,
the operators of the present chapter are of low rank only when discretized. o

3.4 Quadrature Formulae for Singular Integral Operators

In this section, we develop quadrature formulae to be used in the algorithms of this chap-
ter. The results of this section can be used to construct p X p discretizations of singular or
weakly singular integral operators. These discretizations are well-conditioned (the under-
lying quadrature weights are nearly all positive), and exhibit pth order convergence to the
analytic integral operator.

3.4.1 Product Integration for Singular Functions

We first consider the numerical evaluation of integral equations of the form (3.1), with the
kernel k given by (3.35), and the singularity s given by either (3.2) or (3.3).

Remark 3.6 The method of this section is not required for the Cauchy singularity (3.4), as
high-order quadrature formulas for this singularity already exist (see, for example, [8],[9]).
a

We denote an n-point discretization of the interval [—1, 1] by [z, 22,...,2,]. Given this
discretization and quadrature weights w;; (1 < 4,5 < n), the Nystrom algorithm replaces
the integral equation (3.1) with the linear system

A-oi+ z": wij - (k1(zi, 2j)s(z; — ;) + ka(zi,25)) - 05 = f(z) (1<i<m). (3.69)

=1

The solutions o4,..., 0, are then viewed as approximations to the solution o of (3.1) at the
nodes ri,...,2,. As is well-known, if (3.1) has a unique solution, then for a wide class of
quadrature formulae and sufficiently large n, the system (3.69) has a unique solution, and
the solution of (3.1) converges to the analytic solution at the same rate as the underlying
quadrature formula.

Unfortunately, standard quadrature formulae (for example, end-point corrected trape-
zoidal quadrature formulae, or Chebyshev quadrature) exhibit extremely poor convergence
for equations of the form (3.1), due to the singularity s. Appropriate quadrature formulae
are usually obtained by some form of product integration (see, for example, [17]). Such
formulae were obtained in [27], [3] for end-point corrected trapezoidal quadrature rules; we
now use the method of these papers to construct weights for Chebyshev quadrature.

We assume that (3.1) has been discretized at the 2p zeroes [zy,...,Z2,] of the 2pth
Chebyshev polynomial T5,. Using the notation of [32], we define generalized moments of
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the moment function s, with s singular at z;, by the expression

1
mj(e) = [ T(®)-s(t-2)dt (155 <), (3.70)

For each z; we now consider the following system of linear algebraic equations with respect
to the unknowns w;; (1 <i < n):

2p
> Tioa(z) - wix = / ' T;-1(t) dt, (3.71)
k=1 -1
forj=1,...,p, and
2p
> Ticp-1(zr) - s(zk — 2:) - wi = mj—p(2:), (3.72)

k=1

for j = p+1,...,2p. Obtaining the quadrature weights w;; therefore requires the solution
of a total of 2p linear systems.

Remark 3.7 While the 2p? moments m;(z;) can be determined analytically, this is quite
burdensome for large p. Instead, we evaluate the moments numerically, using adaptive
gaussian quadrature (see, for example, [30]). The expression (3.70) can be evaluated to
high accuracy, provided the singularity is given by (3.2), or is given by (3.3) with a positive
exponent.

If the singularity is given by (3.3) with negative exponent, then adaptive gaussian
quadrature will yield high accuracy only if the location of the singularity is zero (for other
locations of the singularity, the subinterval divisions can not be made sufficiently fine to
yield high accuracy). However, the following expression is equivalent to (3.70), and can be
evaluated accurately using adaptive Gaussian quadrature:

zi+1
mj(z;) = /z--l Ti—a(zi—t)-s(t)dt (1<j<p). (3.73)
o

The existence of unique solutions to the linear systems and the convergence rate of the
quadrature formulae are given by the following two lemmas, which were presented in [3] (in
a slightly different form).

Lemma 3.8 For each z; (1 < i < 2p), the linear system (8.71)-(3.72) has a unique solu-
tion.

Lemma 3.7 For each z;, the convergence rate of the quadrature weights w;; (1 < j < 2p)
is at least p.

Unfortunately, as the order of the quadrature formulae p increases, the linear systems
given by (3.71)(3.72) become increasingly ill-conditioned. As a result, the weights w;;
become large, to the point that substantial accuracy is lost when p > 8.
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3.4.2 High-Order Quadrature Formulae with Well-Conditioned Weights

The algorithms of [27], [3] have favorable analytic properties, but produce unacceptably
large quadrature weights for an order of convergence p > 8. In contrast, the algorithm we
now present is a series of linear algebraic fixes to [27], [3]. We have no proofs concerning the
performance of the algorithm in this section, but in practice it has been used to generate
extremely high-order methods with quadrature weights that are nearly all positive.

We rewrite the system (3.71)—(3.72) in the form

M1w1 = f], (374)

where M; € R?%? is the system of Chebyshev polynomials and Chebyshev polynomials
times a singular function, wy; € R? is the vector of quadrature weights, and f € R?” is
the vector of analytic integrals. Assume that to some precision ¢, the rank of the matrix
M, : f (the matrix M; with an additional column f) is n. Then, an orthonormal matrix
Q1 € R¥™*? can be constructed which maps the left nullspace to zero (to precision e).
More precisely, we obtain an orthonormal matrix @ such that rows n + 1,...,2p of the
matrix @ - M, are zero, to precision €. Let Q; € R*%?? denote the matrix with its n rows
equivalent to the first n rows of @;. Then, to precision ¢, the linear system

Q:Mywy = Q2 /i (3.75)

is equivalent to the linear system (3.74). For convenience, we rewrite the system (3.75) as
the system

M2’U)1 = f2, (376)
with My € R™*?? defined by
M, =Qq - My, (3.77)
and f; € R” defined by
f2=Q2- f1. (3.78)

By Lemma 3.6, there exist solutions to (3.76). We obtain w; by solving the following
least squares problem with linear constraints (see, for example, [15]):

Minimize [Jw ]|z subject to Maw; = fa. (3.79)

While solving the system (3.79) does provide solutions for p > 8, the weights w; obtained
are still quite large. However, if we construct weights for points located at the zeroes of
a Chebyshev polynomial n > 2p, these weights can be nearly all positive. The original
equations (3.71)—(3.72) thus become, for each z;:

n 1
> Tiaon) wae = [ Tia(®d, (3.80)
k=1 -1
forj=1,...,p, and
> Ti-p-1(2k) - 8(zk — ) - wik = mj—p(3), (3.81)

k=1
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for j = p+1,...,2p. Our experiments indicate that when n > 3p, the weights are either
all positive or nearly all positive. Unfortunately, we have no explanation for this behavior.

Remark 3.8 In [3], Alpert interpolates a function discretized at equispaced nodes to a
Chebyshev discretization, in order to delay the growth in weights. A similar interpola-
tion strategy can be used here to generate a p x p integral operator with pth order con-
vergence, even when the number of quadrature weights required for a particular row is
large (we use 3p weights per row). Assume an operator is to be applied to a function
f=1 g, 40 f(t2[a,c])’ ceny f(tp[a,c])]’ with each t;, , given by (3.18), and assume further-
more that f € CP[a,c]. Denote by M the p x 3p matrix containing the discretized kernel
function K (%, ;,v;) (for each tiia,q» the points y1,ys, . .., y3p are chosen in some convenient
fashion). Let C:RP > RP denote the discrete Chebyshev transform operator of dimension
p. Then, M - f will yield the p Chebyshev coeflicients of the function f. These coefficients
can then be used to yield the interpolated values of f at the points y1,¥2,...,¥3p.

By itself, this interpolation procedure is of little interest. However, when combined with
the algorithms of this chapter, the order of convergence of the discretized integral operator
is improved from p/3 to p. o

3.5 The Analytical Apparatus for Singular Solutions

In the following two sections, we use the results of Section 3.3 to produce the apparatus for
the rapid solution of the integral equation (3.1). By Corollary 3.1, the exact representation
of the operators P4p and Pp4 defined by (3.40), (3.41) is discretization dependent. In this
section, we present results for Discretizations C1 and C2— these discretizations are used
when there is an end-point singularity in the solution of (3.1). In Section (3.6), we present
results for Discretization D; this discretization is used when the solution to (3.1) is smooth.

The fast algorithms of this chapter are based on the fundamental observation that the
solution to the integral equation (3.1) on the entire domain [a, ¢] can easily be constructed
from the solution of the two independent integral equations (3.43)—(3.44). one defined on
[a,b] and one on [b, c]. This leads naturally to a recursive algorithm, in which independent
solutions on a large number of subintervals are successively merged until the full solution
is obtained. A precise formulation of the construction and the resulting numerical scheme
will require some notation.

3.5.1 Notation

We let b = (a + ¢)/2 denote the midpoint of [a,c], and denote the subintervals [e,b] and
[b,¢] by A and B, respectively. In addition, we require the operators

P : L%a,c]— L?a,d],
Pas : L*a,b]— L%a,b],
Psp : L*b,c]— L%a,b)],
Pgs : L%a,b] — L?b,¢c],
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Pgp : L*[b,¢] = L2b,d],

defined by (3.36), (3.39), (3.40), (3.41), (3.42), respectively. Due to Theorem (3.2), if we
are using Discretization C1 then we may approximate P4p and Pg4 via the expressions

Pap = 1, Mig 9T, (3.82)
Ppa m i Mpy -yl , (3.83)

with

Y1, : RP x L*(Ap) = L%(A),
Y1, : RP x L*(By) — L%(B),

the interpolation operators of the form (8.57), given by the expressions

— V4,
"/)IA = ( IAo ), (384)

_ | ¥B
"/)IB - ( B IBo )7 (385)

with

Mlg : RPx L%(By) — R? x L*(Ay),
ME, : RPx L*(4g) = R? x L*(By),

given via the formulae

P ) m3(Pa,B,)
i, = [ ™(PaB) m3(Pays, , 3.86
AB ( PAoBo m2(PAoBa) ( )
Pg,4,) Ppya
My, = [ ™(PBos oo ) 3.87
B4 (m3(PBzA2) m1(PB,4,) (3.87)

Similarly, if we are using Discretization C2 then using Theorem (3.2) we may approximate
P4p and Ppy via the expressions

Psp = 1, -Mjp, (3.88)
Ppa =~ MB,-vyi,, (3.89)

with

M3p : L*B)— R” x L*(Ap),
M3, : RPx L*(4) — L*B),
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given via the formulae

3 _ [ mi(Pa,B)
Mjip = (PAoBo ) (3.90)
MB, = ( my(Pp4,) PB4, ) (3.91)

We define the operator
Q : L’[a,c] x R? — I*[a,c] x R?
by the expression
Q@) = x(@)+ [ k(@) x(®) dt. (3.92)

We additionally require the four operators

Qaa : L%a,b]x R? - L[¥a,b] x R?,

Qap : L%b,c]x R? - L*[a,b] x R?,

@Ba : IL*a,b] xR? - Lb,c]x RP,

@ep : L%b,c]x R? — L%b,c] x R?,

defined by the formulae

Qa0 = x)+ [ Kad) X d, (3:99
Q0@ = [ K@D x@t (3.91)
Qa@) = [ ke X, (3.95
@e(X)(z) = x(z)+ /bck(z,t)-x(t)dt. (3.96)

Given a function f € L?[a, c], we will follow the convention of denoting its restriction to
A and B by fi4 and fip, respectively. Similarly, given a function ¢ € L?[a,c] x RP, we will
denote its restriction to A and B by ¥4 and ¥, respectively.

