©Copyright by Leslie Frederick Greengard, 1987
ALL RIGHTS RESERVED

The Rapid Evaluation of Potential Fields in Particle Systems

Leslie Greengard

Research Report YALEU/DCS/RR-533
April 1987

The author was supported in part by ONR Grant N00014-86-1X-0310, in part by NSF Grant DCR-
8106181, and in part by IBM Grant P00038437.



ABSTRACT
The Rapid Evaluation of Potential Fields in Particle Systems
Leslie Frederick Greengard
Yale University

1987

The evaluation of Coulombic or gravitational interactions in large-scale en-
sembles of particles is an integral part of the numerical simulation of a large
number of physical processes. Examples include celestial mechanics, plasma
physics, the vortex method in fluid dynamics, molecular dynamics, and the so-
lution of the Laplace equation via potential theory. In a typical application, a
numerical model follows the trajectories of a number of particles moving in ac-
cordance with Newton’s second law of motion in a field generated by the whole
ensemble. In many situations, in order to be of physical interest, the simula-
tion has to involve thousands of particles (or more), and the fields have to be
evaluated for a large number of configurations. Unfortunately, an amount of
work of the order O(N?) has traditionally been required to evaluate all pairwise
interactions in a system of N particles, unless some approximation or trunca-
tion method is used. As a result, large-scale simulations have been extremely
expensive in some cases, and prohibitive in others. We present an algorithm
for the rapid evaluation of the potential and force fields in large-scale systems
of particles. In order to evaluate all pairwise Coulombic interactions of N
particles to within round-off error, the algorithm requires an amount of work
proportional to N , and this estimate does not depend on the statistics of the
distribution. Both two and three dimensional versions of the algorithm have
been constructed, and we will discuss their applications to several problems in

physics, chemistry, biology, and numerical complex analysis.
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Chapter 1

Introduction

The study of physical systems by particle simulation is well-established in a
number of fields. It is becoming increasingly important in others. A classical
example is celestial mechanics, but much recent work has been done in for-
mulating and studying particle models in plasma physics, fluid dynamics, and
molecular dynamics [24]. '

There are two major classes of simulation methods. Dynamical simulations
follow the trajectories of N particles over some time interval of interest. Given
initial positions {z;} and velocities, the trajectory of each particle is governed

by Newton’s second law of motion:
dzzz:.-
dt?

where m; is the mass of ¢** particle, and the force is obtained from the gradient

= -V;d fori=1,...,.N,

m;

of a potential function . When one is interested in an equilibrium configuration
of a set of particles rather than their time-dependent properties, an alternative
approach is the Monte Carlo method. In this case, the potential function ® has
to be evaluated for a large number of configurations in an attempt to accurately
describe the potential surface.

In a typical application, the potential has the form
® = Bpear + Pesternat + Qfa.r H

where ®,.,, is a rapidly decaying function of distance (e.g. the Van der Waals

potential in chemical physics), ®.sterna is independent of the number of particles
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(e.g. an applied external electrostatic field), and ®,,, the far-field potential, is
Coulombic or gravitational. Such models describe classical celestial mechanics
and many problems in plasma physics and molecular dynamics. In the vortex
method for incompressible fluid flow calculations [12], an important and ex-
pensive portion of the computation has the same formal structure (the stream
function and the vorticity are related by Poisson’s equation).

In a system of N particles, the calculation of ®,., requires an amount
of work proportional to N, as does the calculation of ®.;;.pne;- The decay of
the Coulombic or gravitational potential, however, is sufficiently slow that all
interactions must be accounted for, resulting in CPU time requirements of the
order O(N?). In this dissertation, a method is presented for the rapid (order

O(N)) evaluation of these interactions for all particles to within round-off error.

1.1 Brief History

There have been a number of previous efforts aimed at reducing the compu-
tational complexity of the N-body problem. Particle-in-cell methods [24] have
received careful study and are used with much success, most notably in plasma
physics. Assuming the potential satisfies Poisson’s equation, a regular mesh is

layed out over the computational domain and the method proceeds by:

1. interpolating the source density at mesh points,
2. using a “fast Poisson solver” to obtain potential values on the mesh,

3. computing the force from the potential and interpolating to the particle

positions.

The complexity of these methods is of the order O(N + M logM), where M
is the number of mesh points. The number of mesh points is usually chosen to
be proportional to the number of particles, but with a small constant of pro-
portionality so that M <« N. Therefore, although the asymptotic complexity

for the method is O(N logN), the computational cost in practical calculations



is usually observed to be proportional to N. Unfortunately, the mesh provides
limited resolution, and highly non-uniform source distributions cause a signifi-
cant degradation of performance. Further errors are introduced in step (3) by
the necessity for numerical differentiation to obtain the force.

To improve the accuracy of particle-in-cell calculations, short-range inter-
actions can be handled by direct computation, while far-field interactions are
obtained from the mesh, giving rise to so-called particle-particle/particle-mesh
(P3M) methods [24]. For an implementation of these ideas in the context of
vortex calculations, see [5]. While these algorithms still depend for their effi-
_ cient performance on a reasonably uniform distribution of particles, in theory
they do permit arbitrarily high accuracy to be obtained. As a rule, when the
required precision is relatively low, and the particles are distributed more or
less uniformly in a rectangular region, P*M methods perform satisfactorily.
However, when the required precision is high (as, for example, in the modeling
of highly correlated systems), the CPU time requirements of such algorithms
tend to become excessive.

Appel [7] introduced a “gridless” method for many-body simulation with a
computational complexity estimated to be of the order O(N logN). It relies
on using a monopole (center-of-mass) approximation for computing forces over
large distances and sophisticated data structures to keep track of which par-
ticles are sufficiently clustered to make the approximation valid. For certain
types of problems, the method achieves a dramatic speed-up compared to the
naive O(N?) approach. It is less efficient when the distribution of particles is

relatively uniform and the required precision is high.

1.2 Outline of the Dissertation

The algorithms presented here make use of multipole expansions to compute
potentials or forces to whatever accuracy is required. Portions of the work de-

scribed below have been published previously [20,21,11]. The approach taken is



similar to the one introduced in [36] for the solution of boundary value problems
for the Laplace equation.

In chapter 2, we consider potential problems in two dimensions and be-
gin with the introduction of the necessary mathematical preliminaries. A fast
multipole algorithm is then developed for the evaluation of the potentials and
forces in large-scale systems of particles randomly distributed in a square do-
main. This method requires an amount of work proportional to N to evaluate
all pairwise interactions in a system of N charges. The chapter ends with a
description of an adaptive version of the algorithm whose CPU time require-
ments are proportional to N and independent of the statistics of the charge
distribution.

In Chapter 3, three-dimensional systems of particles are considered. The
mathematical foundation of the method in this case is the theory of spherical
harmonics, which is developed in some detail. In particular, two generalizations
of the classical addition theorem for Legendre polynomials (Theorems 3.5.1
and 3.5.2) are formulated and proved. They appear to have been previously
unknown, and are needed for the development of efficient translation operators
which are critical features of the algorithm. It should be noted, however, that
despite the increased mathematical complexity of the three-dimensional case,
the framework of the fast multipole algorithm is the same as in two dimensions.

In chapter 4, we present numerical results demonstrating the actual perfor-
mance of the method, and in chapter 5, we briefly outline some applications

and generalizations.



Chapter 2

Potential Fields in Two
Dimensions

Many physical processes are adequately described by two-dimensional models,
and this fact is widely exploited in computer simulations. From the computa-
tional point of view, reduction of the dimensionality of the problem has two
major advantages: fewer particles are normally required to obtain a physically
meaningful model of a two-dimensional process than of its three-dimensional
counterpart, and numerical methods for calculations in two dimensions are
better developed and easier to implement. Moreover, the display and interpre-
tation of three-dimensional results pose problems almost non-existent in two
dimensions. Certain processes in the physical world, however, simply can not be
approximated by two-dimensional models. In such cases, full three-dimensional
simulations have to be performed, with the help of appropriate numerical tools.
We postpone the consideration of such problems to the next chapter. For the
moment, we assume that the potential and force fields are known to be indepen-
dent of one of the Cartesian coordinates, say the third coordinate z. In these
situations, the governing equation for potential problems is the two-_dimensiona.l
Laplace equation

VP = 82_(1? + @ =

or?  Oy?

Functions which satisfy (2.1) are referred to as harmonic functions.

0. (2.1)
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The physical model we will consider in this chapter consists of a set of N
charged particles, lying in the (z,y)-plane. In such two dimensional systems,
the force of attraction between two particles varies as the inverse first power of
the distance between them. More specifically, if a two-dimensional point charge
is located at the point (zo,%0) = %o € R?, then for any x = (z,y) € R? with
X # Xo, the potential and electrostatic field due to this charge are described by

the expressions

xo (2, y) = —log(|| x — %o [|) (2-2)
and : )
Exo (I, y) = m (2.3)

respectively. In the remainder of this chapter, all particles are assumed to be
such two-dimensional ones. Section 2.1 below develops a series expansion of
the field due to an arbitrary distribution of charge, while section 2.2 describes
certain translation operators which will allow us to manipulate both far field

and local expansions in the manner required by the fast algorithm.

2.1 The Field of a Charge

1t is well-known that the function ¢y,, defined above, is harmonic in any region
not containing the point x,. Moreover, for every harmonic function u, there
exists an analytic function w : € — C such that u(z,y) = Re(w(z,y)), and
w is unique except for an additive constant. In this chapter, we will work with
analytic functions, making no distinction between a point (z,y) € R? and a

point z + 1y = z € €. We note that

éx, (x) = Re(—log(z — 20)), (2-4)

and, following standard practice, we will refer to the analytic function log(2)

as the potential due to a charge. As we develop expressions for the potential



due to more complicated charge distributions, we will continue to use com-
plex notation, and will refer to the corresponding analytic functions themselves
as the potentials. The following lemma is an immediate consequence of the
Cauchy-Riemann equations.

Lemma 2.1.1 If u(z,y) = Re(w(z,y)) describes the potential field at (z,y),
then the corresponding force field is given by

Vu = (ug,uy) = (Re(w'), —Im(w')), (2.5)

where w' is the derivative of w.

The following lemma is used in obtaining the multipole expansion for the
ﬁ.eld due to m charges.
Lemma 2.1.2 Let a point charge of intensity g be located at zo. Then for any

z such that |z| > |20,

b2 (2) = qlog(z — 20) = ¢ (log(z) - i % (z°>k> : (2.6)

Proof: Note first that log(z — 20) — log(2) = log (1 - 5:) and that |2 < 1.
The lemma now follows from the expansion
00 wk
og(1—w) = (-) 3. %, (27)
k=1 k

which is valid for any w such that |w| < 1.

Theorem 2.1.1 (Multipole Expansion) Suppose that m charges of strengths
{g, i =1,..,m} are located at points {z;, i = 1,...,m}, with || < r. Then for
any z € C with |z| > r, the potential ¢(2) induced by the charges is given by

00

8(2) = Qlog(2) + 3 =%, (2.8)
k=1
where \
Q= Se and ar=) :—(Zi (2.9)

i=1 =1



Furthermore, for any p > 1,

$(z) — Qlog(z Z:—’,:

where
A

1=z

2

c= (2.11)

, A=Y la| , and a=

=1

Proof: The form of the multipole expansion (2.8) is an immediate consequence
of the preceding lemma and the fact that ¢(z) = L%, ¢5(2). To obtain the
error bound (2.10), observe that

14 00
o) - Qoa) -2 %= | 3 % (2.12)
k=1 =p+1

Substituting for a; the expression in (2.9), we have

00 o0 rk rp+1 A 1 p
<A < —l =al- =( )(—) . (2.13)
Ic--'zp;—l z* k"Zp-:Pl klzik ,,,_Zp;l z c—1/ \e¢

In particular, if ¢ > 2, then

p

6(e) - Qlos(e) - 2 %

2| <4 (%)p (2.14)

Finally, we demonstrate with a simple example how multipole expansions
can be used to speed up calculations with potential fields. Suppose that charges
of strengths ¢y, g2, ..., ¢m are located at the points z;,z,...,Z» € C and that

{Y1,Y2, -, Yn} is another set of points in € (Figure 2.1).

We say that the sets {z;} and {y;} are well-separated if there exist points
Zo, Yo € C and a real » > 0 such that

|zi —zo| < 7 foralli=1,...,m,
lyi—w| < r forallj=1,..,n, and

|zo — wo| > 3r.



Figure 2.1: Well-separated sets in the plane.

