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1 Introduction

In this note we consider a natural propositional logic of knowledge, common
knowledge, and branching time which is appropriate for distributed systems.
We show that this language may be interpreted in Propositional Dynamic
Logic with Converse (PDLC) [St81,Pr81]. This result makes the relation-
ship between our protocol model and general Kripke models precise (cf.
[F185]) as well as showing that PDLC already suffices for a certain amount
of reasoning about knowledge in distributed systems. It was already known
that the satisfiability problem for propositional logic of branching time is
EXPTIME complete, cf. [EH85]. As a corollary of our result we show that
satisfiability for propositional logic of branching time remains EXPTIME
complete with the addition of any combination of knowledge and common
knowledge operators. (This last result has been independently obtained in
[HVS6].)
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2 Definitions

We define Propositional Temporal Knowledge Logic (PTKL) as follows. Let
PROP = {S),S;,...} be a set of propositional symbols. Let PART =
{1,2,...,n}, n > 2 be a finite set of participants. Let & = &(PART, PROP),
the formulas of PTKL, be the smallest set of strings containing PROP and
closed under the following rules:

1. If o, 8 € ® then so are ~a and a A S.
2. If a,8 € ® then so are Yo, Ga and (aUB).
3. fa € ® and H C PART then Cgpa € ®.

The intuitive meaning of the temporal operators is as follows: Y o means
that o holds at every next step. Ga means that a holds at all points in the
future. (aU ) means that « is true and remains true until 8 becomes true.

We adopt abbreviations for the dual operators: Xa = =Y -a meaning
that o holds at some next step, and Fa = ~G-a meaning that o holds at
some future step.

For H a singleton, H = {i}, we adopt the abbreviation K;a, read “
knows a,” for Cga. The intuitive meaning is that o is true in all conceiv-
able situations that are consistent with #’s local view. In the more general
case Cga is read, “It is common knowledge among the members of H that
a.” This is precisely defined below. See also Fact 2.1 for an equivalent
formulation.

The semantics of PTKL are defined using a kind of Kripke model called
a distributed protocol. See [FI85] for a detailed discussion of this model.
Let PROP be fixed. Define a protocol to be a tuple P = (n,Q,I,7,7).
PART= {1,:..,n} is a set of participants, Q is a set of local states, and Q"
is the set of n-tuples called global states. I C Q" is a set of initial global
states, the function 7 : Q" x PROP — {0,1} evaluates the propositional
letters at each global state, and 7 C Q" x Q" is the next move relation on
global states. Let 7* be the reflexive transitive closure of 7 and define the
reachable global states in P to be

Rp ={qe Q" | forsomese I, (s,q) €7°}.

Intuitively, a global state g is reachable if there is a 7-path s,p1,...,Pr-1,¢
starting in an initial global state s and ending in g.



Given a protocol P = (n,Q,I,7,7), a global state ¢ € Rp, and a PTKL
formula o € ®, we define the satisfaction relation (P,q) |= o« in the usual
way by induction on the complexity of a:

1. For S€ PROP, (P,q) ES & 7(¢,S)=1.

2. (P,q) EYB « (for all p)( if (¢,p) € 7 then (P, p) |= B).

3. (P,q) EGB & (for all p)( if (g,p) € 7* then (P,p) F B).

4. (P,q) E BU~ & (for all n > 0)(for all po,p1,...,Pn)(if (¢ = po and
fori=1,...,n,(pi-1,p;) € 7 and (P,p;) E =) then (P,pn) k= B).

The only unusual case occurs when a = CgpB. For i < n, let (g); denote
the it component of g. Define the equivalence relation ~ on Rp by

piqg e (p)i=(g)i-

For H = {iy,...,1,}, let the equivalence relation Z be the transitive closure

of QUEU...U}\?). Finally we define: ~~

5. (P,q) = CrB & (for all p)(if p X g then (P,p) = A) .
From this definition it is straightforward to prove:

Fact 2.1 [FI85] The following two statements are equivalent for any set
G C PART:

1. (P.p) E Coa.
2. (Vr 2 0)(Viy,...,ir € G)((P,p) b= Ki,Ki, ... K;,a).

3 Méin Results

In Theorem 3.1 below, we give an interpretation of PTKL in Propositional
Dynamic Logic with Converse (PDLC) [St81]. It then follows using Pratt’s
EXPTIME decision procedure for PDLC [Pr81] that the satisfiability prob-
lem for PTKL is solvable in EXPTIME. This is Corollary 3.7. We then
observe in Theorem 3.8 that if a PTKL formula is satisfied by some proto-
col in which at least two participants are mentioned, then it is satisfied by
a protocol in which the only participants are those explicitly mentioned in



the formula. Thus, allowing extra participants with “hidden” state does not
increase the power of the system.