Given an interval [by,b] C R and operators ¢ : R® — L2[by,b;], x : R™ — L2[by, b3),
and let 9;(z) denote the ith component of ¥(z), and let x;(z) denote the jth component
of x(z). Then we define the inner product a € L(R™*") by the expression

(a); = /,,b2 ¥it) - x;(2) dt, (3.97)

where (a);; denotes the entry in the ith row and jth column of a. Similarly, we define the
transpose of 1) by the formula

00N = [ - x(0dt (3.98)
17 by s 3 ’ .
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Given interpolation operators
¢[a,c] : RP > L2[a, C],
Y4 : RP = L*(A),
v : RP = L*B),

defined by (3.14), we will in this section refer to them by s, ¥3,, and s, respectively.
Given Discretizations C1 and C2, we require the interpolation operator

Y1 : RPLY(B) — L¥a,c),

= ( e ) (3.99)

We in addition require the zero operators

04 : L%[a,c]— L%(A4),
0 : R? - L%(B).

given by the formula

(3.100)
The operators 11 and 5 are related to 13 4» Y35 via the expressions
Vi, = %Ya,X04, (3.101)
¢1|B = OB X IB 9 (3'102)
Y3, = ¥3,-Cbp, (3.103)
Y3, = ¥35-Cu, (3.104)

where Cp, Cy : R? — RP denote the shifting matrices defined by (3.21), (3.22), respectively.
Assuming that the operators P44, Ppp are nonsingular, we define the functions

4 : A—R,
nB ¢ B—-R,
via the formulae
na = Pgi(fia), (3.105)
ne = Pgp(fip) - (3.106)

Similarly, assuming that the operators P, Ps4, Pgp are nonsingular, we then define the
operators
x1 : RPx L*B) - L%a,q],
x3 : RP = L¥a,(],
$1, : RP x L*(4o) - L*(4),
¢s, : R? - L*(4),
$¢3, : RP = L*B),
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via the formulae

X1
X3
b1,
$34
$3p

o

NE-DIMENSIONAL INTEGRAL EQUATIONS

Pl(¢y), (3.107)
P (ys) , (3.108)
Pii(¥14) (3.109)
Pia(¥s,) , (3.110)
Pgp(¥s5) - (3.111)

Finally, given the transpose defined by (3.98), we define operators
ofy 1 RP x L}(Ag) —» RP x L¥(Ap) ,
ofy : RP - RP x L¥(4),

o : RPx L*A¢) — RP,
a:?S : RP >R ’

a1 @ RP x L}(B) - RP x L*(B),
a3 : RP - RPx L}(B),

az;; : RP x L*B)—RP,

ass : R? - R?P,

by the formulae

alAl = ’ll)iFA ° ¢1A b aﬁi = ’l/)iFA ° ¢SA 9

agl = ¢§‘A -¢1A 9 aZl;S = ¢§‘A -¢3A 9

enn=% x1, eis=v%{ -x3,

oz =% ox1, asz=9%-x3,

and the functions
&
&

b
3

by the expressions

6i4=¢¥1A'77A ’ 6A=¢§‘A'77A ’

61———’!/):1[‘-0'

’

(3.112)
(3.113)
RP x L¥(Ao) ,
R?,
RP x L}B) ,
R? ,
(3.114)

63 =‘1/’::3F'a ’

where o is the solution to equation (3.37).
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3.5.2 Recursive solution of the integral equation

We now consider the original integral equation (3.37)
Po=f.

The main results of this section are the following two lemmas, which construct the
solutions ¢ of equation (3.37) from the solutions 74,7p of equations (3.105) and (3.106).
Since the proofs are quite similar, we only present the proof for Lemma 3.8.

Lemma 3.8 If Discretization C1 is used, so that operators Pap, Pg4 can be approzimated
via (3.88)-(3.89), and if, in the notation of Section 3.5.1, all six operators P, P44, PR,
@, Qaa, QBB are non-singular, and if furthermore the operator

A; :RP x L%(Ap) = RP x L¥(Ap)
given by
Ay = IRpyz2(ay) = 041 - Mhp o) - Mp 4, (3.115)

is also nonsingular, then to accuracy O(1/p*~1),

o4 = nNat o, Mig-(ad - Mg, AT (3.116)
(68 — ofy - My - 67) — 67),

o = MB+éi-Mpy (AT -0f) - M)p- (3.117)
(5{9—01% ’leaA"sfi)“‘si‘i)-

Proof. Using definitions (3.39)—(3.42), the integral equation
Po=f

can be rewritten in the form (3.43)-(3.44). The approximations (3.82) and (3.83) for P4p
and Pp4, respectively, can then be used to obtain an explicit solution to the coupled equa-
tions (3.43) and (3.44) in terms of the functions 94,78, ¢1,, ¢3, defined by (3.105), (3.106),
(3.109), (3.110), respectively. Indeed, applying the operator P4 to equation (3.43) and the
operator Pg} to equation (3.44), we have

o4+ Pyy - Pan(o8) = Pri(fia), (3.118)

Pgk - Ppa(o14) + o8 = Pgp(fip)- (3.119)

Substituting the approximations (3.82) and (3.83) into (3.118) and (3.119) yields the for-
mulae

ola+ Pig 1, Mip Y1, -0 = na, (3.120)
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Pgh-t15-Mpy -9l <014+ 0 = 18, (3.121)

or
T4+ b1, Mg ¥l - 015 = 14, (3.122)
b1 Mba-¥i, - 014+ 05 =18, (3.123)

where we have used the definitions (3.109), (3.110) for ¢y, and ¢, respectively. Now,
multiplying (3.123) by ¢, - M} 5 - gbe and subtracting it from (3.122), we obtain
(Tr2(ay — $14 Mhp - %1, - b15 - Mba-¥1,) 04 = (3.124)
na— 1, - Mip -9l -np.
Similarly, multiplying (3.122) by ¢y, - Mpa gbfA and subtracting it from (3.123) results in
the equation

(IL"’(B) - ¢1B . MéA y d’{q * ¢1A : M};B . tb{B) *gjp = (3.125)
B — P15 '4M113A : '»bﬂ - NA-

Due to (3.112) and (3.180), we can rewrite these equations in the form

(Ir2(ay — b1, - Mip -0 - Mp - (¥])) <014 = na — é1, - Mjp - 67, (3.126)
(Ir2s) — $15 - M4 - (afi - Mip - ¥1})) - 0)g = 1B — $15 - Mp 4 - 61 (3.127)
By application of Lemma 2.5, we obtain
o = (ppay+ 1, -Mip-afy - Mpy - (3.128)
(IRpxr2(a0) — @1 - Mg - of) - MB4) ™ - 41) - (na— 1, - Myp - 6P),
op = (Ipamy+ 15 Mba - (Imexrz(ao) — @1 - Mip-afy - Mp,)™ - (3.129)

ofy - Mg -¥1,) - (1B — b1 - Mby - 671).
The equations (3.116), (3.117) are now obtained from equations (3.128), (3.129) and equa-
tion (3.115). o

Lemma 3.9 If Discretization C2 is used, so that operators Pyp, Pg s may be approzimated
via (3.82)-(3.83), and if, in the notation of Section 3.5.1, all siz operators P, Pss, PBB,
Q, Qaa, QBB are non-singular, and if furthermore the operator

Ay : L*(B) - L*(B)

given by
A, =1Ip - Pgp-Mp, - ofy - Mip, (3.130)
is also nonsingular, with M35, M3, defined by (3.90)-(3.91), then to accuracy O(1/p*~1),
o4 = A+, Mip-(A7'-Pgp-MBy,- (3.131)

(68 — ofy - M35 - 18) — 18),

op = A7'-(ns- Pgy- M3 61). (3.132)
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3.5.3 Further Analytical Results for Discretization C2

We now collect a number of identities which are necessary for the algorithm to be presented
in Section 3.7. First, we apply Lemma 3.9 to the particular cases f = 1, f = 13 to obtain
analytical expressions for the functions x; and x3 defined in equations (3.107) and (3.108).
We omit the proofs here, as they are quite similar to the proofs for Lemmas 3.8-3.9

Corollary 3.2 If Discretization C2 is used, so that operators Pag, Pgs may be approzi-
mated via (3.82)-(3.83), and if, in the notation of Section 3.5.1, all siz operators P, Pya,
Pgg, Q, Qaa, QBB are non-singular, then to accuracy O(1/p*1),

Xia = ($a,+¢1,-Mip-A7" - Pgp-Mp, - afs) x (3.133)
(—¢14Mip- (A7 - Pgp-Mb,-afy - Mig - Pgp + Ppp))

xus = (=A7'-Pgp M, -afy)x(A7'- Pgp) , (3.134)

X34 ¢3A -Cp + ¢14 : MXB : (Az_l : PEE : MgA ' (3'135)
(afs -Cp - afl . Mile ¢35 Cu) — ¢35 - Cu)

X3y = A7'-(¢sp-Cu—Pgp-Mp,-ofy-Cp), (3.136)

where the coefficients a;‘g- and are given by equation (3.112).

We will also require analytical expressions for the inner products é;, and é3 defined in
(3.114) in terms of the restricted inner products éf and 64 defined in (3.114). The proofs
follow readily from Lemma 3.9.

Corollary 3.3 If Discretization C2 is used, so that operators Pap, Pga may be approxi-
mated via (3.82)-(3.83), and if, in the notation of Section 3.5.1, all siz operators P, Pya,
Pgg, Q, Qaa, QBB are non-singular, then to accuracy O(1/p*1),

6 = P -0= (3, x08)T -014+ (04 x Ig)T -0y (3.137)
_ [ 8 +of - Mip- (A7 Ppp- M- (8 — ofy - Mip -nB) — 1B) )
G'lB
b3 = CL-43 -op+Ch-85 +Ch-af - Mip- (3.138)

(A1 Ppg - Mby - (8 - oy - M3 -5) — ) -

Special cases of Corollary 3.2 are obtained when f = 1, or f = 3. The proofs follow
easily from the definitions of x; and x3 in (3.107) and (3.108).
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Corollary 3.4 If Discretization C2 is used, so that operators Psg, Pgs may be approzi-
mated via (3.82)-(3.83), and if, in the notation of Section 3.5.1, all siz operators P, Py,
PgB, Q, Qa4, @BB are non-singular, then to accuracy O(1/p*1),

M,, x N,
) o
Xl]B
with Mpp, Npp : RP — RP given by
My, = aga"'agl 'M,?tB 'Ai_l 'Pgé‘MﬁA'afa ’

Npp = —afy-Mjip (87" Pgp-Mpy-ofy - Mip - Ppp+ Ppp

Corollary 3.5 If Discretization C2 is used, so that operators Pag, Pga may be approzi-
mated via (3.82)-(3.83), and if, in the notation of Section 3.5.1, all siz operators P, Psa,
Pgg, Q, Qaa, @BB are non-singular, then to accuracy O(1/p*~1),

M
Q13 = ’(ﬁ:lr * X3 = ( pp ) , (3.140)
X3|B
with My, : RP — RP given by
My, = 0343 'CD+aef.11 'MiB,'(AEI ’PELI? - MB, -

(afs-Cp —afy - Map - ¢3, - Cu) — 63, - Cv) .