In order to obtain the potential (or force) at the points {y;} due to the charges

at the points {z;} directly, we could compute
> ba(y;) forall j =1,..,n. (2.15)

This clearly requires order nm work (evaluating m fields at n points). Now
suppose that we first compute the coefficients of a p-term multipole expansion
of the potential due to the charges ¢;, g2, ..., ¢m about zy, using Theorem 2.1.1.
This requires a number of operations proportional to mp. Evaluating the re-
sulting multipole expansion at all points y; requires order np work, and the

total amount of computation is of the order O(mp + np). Moreover, by (2.14),

é«ﬁz;(yj — Qlog(y; Z IyJ <A (%)p (2.16)

and in order to obtain a relative precision e (with respect to the total charge),

p must be of the order — log,(¢). Once the precision is specified, the amount of

computation has been reduced to

O(m) + O(n) , (2.17)
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which is significantly smaller than nm for large n and m.

2.2 Translation Operators and Error Bounds

The following three lemmas constitute the principal analytical tools of this
chapter. Lemma 2.2.1 provides a formula for shifting the center of a multipole
expansion, Lemma 2.2.2 describes how to convert such an expansion into a
local (Taylor) expansion in a circular region of analyticity, and Lemma 2.2.3
furnishes a mechanism for shifting the center of a Taylor expansion within
a region of analyticity. We also derive error bounds associated with these
translation operators which allow us to carry out numerical computations to
any specified accuracy.

Lemma 2.2.1 (Translation of a Multipole Expansion) Suppose that

0

#(z) = aglog(z — z) + Z

k=1 (Z - zo)k

a

£ (2.18)
is a multipole ezpansion of the potential due to a set of m charges of strengths
Q1,925 -+ »Gm, all of which are located inside the circle D of radius R with center

at z5. Then for z outside the circle Dy of radius (R + |20|) and center at the

origin,
b
$(2) = aolog(2) +3_ =, (2.19)
I=1
where
a7} d —ef1—1
b= ——2 + Y apzy , (2.20)
l = k-1

with (1) the binomial coefficients. Furthermore, for any p > 1,
k

A
=)
with A defined in (2.11).

Proof: The coefficients of the shifted expansion (2.19) are obtained by

p+1

#(z) — aglog(z) — Zp: b

=1

l20| + R
V-4

(2.21)

2

expanding into a Taylor series the expression (2.18) with respect to 2. For
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Figure 2.2: Source charges ¢i,4z,...,q are contained in the circle D,. The
corresponding multipole expansion about zo converges inside D;. C is a circle
of radius s, with s > R.

the error bound (2.21), observe that the terms {};} are the coefficients of the
(unique) multipole expansion about the origin of those charges contained in the

circle D, and Theorem 2.1.1 applies immediately with r replaced by |2z0| + R.

Remark: Once the values {ao, @, ..., a,} in the expansion (2.18) about 2, are
computed, we can obtain {bi,..., b,} exactly by (2.20). In other words, we may

shift the center of a truncated multipole expansion without any loss of precision.

Lemma 2.2.2 (Conversion of a Multipole Expansion into a Local Ex-
pansion) Suppose that m charges of strengths q1,4z2,...,qm are located inside
the circle D, with radius R and center at z, and that |2| > (¢ + 1)R with
¢ > 1. (Figure 2.2.) Then the corresponding multipole ezpansion (2.18) con-
verges inside the circle D, of radius R centered about the origin. Inside D, the

potential due to the charges ts described by a power series:
0
(2) = b2, (2.22)
1=0

where

X.a
bo = aolog(—20) + E —:(—l)k, (2.23)
k=1 20
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and

R ok (g [C NS ET A 22

Furthermore, for any p > maz (2 —2_"—), an error bound for the truncated series

ts given by

é(2) — zp: b - ztl < A(de(p+c)(c+1) +¢?) (1>p+1 : (2.25)

= c(e —1) ¢

where A is defined in (2.11) and e is the base of natural logarithms.

Proof: We obtain the coefficients of the local expansion (2.22) from MacLau-
rin’s theorem applied to the multipole expansion (2.18). To derive the error
bound (2.25), we let vo = ao log(—20), 1 = —(l—“fg) for!>1,and B = b — ¥
for { > 0. Then

P 00
$(2) =D b= b2 <S5+ 85 (2.26)
1=0 I=p+1
with
S1 = z v-2| and S;= z B 2. (2.27)
I=p+1 l=p+1
A bound for S, is easily found by observing that
ol ; o z‘l 0 zl
Si = | X wd|<la X <42 (2.28)
I=p+1 l=p+1* 20 - i=p+1*° 20
= 1\ 2 1\ A 1\?
S () A B O - e
l=§-1 ct1 ;_;.1 c c—1/ \¢c (2.29)

To obtain a bound for S;, let C be a circle of radius s where s = cR ("-:-l)

3
(Figure 2.2). Note first that for any p > 24

= =1

¢cR+ R

R < < s < cR. (2.30)

Defining the function ¢, : €\ D; — C by the expression

$1(2) = ¢(2) — ao - log(z — =), (2.31)
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and using Taylor’s theorem for complex analytic functions (see [32], p. 190),

we obtain

f: By 2

_ P B M ‘zl p+1
S = |¢1(2) — gﬂz 2| = < I—————Jf_l (“:s—) ,

l=p+1
where
M = max | (t)].
Obviously, for any ¢ lying on C,
t)| < —
‘¢1( )l - "Z=:1 (t _zo)k

and it is easy to see that

IakISAR" and !t—zo[2R+cR—s=R+f§-.

After some algebraic manipulation, we have

MSA(M>, and _l.‘?_l.>f£'__—.°_.Ri

c¢R

Observing that for any positive integer n and any integer p > 2,

1\" 1\’
(1+—) Le and (1+———-) < 4,
n p—1

we obtain
g, <« ABR+cR)CR+R) (|2 prL P
2= cR(cR — R) cR p—1
Alp+e)(c+1) (1)1’“ 1\ 1
< - P _—
- cle—1) ¢ 1+p—1 1+p—1

4Ae(p+c)(c+1) (1)“’+1 '

c(e—1) ¢

s “¢eR+ R’

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

Adding the last expression to the error bound for S; completes the proof.

The following lemma is an immediate consequence of MacLaurin’s theorem.

It describes an exact translation operation with a finite number of terms, and

no error bound is needed.
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N

Figure 2.3: The computational box (shaded) and its nearest periodic images.
The box is centered at the origin and has area one.

Lemma 2.2.3 (Translation of a Local Expansion) For any complez 2,2

and {a}, k =0,1,2,...,n, |
S an(e =) = 3 (S -20) £ (2.41)

n
k=0 =0

2.3 The Fast Multipole Algorithm

In this section, we present an algorithm for the rapid evaluation of the potentials
and/or electrostatic fields due to distributions of charges. The central strategy
used is that of clustering particles at various spatial lengths and computing
interactions with other clusters which are sufficiently far away by means of
multipole expansions. Interactions with particles which are nearby are handled
directly.

To be more specific, let us consider the geometry of the computational box,
depicted in Figure 2.3. It is a square with sides of length one, centered about the
origin of the coordinate system, and is assumed to contain all N particles of the
system under consideration. The eight nearest neighbor boxes are also shown,

and will be needed in the next section when considering various boundary
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conditions. First, we will describe the method for free-space problems, where
the boundary can be ignored, and the only interactions to be accounted for
involve particles wifhin the computational box itself.

We proceed by introducing a hierarchy of meshes which refine the com-
putational box into smaller and smaller regions (Figure 2.4). Mesh level 0 is
equivalent to the entire box, while mesh level I + 1 is obtained from level [
by subdivision of each region into four equal parts. The number of distinct
boxes at mesh level [ is equal to 4'. A tree structure is imposed on this mesh
hierarchy, so that if 1boz is a fixed box at level I, the four boxes at level [ +1
obtained by subdivision of iboz are considered its children. Two boxes A and
B, with sides of length 2s, are said to be well-separated if they are separated
by a distance 2s. Let D4 and Dp be the smallest disks containing the boxes A
and B, respectively. Then the disks have radii V2-s, and the distance from the
center of one disk to the closest point in the other disk is at least (4 — v/2) - s.
Letting ¢ = (4 — v/2)/v/2 ~ 1.828, the error bounds (2.10),(2.21) and (2.25)
apply with a truncation error using p-term expansions of the order ¢”?. Fixing
a precision €, we therefore choose p = [—log.(¢)] and specify that interactions
only be computed by means of expansions for clusters of particles which are
contained in well-separated boxes. This is precisely the condition needed for

the desired precision to be achieved.

Other notation used in the description of the algorithm includes

®;; the p-term multipole expansion about the center of box ¢ at level [ ,
describing the far field potential due to the particles contained inside the

box,

U,; the p-term local expansion about the center of box 7 at level /, describing
the potential field due to all particles outside the box and its nearest

neighbors,

¥;; the p-term local expansion about the center of box ¢ at level I, describing
the potential field due to all particles outside 1’s parent box and the parent

box’s nearest neighbors.



16

Level 0 Level 1

Level 2 Level 3
Figure 2.4: The computational box and three levels of refinement.

Interaction list:  for box ¢ at level [, it is the set of boxes which are children
of the nearest neighbors of ¢’s parent and which are well-separated from
box ¢ (Figure 2.5).

The fast multipole algorithm is a two-pass procedure. In the first (upward)
pass, we form the multipole expansions ®;; for all boxes at all levels, beginning
at the finest level of refinement. In the second (downward) pass, we form the
local expansions ¥;; for all boxes at all levels, beginning at the coarsest level.

Suppose now that at level I — 1, the local expansion ¥;_; ; has been obtained
for all boxes. Then, by using lemma 2.2.3 to shift (for all ¢) the expansion ¥;_;
to each of box #’s children , we have, for each box j at level I, a local repre-
sentation of the potential due to all particles outside of j’s parent’s neighbors,
namely \iz,j. The interaction list is, therefore, precisely that set of boxes whose
contribution to the potential must be added to \ilz_j in order to create ¥ ;.
This is done by using lemma 2.2.2 to convert the multipole expansions of these
interaction boxes to local expansions about the current box center and adding
them to the expansion obtained from the parent. Note also that with free-
space boundary conditions, ¥o; and ¥;; are equal to zero since there are no
well-separated boxes to consider, and we can begin forming local expansions at

level 2.
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Figure 2.5: Interaction list for box 7. Double lines correspond to mesh level 2
and thin lines to level 3. Boxes marked with an "x” are well-separated from
box 7, and contained within the nearest neighbors of box #’s parent.

Finally, for each box ¢ at the finest level n, we evaluate the local expansion
Wn,1 for each particle contained in box 1. It remains only to include the inter-
actions of each particle in box i with those particles contained in box ¢ and its
nearest neighbors. These interactions are computed directly.

Following is a formal description of the algorithm.

Algorithm
Initialization
Choose a level of refinement n = [logy N, a precision ¢, and set p = [—log.(e)].
Upward Pass
Step 1

Comment [Form multipole expansions of potential field due to particles
in each box about the box center at the finest mesh level. ]

do thoz =1,...,4"
Form a p-term multipole expansion ®p, jpoz, by using Theorem 2.1.1.
enddo

Step 2
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Comment [ Form multipole expansions about the centers of all boxes
at all coarser mesh levels, each expansion representing the potential
field due to all particles contained in one box. ]

dol=n-1,..,0
do iboz =1,...,4
Form a p-term multipole expansion ®; sz, by using
lemma 2.2.1 to shift the center of each child box’s expansion
to the current box center and adding them together.
enddo
enddo

Downward Pass

Comment [ In the downward pass, interactions are consistently computed
at the coarsest possible level. For a given box, this is accomplished
by including interactions with those boxes which are well-separated
and whose interactions have not been accounted for at the parent’s
level. ]

Step 3

Comment | Form a local expansion about the center of each box at each mesh
level [ < n — 1. This local expansion describes the field due to all
particles in the system that are not contained in the current box or
its nearest neighbors. Once the local expansion is obtained for a given
box, it is shifted, in the second inner loop to the centers of the box’s
children, forming the initial expansion for the boxes at the next
level. |

Set Uy = U=V 3="V;4=(0,0,..,0)
dol=1,.,n—-1
do tboz =1, ..., 4
Form ¥, 30, by using lemma 2.2.2 to convert the multipole expansion
®, ; of each box j in interaction list of box thoz
to a local expansion about the center of box tboz, adding these
local expansions together, and adding the result to \ill,;bo,,..
enddo

do tboz =1,..., 4
Form. the expansion fI'l;+1,j for 1boz’s children by using
Lemma 2.2.3 to expand ¥ ., about the children’s box centers.
enddo
enddo

Step 4

Comment | Compute interactions at finest mesh level |
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do thoz =1, ...,4"
Form ¥, ;3,; by using lemma 2.2.2 to convert the multipole
expansion P, ; of each box j in interaction list of box iboz
to a local expansion about the center of box tboz, adding these
local expansions together, and adding the result to \in,,-;,oz.
enddo

Comment [ Local expansions at finest mesh level are now available.
They can be used to generate the potential or force due to all
particles outside the nearest neighbor boxes at finest mesh level. ]

Step 5

Comment [ Evaluate local expansions at particle positions to obtain
the potential (or force) due to distant particles. ]

do iboz = 1,...,4"
For every particle p; located at the point z; in box tboz,
evaluate W, iboz (Z_,').
enddo
Step 6

Comment [ Compute potential {or force) due to nearest neighbors directly. |

do thoz =1,...,4"
For every particle p; in box tboz, directly compute interactions
with all other particles within the box and its nearest neighbors.
enddo
Step 7

do thoz =1,...,4"
For every particle in box tboz, add direct and far-field terms together.
enddo

Remark: Each local expansion is described by the coefficients of a p-term
polynomial. Direct evaluation of this polynomial at a point yields the potential.
But, by lemma 2.1.1, the force is immediately obtained from the derivative
which is available analytically. There is no need for numerical differentiation.
Furthermore, due to the analyticity of ®', there exist error bounds for the force

of exactly the same form as (2.10),(2.21) and (2.25).