We assume that the reader is familiar with Propositional Dynamic Logic
(PDL), see e.g. [FL79]. PDLC is PDL plus the convese operator: for each
program a we let a~ denote its converse.

Theorem 3.1 There is a simultaneously logspace and time O(n2?) com-
putable mapping f from formulas of PTKL to formulas in PDLC such that
for all « € ®, o 1s satisfiable if and only if f(a) is satisfiable.

The proof is contained in three lemmas. First we define the mapping f
and show that it is easily computable. Next we show that if « is satisfiable,
then so is f(a), and finally we show the converse, that if f(a) is satisfiable,
then so is a.

Let PART = {1,...,n}. The atomic program symbols we will need are
{t,e1,...,en}. Symbol t will correspond to a 7 step and the ¢;’s together

with their converses will correspond to ~ links. The function f is defined
inductively as follows:

1. For S € PROP, f(S)=S.
2. f(~a)=-f(a); flanB)=fla)Af(B).
3. f(Ya)=[t]f(e); f(Ga)=[t"]f(a);
f(aUB) = [(t:=£(8)?)"]f (o) .
4. For H = {iy,...,i,}, f(Cra) = [(e;, Ue;, U...Ue;, Ue; )] f(a).

Lemma 3.2 f is simultaneously logspace and time O(n?) computable.
Proof Straightforward using standard techniques. |

Lemma 3.3 Given a protocol P = (n,Q,I,7,7), there is a PDL structure
h(P), whose worlds are the reachable global states of P, such that for any
PTKL formula o and reachable global state p, (P,p) | o iff (h(P),p) E

f(a).

Proof We define the PDL structure h(P) as follows: the set of worlds W
of h(P) is Rp, and the mapping 7' : PROP — 2% is given by 7/(S) = {p e
Rp | n(p, S) = 1}. For each participant ¢, the meaning of ¢; is given by

plei) = {(pg) € Rp x Rp | pL g},

4




and finally
p(t) = {(p,q) € Rp x Rp | (p,q) €7}
It is easy to show by induction on the complexity of a that for p € Rp,

(P,p) Ea & (h(P),p) E f(a).

We leave the details to the reader. |

Lemma 3.4 Given a PDL structure K = (W,p,n) with atomic program
symbolst, ey,...,e,, there is a protocol g(K) with n = max(s,2) participants
and a surjection n from global states of g(K) to worlds of K such that for
any PTKL formula o and global state g, (9(K),q) = o iff (K,n(q)) E f(c)-

Proof For 1l < i < n, let =; be the reflexive, symmetric, and transitive
closure of p(e;) on W if i < s, and let =; be the equality relation if ¢ > s.
Let [w]; denote the =; equivalence class which contains w. Let M = |W|,
and let w: {0,...,M — 1} — W be a bijection.

We define the protocol g(K) = (n,Q,I,7,7') as follows. Let

Q= {([w)i,m) | weW,1<i<n,0<m< M}
Define the map n : Q" — W by
n({({wlts 1), ([wl2s ), - - ([W]ny ma))) = (X mi mod M),
and let
I = {ge&Q"|for some we W, my,...,m, €{0,...,M — 1},
g = {([wl1,m1), ([w]2, m2), . .., ([w]n,mn)) and 7(g) = w}.

The idea here is that in I, each local state ([w];, m;) has as first compo-
nent the =; equivalence class we are in and the second component gives no
further information except when added to all the other m;’s, in which case
it tells us exactly which world we are in and thus what the allowable next
moves are.

To complete the definition of g(K) let

7= {{g.¢Y € IxI| (n(g),n(q)) €p(t)},
and let

' _J 1 ifn(q) €n(S)
(¢, 5) = { 0 otherwise.

Note that by definition, 7 € I x I and thus Ryg) = I.
For any H C PART, let =g = (Ujexg =i)*-



Fact 3.5 Let p,p' € I with pz p'. Then n(p) =g n(p).

Proof First assume H = {i}. Let p,p’ € I and let w = n(p) and v’ = n(p').

If p~ p/, then the #*® components of p and p’ are the same, so [w]; = [w'];.
Hence, 7(p) = w =; w' = 5(p’). The extension to arbitrary H follows easily

s\
by induction on the minimal r such that (p,p’) € (U,EH L) . ]

Fact 3.8 Letpe I, let n(p) = w and let w =g w'. Then there ezists p' € I
such that n(p') = ' end p .