Corollary 3.6 If Discretization C2 is used, so that operators Pap,Pgs may be approzi-
mated via (3.82)-(3.83), and if, in the notation of Section 3.5.1, all siz operators P, Pa4,
PpB, Q, Qaa, @BB are non-singular, then to accuracy O(1/p*~1),

Q31 = ¢g'X1 = (3141)
(CT 3, -x15 +Ch-ads+ Ch oy - Mip - A7' - Pgpy - M3, - of) X
(—Ch - o8 - Mjp-(A7' - Pgp-MB, - ofy - Mip - P3h + Pgp))
Corollary 3.7 If Discretization C2 is used, so that operators Pyp, P4 may be approz-

imated via (3.82)-(3.83), and if, in the notation of Section 3.5.1, all siz operators P,
Psa,PBB, Q, Qaa, @BB are non-singular, then to accuracy O(l/pk"l),

azs =93 - x3= (3.142)
Cl - ¥3, X35+ Ch - 083 Cp+Ch - oy - Mip - (A7" - P - MB 4 -

(afa'CD_all‘ll 'M,?lB - 93p 'CU)_¢3B 'CU)'

Finally, combining Lemma 3.9 with the expressions (3.133)-(3.136), we have
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Corollary 3.8 Suppose Discretization C2 is used, so that operators Pap, P4 may be ap-
prorimated via (3.82)-(3.83), and suppose that in the notation of Section 3.5.1, all six
operators P, Py, PpB, Q, Qa4, QBB are non-singular. Suppose further that the function
F :la,c] = R is defined by the formula

F(e) = (2): ( 3 ) +x3(a) - da + o(z), (3.143)

with Ay € L*(B), and A1, A3 € RP. Then on the interval [a,b], to accuracy O(1/p*~1),
F(z) = ¢1,(2) - 1 + ¢3,(2) - 3 + na(2) , (3.144)
with the functions 1 € RP x L?(Ap), ps € RP defined by the formulae
m = Mip-(AT'-Pap-Mp, - (ofs (M +Cp-2s) -
oft - Mip - (Ppp - A3 + ¢35 - Cu - s+ 1B) + 8{') ~

Pgh-X2—¢3,-Cu-ds—1B),
s = M +Cp-As. (3145)

Similarly, on the interval [b,c], to accuracy O(1/p*1),

A
F(z) = x1,5(2) - ( ,\; ) + x3,5(2) - A3 + 0|B(2). (3.146)
Proof. Restricting (3.143) on the subintervals A, B of [a, ¢], respectively, we have
A
F]A = Xl[A ° ( A; ) + X3|A 'A3 +G'IA ) (3.147)
A
‘F]B = XI‘B ‘ ( A; ) + X3|B ° A3 + alB . (3.148)

Now, (3.148) is equivalent to (3.146), and the expression (3.145) results from combining
(3.147) with (3.131), (3.133), (3.135), and comparing the resulting expression with the
expressions (3.144). a

3.6 The Analytical Apparatus for Smooth Solutions

In this section, we present results for the solution of the integral equation (3.1), when the
solution is smooth. Like Section 3.5, the techniques of the present section are used to merge
independent solutions on a large number of subintervals until the full solution is obtained.
In addition, the notation and theorems of the present section strongly resemble those of
Section 3.5, but with two important differences. First, the underlying discretizations are
different (Discretization D for the present section, Discretizations C1 and C2 for Section
3.5), resulting in different factorizations of P4p and Pg4. Second, because the two sections
assume different merging strategies, the relations (3.162)—(3.165) in the present section are
different from the relations (3.101)-(3.104) of Section 3.5.
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3.6.1 Notation

We let b = (a + ¢)/2 denote the midpoint of [a,c], and denote the subintervals [a,b] and
[b,¢] by A and B, respectively. Given the integer ¢ associated with Discretization D (see
Corollary 3.1), we define r = (¢ — a)/2?, and define subintervals

Ay = [a,a+r], (3.149)
A = [b—rb), (3.150)
B. = [bb+1r], (3.151)
By = [c—r,c]. (3.152)

In addition, we require the operators
P : L*a,c] = L*[a,c],
Pss : L*a,b] - L%a,b)],
Pug : L%*[b,c] — L?[a,b],
Pgy : Lz[a,b] - L2[b, c],
Pgp : L%b,c] — L?b,c],
defined by (3.36), (3.39), (3.40), (3.41), (3.42), respectively. Due to Theorem (3.2), when
we are using Discretization D we may approximate P4g and Pg4 via the expressions
Pap =~ 1,-Mag-93,, (3.153)
Pea = oy -Mpa-9y1,, (3.154)
with
¥, : RPUY x [3(A,) - [}(A),
Y1, @ ROV X I%(By) — I%(B),
Y2, 1 L*(Ap) x RP7D o [3(4),
Y2 : L*(B) x R”@N) - [¥(B),
interpolation operators given by (3.57) and (3.58), and with
Mup : L*B.)x RP(@™) 5 RP(-1) x [2(4,),
Mps @ R0 x I%(A.) — L*(B:) x RPEY),

defined by (3.61), (3.62), respectively.
We define the operator

Q : L*[a,c] x R?? = L*[a,c] x RPY,

by the expression

QU@ = x(@) + [ k(z,0) x(t)dt. (3.155)
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We additionally require the four operators

x RP(3-1) _, [%[q,b] x RP"(3-1) |
x R7(#=1) _ [2[q,b] x RP(7) |
x RP(=1)  [2[b, ¢] x RP(@-1) |
x R7(4=1) - [2[p, c] x RP"(4-1) |

Qaa : L*a,b
Qap : L?[b,c
Qpa : L%[a,b
OBB : Lz[b,c

— PR ] .

defined by the formulae

Qaa(X)(z) = x(z)+ /abk(:z:,t)- x(t) dt, (3.156)
Q@) = [ Ket)-x(d, (3.157)
) = [ ka0 X (3.158)
Qss(0)(@) = x(=)+ /bck(a:,t)- X(8) dt. (3.159)

Given interpolation operators

"/’[a,c] : RP > Lz[a, c]a
P4 : RP > LZ(A),
v : RP - L*(B),

defined by (3.14), we will in this section refer to them by 3, ¥3,, and t3,, respectively.
The operator 3 is related to 13,, %3, via the expressions

Y3, = ¥3,-Cp, (3.160)
Y3 = ¥35-Cu, (3.161)

with Cp,Cy : RP — RP? given by (3.21), (3.22), respectively. We in addition require the
zero operators

04, : RPUEDx [2(A;) - L¥(B),
04, : RP > L*(B),
0, : RV x L}(Bs) — L*(A),
0, : RP - L%*(A).

Given Discretization D, we require the interpolation operators

b ¢ RPOx I(By) - Ilad,
e @ Lz(Af) x RPY — Lz[a,c],
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given by the formulae

Via = P34, X 04, , (3.162)
Y15 = 0B, X %1, (3.163)
VYo = P2, X 04y, (3.164)
Y2, = 0B, X ¥, - (3.165)

Assuming that the operators P44, Pgp are nonsingular, we define the functions

na ¢ A— R,
n8 : B—R,
via the formulae
na = Pga(fia), (3.166)
ne = Ppp(fis). (3.167)

Similarly, assuming that the operators @,Q44,@pBpB are nonsingular, we then define the
operators

x1 : RPYx LY By) — L*a,c],
x2 : L*(Af) x RP? = [%a,c],
xa : R? = L[%a,(],
¢1, : RPUD x [2(4) — L¥A),
bra + LA x RV L 12(4),
¢s, : R” > L*(4),
bia © R*0D x [2(B)) - I3(B),
$25 : L*(B)x RP(7D — 13(B),
¢35 : R? - L%(B),

via the formulae

x1 = Q7'(¢1), (3.168)

x2 = Q7 (¢2), (3.169)
xs = Q\(¢3), (3.170)
1, = Qas(¥1,), (3.171)
b2, = Qaa(¥24), (3.172)
$3, = Qxa(¥s,), (3.173)
$15 = Qpp(¥1), (3.174)
¢2B = QEIB(¢2B)a (3175)

¢35 = Qpp(¥sp) - (3.176)
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Finally, given the transpose defined by (3.98), we will define operators

am
Qaj)
a3
Qg
a2
Qo3
Qazy
Qazy

Q33

an
Qap)
Qa3
Qg
Qg2
Qo3
Qa3
Q3o

Q33

a1l
aj2
Qi3
Q21
022
023
a3
Q32

Q33

RP(a-1) L*(A) » R % [2(4,),
L*(Ay) x Rr (-1 _, gr(e-1) L*(A.),
R? - RP-D x [%(4,),

R x [}(A,) > L*(Ay) x RP(4-1) |
L2(Ap) x R o [2(Af) x RP(4Y) |
R? - L}(Ay) x RP(:-) |

RP(-1) x [*(A.) - RP,

L*(A;) x RP@Y) L, R? |

R? - R?

RP (1) x [}(B;) - RV x [%(By),
L*(B.) x RP-1) , RP-D « [2(By)
R? - R7(-Y) x [*(By),

RP (-1 x [*(B;) — L*(B,) x RP(4-1) |
L*(B.) x R"(#71)  [%(B,) x RP(T71) |
R? — L*(B,) x RP(:-1) |

R?(+-1) x [}(B;) —» R,

L*(B,)) x RP-1) L, RP |

R? - R?

RP? x L*(B;) - RP? x L}(By),
L*(A;) x RP? — RPY x [*(By),
R? — R x L%(By),

R x L*(By) — L*(A;) x RP?
L*(A;) x RP7.— L*(A;) x RPY
R? — L[*(A;) x RPY |

R x [*(Bs) - R?,

L*(A;) x RP? - RP

R? - R?,

71
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by the formulae

A _ T
a11—¢1A'¢1A
A _ T
a3 = Y3, b1,

A _ T
ag = Y3, - d1,

0{31 = ¢1TB “P1p
ofy =¢T - 41,

B _ T
ag = Y3, d1p

oan =9 x1, oz=149f-

a21 = ¢g.

Qa3 = ng .

and the functions

by the expressions

X1, Q=197

X1, as=¢3.

&

A _ T
afy =i,
A _ T
ay = P,

A _ T
ag; = Y3,

B T
oy = Yi,
B _
an—’ﬁ%};

B _ T
agzy = Y3,

* ¢2A ? af3 = ,‘p':er * ¢3A y
¢ ¢2A ) aélS = ¢gA * ¢3A ] (3-177)

'¢2A 9 ag3=¢g,4°¢34 ’

.¢28 ’ a%=¢{3'¢35 )
P25 » a?s = ¢:2FB “P3p (3.178)

* ¢2B ’ a§3 = ¢gB .¢3B ’

X2 a13=¢’ir'x3 )
X2, a3=1%7 ‘X3, (3.179)

X2, =Y x3,

R0 x I7(4,),
L%(A7) x RP6)
€ R?,

R~ 5 L%(By)
L*(B;) x RP-1) |
€ R?,

R”? x L*(By) ,
L*(Af) x RP?,
€ R?,

6=yl cna, 64=9] -na, 68=91 -ma,
8 =vl, s, =41, 8, & =9I -ns, (3.180)
61=¢:1r'0a 62=¢g°07 63=¢g'0?



3.6. THE ANALYTICAL APPARATUS FOR SMOOTH SOLUTIONS 73

where o is the solution to equation (3.37).

3.6.2 Recursive solution of the integral equation

We now consider the original integral equation (3.37)
Po = f.

The main result of this section is the following lemma, which constructs the solution &
of equation (3.37) from the solutions 74, 7p of equations (3.166) and (3.167).

Lemma 3.10 If Discretization D is used, so that operators P4p, Pga can be approzimated
via (3.153)-(3.154), and if, in the notation of Section 3.5.1, all siz operators P, P44, Ppp,
Q, Q44, @BB are non-singular, and the operators

Al : Rp~(¢1—1) X LZ(AC) N Rp.(q_l) % LZ(AC) :
Ay i IX(Ba)x RPED 3B x RPFGD |

given by
Al = IRP'(G‘I)XL"’(A,;) - Ol‘141 . MAB . a% . MBA, (3.181)
Ag = Ir2(ByxRe (-1 — a?z -MgBa - a‘ﬁ - My, (3.182)

are also nonsingular, then to accuracy O(1/p*1),

0|A=77A+¢1A-MAB-AEI'(G%-MBA-éf—éf) , (3.183)
OB =18 + 25 Mpa- AT - (ofy - Map - 67 — 61 . (3.184)

Proof. Using definitions (3.39)—(3.42), the integral equation
Po=f

can be rewritten in the form (3.43)—(3.44). The approximation (3.59) and (3.60) for P4p and
Ppg 4, respectively, can then be used to obtain an explicit solution to the coupled equations
(3.43) and (3.44) in terms of the functions 74, 7B, ¢1,, P24, P34, P15, P25 and ¢3, defined
by (3.166), (3.167), (3.171), (3.172), (3.173), (3.174), (3.175), (3.176), respectively. Indeed,
applying the operator P;} to equation (3.43) and the operator Pgp to equation (3.44), we
have

a4 + Pix - Pa(918) = Pia(fia); (3.185)
Pgh - Pra(o14) + 915 = Pgp(fip)- (3.186)

Substituting the approximations (3.59) and (3.60) into (3.185) and (3.186) yields the for-
mulae

oo+ Pia -1, Mag 93, - 0| = N4, (3.187)
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Pgh-tng-Mpa 9], - 014 + 08 = 18, (3.188)

or
o4+ b1, Mag - ¥7, -0 = na, (3.189)
$2p5 - MBa - ¥, - 014+ 0|8 = B, (3.190)

where we have used the definitions (3.171), (3.175) for ¢1, and ¢,, respectively. Now,
multiplying (3.190) by ¢1, - Map - ¢{B and subtracting it from (3.189), we obtain

(Ip2(ay = b1, Map -¥3, - d2p - Mpa-91,) - 014 = (3.191)
naA— b1, - Map- @b{, -1B-

Similarly, multiplying (3.189) by ¢z, - Mp4 - @bfA and subtracting it from (3.190) results in
the equation

(Ir2(B) — $25 - MBa - ¢$A “P1, - Map - ¢§B) o = (3.192)
1B — ¢25 - Mpa - ¥L, - 1a.