A brief analysis of the algorithmic complexity is given below.
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Step Number Operation Count Explanation

Step 1 order Np each particle contributes to one
expansion at the finest level.

Step 2 order Np? At the I*® level, 4 shifts involving
order p? work per shift must be
performed.

Step 3 order < 28N p? There are at most 27 entries in the

interaction list for each box at each
level. An extra order Np? work is
required for the second loop.

Step 4 order < 27N p? Again, there are at most 27 entries
in the interaction list for each box,
and = N boxes.

Step 5 order Np One p-term expansion is evaluated
for each particle.

Step 6 order %N ky, Let k, be a bound on the number
of particles per box at the finest mesh
level. Interactions must be computed
within the box and its eight nearest
neighbors, but using Newton’s third
law, we need only compute half of
the pairwise interactions.

Step 7 order N Adding two terms for each particle.

The estimate for the running time is therefore
N(-2-a-p+56-b-p*+45-d-k,+e), (2.42)

with the constants a,b,¢,d, and e determined by the computer system, lan-

guage, implementation, etc.

Remark: Note that implicit in the complexity estimate is a condition of ho-

mogeneity, namely that the number of particles per box at the finest mesh level
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is bounded. Non-homogeneous distributions are discussed in section 2.5.

In addition to the asymptotic time complexity, asymptotic storage require-
ments are an important characteristic of a numerical procedure. The algorithm
requires that ®;; and ¥;; be stored, as well as the locations of the particles,
their charges, and the results of the calculations (the potentials and /or electric
fields). Since every box at every level has a pair of p-term expansions, ® and V,
associated with it, and the lengths of all other storage arrays are proportional
to N, it is easy to see that the asymptotic storage requirements of the algorithm

are of the form

(a + 8 P) N, (2'43)

with the coefficients a and 8 determined, as above, by the computer system,

language, implementation, etc.

2.4 Boundary Conditions

A variety of boundary conditions are used in particle simulations, including
periodic boundary conditions, homogeneous Dirichlet or Neumann conditions,
and several types of mixed conditions. The periodic case will be treated first
in some detail. We then turn to the imposition of Dirichlet conditions, and end

with a brief discussion of the other cases.

2.4.1 Periodic Boundary Conditions

We assume that the periodic particle model has no net charge, and begin by
reconsidering the computational domain depicted in Figure 2.3. At the end of

the upward pass of the algorithm, we have a net multipole expansion

Pak

Boa(2) =2 = (2.44)

k
k=1 z

for the entire computational box. This is then the expansion for each of the

periodic images of the box with respect to its own center. All of these images
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except for the ones depicted in Figure 2.3 are well-separated from the com-
putational box itself, and the fields they induce inside the computational do-
main are accurately representable by a p-term local expansion where, as before,
p = [—log,(¢€)] is the number of terms needed to achieve a relative precision e.

This local representation, given by Lemma 2.2.2, can be written as

14
Vo1 = D bm-2™ (2.45)
m=1
with
b ——l-i‘—‘i m+k -1 (-1)%, for m=0,1 (2.46)
m zg‘ k=1 zg k—l b - b "“,p, °

where z, the center of the image box under consideration.

Remark: In certain problems (e.g. cosmology), the computational box obvi-
ously cannot satisfy the condition of no net charge (mass). This condition is
necessary for the potential to be well-defined, since the logarithmic term be-
comes unbounded as z, — o0o. Force calculations, however, may still be carried
out. Indeed, using the notation of the algorithm, ®;;,¥;;, \i,,,- are expansions
of analytic functions representing the potential, so that their derivatives are
also analytic functions (with the same regions of analyticity). Moreover, it is
clear from Theorem 2.1.1 that the derivatives ®]; are described by pure inverse
power series. Therefore, the identical formal structure of the algorithm can,
due to Lemma 2.1.1, be used to evaluate force fields everywhere, bypassing the
difficulty introduced by the logarithmic term. The only change required is that
the initial expansions computed be the derivatives of the multipole expansions

and not the multipole expansions themselves.

Note now that well-separated images of the computational cell are boxes
whose centers z, have integer real and imaginary parts, with Re(z,) > 2 or
Im(z) > 2. Let S be the set of such centers. To account for the field due to all
well-separated images, we form the coefficients for the local representation by 7
adding the local shifted expansions of the form (2.46) for all zo € S to obtain

plotal — fi:l ax (m :fl— 1) (~1)* (Z %H) . (2.47)

s 20
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Remark: Note that the total number of image boxes in S is infinite, and
Lemma 2.2.2 is not directly applicable in this case. However, by combining
(2.25) with the triangle inequality, it is easy to see that an estimate of the form

(2.25) does indeed apply.

The summation over S for each inverse power of 2, can be precomputed
and stored. For (m + k) > 2, the series is absolutely convergent. However, for
(m + k) < 2, the series is not absolutely convergent, and the computed value
depends on the order of addition. Choosing a reasonable value for the sum of
the series requires careful consideration of the physical model.

Suppose first that the only particle in the simulation is a charge of unit
strength located at the origin. Then the periodic model corresponds to a uni-
form lattice of charges, and Newton’s third law requires that the net force on
each particle be zero. But the net force on the particle at the origin corresponds

to the summation over S of 1/z, so that we set
1
S —=0. (2.48)

To determine a value for the second term,
> 12 , (2.49)
s %0
suppose that the only particle in the simulation is a dipole of strength one,
oriented along the x-axis and located at the origin. Then the periodic model is
again a uniform lattice and the difference in potential between the equivalent

sites (—1,0) and (3,0) must be zero; i.e.
@(%’0)_—' @(__%’0) = 6@ = 0.. (2.50)

The contribution to the potential difference, §®, of a single dipole located at

Zg 18

_ = : (2.51)
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Thus, we find that the potential difference due to the original dipole located
at the origin is —4. For an image dipole located at zp, with |zo| > 1, we can
expand the contribution to §& as follows:

1 1 1
= — —_— 2.52
2% - i 22 + 423 — 28 ( )

Now let S' be the set of the centers of all image boxes. That is, S’ is the set of
all points 2, with integer real and imaginary parts, excluding the origin. Then

1

1
6§ = —4 + -_— + — 2.53
PO IR YF R (2:53)
A somewhat involved calculation shows that
1
— 4T, 2.54
g 4z4 — 22 (2:54)

> —1—2 =7. (2.55)

st %0
Now
1 1 1
—= = + T = 2.56
23Tyt a3 (2.56)

and the sum 3 gng é is easily evaluated and found to be equal to zero. There-

fore, we have
1

ZS: po =7, (2.57)

and the summation over S for every inverse power of z, is defined.
The procedure of converting the multipole expansion of the whole computa-
tional cell @, ; into a local expansion ¥y ; which describes the potential field due
to all well-separated images can be written, in the notation of the algorithm,

as
‘1’0,1 =T. QO,I 3 (2.58)

where T is a constant p by p matrix whose entries are defined by the formula

Tor = (m :f; 1) (-1)* (Z —;%) . (2.59)

s %o
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This can be viewed as the first step in the downward pass of the algorithm for
periodic boundary conditions. At this point, we have accounted for all interac-
tions excluding the ones within the immediate neighbors of the computational
box as depicted in Figure 2.3. But the expansions ®,;; for boxes inside the
computational cell are also the expansions of the corresponding boxes inside
the nearest neighbor images of the computational cell. By adding to the in-
teraction list the appropriate boxes, we maintain the formal structure of the

algorithm and the associated computational complexity.

2.4.2 Dirichlet Boundary Conditions

We turn now to the imposition of homogeneous Dirichlet boundary conditions,
namely

®(z,y) =0 for (z,y) €dD, (2.60)

where 8D is the boundary of the computational domain. Analytically speaking,
this can be accomplished by the method of images, described in detail below.
In general terms, we consider the potential field to be composed of two parts;
that is,

® = Pyources + Pimages » (2.61)

where ®,,urc., is the field due to the particles inside the computational cell and
®images is the field due to selected image charges located outside the computa-

tional cell. The image charge positions and strengths are chosen so that
Qsourcca(za y) = —Qimages(za y) for (12, y) €dD. (2'62)

For the computational domain we are considering, appropriate locations
for the image charges can be determined by an iterative process, illustrated
in Figure 2.6. We first reflect each particle p; of charge strength o; in the
computational cell across the top boundary line, and place an image charge
of strength —o; at that location, generating an image box which we denote

C (Figure 2.6 (b)). The set of image charges is denoted by Vi, and the field
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Figure 2.6: The computational cell centered at the origin is represented by C.
C, C and C are images of C obtained by reflection across boundaries lines.
See text for discussion.
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they induce is called ®y,. Adding ®v, to Psources clearly enforces the desired
condition along the top boundary. To impose the boundary condition along the
bottom of the computational cell, we must reflect all charges (source and image)
currently in the model across the bottom boundary, generating two more image
boxes (which are copies of C and C). The set of all image charges after this
second reflection step is denoted by V. Now, while ®,0urces + Pv, is equal to
zero along the bottom boundary, the resulting field violates the top boundary
condition. We therefore reflect again across the top boundary, creating two new
image boxes and a new set of image charges V3, such that ®,,urces + @, satisfies
the top condition but violates the bottom one. By iterating in this manner, we

generate a sequence of sets of image charges {V;} with
wcw,cVscC ... CV, (2.63)

where V = U2,V; is the set of charges contained in the infinite array of image
boxes depicted in Figure 2.6 (c). It is easy to see that the n* reflection simply
adds two image boxes (copies of C and C) at a distance proportional to n,
whose net contribution to the field inside the computational cell decays as 1/n.
The (n + 1)* reflection adds two such image boxes at a distance proportional
to n + 1 in the opposite direction. Their net contribution decays as 1 /n.
Therefore, the corresponding sequence of image fields {®y;} converges inside
the computational cell, and the potential field ®,ources + @v does satisfy both
the top and bottom boundary conditions.

In order to enforce the Dirichlet condition on the remaining two sides, we
proceed analogously. First, we reflect all the charges currently in the model
( the original sources plus the images in V) across the left boundary. This
obviously does not affect the top and bottom conditions, and enforces the ho-
mogenéous boundary condition along the left side of the computational cell.
The current set of (all) image charges is now denoted H;. Reflecting across the
right boundary creates a new set Hj, with the field ®,0urces + P, satisfying
the Dirichlet condition along the right (but not the left}) boundary. Repeated
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reflection across the left and right boundaries of the computational cell yields

a sequence {H;} of infinite sets of image charges,
HCH,CHs;C ... CH, (2.64)

where H = U, H; is the set of charges contained in the two-dimensional family
of image boxes depicted in Figure 2.6 (d). It is easy to see that the sequence
{®4,} converges inside the computational cell, and we denote its limit by ®x.
Finally, we observe that ®,,urces + @1 = 0 on the entire boundary 8D.

From a computational point of view, the rate of convergence of the method
of images is quite unsatisfactory. In conjunction with our algorithm, however,
this method can be turned into an extremely efficient numerical tool. In the
terminology previously introduced, all of the image boxes except the nearest
neighbors of the computational cell are well-separated and their induced fields
can be represented by a single local expansion, denoted ¥, ;. Once the coef-
ficients of this local expansion have been computed, we need only account for
interactions within the nearest neighbors of the computational cell itself. To
do this, as in the periodic case, we simply add the appropriate image boxes to
the interaction lists of the boxes inside the computational cell.