Proof First assume H = {i}, and let p, w, and w' be as above. We may
write p = (([w]1,m1),..., ([w]n,mn)). Choose k # i, possible since n > 2.
Let p' = {([w']1,m)),...,([w']n,m3)), where m); = m; for all j # k, and
choose m}, such that n(p') = w'. Thus, p’ € I, and since [w']; = [w]; and
m! = m;, we have p ~ p' as desired. The extension to arbitrary H follows
easily by induction on the minimal r such that (w,w') € (Ujeg =i)" |

Returning to the proof of Lemma 3.4, we show by induction on the
complexity of a € ® that for ¢ € Ry(x),

(9(K), e o & (K,n(q)) F f(a)

The only interesting case is when a = CgfB. Let H = {¢1,...,i,} and
q € Ry(k). Then

(9(K),9) = CrB

« forall p € Ryg), if g 2 p then (9(K),p) EB
(by definition of Cg)

« for all p € Ryxk), if n(g) =g n(p) then (K,n(p)) = f(B)
(by Facts 3.5 and 3.6 and the induction hypothesis)

& forallw' €W, if n(q) =g v’ then (K,w') I f(8)
(since n is surjective)

& (K1) E (e Ve U...Ue) 1 (8)
(by definition of =; and PDLC).

This completes the proof of Lemma 3.4 and of Theorem 3.1. [ |




Corollary 3.7 The satisfiability problem for PTKL 1s decidable in EXP-
TIME.

Given a PTKL formula o, let H(c) be the set of participants that appear
in a. More precisely, if Cg,,...,Cq, are the knowledge operators that
appear in @, then H(a) = HyU...UH,. The following theorem shows that if
there are at least two participants mentioned in a formula then adding extra
participants not mentioned in the formula cannot affect its satisfiability.
Note that this is nontrivial because the truth of a knowledge formula in a
particular structure can be affected by participants not mentioned in the
formula.

Theorem 3.8 Let o be a satisfiable formula of PTKL. Then a is satisﬁable.
in @ protocol P = (n,Q,I,7,7) in which n = max(|H(a),2).

Proof Let a be satisfiable in a protocol P, and let n = max(|H(a)|,2). We
will show that a is satisfiable in a protocol with n participants. By Lemma
3.3, f(a) is satisfiable in the PDL structure h(P). But f(a) only contains
program letters ¢ and ¢; for i € H(a). Hence, f(c) is also satisfiable in a
PDL structure K containing only the relations p(t) and p(e;) for ¢ € H(a).
By Lemma 3.4, a is satisfiable in the protocol g(K), which has only n
participants. |

4 Hardness

The following theorem is very similar to the corresponding lower bound in
[FL79]. Emerson and Halpern [EH85] already point out that this theorem
can be proved in this way. We include the details for the sake of complete-
ness.

Theorem 4.1 Let M be an ASPACE(n) Turing machine. Then there is a
logspace and nlogn time computable function d : {0,1}* — ® such that M
accepts z iff d(z) is satisfiable. Furthermore the operator C does not occur
in d(z).

Proof
An instantaneous description (ID) of M for an input of length n will
consists of n+ 3 symbols as follows: a left end-marker 4, n tape cells, a state



symbol ¢ € Qps located immediately to the left of the cell being examined
by M’s head, and a right end-marker b. Let Vps C Qar be the set of M’s
universal states and let Aps be M’s tape alphabet. Let & = QuqUAMU{4,b}
be the alphabet of all possible symbols in an ID of M. We will assume
without loss of generality that M has a clock which causes each computation
branch to enter the unique rejecting state, g"*/¢!, after ¢ steps. We will
also assume that there is a unique accepting state, g2<°¢"*.

Given an input z € {0,1}", we let PROP = {g; |]c€Z and —-1<:¢ <
n+1}. We will let d(z) be the conjunction of the following PTKL formulas.
Intuitively d(z) will assert that each reachable global state determines an
ID of M, that in particular the current global state determines M’s initial
ID on input z, that every global state leads in a next time step to at least
one global state whose ID is a valid next move of M, that every global state
corresponding to a universal ID leads in next time steps to each of the two
possible next moves of M, and that the reject state never occurs. It thus
follows that d(z) is satisfiable if and only if M accepts z.

o G(A™1, Voez(0i A Aryio —7i)) A G(9-1APn41), ie. each cell 4 always
contains exactly one symbol of £, and the end-markers are fixed.

o g8t A (Ai:z;=00i) A (Ai:z;=1 Li), ie. the initial ID is ¢*®™ followed by
z.

o G(Aasvgan Ni=o(@i-1 A Bi Avig1 — Y i), i.e. a cell not bordered
by a state symbol is always preserved.

o G(Apeqp N=o(@i-1ABiAYi+1 = X (0} ABIAYL V o1 ABIAYL,)),
i.e. there is a next step that reflects at least one of the possible next
moves of M.

o G(Asevy, Nmo(@i=1 A Bi Avigr — X(el_y ABIAY,) A Xl A
B! A4Y.1)), i.e. when we’re in a universal state there are next steps
reflecting each of the two possible next moves.

o G(A%o—q[*"), i.e. we never enter the rejecting state.

It is not hard to verify that d(z) meets the required conditions. |

Corollary 4.2 The satisfiability problem for PTKL is EXPTIME complete
even with only one participant and no occurrences of Cp.
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