Due to (3.177), (3.178) and (3.180), we can rewrite these equations in the form

(I2(ay — $14 - MaB - (053 MBa -91,)) oo =14 — b1, - Map - 55, (3.193)
(Ir2(B) — $25 - MBa - (ofy - MaB - ¥3,)) - 015 = B — 625 - MBa - 67 (3.194)

By application of Lemma 2.5, we obtain

o = (Ia+é1, Ma-(IpapyxRote- — 032 Mpa -ofy - Map)™' - (3.195)
(Be)
ofy - MBa-91,) (4~ ¢1, - Mas - 82),

op = (Ip+ 625 - MBa - (Inpe-vxp2(a,) — 041 Map - 0y - Mpa)™" - (3.196)
ofy - Map - ¥3.) - (1B — 2, - MBa - 671).

The equations (3.183), (3.184) are now obtained from equations (3.195), (3.191) and equa-
tions (3.181), (3.182). o

3.6.3 Further Analytical Results

We now collect a number of identities which are necessary for the algorithm to be presented
in Section 3.8. First, we apply Lemma 3.10 to the particular cases f = 91, f = 2, f = ¥3
to obtain analytical expressions for the functions x1, x2 and x3 defined in equations (3.168)
and (3.169).



3.6. THE ANALYTICAL APPARATUS FOR SMOOTH SOLUTIONS 75

Corollary 3.9 If Discretization D is used, so that operators Psp, P4 can be approzimated
via (3.158)-(3.154), and if, in the notation of Section 3.5.1, all siz operators P, Pa4, PBB,

Q, Qaa, QBB are non-singular, then to accuracy O(l/p"‘l),
Xia = ($3,+¢1,-Map-A7" a3y - Mpa - ofs) x (3.197)
(=1, - Map-A71-0d),
Xy = (—¢25 - Mpa-AT - afy) X (3.198)

($15 + 25 - MBa-AT! - 0f) - Map - 0F)) ,

Xoa = (2, +61, Mag-A7'-03s Mpa-ofy) X (3.199)
(=1, - Map - A" - afy)
X2p = (—62p Mpa-AT' - afy) X (3.200)

(¢3B +¢2B -Mpy 'Al—l 'a{tl -Myp agS) ’

Xsa = 63,-Cp+¢1,-Map-A7"- (a2 - Mpa-ofy-Cp— o33 -Cy) , (3.201)
X3p = ¢35 CU+ oy -Mpa-AT'-(afi - Myp - ofs-Cu - oty -Cp), (3.202)

where the coefficients a;-‘} and ag are given by equations (3.177) and (3.178).

Proof. We only prove the expressions (3.197), (3.198); the proofs for the remaining expres-
sions (3.199), (3.200) and (3.201), (3.202) are nearly identical.

Substituting in equations (3.195), (3.191) the functions ¢;,,¢1, defined by (3.171),
(3.174) for the functions 74, 75 defined by (3.166), (3.167), and the matrices af;, af, defined
by (3.177), (3.178) for the vectors &, 62 defined by (3.180), we obtain

X1y, = 2y +é1,-Mas- A7'-0fy - Mpa-9l)- (3.203)
(¢1A - ¢1A * MAB .a%),
X1 = (Ir2B)+é25 - MBa- A7l of - Myp- ¢2TB) . (3.204)

($2p — b2 - MBa - 0f}).

The expressions (3.197), (3.198) are now easily obtained from the equations (3.203), (3.204).
O

We will also require analytical expressions for the inner products 4y, 8, and 3 defined
in (3.180) in terms of the restricted inner products &f!, 62, 64, 62, 64, and 68 defined in
(3.180).

Corollary 3.10 If Discretization D is used, so that operators Pap, Pps can be approz-
imated via (3.153)-(3.154), and if, in the notation of Section 3.5.1, all siz operators P,
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Paa, PeB, Q, Qa4, QBB are non-singular, then to accuracy O(1/p*1),

&1 = ¥ -0 =(¢s, X OA,)T°U|A + (031¢1B)T°0|B
68 +ofy - Mup-A7' - (afy - Mpa - 68 - 63)

= , (3.205)
6 +ofy - Mpa- AT - (ofy - Map - 67 - 6f)
by = ¢2’{ 0= (¢2A X 04, )T *OlA + (032 X ¢33)T *O|B
84 +afy - Map - A7 - (efy- Mpa - 6f — 67)

= : (3.206)

65 +afy-Mps-AT! - (afy - MaB - 67 — 61')

83 = 43 -0=(¥3, Cp)" 014+ (¥3,-Cv)T - 0B

Ch -8 +Ch -8 +Ch - ofy - Map - D7 - (o - Mpa - 8 — 67)

+CF -afy - Mpa- AT' - (afy - Map - 63 — 68 . (3.207)
Proof. Multiplying equation (3.183) by %3 , and T ,» and equation (3.184) by "bifa and
1/1:{}3, we obtain

¥l o4 = 64 +af-Map-A7'-(ad - Mpa-6{ - 6F), (3.208)
¥l oy = 64 +af-Mup-A7 (b, Mpa-6{ - 67), (3.209)
vl -op = 6P +ab, - Mpa-AT'-(of) - Map -67 - 6f), (3.210)
V3,05 = 68 +afy-Mpa-A7'-(afy- Map-67 - 6f). (3:211)

Now, expressions (3.205), (3.206) and (3.207) are easily obtained from (3.208)—(3.211).
0O

Special cases of Corollary 3.10 are obtained when f = v, f = 15, or f = 93. While the
objects in Corollaries 3.11-3.19 are different from those of Corollary 3.10 (Corollary 3.10
is concerned with the vectors 8y, 6263, while Corollaries 3.11-3.19 are concerned with the
matrices a1, @12, @13, 021, 022, a3, A3y, @32, &:33), the proof for each of Corollaries 3.11-3.19
is nearly identical to that of Corollary 3.10.

Corollary 3.11 If Discretization D is used, so that operators Psp,Pps can be approz-
imated via (3.153)-(3.154), and if, in the notation of Section 3.5.1, all siz operators P,
P4, Pgp, Q, Qas, QB are non-singular, then to accuracy O(1/p*1),

an =9 -x1= ( %::: ﬁ:: ) ) (3.212)
with
» : RP—>RP,
RP(-Y x [2(B;) - R?,
R? — RP(4-Y) x [3(By),
R?(e-1) x [*(B;) — RP(-1) x [2(By),

SREE

3
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given by
A A -1, B A
Mpy = o3z+o3-Map- Ay -05-Mpy-oi;,
A -1__B
Mpn = —a3-Mup-A; -ap,
B -1, A
My = —aj3-Mps Ay -of3,
B B -1, A B
Mnn = o1 +ogy-Mpa-Ay -ajy-Map-ag; .

Corollary 3.12 If Discretization D is used, so that operators Psg, Ppa can be approz-
imated via (3.153)-(3.154), and if, in the notation of Section 3.5.1, all siz operators P,
Paa, P, Q, Qaa, QBB are non-singular, then to accuracy O(1/pF1),

M M
a1z =9 xz = ( il ) , (3.213)

with

My : L¥Af) x RPGD o R?,

My, R? —» RP,

My, : L*Ap) x RPG-Y o PO 5 [2(By),

M,, : RP - RP(-1) x [%(B)),
given by

My, = af+ofy-Map-A7'-af,-Mpa-afy ,

My, = —of -Map-A7'-af;,

M., = —a% -Mpg- A;l -aﬁ ,

M, = a{a3+ag-MBA-A1'1-af1 -MAB-a% .

Corollary 3.13 If Discretization D is used, so that operators Psp,Pp4 can be approz-
imated via (3.153)-(3.154), and if, in the notation of Section 3.5.1, all siz operators P,

Paa, PeB, Q, Qaa, QBB are non-singular, then to accuracy O(1/p*~1),
M
o =T x5 = ( My ) , (3.214)
np
with
M,, : RP - R?
M., : RP - RP(-1) x [%(By),
given by
My = of-Cp+afy-Map-A7 - (agy- Mpa-ofy-Cp — a3y - Cy)
an = a% ~Cu+a1% Mgy -Al—l -(afl -Mup -a% -Cu—af;;’CD) .
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Corollary 3.14 If Discretization D is used, so that operators Pyg, Pg4 can be approz-
imated via (3.153)-(3.154), and if, in the notation of Section 3.5.1, all siz operators P,
Pas, PBB, Q, Qas, QBB are non-singular, then to accuracy O(1/p*~1),

T an Mnn
a1 =Y ‘x1= ; (3.215)
2 A ( Mpp My, )
with
M., : RP — L*A;) x RP-1),
Mg, @ RPOD x [2(By) — L*(Af) x RP(7Y),
My, R? - R?,
M,, : RP(-1) x [%(B;) — R?,
given by
M. = afs+ag -Map-A7'-afy- Mpa-ofy,
My = —af-Map-A;1 0B,
My = _agz -Mpy - Al—l . a‘143 s
My, = 03B1+03B2’MBA'A1_1’a'{ll‘MAB'aflo

Corollary 3.15 If Discretization D is used, so that operators Psgp, P, can be approz-
imated via (3.153)-(3.154), and if, in the notation of Section 8.5.1, all siz operators P,
Pas, PeB, Q, Qas, @BB are non-singular, then to accuracy O(1/p*~1),

T o _ | M My
Q2 =Y "Xz = ( My M, ), (3.216)

with

My : LX(Ag)x RP6-D Ly 2(4,) x RPG-D),

M., : RP - [*(A;) x RP@-1),

My, Ly(Af) x RP@-1) _, RP,

My, R? — RP,
given by

My = ofy+efy-Map-A7' -0, -Mpa-ofy

My = —afy-Map-A7"-op,

My, = —afy-Mpa-A'-ofy,

My, = ofy+afy-Mpa-AT'-ofy - Myp-oy .
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Corollary 3.16 If Discretization D is used, so that operators Psp, Pga can be approz-
imated via (3.153)-(3.154), and if, in the notation of Section 3.5.1, all siz operators P,

Paa, P, Q, Qaa, QBB are non-singular, then to accuracy O(1/p*~1),
M,
ay =] -xs= ( Mo ) ; (3.217)
PP
with
My, : RP = L}(A;) x RPG-Y),
My, : R? - R?,
given by
M., = a‘243-CD+a‘241 - Mup -A;l '(a%'MBA'afa'CD —a%-CU) s
M, = ag-CU+a3%-MBA-Ai'1 -(a’lql-MAB -011233~Cu—a‘{‘3'CD) .