Thus, it remains only to calculate ¥o;. We first observe that the plane
of images has a periodic structure with unit ”supercell” centered at (%,%),
indicated by thick lines in Figure 2.6 (d). But then, by the method developed
above for periodic problems, we can obtain an expansion about the point (%, %)
which accounts for all interactions beyond the nearest neighbors of the supercell.
This expansion can be converted, by using Lemma 2.2.3, into an expansion
about the origin (the center of the computational cell), which we call @0,1- It
remains to account for the well-separated boxes which are contained inside the
supercell’s nearest neighbors. There are exactly 27 of these boxes, and their

multipole expansions can be shifted (by using Lemma 2.2.2 ) to local expansions

about the origin which are then added to Wo,, to finally form ¥o,.
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2.4.3 Other Boundary Conditions

While in certain applications, periodic or Dirichlet boundary conditions are
called for, in others, Neumann or mixed conditions have to be imposed on the
boundary of the computational domain. A typical example of a problem with
mixed conditions is the computational cell with Neumann conditions on two op-
posing sides and Dirichlet conditions on the two others. Other models require
periodic boundary conditions on the left and right sides of the computational
cell and Dirichlet or Neumann conditions on the top and bottom. The imposi-
tion of these conditions is achieved by a procedure essentially identical to the
one described above. By reflection and/or periodic extension, one first gener-
ates an entire plane of images. The local expansion ¥, is then computed by an
appropriate summation over all well-separated image boxes, and the remaining

image interactions are handled as above.

2.5 The adaptive algorithm

It is clear that for highly non-homogeneous distributions of particles, the algo-
rithm of section 2.3 will perform poorly. We now describe an adaptive version
of the fast multipole algorithm whose running time is proportional to N, in-
dependent of the statistics of distribution. Since the extension of the method
to problems with non-trivial boundary conditions is analogous to the process
described in the previous section, we consider free-space problems only. The
fundamental difference here is that we do not use the same number of levels for
all parts of the computational box. Generally, this would result in a large num-
ber of empty boxes at finer levels of the procedure. Instead, some integer s > 0
is fixed, and at every level of refinement we subdivide only those boxes that
contain more than s charges. At every.level of refinement, a table of non-empty
boxes is maintained, so that once an empty box is encountered, its existence is

forgotten and it is completely ignored by the subsequent process.

Observation 2.5.1. It should be noted that for a fixed machine precision

¢, only certain classes of particle distributions can be modeled, independent
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Figure 2.7: Non-uniform distribution of charges in the computational cell.



Figure 2.8: The hierarchy of meshes partitioning the computational cell.
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of the algorithm used. In particular, suppose that two charges ¢, ¢z in a
distribution have positions z;, z; and that ||z; — z,|| < £ - ||z1 + z2||. Obviously,
under these conditions, the particles ¢; and ¢; can not be distinguished, and
no meaningful simulation is possible. Since the smallest discernible distance
between two particles depends on the actual positions of these particles in the
computational cell, such a position-dependent condition can not be imposed a
priori. In order to make the simulation possible, we will simply require that
Pmin > €, Where rpi, is the smallest distance between any two particles in the
simulation, and € is the machine precision. Therefore, the maximum number

of ancestors for any box in the computational cell is p = [—log,(¢)].

Observation 2.5.2. If in Lemma 2.2.2, the field ¢(z) is generated by a single
charge located at z, then the only non-zero term in the expansion (2.18) is ao,

the charge strength.

2.5.1 Notation

In this subsection, we introduce several definitions to be used in the description

of the algorithm below.

e For any subset A of the computational box, T'(A) will denote the set of particles
that are contained in A.

e B is the set of non-empty boxes at level . Bo consists of only the computational
box itself. We will denote by nlev the highest level of refinement at any point.

e The four boxes resulting from a box subdivision are referred to as brothers.

e If a box contains more than s particles, it is called a parent boz. Otherwise, the
box is said to be childless.

o A child boz is a non-empty box resulting from the division into four of a parent
box. '

e Colleagues are adjacent boxes of the same size (at the same level). A given box
has at most 8 colleagues (Figure 2.9).
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With each box b at level | we will associate five lists of other boxes, de-
termined by their positions with respect to b. Following are the definitions of
these lists (Figure 2.10).

List 1 of a box b will be denoted by Uy; it is empty if b is a parent box. If b is childless,
U, consists of b and all childless boxes adjacent to b.

List 2 of a box b will be denoted V} and is formed by all the children of the colleagues
of b’s parent that are well separated from b.

List 3 of a box b will be denoted by Wj. W is empty if b is a parent box, and consists
of all descendants of b’s colleagues whose parents are adjacent to b, but who are
not adjacent to b themselves, if b is a childless box. Note that b is separated
from each box w in W), by a distance greater than or equal to the length of the
side of w.

List 4 of a box b will be denoted by X} and is formed by all boxes ¢ such that b € W.,.
Note that all boxes in List 4 are childless and larger than b.

List 5 of a box b will be denoted by Y} and consists of all boxes that are well separated
from b’s parent.

Finally,

®, will denote the p-term multipole expansion about the center of b of the field created
by all particles in T'(b).

¥, will denote the p-term local expansion about the center of box b of the field
created by all particles located outside T'(Uy) UT(W,). W,(r) is the result of the
evaluation of the expansion ¥, at a particle r in T'(b).

I, will denote the local expansion about the center of b of the field due to all particles
in T(V3).

A will denote the local expansion about the center of b representing the field due to
all charges located in T'(Xj,).

ap(r) will denote the the field at r € T(b) due to all particles in T(Uj).
Bs(r) will denote the field at r € T'(b) due to all particles in T(Wy).
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Figure 2.9: Box (b) and its colleagues (c).
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Figure 2.10: Box (b) and its associated lists 1 to S .
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2.5.2 Informal description of the algorithm

The algorithm can be viewed as a recursive process of subdividing the compu-
tational cell into increasingly finer meshes (see Figures 2.7 and 2.8). For a fixed
box b at level I, the computational cell is partitioned into five subsets, U,, V3,
W,, X» and Y;, and the following procedure is applied to the sets of particles
T(Us), T(Vs), T(Ws), T(X,) and T(Y3).

1. For each childless box b we combine the particles in T'(b) by means of Theorem

2.1.1 to form a multipole expansion ®;. For each parent box B we use Lemma
2.2.1 to merge the multipole expansions of its children into the expansion ®p.

2. The interactions between particles in T(b) and T'(Us) are computed directly. For
each particle r € T(b), the result of these calculations is a(r).

3. We use Lemma 2.2.2 to convert the multipole expansion of each box in V} into a
local expansion about the center of b, and add the resulting expansions to obtain
Ts.

4. For every particle r in b, we compute the field () due to all particles in T'(W5)
by evaluating the p-term multipole expansions ®,, of each box w in W), at r, and
adding them up.

5. We convert the field of each particle in T'(X;) into a local expansion about the
center of box b (see Observation 2.5.2), and add up the resulting expansions
obtaining As.

6. We shift the center of the local expansion I'g of b’s parent B to the centers
of b and the other children of B by means of Lemma 2.2.3. We add the local
- expansion obtained to TI';.

7. For each box b, we evaluate the sum of the local expansions I'y and A; at every
particle r in b and add the result to as(r) and 8;(r) obtaining the field at r.

Remark: Note that in the above procedure we never explicitly evaluate the
interactions between particles in T'(b) and those in T(Y;). Indeed, since all
boxes in Y, are well separated from b’s parent, the interaction between T(Ys)

and T'(b) have been accounted for during steps 3 and 5 at a coarser level.
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2.5.3 Formal description of the algorithm

Algorithm

Comment [Choose main parameters|
Choose precision € to be achieved. Set the number of terms
in all expansions to p = [—log.(€)]. Choose the
maximum number s of particles in a childless box.

Stage 1.

Comment [Refine the computational cell into a hierarchy of meshes.]
dol=1,2,---
do b; € B
if b; contains more than s particles then
subdivide b; into four boxes, ignore the empty boxes
formed, add the non-empty boxes formed to Bj,i.
end if
end do
end do
Comment [We denote by nlev the highest level of refinement, and by nboz the total
number of boxes formed in Stage 1.]

Stage 2.

Comment [For every box b at every level /, form a multipole expansion representing
the field outside b due to all the particles contained in b.]

Step 2.1

Comment [For each childless box b, use Theorem 2.1.1 to combine all charges inside
b to obtain the multipole expansion about the center of b.]
do i=1,nbox
if b; is a childless box, use Theorem 2.1.1 to form a
p-term expansion ®,, representing the field
outside b; due to all charges located in b;.
end do

Step 2.2

Comment | For each parent box b, use Lemma 2.2.1 to obtain the multipole expansion
&, by shifting the centers of the expansions of b’s children to b’s center, and adding
the resulting expansions together.]
do l=nlev-1,1,-1
do b; € By
if b; is a parent box then
use Lemma 2.2.1 to shift the center of each of ;’s child
box’s expansion to b;’s center. Add the resulting expansions
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together to obtain the expansion Ps,.
end if
end do
end do

Stage 3.

Comment [For all particles in each childless box b, compute the interactions with all
particles in T'(U,) directly.]
do i=1mnbox
if b; is childless then
for each particle r in b;, compute the sum a;(r) of the interactions
between r and all particles in T'(Us,).
end if
end do

Stage 4.

Comment | For each box b, use Lemma 2.2.2 to convert the multipole expansions of
all boxes in V; into local expansions about the center of box b.]
do i=1mbox
do b; € Vy,
Convert multipole expansion ®y; about b;’s center into
a local expansion about b;’s center using Lemma 2.2.2.
Add the resulting expansions to obtain Ty,.
end do ‘
end do -

Stage 5.

Comment [For each childless box b, evaluate the multipole expansions of all boxes in
W, at every particle position in b.]
do i=1mbox
if b; is childless then
Evaluate the multipole expansion ®;; of each box b; € Wy,
to obtain G, (r) for every particle r in box b;.
end if
end do

Stage 6.
Comment [For each box b, use Lemma 2.2.2 and Observation 2.5.2 to form local
expansions about the center b representing the field due to all particles in T(X}).]
do i=1mbox
Convert the field of every particle in T(Xj,) into

a local expansion about the center of b
end do

Stage 7.
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Comment [Use Lemma 2.2.3 to shift the centers of local expansions of parent boxes
to the centers of their children.]
do 1=1mnlev-1
do b; € B,
if b; is a parent box then
by using Lemma 2.2.3, shift the center of expansion T';,
to the center of each of b;’s children ;. Add
the resulting expansion to T's,.
end if
end do
end do

Stage 8.

Comment | For each childless box b, obtain ¥, as the sum of local expansions I';, and
Ayp. For each particle r in a childless box b, evaluate ¥;(r) and obtain the field at r by
adding ¥, (r), as(r) and Bs(r) together.]
do i=1,;nbox
if b; is childless then
Compute ¥y, =Ty, + Ay,.
For each particle r in b;, evaluate ¥y (r).
Add ¥y, (r),an,(r) and B;(r) to obtain the field at r’s position.
end if
end do

An analysis of the complexity is given below.

Stage Operation Explanation
number count

Stage 1 Np Each particle is assigned to a box at every level.
- There are at most p levels of refinement.

Step 2.1 Np Each particle contributes to the p-term expansion
of one childless box. '

Step 2.2 -g-psN /s The center of the expansion of each box is shifted
to the center of the parent box. The number of
boxes is bounded by 5pN/s (see Lemma 2.6.5), and
each shift requires p?/2 work (see Lemma 2.2.1).

Stage 3 22pNs Each childless box b contains less than s particles



Step 4

Step 5

Step 6

Stage 7

Stage 8

80p3N/s

32p°N

32p’N

10p3N/s

Np+ N

and the work required to compute all interactions
between particles in two boxes is s?/2 when
Newton’s third law is used. The number of boxes
in all List 1’s is bounded by 44pN/s

(see Lemmas 2.6.1 and 2.6.4).

For each box, List 2 has no more than 32 entries
(Lemma 2.6.2). There are at most 5pN/s boxes
(Lemma 2.6.5) and each shift requires p?/2 work
(Lemma 2.2.2).

Each childless box b contains less than s particles.

The interactions of all particles in b and a

box in W} require ps work. The total number of
boxes in List 3 is bounded by 32pN/s

(Lemma 2.6.3 and 2.6.4).

Each box in X, contains fewer than s particles.

The interactions between all particles in a box in X3

and box b require ps work. The total number of
boxes in List 4 is bounded by 32pN/s
(Lemma 2.6.3 and 2.6.4).

Each box has at most four children.
There are less than 5pN/s boxes (Lemma 2.6.5)
and a shift requires p?/2 work (Lemma 2.2.3).

A p-term expansion is evaluated at each particle
position. The sums require an extra N work.
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Summing up the CPU times for all stages above, we obtain the following

time estimate:

T = N - (92.5ap®/ s + 64bp® + 22cps + 3dp + ¢),

(2.65)

where the coefficients a,b,¢,d,e depend on the computer system, language,

implementation, etc. However, the parameter s (maximum permitted number

of particles in a childless box) in (2.65) is not determined by the problem and can

be choosen so as to minimize the resulting CPU time estimate. Differentiating
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(2.65) with respect to s, we obtain:
[92.5a
Smin = 18¢ °p (2.66)

Tomin =N - (ap® + P+ 1) » (2.67)

and

with the constants a,3,~ determined by the computer system, language, im-
plemantation, etc.