Corollary 3.17 If Discretization D is used, so that operators Psg,Pps can be approz-
imated via (3.153)-(3.154), and if, in the notation of Section 3.5.1, all siz operators P,

Paa, PBB, Q, Qaa, QBB are non-singular, then to accuracy O(1/p*~1),
az1 = PI-x1=
(CT .oy +CL .oy - Myp-A5' 0B, - Mpa-ofy (3.218)

—Cg -013% -Mpg- A;l -aﬁ,’) X
(=CL -y - Map - A7 -a3) + CF - 0§ +
Cg-a;%~MBA~A1_1 -aﬁ Map a«ﬁ) .
Corollary 3.18 If Discretization D is used, so that operators P,g, Pgs can be approz-

imated via (3.153)-(3.154), and if, in the notation of Section 3.5.1, all siz operators P,
Pas, Ppp, Q, Qaa, @BB are non-singular, then to accuracy O(1/pF1),

azz = Y1 x2=
(Ch-a%+Ch-af - Map - A7 -afy - Mpa - ofy
~Cf - oy Mpa - AT - ofy) X
(=Ch-ofy - Map A7 -afs + CF - oy +
CT.-of, -Mps AT -ofl -Mpp-aB) . (3.219)
Corollary 3.19 If Discretization D is used, so that operators Psp,Pga can be approz-

imated via (3.153)-(3.154), and if, in the notation of Section 3.5.1, all siz operators P,
Pya, Pp, Q, Qaa, @B are non-singular, then to accuracy 0(1/pk'1),

ass =PI -x3= (3.220)
Cg-a§3-CD+Cg.a§1-MAB-A2_1-(a%-MBA-aﬁ,,-CD——a%-CU)
+Cg-ag3-CU+Cg-a;%-MBA-A1'1-(aﬁ-MAB-ag-CU—-afa-CD).
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Finally, combining Lemma 3.10 with the expressions (3.197)—(3.202), we have

Corollary 3.20 Suppose that Discretization D is used, so that operators Pag, Pgs can be
approzimated via (3.153)-(3.154), and suppose further that in the notation of Section 3.5.1,
all siz operators P, P44, Pep, Q, Qaa, @BB are non-singular. Suppose finally that the

function F : [a,c] — R is defined by the formula

7@ = () ( 2 ) 0@+ (32 ) #xa0) 2+ o), (3.221)
with
M, A2 € RE,
Az € RPUE-D x [2(By),
Aan € L*(Ap) x RPGE-Y),
Then on the interval [a,b], to accuracy O(1/p*1),
F(z) = ¢1,(2) 1 + b2,(2) - 2 + 83,(2) - p3 + 1a(2) , (3-222)
with
m € RPED %24,
pa € L*Ap) x RPG-1),
H3 € Rk,
defined by the formulae
m = Map-A7'-(ay-Mpa-(afs- A+ ofy- A+ ofy-Cp - A3+ 67)
—afy - M2 — By (A2 + Cu-X3) - 68) ,
B2 = Az,
3 = A1+ Cp-As. (3.223)
Similarly, on the interval [b, c], to accuracy O(1/p*™1),
F(z) = ¢1,(z) -1+ d2y(2) - va + d3,(2) - v3 + B(2) 5 (3.224)
with
n € RPEY x [¥(By),
v, € L*B.)xRr@-1)
v3 € R?,
defined by the formulae
o= Az,
v2 = Mpa-A7'-(af)-Map-(afs- A2+ af) - Az + afy - Cu - A3 + 67)

~afy - da1—afy- (M1 4+ Cp - X3) - 87,
v3 = A2+Cu-As.

(3.225)
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Proof. Restricting (3.221) on the subintervals A, B of [a, c], respectively, we have

Fiy

A A
R I ) IS

by by
Fp = xup- ( ,\E ) + X2y5 - ( ,\:; ) + X35 - A+ 0|5 - (3.227)

Now, the expressions (3.223), (3.225) follow by combining (3.226), (3.227) with (3.183),
(3.184), (3.197), (3.198), (3.199), (3.200), and comparing the resulting expression with the
expressions (3.222), (3.224). o

3.7 Description of the Algorithm for Singular Solutions

In this section, we present a merging strategy for integral equations with end-point singu-
larities using Discretizations C1 and C2. We subdivide the whole interval [a,c] into 2M
subintervals, where M is a positive integer. The boundary points by, bs, . .., bary are defined
by the expressions

b o= a (3.228)
o= ¥ (2Al2;:;2; Dte oci<men) (3.229)
b = F 622]\(42_2]‘: ) reeci<omn (3.230)
bamsr = c. (3.231)

We now define subintervals By, B,,..., Boas by the formulae

B; = (bj,biy1), (1<i< M) (3.232)
B; = (bsm+1-isbam2-i)y (M +1<i<2M) (3.233)

so that By, By and Baryy, Bary2 are all the same length, and for all ¢ = 2,..., M, the
subintervals B; and Bjs4; are equivalent in length, and are twice the length of B;_; and We
also define subintervals As, As, ..., Arr, Apy2, AM+3, - - -, Aoy (for notational convenience,
we leave Apryq undefined) by the formulae

A; = B U By,
Ai = A UB;, (3Li< M)
Ay = BmUBpmia,

A = A;,UDB;, (M+2SiS2M)
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3.7.1 Notation

Generalizing the notation of Section 3.5, we will denote by P4,, Pp; the restriction to the
interval A;, B; of the integral operator P, respectively, so that

Ps(0)(z) = o(z)+ /b %"“ k(z,t)-o()dt, (1<i<M) (3.234)

Pp(0)(z) = o(e)+ /b:::'i' k(z,8)-o(t)dt, (M+1<i<2M) (3.235)

Pa(0)z) = o(a)+ /bb‘“ k(z,t)-o(t)dt, (2<i< M) (3.236)
Pa(o)z) = o(z)+ bw“‘k(a:,t)-a(*t)dt, (M+2<i<2M) (3.237)

for any o € L%(4;),0 € L%(B;), respectively. Similarly, we will denote by Q4;,@p; the
restriction to the interval A;, B; of the integral operator @, respectively so that

Qa()=) = o)+ [ Ka) x(Od, (L <i<M) (3.238)
Q5. (x)(z) = o(z)+ /b::i‘j‘k(w,t)-x(t)dt, (M+1<i<aM)  (3.239)
Q@) = o)+ [T Ha) xOd, @i (3.240)
Qu()(@) = o(z)+ /b::i‘:k(w,t)-x(t)dt, (M+2<i<oM)  (3.241)

for any x € L%(A;) x RP, x € L%(B;) x R?, respectively. For each B; we define the functions

nB; : Bi—-R,
$15, © RPx LBy — L¥(B)),
¢35, : RP = L*(B)),
as the solutions of the equations
P, (nB;) = fB:» (3.242)
QB:(¢15,) = Y15, (3.243)
QB(¢35,) = Y3, (3.244)

Similarly, we define the functions
na;, @ Ai-R,
$1a, + RPx L¥(A) - L¥(4),
$3,, : RP > L*(4A),
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by the formulae

Pp(04;) = fais (3.245)
QA.‘ (XIA'-) = Q/JIIA.. 9 (3.246)
Qai(X34;) = V3y4, (3.247)

provided the operators Py, Pp,,Q 4;,@B; are nonsingular.
For each i = 1,...,2M, we define the operators and functions

ofi : RPx L*B;)— RP x L*(B;),
off : RP > RPXI¥B),
off : RPxLYB;)—R?,

asBaf : RP S RP,

8% ¢ RPx IX(B)),

& € RP,
by the formulae
B; T
0y *¢IB ¢113 s a13—¢13 ¢3B, ’
a3Bl ¢3B ¢13 9 a33"¢3B ¢3B 9 (3.248)

& =y, ne., & =Y, mp, .
Foreachi=2,...,M,M + 2,...,2M we define the operators and functions

ofi : RPx L*(A) — R x L*(4),
ofi : RP > RP X L*4;),
off : RPxL*A)— R?,
aa’}g : RP > R?,
&4 € RP x L}(4),
& € R?,
by the formulae
ahl =], Xia s 013 =V, X,

A
Q) = ¢2A‘ X1y, » Q2 = ¢gA; " X24 (3.249)

A; A;
61'=¢¥'A','UA." 62'=¢%'Ai'aA

Finally, we define operators

M3 g, : L*B;)— L*By),
MéZ’Bl : Lz(Bl) - Lz(B2) ’
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M3, Buia © L(Bumy2) = L*(Bumy1)

M§M+2BM+1 : L*(Bmyr) = L*(Bm+2) ,
Mg, : L*(Bin) > RPx L*4), (i=2,...M-1,M+2,...,2M 1),
M3 4 : RPXI*A) - L*(Biy), (i=2,....M-2,M+2,...,2M - 1),
M} 4, : R?xI*(Asm) — R x L} (An),
Mipar ¢ R? X L*(Anm) - RP x L*(4sm)

which are given by (3.86), (3.87), (3.90), (3.91).

3.7.2 Discretization of the Restricted Integral Equations

Choosing an integer p > 1, we construct the p scaled Chebyshev nodes tin, defined by
(3.18) on each of the intervals B;, ¢ = 1,2,...,2M. We then discretize the three integral

equations (3.242), (3.243), (3.244) via the Nystrém algorithm based on p—point Chebyshev
quadrature.

Remark 3.9 We use the standard Chebyshev quadratures (see [16], [18], [20]) when the
particular operator being discretized is of the form mg3(P4p), m3(Pp4) (defined in Lemma
3.5) or of the form my(P4p), m2(Pp4) (defined in Lemmas 3.4). When the operator is of
the form Py4, Ppp, or of the form my(Psg), m1(Pp4) (defined in Lemma 3.3), then it is
discretized via the singular Chebyshev quadrature rules described in Section 3.4. o

The resulting approximations to the functions 7p;, ¢ B ¢2B‘, at the nodes ¢;,. will be
denoted by

ﬁB.‘ = (ﬁ%;’ ﬁ%n seey ﬁ%,) y
¢IB‘. = (¢i36’¢33i’.“’¢f36) ’
¢3Bi = (¢:133;’$§B,-""’$§B,-) )

respectively. For each interval 4;(1 < ¢ < M - 1), we do not construct approximations
for 04;,X1,., X2,. for the entire interval A;, but only for the “rightmost” subinterval B;y;.
Similarly, for each interval Ai(M+1< i< 2M — 1), we construct approximations for
TAirX14,0 X2, O for the “leftmost” subinterval B;y;. The resulting approximations to
these functions at the nodes th-’+1 are denoted by

(&}4”3‘,&?4”3‘,...,&ﬁiw‘) (i=2,....,.M,M +2,...,2M),
XlA”B = (X}AilB;’X%A‘lB;,...’XIIJAHB,-) ’(z = 2""’M’M+ 2’°°°’2M)’
ol o2 oP ;

(X3A:‘|B."X3Ai13,-""’X3A.'|B'~) (i=2,....M,M+2,...,2M).

Remark 3.10 It is well-known that the order of convergence of the approximations #;,
P1,05 2:;> $3;, to the functions 7, #1,15 92,5 3, is p. Since all subsequent steps in the
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construction of an approximate solution & to the integral equation (3.37) are analytic, the
convergence rate of the full algorithm depends entirely on the parameter p. For example,
by using 16 scaled Chebyshev points on each subinterval at the finest level, one obtains a
sixteenth order method.

The parameter p also determines the order of Chebyshev polynomial used to approximate
well-separated regions of the kernel. For example, choosing p = 8 results in single precision
interpolation accuracy the kernels of interest, while choosing p = 16 results in double
precision accuracy.

Thus, p determines both the order of convergence (for example, eighth order convergence
for p = 8), and the mazimum accuracy (for example, single precision accuracy for p = 8).
(]

The operators of the form Mg, MB4, a11,013,a3; and functions of the form é;, A; all
have the property that they are composed of a finite rank function (corresponding to Cheby-
shev approximation for well-separated intervals) and an L? function defined for an interval
not well-separated. The L? portion of each of these operators is discretized at p Cheby-
shev nodes; we will refer to the discretizations of these operators as M AB> M BA, 011,013,
a31,61,A1, respectively. We will also refer to the discretizations @ss, 63, A3, which are
equivalent to ass, 83, A3, respectively, since the operators ass, 3, A3 are finite dimensional.