The storage requirements of the algorithm are determined by the number
of non-empty boxes which is bounded by 5pN/s. For each box we store the
coefficients of a p-term multipole expansion and a p-term local expansion. The
positions and charges of each particle also have to be stored. Therefore the

storage requirements are of the form:
S=N-(10fp/s +3g) , (2.68)

where the coefficients f,g depend on the computer system, language, imple-

mentation, etc.

2.6 Algorithm Analysis

In this section, we prove several combinatorial lemmas that are used in Sec-
tion 2.5 to estimate the complexity of the adaptive algorithm. We begin by

introducing some additional notation.

Given a subdivision S of the computational cell and a childless box b in S,
we will denote by S, the subdivision obtained from S by subdividing b into 4
equal boxes, and refer to the process of obtaining S; from S as an elementary

refinement of S.

For a subdivision S of the computational cell, we will denote by Bgs the set of

all boxes in S.

Cs will denote the subset of By consisting of all childless boxes, i.e. boxes that

are non-empty and not subdivided.
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Fg will denote the subset of Bs consisting of all non-empty boxes.

Dg is the subset of Bg consisting of all empty boxes that have a childless

brother.

Gg=CsU D§ is the subset of Bg consisting of all boxes b such that b is either
childless or has a childless brother.

For any set of boxes A, N(A) will denote the number of boxes in A.
Lemma 2.8.1 For any subdivision S of the computational cell

> N(U,) < 11- N(Gs)- (2.69)
beCs

Proof: We will prove the lemma by combining the following three asser-
tions:
(a) Inequality (2.69) holds for the undivided computational cell.

(b) Any subdivision of the computational cell can be obtained by a sequence
of elementary refinements of the computational cell.
(c) If an elementary refinement is applied to a subdivision for which (2.69)

holds, it also holds in the refined subdivision.

The statements (a) and (b) above are obvious, and the following is a proof of

(c)-
Consider a subdivision S of the computational cell such that (2.69) is true

for S, and a box b such that b € Cs. Clearly
N(Gsb) = N(Gs)) + 3, (2.70)

and we will denote by U, and U] the List 1’s of b with respect to .S and S,
respectively. The following observations can be made about the List 1’s of b
and its children:

1. For any box ¢ € Cg, if b € U, then ¢ € Us.

2. Each child of b has itself and its three brothers in its List 1.
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3. In the subdivision S,, b i;s. not childless and U} is empty.
4. Each box ¢ in U, is in the List 1 of at least one child of b.
5. The number of boxes of U, that are in the List 1’s of two children of bis
bounded by 8.
It immediately follows from observations (1) - (5) above, that

S NU) - > N({U,)=4-4+2:[-N(U)) + (N(Uy) +8)] =32, (2.71)

and combining (2.70) and (2.71) we obtain

>~ N(U,) £11:N(Gs,). (2.72)

Lemma 2.8.2 For any subdivision S of the computational cell

>~ N(V,) <32 N(Fs). (2.73)

Proof: Consider an arbitrary subdivision S of the computational cell, a
box ¢ € Fs and its parent box b. V. is a subset of the children of b’s colleagues,
the maximum number of colleagues of ¢ (or any other box) is eight, and each
colleague can have four children. Therefore, the number of elements in V, is

bounded by 32.
Lemma 2.6.3 For any subdivision S of the computational cell

> NW,) = ) N(X,) <8-N(Gs). (2.74)
c€Cg beFs

Proof: The first part of the Lemma is a direct consequence of the definition
of List 4 (see Subsection 2.5.1): If a box b belongs W, then ¢ belongs to Xj.
Now, consider an arbitrary box ¢ € Fgs, and its parent box b. The number of
colleagues of b is certainly bounded by 8. We will denote by Z, the set of all
childless boxes which are adjacent to b and whose size is greater than or equal

to that of b. The number of boxes in Z, is bounded by 8, since each box in Zy
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contains at least one of the eight colleagues of b, and no two such boxes can
contain the same colleague. The second part of the lemma now follows from

the observation that W, C Z,.

Lemma 2.6.4 For any subdivision S of the computational cell produced by the

adaptive algorithm,

N(Cs) S N(Gs) < 4-p2- (2.75)

Proof: Each parent box b at level ! contains more than s particles (oth-
erwise, it would not have been subdivided any further). Therefore, the total
number of parent boxes at level ! is bounded by N/s. Each of these boxes can
not have more than 4 children, and consequently the number of boxes in Gs
at any level [ is bounded by 4N/s. Now, the conclusion of the lemma follows

from Observation 2.5.1 and the obvious fact that N(Cs) < N(Gs).
Lemma 2.8.5 For any subdivision S of the computational cell,
N
N(Fs)<5-p- . (2.76)

Proof: The number of parent boxes at any level I is bounded by N /s, and
each of them can not have more than 4 childless boxes at level { + 1. Therefore,
the sum of the numbers of non-empty boxes (all childless and parent boxes) at
all levels is bounded by p- (N/s + 4N/s).



Chapter 3

Potential Fields in Three
Dimensions

Potential theory is frequently introduced in discussions of mathematical physics
as the theory of Laplace’s equation

y¢+y¢+y¢_
dz? ' fyr ' 9z

Vip = 0, (3.1)

which arises in problems of gravitation, electrostatics, heat flow in homogeneous
media, etc. In three dimensions, as in two dimensions, functions which satisfy
the Laplace equation are referred to as harmonic functions.

Since we are primarily interested in the simulation of particle systems, we
will continue to view potential theory as a means for studying the forces which
are characterized by Newton’s law of gravitation or Coulomb’s law of electro-
static interaction. A thorough description of potential theory from this point
of view is available in the classic text by Kellogg [25]. A shorter description
is available in the text by Wallace [41], whose approach is followed somewhat
more closely in this chapter.

For the sake of clarity, in the subsequent discussion we will always assume
that we are faced with a problem in electrostatics. In other words, the physical
system under consideration consists of a collection of charged particles with the
potential energy and force obtained as the sum of pairwise interactions from

Coulomb’s law.

45
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In Sections 3.1 to 3.3, we briefly develop the theory of spherical harmonics,
while in Section 3.4, we describe the series expansion of the field due to an
arbitrary distribution of charge. In Section 3.5, we present some new results
concerning translation operators for the Laplace equation in three dimensions,
and demonstrates how these operators can be used to manipulate both far field
and local expansions in a manner which will be required by the fast multipole

algorithm.

3.1 The field of a charge

Let a point charge of unit strength be located at the origin. Then, for any point
P = (z,y,2) € R® with ||P|| = r # 0, the potential and electrostatic field due

to this charge are described by the expressions

1
d=- .
- (3.2
and
P — (2 Yz
E——VQ—(rs,rs,rs) , (3.3)
respectively.

Suppose now that the unit charge is located at a point @, not the origin. The
potential at a point P # Q is, of course, the inverse of the distance PQ = r'.
We would like to derive a series expansion for the potential at P in terms of its
distance from the origin r. To do this, we will use spherical coordinates with
P = (r,8,4) and Q = (p,,8) (Fig. 3.1). Letting ~ be the angle between the

vectors P and Q, we have from the law of cosines

P2 =924 p?—2rpcosy , (3.4)

with

cos~y = cos § cos a + sin § sin acos(¢ — B). (3.5)
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P = (r,0,¢)

Q = (p, o, B)

Figure 3.1: Points P and Q separated by a distance 7', and subtending an angle
4 between them.
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From this relation, we may write

1. L = L , (3.6)
r! r\/1—2fcosq+§ rv/1—2up + p?
having set
b= -f: and u.=cosv. (3.7)

It can be shown that for 4 < 1, we may expand the inverse square root in

powers of u, resulting in a series of the form

1 ol .
Ji-duptm? gBP"(u)” (38)

where
2 1

(v = 3) (39)

and, in general, P,(u) is the Legendre polynomial of degree n. Our expression

Py(u) =1, Pi(u)=u, P(u)=

N W

for the field now takes the form

L_os 2 pw. (3.10)

n=

Equation (3.10) is often referred to as a multipole expansion, and is said to
describe the far field due to a charge at Q, since the condition for the validity
of (3.8) is that u <1 orr > p.

There is a duality inherent in the situation depicted in Figure 3.1, namely
that if the locations of the charge (Q) and the evaluation point (P) were inter-
changed, then the field at P would still be described by ;17 In this case, so long

as r < p, we may write

1 1 X rt

r! p\/1—2§cos'7+’;—: ,,Z__%P”"'l

Pn(u). (3.11)

Equation (3.11) is valid only in the open sphere centered at the origin with
radius p, and we will refer to such a description of the potential field as a local
expansion.

We turn now to an examination of the coefficients P, (u).
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3.2 Legendre polynomials

The development of the field of a charge as a series is one of the many alternative
ways of defining the Legendre polynomials, and is useful for studying some of
their properties. For example, we have

Lemma 3.2.1 P,(1) =1 forn=0,1,2,---

Proof : Let u = 1. Then, using equation (3.8) above, we have

- n 1 1 = n
S u .P,,(1)_\/1_2#+#2_1_#_Zp. (3.12)

n=0 n=0

Equating the coefficients of successive powers of x in the two series yields the

desired result.

Two observations pertaining to Legendre polynomials will be needed below.

Their proofs can be found in most standard textbooks (see, for example [25}).

Lemma 3.2.2 Let u € R, with |u| < 1. Then
Pa(u) < 1. (3.13)

Lemma 3.2.3 The Legendre polynomials may be written in the form

131 .3...(2n — 2k — 1)

Pa(w) = kZ:% 2% - kl(n — 2k)!

c(=1)kunT* (3.14)

From Lemma 3.2.2, it is straightforward to obtain the following two error
bounds.
Lemma 3.2.4 Suppose that a charge of strength q is located at the point Q =
(p, a, B), and that P = (r,0,¢) € R3, with |P — Q|| = r' and r > p. Letting v
be the angle between the two points, we have an error bound for the multipole
ezpansion ($.10) of the form
P an

q qg-p q (p\*!
-y s, P,(cos '7)l < p— (—) . (3.15)

!
r n=0
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Similarly, when r < p, we have an error bound for the local ezpansion (3.11) of

- 2 - (%)M . (3.16)

Since the functions P,(u) arise in a series expansion of the field due to a

the form
P n

q q-r
o E pntl Py (cos7)

!
r n=0

<

charge, it is not surprising that they are related in some way to the partial
derivatives of -} We will now make this relation more precise. Suppose, for
simplicity, that the unit charge is located at the point @ = (0,0,¢) on the
z-axis, with ¢'> 0. Then, the field at the point P = (z,y,2) with spherical
coordinates (r,08,¢) is given by

1 1

o= — = .
PQ 2+ g+ (2 —¢)?

By expanding this expression for @ into a Taylor series with respect to the

variable ¢, we obtain the formula
(o <] n n
¢ [2 }
®= = |—0 .
rg) n! [agn ¢=0
Rewriting this expression in terms of derivatives with respect to z, we have

=g

!
n=0 n. r

Comparing successive powers of ¢ in this expansion with the corresponding
powers of p in equation (3.10) above, we find the following relation:

P,(cosf) (=1)* o" (_1_) ,

rntl n! 9z \r

We note that since the partial derivatives of % with respect to z must them-
selves be solutions of Laplace’s equation, we have proved that the functions
P.(cos§)/r™*! are harmonic.

Our analysis thus far allows us to develop as a series the far field potential

due to point charges in two distinct settings. The first corresponds to the
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situation depicted in Figure 3.1 where the expansion (3.10) describes the field
at a distance r from the origin due to a charge located at a distance p from
the origin, with p < r. The resulting series, however, depends on the relative
coordinates of the two particles. If another such series were developed for a
second source at the point Q’, they would have to be evaluated independently.

The second setting is one where a single series expansion can be obtained,
describing the far field due to an entire collection of particles. For suppose that

we are given m sources, all located on the z-axis at the points

{(0’0$ 21),(0,0,22),"',(0,0,2".,)} ’ (3.17)

with charge strengths ¢;, ¢z, -+, gm. Then the field due to the 1** charge at the
point (r,8,¢) is described by!

= &z}
®; = Z_:O e Py (cos §) (3.18)

By the principle of superposition, we can add the coefficients of each of the
charges’ expansions together termwise, obtaining a power series describing the
field due to all m sources, valid so long as r > |z for ¢ = 1,...,m. That is, the

net potential is given by

o an B
o= ,;Z=:o ;—_;;Pn(cos 9) , (3.19)
where
o= g2l . (3.20)
1=1

In most problems of scientific interest, however, there is no restriction on
the locations of the sources, and the preceding analysis is inapplicable. In the
next section, we will investigate a more general approach to the solution of
potential problems, which will allow us to compute asymptotic expansions of

the field due to arbitrary distributions of charge.

11t is easy to verify that this result holds whether 2; is positive or negative by using lemma
3.2.3 to conclude that P, is an even function when n is even and an odd function when n is
odd.
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3.3 Spherical Harmonics

The development of a general expansion describing potential fields in three
dimensions is most clearly carried out by considering the Laplace equation
itself, which <£ha.ra.cterizes the behavior of such fields in regions of free space.
Using spherical coordinates, the Laplace equation (3.1) takes the form

-rlz--;—r <r2?£> + r_zgliﬁé% (sinﬂ%?—) + r—z—s:——n—z—a-%g? =0. (3.21)
The standard solution of this equation by separation of variables results in an
expression for the field as a series, the terms of which are known as spherical
harmonics.

iy

3=% 3 (L::'r" + %) ) (3.22)

n=0m=-n
In the above expansion, the terms Y,™(#,$)r" are usually referred to as
spherical harmonics of degree n, the terms Y;*(8,4)/ r™*! are called spherical

harmonics of degree —n — 1, and the coefficients L7* and M are known as the

moments of the expansion.

Remark: It is obvious that in a far field (multipole) expansion, the coeffi-
cients L™ must be set to zero in order to satisfy the condition that the field
decay at infinity. In a local expansion (which is to be analytic in a sphere
centered at the origin), it is clearly the coefficients M;* which must be set to

Zero.

We noted previously that the functions P,(cos 8) /r"*! are harmonic, having
related them to the partial derivatives of % with respect to z. But clearly the
partial derivatives of % with respect to z or y are also harmonic. The remainder
of this section is devoted to describing the spherical harmonics of negative
degree in terms of derivatives of 1, and then to expressing the terms Y."(9, é)
in a more computationally useful form.

Lemmas 3.3.1 - 3.3.3 below are well-known. Their proofs can be found, for

example, in [23] or [41].
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Lemma 3.3.1

Y2(0,4) _ 0. 0" (1
=45 (5) (8:25)
For m > 0, we have
Y04 _ om0 0 \m (2 "‘"‘(1)
0D ar 2 it () () (3:24)
and 0,4) 5 5
Y, ™0,8) . m .0, (0 S |
T_A" (a:c 13y) (32) (r) ’ (3-25)
where

m_ (="
A = \/(n—-m)!-(n+m)! . : (3.26)

Remark: The standard definition of the functions Y;™(f, #) includes a nor-

\V(2n + 1) /4. (3.27)

We will consistently use the definition given above. That is, the coeflicient
(3.27) will always be omitted.

malization factor of

Since certain differential operators arise frequently in discussions of spherical

harmonics, we introduce the following notation.

Definition 3.3.1 The operators 84, 8-, and 3, are defined by the expressions

a . o0
ai = E - 55 and (3.28)
5 .
B:= 5. (3.29)

Lemma 3.3.2 If ¢ is a harmonic function, then

8,+0-(¢) = —9;(4) (3.30)

Lemma 3.3.3 For anyn >m >0,

m qQn-m 1 n 1 m im
oraor (;) = (-1)*(n - m)!;—;;—l— « P™(cos 0) - e¥'™? | (3.31)

where the term P™(cos 8) denotes the associated Legendre function of degree n

and order m.
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Combining Lemmas 3.3.3 and 3.3.1, we have an expression for the spherical
harmonics in terms of associated Legendre functions:

(n — m])!

Y0, ¢) = (n + |m|)!

. PI™l(cos §)e'™?. (3.32)

We may then compute the function values Y;™(4, ¢) by using the the follow-

ing recursion relations {19].
(2n+1)zPM(z) = (n—m+ 1) P (z) + (n+ m) P2, , (3.33)

and

P2 (z) + 2(m + 1) PMYz)=(n—m)(n+m+1)P(z) . (3.34)

3.4 The Field Due to Arbitrary Distributions
of Charge

We will need a well-known result from the theory of spherical harmonics, which
is usually referred to as the Addition Theorem [41].

Theorem 3.4.1 (Addition Theorem for Legendre Polynomials) Let P
and Q be points with spherical coordinates (r,0,¢) and (p,a, ), respectively,
and let v be the angle subtended between them (Figure 3.1). Then

P(cosy) = Z"; Yom(a, B) - Y0, ) - (3.35)

It is a straightforward matter now to form a multipole expansion describing the

far field due to a collection of particles.

Theorem 3.4.2 (Multipole Expansion). Suppose that k charges of
strengths {g, 1 = 1,....k} are located at the points {Q: = (pi, i, [5:), t =
1,....k}, with |p;] < a. Then for any P = (r,0,¢) € R® with r > a, the
potential ¢(P) 1s given by

sP) =% 3 T Y., (3.36)
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where

My Zq. o - Y™ o, Bi)- (3.37)
=1
Furthermore, for anyp > 1,

wr) -5 3 Moo <07 e

n=0m=-n r—a\r

where .
A=Y lal- (3.39)
=1 .
Proof : Let us first consider the contribution from a single charge ¢; located
at (pi, @, B:). From formula (3.10) and the Addition Theorem for Legendre

Polynomials, we have

n
b = %P
L n+1l

n=0 r

- 3 el Bl yreg).

n=0m=-n

- Py(cos )

The coefficients M™ in equation (3.37) are then obtained by superposition. The
error bound is an immediate consequence of (3.15), the triangle inequality, and

the fact that the ratios p;/r are bounded from above by a/r.

Before proceeding with the further development of the theory of spherical
harmonics, we will demonstrate with a simple example how multipole expan-
sions can be used to reduce the computa.tioné.l complexity of the evaluation
of potential fields. This is just the three-dimensional analog of the example
given in Section 2.1. Suppose that a collection of k point charges of strengths
{@, 1 =1,...,k} are located at the points {Q:i = (pir i Bi), ¢ =1,---,k}, and
that {P; = (r;,0;,¢;), J = 1,---,n} is another set of points in R® (Figure
3.2). We say that the sets {Q;} and {P;} are well-separated if there exist points
Py, Qo € R® and a real number a > 0 such that

IQi—Qoll < @ fori=1,...k,
|P;j— PRl < a forj=1,..,n, and
Qo — Pol| > 3a.
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Figure 3.2: Well-separated sets in R®.

In order to obtain the potential at each of the points P; due to the charges

at the points Q; directly, we could compute

d_¢q(P;) forj=1,..,n. (3.40)

This requires order n -k work (evaluating k fields at n points). Suppose, on the
other hand, that we first compute the coefficients of a p**-degree multipole ex-
pansion of the potential due to the charges ¢y, gz, ..., gk about Qo, using Theorem
3.4.2. This requires a number of operations proportional to k - p*. Evaluating
the resulting multipole expansion at all points P; requires order n- p? work, and

the total amount of computation is of the order O(k - p* + n - p?). Moreover, by

(3.38),
k n Mm ym k IQ:I p+1
;z=:1¢q‘( nz_:o,n;n 15— Qo " (05,49)| < ( . ) (2> ’

and in order to obtain a relative precision € (with respect to the total charge),

p must be of the order [~ log,(e)]. Once the precision is specified, the amount
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of computation has been reduced to
O(k) + O(n) , (3.41)

which is a significant reduction in complexity when compared with the direct

method.

3.5 Translation Operators and Error Bounds

As in the two-dimensional case, the principal analytical tools required by the
fast algorithm are certain translation operators, acting on both multipole and
local expansions. In order to develop the necessary formulae for these proce-
dures, we will need the following three theorems, which can be viewed as gener-
alizations of the classical addition theorem for Legendre polynomials. While a
somewhat different form of Theorem 3.5.3 below can be found in the literature
(10,14,38], Theorems 3.5.1 and 3.5.2 appear to be new. The following theorem
describes a formula for the expansion of a spherical harmonic of negative degree

about a shifted origin.

Theorem 3.5.1 (First Addition Theorem) Let Q = (p,,B) be the center
of ezpansion of an arbitrary spherical harmonic of negative degree. Let the point

P =(r,0,9), withr>pand P—Q = (r',0',4'). Then

noogm AT At Y™ (e, 8) Yo (6, 9)

(0,4) i T (3.42)
pin'+l e A:‘j’,ﬁ" pntn'+1 ’ :
where
' —l)m'n(lm"’lml) if m - m’ <0
gm = ’ ’ 3.43
™ {1, otherwise. (343)

Proof : Making use of equation (3.10), the Addition Theorem for Legendre
polynomials, and Lemma 3.3.1, we observe that

11 e

HP - Q“ - r! B n=0 rn+1

P,(cos7)
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= 5 5 e 52

n=0m=-n
o) 0

= E( E P Yn—m(a,ﬂ) . A:"‘ . 3‘:”'3:""" (_:-:) +

n=0 m=-n

d 1
S o Yom(h) ap-opor™ () . (344)
m=1
We now consider three separate cases.

Case I : m' = 0. From Lemma 3.3.1,

0 ! !
n(0.4) _ AS, oY (%) ., (3.45)
r

r n/41

Combining (3.44) and (3.45), we obtain

Yy?, 0’, / ) 0 _ N N " 1 :
r’(n’+;¢ ) = Z( E pn * Yn m(a, IB) ° A?;' ° An * al_ la:+ lm‘ (;) +
n=0 m=-n

1

—m m m an+n'-m 1
E p Y a .B) °An °a+az+ ('_) )

m=1 r

3 i Xn: P Yn—m(a,ﬂ) . Ag, AR ] n+n,(9 ¢)
- m ptn’+l )

n=0m=-n n4n'

where the last equality is obtained by another application of Lemma 3.3.1.

Case II : m' < 0. Using Lemma 3.3.1 again,

yr(e,¢)
pin’+l
= 4m a‘"“a""m'|< )
rl
[o"] 0

= (T Y ) AT AT Sttt (2) 4

n=0 m=-n
n

E pn ‘ Yn—m(as .B) * ::ll" . A:‘n . al:""lara:+n’—m-[m'! (%) )

m=1
& & (AR AD Y™, 8)) YT (6, 9)
-z, Ami PR

n+n!

where
if m <0;

m 1’
Im = { (=1)minlim’tm) - if m > 0. (3-46)
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To obtain the last equality, for the terms with m > 0, we have used Lemma

3.3.2 to annihilate whichever of the operators 8- and 8, occurs less frequently.

Case III : m' > 0. From Lemma 3.3.1,

Y (e',¢")
pln’+1
— Am’ am an’—m’ (_1_>

rl

= 2 Z o™ Y™ (o, B) - AT - AT - O QM gl G>+

n=0 m=-n
n

n -m m' m m+m! an+n’—=m-m' 1
EP 'Yn (a’ﬂ)' n! 'An 'a++ az+ (—> )

) r
_e e (et () v (0,9
e AT:'? pr+ni+l
where
Jm - { (_l)mt'n(m',}ml), fm<O. (3'47)

As before, for the terms with m < 0, we have used Lemma 3.3.2 to annihilate

whichever of the operators d_ and 8, occurs less frequently.

The second addition theorem yields a formula for converting a spherical
harmonic of negative degree (a multipole term) with respect to one origin into

a local expansion about a shifted origin.

Theorem 3.5.2 (Second Addition Theorem) Let Q = (p, a, B) be the cen-
ter of ezpansion of an arbitrary spherical harmonic of negative degree. Let the

point P = (r,0,¢), withr <pand P-Q = (r',0',¢'). Then

':',""(0’,45’) 00 n Am . nm":;m(a’ ,B) m .
Pl ,,Z=: ; n+n'+1 A:,"},Z" Y00, (348)

where
ifm-m'>0;

: . 3.49
(-1)*, otherwise. (349)

Sy
3
]
——
0
=
as
]
Nawt
3
N
3
3



Proof :

coordinates of the points P and Q, respectively. Then

a (1 a /1
5 (7) = 52 (5)
3 (1 o (1
70 (7) = 35 ()

_‘?_(1) _9 (l)
dzp \r' dzg \r'/ ~
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We first let (zp,yp,2p) and (zq,vyq,2q) denote the Cartesian

(3.50)

We will denote by 3.y, 0—p; 0zpy O4g, O-g; O2g, the differential operators given

by Definition 3.3.1, with respect to the indicated variable point.

Combining equation (3.11), the Addition Theorem for Legendre Polynomi-

als, and Lemma 3.3.1, we now obtain

1 1 _ f: r P,(cos)
P-Q) r &t Tm
et = Yn.m(a’ﬂ) m n
B n-Om:Z—n—_/;;T.Yn (0,¢) 7

00 [¢]
Y (2 4r-olgar™ (%) YM0,8) T+

n=0 m=-n
i 1
Z_le’: X (;> Y(8,8) 1™ ).

Case I : m' = 0. Due to Lemma 3.3.1 and (3.50), we have

Yn",gﬂ',qS')
rin +1
: (1
0 n
Anl ¢ azP (;;)

00 0 , et 1
S (X (-)v4s, - 4r-olmlant~-] 1(_>

n=0 m=-n p

i ) ) 1
n! 40 m m qn+n -m m n
(—1)™ 4D - AT - 37 B (;) Y(8,4) )

-Y(0,9) " +

2

m=1
> (—l)n'Ag' ‘ AT * Yn—ﬁ’(a’ ﬂ) m n
( n+n/+1 ., Am+ : Yn (01 45)7' ’

p n+n'

2

0o
>
n=0m=-n

where the last equality is obtained from Lemma 3.3.1.