3.7.3 Informal Description of the Algorithm for Singular Solutions

We begin by directly solving the integral equations (3.242), (3.243), (3.244) on each of the
subintervals B;. The algorithm then proceeds with an upward sweep for computing the oper-
ators oy 3 afs, o4, o, and functions 67, 4%, and a downward sweep for computmg Mg
R2” and /\ € R?. Using Corollaries 3.3-3.7, we first obtain data of the form ozst1 , 64 from

ob §B1, B’ 6Bz, and also obtain oM ,84¥ from aﬁ”“,&sBM“, azM“,&fM“. Then,

Qg"305%,

using Lemma 3.8 and Corollaries 3.2-3.7, we obtain for each 1 = 3,..., M, M + 3,...,2M

the functions TAij; Xlagg, > X3agp,0 the operators aft‘, and the functions 64¢ from the
functions np;, ¢15,, P35, , the operators aft‘ =1, a5 and the functions s , 65,

The splitting process proceeds in the reverse order. First, since [a,¢] = AM U Agpr, we
can use Lemma 3.8 to construct A2, A42m (by inspection, /\{1 is the expression to which
¢1, is applied in equation (3.116), AP is the expression to which ¢, , is applied in equation
(3.117), and M4 = 0,8 = 0). Using (3.146) from Corollary 3.8, we can immediately obtain

. . A
the solution gyp,, using the functions TAmny s Xlaggs,, * X2ap and the vectors Ay ™,
M M

A « . . . . .
A2 M. Similarly, we obtain the solution 0|p,, using the functions T Aamimyp* Xlagarymy,,?

X28,0015, 1, and the vectors /\f“‘ , /\g”‘. Corollary 3.8 also provides the formula for the

calculation of A%, A% given A1 A4+1 Therefore, we compute the A%, A{™* in the
order i = M — 1,M — 2,...,2, and subsequently use equation (3.146) from Coro~lla,ry 3.8
to determine the solutions oyp;,0p,,,,- We then calculate four final functions, A /\Bl
/\BM“ /\BM“ € R?, from the vectors A2, A{2, :\‘f” +2 /\AM“ Using equation (3.143) from
Corollary 3.8, we obta.m the solutions gyp,,0|B,,-
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To summarize, the algorithm consists of three parts. First, a sufficiently fine subdivision
bi,b2,...,boar41 of the interval [a,c] is chosen so that, on each of the intervals B;, the
functions np;, ¢$1 5 P3 B> CAiig; Xla g ) X34, €A1 be accurately represented by a low order
Chebyshev expansion (the latter three functions are not computed for both i = 1 and ¢ =
M+1). On each of the intervals B;, the equations (3.242)—(3.244) are solved (approximately)
by direct inversion of the linear system arising from a Nystrom discretization. Second,
the functions O Aijg;» Xlag . 1 X345, 0 matrices aft‘ and vectors 6% are computed for i =

2,...,M,M+2,...,2M. The vectors z\‘f‘,/\g‘, are computed for i = M, M —1,...,2 and
also for ¢ = 2M,2M —1,...,M + 2, and finally the vectors AP AB:, Af““,z\f““. The
desired function o is then recovered on each subinterval B;.

The following is a more detailed description of the numerical procedure.

Algorithm C
Comment [Define the computational grid.]

Create 2M subintervals on [a, c] by using the sequence of boundary points &), bs,...,

baar, baar41 given by (3.228)—(3.231). Create subintervals By, ..., Boar defined by (3.232)-(3.233),
and choose the number p of Chebyshev nodes on each B;. Determine the locations of the

scaled Chebyshev nodes ¢; s; 28,5 -+ tpp, On each interval B;, and evaluate the functions

f, %1, Y2 at these nodes, obtaining fg,, ¥ ;s ¥3p,. Compute the discretized operators

MB;B:, MB;B;, MBM+‘}BM+91 MQM+2BM+17 MA.'B.'.,.U MB;+1A¢ (l = 21 ey M- 1)

M+2,...,2M - 1), Ma,, A, Ma, 4, using one-dimensional and two-dimensional

Chebyshev transforms, as appropriate (see Theorem 3.2 and Lemmas 3.3-3.5).

Step 1.
Comment [Construct the approximate solutions 7jp,, ¢1 ap é3 4, on each interval B; ]

doi=12,..,2M
(1) Construct the two p x p matrices on B; obtained through a Nystrom discretization
of the corresponding integral equation.

(2) Solve the three p x p linear systems on B,l by Gaussian elimination, obtaining

the values 7jp,, 15, , 435,-
end do

Step 2.

Comment [Construct the four matrices &ﬁ*,aﬁ,&ﬁ,&fg and the two vectors 6? ",6:? ‘ on each

interval B;.]
doi=1,2,..,2M
Evaluate the four matrices a5}, &5, &2, &5 and the two vectors 8¢, 65 using the

p-point Chebyshev quadrature formula (see Remark 3.9).
end do
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Step 3 (Upward Sweep).

Comment [Construct the three functions d4,, , X1 Ais, X3 Ais,? the four matrices &ff, &, as7,
&44 and the two vectors 61,68 fori=2,..., M,M +2,...,2M]
(1) Compute the three functions &4, ,X14 aimy’ X3 Azpy? the four matrices 6232, &%, a457, 453,

and the two vectors 6312, 822 from the data Mg, p,, Mp,B,, 7B, P15,: 935, abr aB: &b

aZy, a2 6B 6B abs, 601,881,883 §B3 | using the results of Lemma 3.8 and

Corollaries 3.2-3.7. Similarly, compute the three functions &4,,,, 1Barss’ Xia,, F31myyny”
M+42

= : ~AMis ~AMts ~AM4z ~AM43 CAM4a
X3 AM4313yy s the four matrices &7+, &73"*?, 3,"**, a33""*, and the two vectors §; ;
SAM+3 Y Y ~ 1 e ~Bymi1 ~Bumyr

b3 from the data MBy 41 Bryas MBayaBrar TBarass ¢15M+,7¢33M+,’ a5y 03

~Bymyr ~Bm4r ~Bmyz ~Bumiz ~Bmia ~Bmyaz {Bm4r Bmyr {Bmiz $Bmya
Qgy 03z, Gy 83,01 gy, 6 » 83 , 61 ;63 .

(2) do i= 3,4,...,M,M+3,M+4,...,2M
Compute the three functions G4,,, ’ilﬂ-‘m. ) isAl‘lB" the four matrices &’1‘1‘, &fg, ag;,ag‘g,

~A. ~A. ~ " ~ v ~Aicy ~Aio
and the two vectors 67, 8" from the data My, ,p;, Mp,a,_, fiBi» $1p,, P35, G11 813

~Ai_y ~Aicy ~B; ~B; =~B; ~B; fAi-1 FAi-y B: EB; . -
837 Gy, G ary, G0 &g, 614' 1,641,868 §B: using the results of Lemma 3.8
and Corollaries 3.2-3.7.

end do

Step 4 (Downward Sweep).

Comment [Construct the two vectors :\"{1", A4 for all intervals A;. Compute the vectors AB AB:
XBM+1 XBM+1 ]
1 » A3 -
(1) Set X;‘M =0, :\:‘;’M = 0. Use the results of Lemma 3.8 to construct :\‘14” , :\‘14“‘ from the
data GiM, afan 5 §fam

(2) do i=2M-1,2M-2,.. .,2M,M-2,M-3,...,2
Use Corollary 3.8 to compute the vectors A%¢, 34* from the vectors lambdaf
end do

i+1 YAiq
A

(3) Use Corollary 3.8 to compute the vectors :\f , 7\51 from the vectors :\‘14’, :\{;’, and to
compute the vectors AP+, AZM+! from the vectors A& M+?, A4M+2,

Step 5.

Comment [Compute the solution o of equation (3.37) at the nodes t1, ,%25,...,tps, for each
interval B;.]

(1) Determine the values of the the solution oy, , 0|B,,,, using equation (3.144).

(2) do i=2,3,.. ,M,M+2,M+3,...,.2M
Determine the values of the solution o|p; using equation (3.145).
end do
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Remark 3.11 Inspection of the above algorithm shows that the amount of work required
is of the order O(M -p®). Step 1 involves solving three pX p linear systems for each of the 2M
intervals. Step 2 requires for each interval the application of two p X p matrices to two px p
matrices each (a total of four matrix-matrix multiplies), and also requires the application of
the same two p X p matrices to a length p vector. Steps 3-5 require no more than O(M - p?)
operations. Since N = 2M - p is the total number of nodes in the discretization of the
interval [a, c], we can write the CPU time estimate in the form O(N - p?). a

3.8 Description of the Algorithm for Smooth Solutions

We turn now to the construction of the fast algorithm for the solution of the integral
equation (3.37)
Po=f,

using Discretization D, and based on the apparatus developed in Section 3.6. The main
tool at our disposal is the ability to merge the solutions of restricted versions of the integral
equation in adjacent subintervals (Lemma 3.10). As this suggests a recursive procedure, we
begin by subdividing the whole interval [a, c], on which the solution to (3.37) is sought, into
a large number of subintervals. For the sake of simplicity, we assume that m is a positive
integer and that M = 2™ is the number of subintervals created. The boundary points of
the subintervals are then defined by a strictly increasing sequence of numbers

by, ba,. .., bar, bar4, (3.250)

with b, = a and bpr41 = ¢. For each i = 1,..., M, we define the interval B via the
expression
B* = [bi, bit1], (3.251)

and create a hierarchy of intervals Bf by recursively merging adjacent pairs. That is, for
eachj=m-1,...,1,0,and i =1,..., M, we define
= Bif', | J By (3.252)

We will refer to each fixed I as a level. We will also refer to the two intervals Bé"!'jl and

BtY as children and to the larger interval B! as a parent.
It is obvious that

B; = [bl+(i—1).2m°' »b14i.2m—1] (3.253)
and that for each level /,
21
[a, c] P U B'! . (3.254)
i=1

Furthermore, since in this section we are using discretization D, so that the number of
points in a subinterval is proportional to the size of the interval), the dimension of the finite
rank portions of Mg, Mp4 given by (3.61), (3.61), for an interval B! is p- (m — ).
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3.8.1 Notation

Generalizing the notation of Section 3.6, we will denote by P;; the restriction to the interval
B! of the integral operator P, so that

Puo)e) = o@+ [T Kat)o()ds (3.255)
14(i—1)-2m—1{

for any ¢ € L%*(B}). Similarly, we will denote by @i, the restriction to the interval B! of
the integral operator @, so that

Qi) = x(z)+ / i k(z,t) - x(2) dt (3.256)

b1+(i—1)~2m—1

for any x € L%(B!) x R*(m=1), For each B! we will define the functions

m, : BI—R, (3.257)
¢, = RPOD X I3(B) — IX(BY), (3.258)
$2; = LA(B}) x RPm=) _, 13(BY), (3.259)
$3, + RP— L*(B}), (3.260)
as the solutions of the equations
Pii(mia) = figt, (3.261)
Qi,l(¢1;’1) = ¢1|Bl- ) (3.262)
Qii(P2i0) = Y2, (3.263)
Q€,1(¢3.‘,1) = ¢3|Bl. ) (3.264)

provided the operators P;;, Q;; are nonsingular.
For each I =0,1,...,m,and i = 1,2,...,2, we define the operators

ot o RP™D x [2(Bh o RP(m-D) x [2(BY,
oly : LBl x RP(™=D _, Rr(m=1) x [2(Bh),
aly : R? - RP(™) x [2(BY),

obl o RPm-) ¢ [2(BY - L¥(B!) x RP(m-D),
oy : L¥(BY) x RPm=D  [2(Bl) x RP (=),
a;’é : L2(B,l) x RP — R”‘(’"'l),

of : RP0"D x [12(BH) - R?,

ofs : L*(B!)x R*(m=) , RP,

agg : R? - RP,
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by the formulae

il T
all—¢1.1 P15 o= 1.; P2, als ¢l, b3,

0‘21 = ’/’2., 144 5 a22 = 1/’2., 2, 023 = 1/1%:1 P35 (3.265)

T
0‘31 ’/’3,, P14, 5 0‘32 = ‘/’3,, P2y » 0‘33 = ’/’3., ¢3.z ’

and the functions
67! € RPD x 2B,
6 € IXBj)xRrmY,
63 € Rp,

by the formulae
o =Wl 8 =, 65 = m (3.266)
Finally for each I = 0,1,...,m—1,and i = 1,2,...,2!, we define the operators

Mg gis : LA(Bgl') x RPN - RPO=) o p2(BiH),

21—1

Mgiigis = RPOD 5 3B )  L3(BY) x RPmD),

2i—-1

defined by (3.61) and (3.62).

3.8.2 Discretization of the Restricted Integral Equations

Choosing an integer p > 1, we construct the p scaled Chebyshev nodes ¢; s defined by (3.18)

on each of the intervals B™ ¢ =1,2,..., M. We then discretize the two integral equations
(3.261), (3.264) via the Nystrom algorlthm based on p—point Chebyshev quadrature (see
Remark 3.9). The resulting approximations to the functions 7, 1> D2iy> P3;, at the

nodes 77  will be denoted by

ﬁi,l = (ﬁc‘l,b ﬁz?,l’ MRS ﬁzl) ’
(51;,1 = (‘;};,v 95%.‘,1’ T ‘;Ilji,x) ’
(52.-,. = ((5%;’, ’ (Z’gg,; ey %.’,x) ’
{53.',1 = ({5113.',1’ J’g.‘,l 1o %-‘,1) ’
respectively.

The operators of the form M4p, MB4, a1, 042, a3, agy, g2, s, a3y, a3z and functions
of the form 6y, 62, A1, Az all have the property that they are composed of a finite rank function
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(corresponding to Chebyshev approximation for well-separated intervals) and an L2 function
defined for an interval not well-separated. The L? portion of each of these operators is
discretized at p Chebyshev nodes; we will refer to the discretizations of these operators as
Mug, Mg 4, 611, 812, 613, @21, 8ga, @93, Bisy, sy, G33, b1, 82, A1, Xz, Tespectively. We will also
refer to the discretizations &as, 83, A3, which are equivalent to azs, 3, A3, respectively, since
the operators aas, 83, A3 are finite dimensional.

3.8.3 Informal Description of the Algorithm for Smooth Solutions

We begin by directly solving the two integral equations (3.261), (3.264) on each subinterval
B™ at the finest level, as discussed in the preceding section. Theorem (3.20) then shows that
o restricted to B[" can be expressed as a linear combination of the four solutions 7; m, ¢1; .,
#2i > P3; m+ Thus, it remains only to determine the vectors :\’i’m, :\g’m € Rp(m+1-i) :\;’m €
RP? for each of the M subintervals B*. Fortunately, this can be done recursively. To see
this, suppose that, at some coarse level ! < m — 1, we are given the vectors :\’i’l,:\;’l, :\Ql
for the subinterval B!. Then Corollary 3.20 provides formulae for the calculation of the
corresponding vectors :\fi_l’l+l,:\2i’l’l+l, :\2i’l+1,:\§i’l+l € Rr(m-1), :\gi_l’l+1,:\§i—l’l+l €
R? for the two child intervals By}, and Bg’l, respectively. On the coarsest level, we
observe that A" = 0, A" = 0, A3! = 0, i.e. the solution of equation (3.261) on the whole
interval [a, ¢] is simply o.

However, the formulae (3.223) and (3.225) of Corollary 3.6 contain the eighteen matrices
~2’—1 1 ”2' A+ (1 < s,t < 3) and the six vectors §2i~1#+1 §2i4+1(1 < 5 < 3). These quan-
t1t1es are a.lso computed recursively but in the opposite d1rect10n, namely, from the finest
level to the coarsest. They are certainly available at level m directly from the definitions
(3.265)—(3.266). For the interval B! at any coarser level I < m — 1, Corollary 3.10 and
Corollaries 3.11-3.19 describe how the nine matrices &;tl (1 < s,t £3) and the three vectors
1 <s< 3) are obtained from the eighteen matrices @,:, and six vectors 8, of the two
child intervals.

To summarize, the algorithm consists of three parts. First, a sufficiently fine subdivi-
sion by, by, ..., bar4+1 of the interval [a, ¢] is chosen so that, on each of the intervals B; ., the
functions m, ., ¢1, s D2 m»¥3;,, can be accurately represented by a low order Chebyshev
expansion. On each of the intervals B;.,, the equations (3.261)—(3.264) are solved (ap-
proximately) by direct inversion of the linear system arising from a Nystrém discretization.
Second, the matrices &;’t and three vectors 6’ { a,re computed in an upward sweep, beginning
at the finest level m. Finally, the vectors /\ ,/\ , /\’I are computed in a downward sweep,
beginning at the coarsest level. The desired function o is then recovered on each subinterval
from equations (3.221)—(3.222).

The following is a more detailed description of the numerical procedure.
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Algorithm D

Comment [Define the computational grid.]

Create M = 2™ subintervals on [a, ¢] by choosing a sequence of boundary points by, b, ...,
b, bar+1 with by = a and a4y = ¢. Choose the number p of Chebyshev nodes on each
interval B® = [b;,b;11] for i = 1,..., M. Determine the locations of the scaled Chebyshev
nodes 7}, 7%, . .., 7} on each interval B, and evaluate the functions f,¥;, ¥z, ¥3 at these
nodes, obtaining f; m, ¥1; ., ¥2; m>¥3; .- Foreach1=0,1,...,m—1,andi=1,2,.. L2
compute the discretized operators M Bl pit, M Bit1pit1 using one-dimensional and
two-dimensional Chebyshev transforms, as appropriate (see Theorem 3.2 and Lemmas 3.3-3.5).

Step 1.

Comment [Construct the approximate solutions #; yn, $1,-,,,,, 4;2,-,,,,, $3.~,,.. on each interval B".]

do1=12,., M
(1) Construct the two p x p matrices on B! obtained through a Nystrém
discretization of the corresponding integral equation.

(2) Solve the four p x p linear systems on B} by Gaussian elimination,

obtaining the values i ;m, @1, ., $2; ms 3; m-
end do

Step 2.
Comment [Construct the nine matrices &';’,'" and six vectors 8™ on each interval B at the finest
level ]

doi1=1,2,.., M
Evaluate the nine matrices &,;" and three vectors 6>™ using p—point

Chebyshev quadrature formula (see Remark 3.9).
end do

Step 3 (Upward Sweep).

Comment [Construct the matrices &:’t’ and vectors &' for all intervals at all coarser levels I =
m—1,m-2,...,0]

do 1= m-1, 0, -1
do i=1, 2
Compute the nine matrices &';’t' and three vectors 5:" from the corresponding data in
the two child intervals (MBETLB'JI’MB;TIBH_H’ &f:-l’H'l, &f:’“'l, 3,2“1"+1, gf"’“'l),
using the results of Corollaries 3.4 and 3.5.
end do
end do
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Step 4 (Downward Sweep).

Comment [Construct the three vectors Ai™ for all intervals at the finest level.]

Set A! =0, =0, at=o.

do 1=0,m-1
do i=1, 2!
Use Corollary 3.20 to compute the vectors Ai+1,24-1 §2i0+1(] < 5 < 3),
for the child intervals By} and Bi!, from the vectors Ai#(1 < s < 3) of the parent

interval B!.
end do
end do
Step 5.
Comment [Compute the solution o of equation (3.37) at the nodes 1 m,t25m,---,tpgm for each

interval Bf" at the finest level ]

doi=1, M
do j=1,p
Determine the values of the solution & of equation (3.37) at the node ¢;_,. via

formulae (3.221)—(3.222).
end do
end do

Remark 3.12 Inspection of the above algorithm shows that the amount of work required
is of the order O(M - p3). Step 1 involves solving four p X p linear systems for each of the
M intervals. Step 2 requires for each interval the application of three p X p matrices to
three p X p matrices each (a total of nine matrix-matrix multiplies), and also requires the
application of the same three p X p matrices to a length p vector. In step 3, the asymptotic
cost for each B! is bounded by the cost of multiplying the largest matrices from the previous
level (a214+1, alht (1 £ 5,1 < 3), each of which have dimensions p-(m—1)x p-(m—1)).
The asymptotic total cost is given by the series

m-—1
o2t (m-D=4-p*- 2" -1)~2-p° - m. (3.267)
=0

Steps 4-5 require no more than O(M - p?) operations. Since N = M - p is the total number
of nodes in the discretization of the interval [a, c], we can write the CPU time estimate in

the form O(N - p?). o
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3.9 Numerical Results

FORTRAN programs have been written implementing the algorithms described in this
chapter. In this section, we discuss several details of our implementation, and demonstrate
the performance of the scheme with numerical examples.

The following technical details of our implementation appear to be worth mentioning.

1. Algorithm C depends for its stability on (3.242)-(3.247) having unique solutions for
all subintervals A; and B;, while Algorithm D depends on the equations (3.261)—(3.264)
having unique solutions for all subintervals B! (I = 0,1,...,M,i=1,.. .,21). It is easy
to construct examples for which these conditions are violated, even though equation (3.37)
has a unique solution. In such cases, a different subdivision of the interval [a,c] can be
attempted, such that none of the subintervals of the new subdivision coincides with an
interval of the original one. This procedure can be viewed as a form of pivoting, and it
is easy to show that it is always possible to make it work. However, since the numerical
ranks of the discretized operators of the form P4p or Pg4 are sensitive to the sizes of the
subintervals A, B, an implementation of this pivoting scheme would be somewhat involved.
It has not been implemented at this point, and we have not so far encountered a need for
it.

2. We have, however, implemented a crude scheme for detecting high condition numbers in
the algorithms. For Algorithm C, these can occur in the solution of the linear systems on
each of the subintervals B; (Step 1), while computing inverses of the matrices A, defined by
(3.130) used when merging solutions (Step 3), and while computing the inverse A, defined
by (3.115) (Step 4.1). For Algorithm D, these can occur in the solution of the linear systems
on each of the finest level subintervals (Step 1), and while computing inverses of the matrices
A;, A; defined by (3.181), (3.182) (Step 3). In all cases, the condition number of the system
being solved is estimated in the process of solution (we use a standard LINPACK routine),
and the largest of these is returned to the user. When an extremely large condition number
is detected by the LINPACK routine, the resulting solution of the original integral equation
should be viewed as suspect. It is easy to show that when the differential operator is positive
definite, this cannot happen. A more complete treatment of this subject requires further
study.

The algorithms of this chapter have been applied to a variety of problems. Five experi-
ments are described below, and their results are summarized in Tables 3.2-3.14.

In each of these tables, the first column contains the total number N of nodes in the
discretization of the interval [a,c]. The second column contains the relative L? error of
the numerical solution as compared with the analytically obtained one at 5000 equispaced
points within the interval [a, c], where Chebyshev interpolation has been used to evaluate
the numerical solution at each of the 5000 points. The third column contains the maximum
absolute error obtained at any of the 5000 points. The fourth column contains the CPU
time required to solve the problem, excluding the time used to evaluate the solution at
5000 equispaced points, where in all cases the times are given for a Sun SPARCstation 2
computer.
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Table 3.1: LU Factorization timings

n t (sec.)
20 0.100 x10-1
40 0.300 x101!
80 0.180 x10°
160 0.127 x10!
320 0.948 x10!
640 0.723 x102
1280 0.578 x103
2560 | 0.462 x10* (est)

Table 3.2: Numerical results for Example 3.1, p = 5.

n E%(0) E*(0) t (sec.)

20 | 0.184 x10° | 0.952 x10° | 0.500 x10~T
40 | 0.112 x10° | 0.687 x10° | 0.150 x10°
80 | 0.260 x10~! | 0.152 x10° | 0.260 x10°
160 | 0.292 x10~3 | 0.125 x10~2 | 0.510 x10°
320 | 0.241 x10~3 | 0.471 x10~3 | 0.106 x 10!

Remark 3.13 For comparison, Table 3.1 shows times for solving linear systems of com-

parable sizes using the LINPACK LU factorization routines on a Sun SPARCstation 2

computer. o

Example 3.1 The following problem was presented in [24] for the purpose of modeling the
intrinsic viscosities of flexible macromolecules. The equation to be solved is given by the

formulae

L oo(t) 3, 1
——=dt = - -. 3.268
A Ve-g T8t (3.268)
The closed form solution of this problem (due to [7]) is given by the formula
22
o(z) = T- (3.269)
T- \/ﬁ . (1 - zz)?