Case IT : m' < 0. Using Lemmas 3.3.1 and 3.3.2, we have
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Y (0, ¢")
pln'tl
_m! almilan—|my 1
= 4y amlano ()

) 0

n' 4m m m!| alm| an+n'~im|—|m' 1 m n
(3 oy - a - dlzlorytete (1) vp(0,9)- 4

n' ym' m m'| am qn+n'=|m'l-m 1 m n
S ()" An - Ar-amlam gnin-im (;) Y0,8) )

m=1

) n Jm :1'.’. m nm’-‘-'m(a ,B) n .
= E E ( pn+n’+:.Amtm" ) 'Yn (0’¢) T

n=0m=-n n+n!
where
m' _ (—1)"'1 if m > 0;
J‘m {(_1)»‘(__1)min([m'|,|ml), if m < 0. (3.51)
Case III : m' > 0. From Lemma 3.3.1,
Yo', 4"
pin’t1
m! ntem 1
= ax-onon (3)
) , , , ,
= g(m;_n(-n» A - ap - o orpor e (1) vp,6)
- m m m n+n/—m—m 1 m n
Zl(—l) +An 6+Q6_06 N (;) -YH(0,9) - r )
3 AR Y™, 8))  pm i
= E E ( 41, mt-m'( ) 'Yn (0a¢)°r
n=0 m=-n n+" + An+n'
where
w _ [ (=17, if m < 0;
Jm - { (_l)nl(_l)min(lm",lm‘)’ ifm>O0. (3.52)

As before, for the terms with m > 0, we have used Lemma 3.3.2 to annihilate

whichever of the operators 8. and 8+ occurs less frequently.

The last addition theorem describes a formula for expanding a spherical

harmonic of nonnegative degree about a shifted origin. Its proof is similar to
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those of the first two addition theorems. A more involved proof, based on group

representation theory, can be found in [38].

Theorem 3.5.3 (Third Addition Theorem) Let Q = (p, @, 3) be the center
of ezpansion of an arbitrary spherical harmonic of nonnegative degree. Let the
point P = (r,0,¢) with P — Q = (v',8',¢'). Then

n n CA™. m’_—:i Y™, 8) o n
(0' ¢' = Z Z Am' ( ). n'—-n (0,¢)T
e (3.53)
where
(-1)*(-1)™, ifm-m' <0;
Jr.=13 (-1~ ™ '"‘, if m-m' >0 and |m'| < |m|; (3.54)
(=1, otherwise.

We are in a position now to develop translation operators for spherical

harmonic expansions.

Theorem 3.5.4 (Translation of a Multipole Expansion) Suppose that i
charges of strengths qi,qz,+ -+, q are located inside the sphere D of radius a with
center at Q = (p, ,8), and that for points P = (r,0,¢) outside D, the potential
due to these charges is given by the multipolc ezpansion

-y ¥ 2 e dR S CATD I (3.55)

n=0m=-—n

where P — Q = (r',0',¢'). Then for any point P = (r,8,¢) outside the sphere
D of radius (a + p),

o 7 k
®(P) =3 3 5 -Yi(6.9), (3.56)
i=0k=-j
where
i o, Okp JhT e Am- AR Yim(a, )
Mf=3 3 — o , (3.57)
n=0m=—n 7

with J* and A’ defined by equations (3.43) and (3.26), respectively. Further-

more, for any p > 1,

-y Z prre Yf ¢)| =1 |4 )(aﬂ’)m . (3.58)

oy r—(a+p) r
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Proof : The coefficients of the shifted expansion (3.56) are obtained by
applying the First Addition Theorem to each of the terms in the original ex-
pansion (3.55). For the error bound (3.58), observe that the terms M;* are
the coefficients of the (unique) multipole expansion about the origin of those

charges contained in the sphere D, and Theorem 3.4.2 applies with a replaced

by a + p.

The second translation procedure is used to convert a multipole expansion
of the field induced by a collection of charges into a local expansion inside some
region of analyticity.

Theorem 3.5.5 (Conversion of a Multipole Expansion into a Local
Expansion) Suppose that | charges of strengths q1,492,--+,q are located inside
the sphere Dg of radius a with center at Q = (p,a,f), and that p > (¢ + 1)a
with ¢ > 1 (Figure 3.8). Then the corresponding multipole ezpansion (3.55)

converges inside the sphere Dy of radius a centered at the origin. Inside Do,

the potential due to the charges q1,qz,- -, q ts described by a local ezpansion:
oo ]
3(P) =Y 3 IE-YF(0.8)-7, (3.59)
J=0k==-j
where

@ 2 Op-Jp- AT AE YKo, B)

j+n
m—k o ji+n+l
n=0m=-n Aj+n pJ

with J* and A: defined by equations (3.49) and (3.26), respectively. Further-

more, for any p > 1,

, (3.60)

B3(P)= Y 3 Lk -Y}H0,6) -

=0 k=—j

< (gﬂlﬁ—l) (-l-)p“ . (361)

ca—a [

Proof :  We obtain the coefficients of the local expansion (3.59) by applying
the Second Addition Theorem to each of the terms in the multipole expansion
(3.55). The bound (3.61) is an immediate consequence of the simpler error

bound (3.16) and the triangle inequality.

The following theorem yields a procedure for shifting the origin of a trun-

cated local expansion. It is an exact translation, and no error bound is needed.
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Figure 3.3: Source charges qi,¢z,..., @ are contained in the sphere D;. The
corresponding multipole expansion about Q converges inside Ds.

Theorem 3.5.8 (Translation of a Local Expansion)

Let Q = (p, ¢, B) be the origin of a local ezpansion

3(P) =Y. 3 OF-YP0.4) -7, (3.62)

n=0m=-n

where P = (r,0,¢) and P — Q = (r',0',¢'). Then
®(P) = AVP_: Z L; 'ij(0’¢) .7t s (3'63)

where

PLon Om TN ATTE AR YR (, B) -
L;___z Z n n—jm—k nJA’?J nJ( ﬂ) p ’
7

n=j m=-n

(3.64)

with Jt, and A? defined by equations (3.54) and (3.26), respectively.

Proof : The coefficients (3.64) are obtained by applying the Third Addi-

tion Theorem to each of the terms in the expansion (3.62).
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3.6 The Fast Multipole Algorithm

We describe here the analog of the non-adaptive algorithm of Chapter 2. The
computational box is depicted in Figure 3.4. It is a cube with sides of length
one, centered about the origin of the coordinate system, and is assumed to

contain all N particles of the system under consideration.

Fixing a precision ¢, we choose p = [—log,(€)] and specify that no inter-
actions be computed by means of multipole expansions for clusters of particles
which are not contained in well-separated spheres. This is precisely the condi-
tion needed for the error bounds (3.38),(3.58) and (3.61) to apply with ¢ = 2,
the truncation error to be bounded by 277, and the desired precision to be
achieved. In order to impose such a condition, we introduce a hierarchy of
meshes which refine the computational box into smaller and smaller regions
(Figure 3.4). Mesh level 0 is equivalent to the entire box, while mesh level [ +1
is obtained from level ! by subdivision of each region into eight equal parts.
The number of distinct boxes at mesh level [ is equal to 8'. A tree structure is
imposed on this mesh hierarchy, so that if tboz is a fixed box at level [, the eight
boxes at level [ + 1 obtained by subdivision of sboz are considered its children.

Other notation used in the description of the algorithm includes

nearest neighbor:  For box ¢ at level [, a nearest neighbor is a box at the same level
of refinement which shares a boundary point with box ¢.

second nearest neighbor: For box ¢ at level I, a second nearest neighbor is a box
at the same level of refinement which shares a boundary point with a nearest
neighbor of box :.

®;;:  the ptP-order multipole expansion (about the box center) of the potential field
created by the particles contained inside box ¢ at level I,

U ;: the p**-order local expansion about the center of box ¢ at level I, describing
the potential field due to all particles outside the box and its nearest and second
nearest neighbors,



Figure 3.4: The computational box and the first two levels of refinement, indi-

cated by the solid and dashed lines, respectively.
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':I:'l,,-: the p**-order local expansion about the center of box 1 at level /, describing
the potential field due to all particles outside 1’s parent box and the parent box’s
nearest and second nearest neighbors.

Interaction list: for box t at level [, it is the set of boxes which are children of the
nearest and second nearest neighbors of t’s parent and which are not nearest or
second nearest neighbors of box 1.

We first observe that if boxes A and B are in each other’s interaction lists,
then the smallest spheres S4 and Sp containing these boxes are well-separated
in the sense described in section 3.4, so the desired error bounds apply. Suppose
now that at level /—1, the local expansion ¥;_,; has been obtained for all boxes.
Then, by using Theorem 3.5.4 to shift (for all ¢) the expansion ¥,_;; to each
of box #’s children, we have, for each box j at level !/, a local representation
of the potential due to all particles outside of j’s parent’s nearest and second
nearest neighbors, namely \i’l,j. The interaction list is, therefore, precisely that
set of boxes whose contribution to the potential must be added to ¥;; in order
to create ¥;;. This is done by using Theorem 3.5.5 to convért the multipole
expansions of these interaction boxes to local expansions about the current box
center and adding them to the expansion obtained from the parent. Note also
that with free-space boundary conditions, ¥y ; and ¥,; are equal to zero since
there are no well-separated boxes to consider, and we can begin forming local
expansions at level 2.

Following is a formal description of the algorithm.

Algorithm
Initialization

Choose a level of refinement n ~ logg N, a precision ¢, and set p = [—log,(¢€)].
Upward Pass
Step 1

Comment | Form multipole expansions of potential field due to particles



68

in each box about the box center at the finest mesh level.]

do tboz =1,...,8"
Form a p*P-degree multipole expansion @y ipoz, by using Theorem 3.4.2.
enddo

Step 2

Comment [ Form multipole expansions about the centers of all boxes
at all coarser mesh levels, each expansion representing the potential
field due to all particles contained in one box. ]

dol=n-1,..,0
do iboz =1, ..., 8
Form a p**-degree multipole expansion ®; 3,2, by using
Theorem 3.5.4 to shift the center of each child box’s expansion
to the current box center and adding them together.
enddo
enddo

Downward Pass

Comment [ In the downward pass, interactions are consistently computed
at the coarsest possible level. For a given box, this is accomplished
by including interactions with those boxes which are well-separated
and whose interactions have not been accounted for at the parent’s
level. ]

Step 3

Comment | Form a local expansion about the center of each box at each mesh
level I < n — 1. This local expansion describes the field due to all
particles in the system that are not contained in the current box, its
nearest neighbors, or its second nearest neighbors. Once the local
expansion is obtained for a given box, it is shifted, in the second
inner loop to the centers of the box’s children, forming the initial
expansion for the boxes at the next level. ]

Set \I’]_‘]_ = \I’]_,z =oeee = \I’]_,g = (0,0, ...,0)
dol=1,..,n~1
do iboz = 1,..., 8
Form ¥, 3., by using Theorem 3.5.5 to convert the multipole
expansion ®;; of each box j in interaction list of box iboz
to a local expansion about the center of box iboz, adding these

local expansions together, and adding the result to ¥y poz.
enddo

do iboz =1,...,8 _
Form the expansion ¥4, ; for iboz’s children
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by using Theorem 3.5.6 to expand ¥, ;.. about the children’s box centers.
enddo
enddo

Step 4
Comment | Compute interactions at finest mesh level ]

do tboz =1,...,8"
Form Wy, s40, by using Theorem 3.5.5 to convert the multipole
expansion ®, ; of each box j in interaction list of box 1box
to a local expansion about the center of box tboz, adding these
local expansions together, and adding the result to \iln,.-bo,.

enddo

Comment [ Local expansions at finest mesh level are now available.
They can be used to generate the potential or force due to all
particles outside the nearest and second nearest neighbor boxes
at the finest mesh level. ]

Step 5
Comment | Evaluate local expansions at particle positions. ]

do tboz =1,...,8"
For every particle p; located at the point P; in box tboz,
evaluate ¥, j302(P;)-
enddo
Step 6

Comment | Compute potential (or force) due to near neighbors directly. ]

do tbor =1,...,8"
For every particle p; in box tboz, compute interactions with
all other particles within the box and its nearest and second

nearest neighbors.
enddo
Step 7

do tboxr =1,...,8"
For every particle in box tboz, add direct and far-field terms together.
enddo

Remark: Each local expansion is described by its p? coefficients. Direct eval-
uation of this expansion at a point yields the potential. But the force can be
obtained from the gradient of the local expansion, and these partial derivatives

are available analytically. There is no need for numerical differentiation. Fur-
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thermore, since the components of V® are themselves harmonic, there exist
error bounds for the force of exactly the same form as (3.38),(3.58) and (3.61).