We solve (3.268) using Algorithm C with the number of Chebyshev nodes p = 5,10,20. The
results of this experiment are presented in Tables 3.2-3.4.

Example 3.2 The following problem was presented in [12] and [31] (in a slightly different
form) for the purpose of modeling an antiplane elasticity problem of a crack terminating
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Table 3.3: Numerical results for Example 3.1, p = 10.

n E*(0) E>(g) t (sec.)

40 | 0.112 x10° | 0.686 x10° | 0.230 x10°
80 | 0.540 x10~! | 0.335 x10° | 0.550 x10°
160 | 0.207 x10~! | 0.166 x10° | 0.123 x 10"
320 | 0.346 x10~7 | 0.240 x10~¢ | 0.252 x10!
640 | 0.789 x1072 | 0.213 x10~7 | 0.508 x 10"

Table 3.4: Numerical results for Example 3.1, p = 20.

n E%(0) E*(0) t (sec.)
80 | 0.541 x10~! | 0.335 x10° | 0.138 x10!
160 | 0.263 x10~! | 0.149 x10° | 0.343 x10!
320 | 0.988 x1072 | 0.720 x10~' | 0.738 x10!
640 | 0.345 x10~% | 0.268 x10~7 | 0.154 x102
1280 | 0.138 x10~1° | 0.116 x10~°? | 0.319 x10°

perpendicularly at a bimaterial interface [31]. The equation to be solved is given by the

1 }dt=4a:—2\/:v+z2.

formulae

/01 a(t){

r—t =z

+ —

+1

The closed form solution of this problem (due in part to [26]) is given by the formula

o(z) = %\/z - z2

We solve (3.270) using Algorithm C with the number of Chebyshev nodes p = 5,10, 20. The
results of this experiment are presented in Tables 3.5-3.7.

(3.271)

Table 3.5: Numerical results for Example 3.2, p = 5.

n E?(0) E>(0) t (sec.)

20 | 0.482 x10~T | 0.102 x10°9 | 0.500 x10— 1
40 | 0.148 x10~! | 0.482 x10~1 | 0.120 x10°
80 | 0.100 x10~2 | 0.619 x10~2 | 0.230 x10°
160 | 0.288 x10~3 | 0.161 x10~2 | 0.460 x10°
320 | 0.155 x10~2 | 0.115 x10~! | 0.102 x10!
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Table 3.6: Numerical results for Example 3.2, p = 10.

n

E(0)

£*(0)

t (sec.)

40
80
160
320
640

0.129 x10~T
0.390 x10-2
0.277 x10~3
0.550 x10~8
0.181 x10~6

0.469 x10~1
0.201 x10-!
0.190 x10~2
0.244 x10-5
0.124 x10~%

0.240 x10°
0.550 x10°
0.119 x10?
0.237 x10?
0.489 x10?

Table 3.7: Numerical results for Example 3.2, p = 20.

n E%*(o) E*>(0) t (sec.)
80 | 0.350 x10~2 | 0.201 x10~T | 0.131 x 107
160 | 0.102 x10~2 | 0.680 x10~2 | 0.336 x10!
320 | 0.699 x10~* | 0.464 x10~3 | 0.728 x10?
640 | 0.144 x10~¢ | 0.862 x10~¢ | 0.151 x10?
1280 | 0.854 x10~1° | 0.564 x10~2 | 0.311 x 102

Example 3.3 This example resembles an experiment presented in [5]
solved solved is given by the formulae

. The equation to be

A-o(z)+ /: [(1+ sin(252))log(|z — t|) + cos(25zt)] - o(t) dt = (3.272)
A-sin(mz) + qi(z) - (1 + sin(252)) + ¢2(2),
with m = 250, A € {0,1}, and ¢y, ¢; given by the expressions
a(@) = % -[log(z) — cos(m)log(1 — z) — cos(ma) (3.273)
[Ci(mz) — Ci(m(1 — z))] — sin(mz)[Si(mz) + Si(m(1 - z))]],
a(z) = cos(25z + m)(25z — m) — cos(25z — m)(25z + m) + 2m, (3.274)

equation is given by

—2(25z + m)(25z — m)

where Ci and Si are the cosine integral and sine integral, respectively. The solution to this

o(z) = sin(mz).

(3.275)

We first solve (3.272) setting A = 1 (a second kind integral equation), applying Algorithm
D to this equation with the number of Chebyshev nodes p = 5,10,20. The results of this
experiment are presented in Tables 3.8-3.10. We then solve (3.272) with A = 0 (a first kind
integral equation), applying Algorithm D to this equation with the number of Chebyshev
nodes p = 10,20 (due to the high condition number, p = 5 yields no accuracy for this
problem). The results of this second experiment are presented in Tables 3.11-3.12.



98

CHAPTER 3. ONE-DIMENSIONAL INTEGRAL EQUATIONS

Table 3.8: Numerical results for Example 3.3, A = 1,p = 5.

n E?(o) E>(q) t (sec.)
20 0.728 x10' | 0.142 x10% | 0.600 x107!
40 0.271 x10? 0.589 x10! 0.310 x10°
80 0.125 x10! 0.218 x10! 0.920 x10°
160 | 0.201 x10° | 0.345 x10° | 0.228 x10!
320 | 0.945 x10~2 | 0.163 x10~! | 0.532 x10!
640 | 0.121 x1072 | 0.234 x10~2 | 0.122 x102
1280 | 0.113 x1072 | 0.190 x10~2 | 0.259 x10?
2560 | 0.112 x10=2 | 0.188 x10~2 | 0.553 x10?

Table 3.9: Numerical results for Example 3.3, A = 1,p = 10.

n

E*(0)

E%(0)

t (sec.)

40
80
160
320
640
1280
2560

0.280 x10!
0.127 x10?
0.947 x107!
0.231 x10~3
0.297 x10~°
0.885 x10~7
0.885 x10~7

0.641 x10!
0.273 x 101
0.138 x10°
0.333 x1073
0.539 x10~¢
0.146 x10
0.146 x10~¢

0.390 x10°
0.159 x10!
0.495 x10!
0.135 x102
0.329 x102
0.751 x102
0.164 x103

Table 3.10: Numerical results for Example 3.3, A = 1,p = 20.

n E%(0) E*(0) t (sec.)
80 0.123 x10* 0.217 x10* | 0.236 x10?
160 | 0.217 x10~! | 0.354 x10~! | 0.105 x10?
320 | 0.214 x107° | 0.288 x10~¢ | 0.344 x10?
640 | 0.321 x1071% | 0.467 x10712 | 0.943 x10?
1280 | 0.107 x10~'3 | 0.340 x10~13 | 0.237 x103
2560 | 0.112 x1072 | 0.310 x10~13 | 0.558 x103




Table 3.11: Numerical results for Example 3.3, A = 0,p = 10.
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n

E*(0)

E%(0)

t (sec.)

40
80
160
320
640
1280
2560

0.102 x10!
0.927 x10°
0.425 x10°
0.740 x10~3
0.313 x10~3
0.861 x10~3
0.202 x10~2

0.165 x 107
0.146 x10!
0.640 x10!
0.135 x10~1
0.791 x10~?
0.200 x10~!
0.414 x10™!

0.420 x10°
0.171 x10?
0.537 x10!
0.143 x10?
0.351 x10?
0.801 x102
0.174 x10°

Table 3.12: Numerical results for Example 3.3, A = 0,p = 20.

n

E*(0)

E*(9)

t (sec.)

80
160
320
640

1280
2560

0.952 x10°
0.207 x1072
0.150 x10~5
0.345 x10~7
0.200 x10~7
0.330 x10~¢

0.160 x10!
0.417 x10~1
0.423 x10~*
0.699 x10-¢
0.436 x10~
0.958 x10~5

0.242 x 10!
0.108 x 102
0.355 x 102
0.978 x10?
0.245 x103
0.575 x10°
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The following observations can be made from Tables 3.1-3.12, and are corroborated by
our more extensive experiments.

1. For Algorithm D, the practical convergence rate of the method is consistent with the
theoretical one.

2. While we have not analyzed the theoretical convergence rate for Algorithm C, in practice
the convergence is determined by the number of subintervals used, as opposed to the total
number of points in the discretization. While double precision arithmetic permits a maxi-
mum of 104 subintervals, our experiments indicate that maximum accuracy is achieved by
using approximately 64 subintervals.

3. Example 3.3 with A = 0 is an extremely ill-conditioned problem, which substantially
reduces the accuracy of the computed results compared to the relatively well-conditioned
Example 3.3 with A = 1. Because Algorithm D is a direct method, the timings for A = 0
and for A = 1 are the same, for equivalent number of points n and order of method p.

4. For both Algorithm C and Algorithm D, most of the computational effort is devoted
to merging the & matrices (Step 3 in both Algorithm C and D). However, the size of the
matrices is fixed for Algorithm C, while for Algorithm D the matrices increase in size for
coarser levels. As a result, Algorithm C is from 3-7 times faster than Algorithm D, for an
equivalent number of points n and order of convergence p.



Chapter 4

(Generalizations and Conclusions

4.1 Generalizations

In Chapter 3, we decomposed a one-dimensional integral operator P into four operators
Paas, PaB, Ppa, Ppp, and then constructed low rank factorizations of P4g and Pggy.
The specific factorization of P4g and Pg4 in Chapter 3 involved subdividing each of the
intervals A and B into a number of smaller subintervals, and decomposing P4p and P, into
a number of operators acting on these smaller subintervals. Each of the smaller operators
either acted on subintervals which were well-separated from each other (the operator thus
can be approximated by a low-order Chebyshev polynomial), or acted on subintervals which,
when discretized, contained few points (the discretization of the operator thus being of low
dimension). Such factorizations can also be applied to integral operators corresponding to
integral equations on a curve, and to operators corresponding to integral equations of two
and three dimensions.

Two problems arise when this method is applied to integral equations on curves. First,
it is more difficult to subdivide A and B into a number of smaller well-separated intervals.
For example, suppose that the curve is described by a polynomial, and suppose further that
one needs to determine the rank of the interaction between two sections of the curve. It is
not clear how to determine whether the two sections are well-separated. A second problem
is that the choice of boundary separating subintervals A and B can dramatically affect the
ranks of the operators P4g and Pga. As an example, consider an integral equation for an
ellipse in which one of the axes of the ellipse is much longer than the other. If the short axis
is chosen to be the boundary separating subintervals A and B, then there are few points
in the discretization which are close to this boundary; P4g and Pg4 will therefore be low
rank operators. On the other hand, if the long axis is chosen to be the boundary separating
A and B, then nearly all the points in the discretization will be close to the boundary, and
the ranks of P4p and Pp4 will be quite high.

When integral operators of two and three dimensions are considered, the rank of the
operators P4p and Ppy is largely determined by the number of points on the boundary
separating A and B. For an N x N discretization in two dimensions, the boundary separating
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A and B is a line containing N points, and the rank of P4p and Pg4 is Nlog N. Thus a
direct solver for a two dimensional integral equation would require order O(N?) arithmetic
operations, and would be of considerable practical interest. On the other hand, for an
N X N x N discretization in three dimensions, the boundary separating A and B is a square
containing N X N points, and the rank of P4p and Pg4 for this operator is N2log N. A
direct solver for a three dimensional integral equation would require order O(N®) arithmetic
operations, and would be prohibitively expensive.

4.2 Conclusions

Algorithms have been presented for the solution of two-point boundary value problems for
ordinary differential equations, and for the solution of one-dimensional first and second
kind integral equations of potential theory. All algorithms have CPU time requirements
proportional to N - p?, with N the number of nodes in the discretization, and p the desired
order of convergence. In addition, the time requirements are insensitive to the condition
number of the discretized linear system, The methods permit the use of schemes with
extremely high orders of convergence, and are quite insensitive to end-point singularities.
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