A brief analysis of the algorithmic complexity is given below.

Step Number

Step 1

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Operation Count

order Np?
order Np?

order Np*

order < 876 Np*

order < 875Np*

order Np?

order :"2§N ky,

Explanation

each particle contributes to one
expansion at the finest level.

each particle contributes to one
expansion at the finest level.

At the I*? level, 8
shifts involving order p*
work per shift must be
performed.

There are at most 875 entries
in the interaction list for

each box at each level.

An extra order Np* work

is required for the second loop.

Again, there are at most 875
entries in the interaction -
list for each box and

23 N boxes.

One p**-degree expansion is
evaluated for each particle.

Let k,, be a bound on the
number of particles per box

at the finest mesh level.
Interactions must be

computed within the box

and its eight nearest neighbors,
but using Newton’s third law,
we need only compute half

of the pairwise interactions.
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Step 7 order N Adding two terms for each particle.

The estimate for the running time is therefore
N-(a-p*+b-p*+d-kn+e),

with the constants a,b,¢,d, and e determined by the computer system, lan-

guage, implementation, etc.

As in the two-dimensional case, the asymptotic storage requirements of the
algorithm are largely dependent on the number of boxes created. In particular,
the p**-degree expansions ®;; and ¥;; must be stored for every box at every
level. We must also store the locations of the particles, their charges, and
the results of the calculations (the potentials and/or electric fields). The net

storage requirements are therefore of the form
(a+B-p")-N,

with the coefficients a and B determined, as above, by the computer system,

language, implementation, etc.



Chapter 4

Numerical results

A computer program in Fortran 77 has been implemented utilizing the two-
dimensional algorithms of the second chapter. It is capable of handling free-
space problems, and problems with periodic, homogeneous Dirichlet, or homo-
geneous Neumann boundary conditions. All calculations cited below have been
carried out on a VAX-8600, running VMS version 4.3 .

In the first set of experiments, we considered free-space problems with a
variety of particle distributions. For each distribution, the corresponding fields
were computed in four ways: by the adaptive algorithm in single precision, by
the homogeneous algorithm in single precision, and directly in single and double
precision. The direct calculation of the field in double precision was used as a
standard for comparing the relative accuracies of the other three methods. In
these experiments, the number of particles varied between 100 and 25600, with
charge strengths randomly assigned between zero and one.

The results are summarized in Tables 4.1, 4.2, 4.3, and 4.4. The first column
of each table contains the number of particles N for which calculations have
been performed. In the remaining columns, the upper case letters T, E and S are
used to denote the corresponding computational time, error and storage, with
the subscripts alg, uni and dir referring to the adaptive algorithm, the non-
adaptive algorithm, and the direct (single-precision) calculation respectively.
More specifically, columns 2 through 4 show the times, in seconds, required to

compute the field by the three methods. The errors E,yy, Euni and Eg, for the

72
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adaptive, non-adaptive and direct method, respectively, are presented in the
next three columns. They are defined by the formula

1/2
N 2\ 1/
1==1

fi—Fi
o5l

E =

where f; is the value of the field at the i-th particle position obtained by direct
calculation in double precision and f.- is the result obtained by one of the three
methods being studied. The last two columns of the tables contain the storage
requirements Sy, and S,y in single-precision words, for the two fast multipole

methods.

Remark: For the tests involving 12800 and 25600 particles, it was not con-
sidered practical to use the direct method to calculate the fields at all particle
positions, since this would require prohibitive amounts of CPU time without
providing much useful information. Therefore, we have performed the direct
calculations in double precision for only 100 of the particles, and used these
results to evaluate the relative accuracies. The corresponding values of Ty,

were estimated by extrapolation.

For the first set of tests, the positions of the charged particles were randomly
distributed in a square, and the resulting particle density was roughly uniform
(Figure 4.1). The number of terms in the expansions was set to 20, and the
maximum number of particles in a childless box was set to 30.

In the second set of experiments, the charged particles were distributed
along a curve (Figure 4.2). The number of terms in the expansions was set to
17 and the maximum number of particles in a childless box was set to 30.

The third set of numerical experiments was performed on extremely non-
uniform distributions of particles (Figure 4.3). A fifth of the N particles were
randomly assigned in a square of area one. Two fifths were randomly distributed
about the center of the square in a circle of radius 0.003. The rest of the particles

were assigned positions inside a circle of radius 0.5 with a density inversely
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proportional to the square of the distance from the center. The number of
terms in the expansions was set to 17 and the maximum number of particles
per childless box was set to 30.

In the last set of free-space experiments, half of the particles were distributed
along a curve similar to that of the second set of experiments and the rest of the
particles were distributed inside four circles with a density inversly proportional
to the square of the distance from the centers of the circles (Figure 4.4). The
number of terms in the expansions was set to 17 and the maximum number of
particles per childless box was set to 30.

The following observations can be made from Tables 4.1, 4.2, 4.3 and 4.4,

where the results of the experiments described above are summarized.

1. The accuracies of the results obtained by the algorithms using multipole
expansions are in agreement with the error bounds given in (2.10),(2.21)
and (2.25). For the most part, the fast methods are slightly more accurate
than the direct calculation.

2. In all cases, the actual CPU time requirements of the adaptive algorithm
grow linearly with N. The CPU time requirements of the non-adaptive
scheme grow linearly for homogeneous distributions, but not for extremely
non-uniform distributions (see Tables 4.3 - 4.4).

3. Even for uniform distributions of charges, the adaptive algorithm is about
30% faster than the non-adaptive one.

4. The storage requirements of both fast algorithms are roughly proportional
to the number of particles involved in the simulations. The storage re-
quirements of the adaptive algorithm are about four times less than those
of the non-adaptive version.

5. By the time the number of particles reaches 25600, the adaptive algorithm
is about 100 times faster than the direct method for the case of a uniform
distribution (see Table 4.1). When the charges are situated on a curve,
the adaptive scheme is roughly 200 times faster than the direct method,

and about 3 times faster than the non-adaptive scheme(see Table 4.2).
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6. For the highly non-uniform case (see Table 4.3), the adaptive algorithm
is slightly more efficient than for the uniform distribution. The non-
adaptive scheme displays an almost quadratic growth of CPU time with
N, and is about 25 times slower than its adaptive counterpart by the time
N = 25600.

7. Even for as few as 1600 particles, the adaptive algorithm is about ten

times faster than the direct calculation.

8. The performance of the algorithm does not depend on the shape of the

region where the charges are distributed (see Table 4.4.)

Similar calculations have been performed for periodic, homogeneous Dirich-
let and Neumann boundary conditions, and the observations made above are
equally applicable in these cases.

For illustration, the equipotential lines for a box with 10 randomly dis-
tributed particles and Dirichlet boundary conditions are shown in Figure 4.5.
The entire calculation required 15 seconds of CPU time; about half the time
was spent evaluating the field at more than 10,000 points, while the rest was

used up by the plotting routine.
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Figure 4.1: 25600 uniformly located charges in the computational cell.

N Talg Tuni Tdir Eu.lg Eum' Edir Sa.lg Suni
100 0.15 | 0.47 0.15 1.7107% [ 40107 | 1.710™° 866 4179
200 0.43 0.65 0.61 9.310~7 1 431077 | 441077 || 2503 5479
400 1.01 1.94 2.47 7.010"7 | 6.410°7 | 6.4 1077 3763 16847
800 2.45 2.78 10.27 |l 4.11077 | 4.010-7 { 4.710°7 || 11203 22047
1600 || 5.37 8.56 4235 || 371077 1421077 [ 5.410°7 || 15923 67519
3200 || 10.60 | 11.80 | 152.95 || 5.010~7 | 5.310~7 | 8.7 1077 || 44423 88319
6400 || 23.38 | 33.49 | 601.18 || 7.010~7 | 5.410~7 | 1.3 10~¢ || 65907 | 270207
12800 || 45.34 | 48.02 | 2433.20 || 6.010~7 | 4.910°7 | 1.6 107° || 176631 | 353407
25600 || 96.72 | 137.68 | 9694.45 |l 8.310~7 | 8.910~7 | 2.2 10™° {| 268723 | 1080959

Table 4.1: Uniformly distributed particles. p = 20 and s = 30.



Figure 4.2: 6400 particles distributed on a curve.

7

N Talq Tuni Tdir Ealg Eum' Edir Sa.lg Su.m'
100 0.11 0.38 0.16 3.4107% [ 3.21075 | 3.4 107° || 1149 3927
200 0.30 0.54 0.57 8.9107°% | 9.310°¢ | 8910™° 2694 5227
400 0.64 1.31 2.29 5.610~% | 5.610~5 | 5.6 10~ 5103 15827
800 1.46 3.13 9.30 9.4107°% | 9.5107% | 9.5 1075 || 10133 21027
1600 || 2.66 5.94 37.41 || 201075 { 2.010™5 | 2.0 10=5 || 19241 63427
3200 || 5.93 | 12.50 | 149.21 || 7.810~% | 8.710"° | 8.8 10~° || 40055 84227
6400 I 12.42 | 20.66 | 597.95 || 4.21075 | 421075 | 4.2 10-° || 84429 | 253827
12800 || 25.11 | 79.47 | 2425.48 || 8.710~% | 8.710-5 | 8.8 105 || 167421 | 337027
25600 || 47.53 | 152.07 | 9581.20 || 8.910~5 | 9.110~5 | 8.9 10~° || 332927 | 1015427

Table 4.2: Particles distributed on a curve. p =17 and s = 30.
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Figure 4.3: Highly non-uniform distribution of 25600 charges.

N Ta.lg Tuni Tdir Ea.lg Euni Edir Salg Su.n.t'
100 0.19 0.45 0.15 2710°%]1.010°% | 2.810°° 2508 3927
200 0.48 0.74 0.57 6.910-¢ | 7.610°% | 6.910~° 4014 5227
400 1.13 2.26 2.33 1.910~% | 9.010~¢ | 1.910~% 8307 15827
800 2.25 5.15 9.34 4310°% | 6.0107¢ | 3.7107% || 13353 21027
1600 5.09 16.17 37.74 2.410°% | 1.6107% | 2.110~% || 25588 63427
3200 | 9.98 50.23 140.86 || 3.710°° | 1.4107% | 1.710~¢ || 46806 84227
6400 |f 21.80 | 177.13 | 606.14 || 5.8 10~°% | 4.010~° | 5.910-% || 90505 | 253827
12800 { 41.93 | 663.21 | 2420.33 || 4.0107% | 4.010~° | 4.2107° || 186226 | 337027
25600 || 90.05 | 2317.93 | 9622.63 || 2.9 107% | 3.0 10~ | 4.0 10~ || 373639 | 1015427

Table 4.3: Highly non-uniform distribution of particles. p = 17 and s = 30.
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Figure 4.4: A non-uniform distribution of 25600 charges in a region of compli-
cated shape.
N Talg Tuni Tdt'r Ealg Eu.ru' Edir Salg Suni
100 0.15 0.43 0.15 4310°% [5.510°% | 5.0 10°° 1145 3927
200 0.39 | 0.68 0.59 3.3107% | 3.910~5 | 3.310-5 || 3224 5227
400 0.84 1.69 2.31 8.1107% | 7.1107% | 8.110°5 6939 15827
800 2.11 5.03 9.39 431075 | 431075 | 43107 1| 13406 | 21027
1600 || 4.35 | 11.34 37.74 || 9.2107% | 9.210™° | 9.2107% || 24913 63427
3200 || 9.16 | 30.85 | 153.76 || 1.11075 | 1.110~% | 1.1 1075 || 48902 84227
6400 || 19.22 | 48.62 | 611.82 || 5.410~¢ | 5.510~° | 5.4 10~° || 96153 | 253827
12800 || 37.92 | 155.75 | 2440.90 |} 2.1107% | 2.010~% | 2.1 107% || 194377 | 337027
25600 || 80.02 | 248.90 | 9798.34 || 4.4 10~5 | 4.4 10753 | 4.5 10~5 || 388624 | 1015427

Table 4.4: Non-uniform distribution of particles in a region of complicated

shape. p = 17 and s = 30.
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Figure 4.5: The equipotential lines for the electrostatic field due to 10 ran-
domly located charges in the computational cell, with homogeneous Dirichlet
boundary conditions. ‘



Chapter 5

Conclusions and Applications

We have constructed several algorithms for the rapid evaluation of the poten-
tial and force fields generated by systems of particles whose interactions are
Coulombic or gravitational in nature. These algorithms are applicable in both
two and three dimensions, and allow for the solution of free-space problems,
as well as problems with periodic, homogeneous Dirichlet, and homogeneous
Neumann boundary conditions. The asymptotic CPU time estimate for these
algorithms is of the order O(N), where N is the number of particles in the
system, and the numerical examples we present in Chapter 4 indicate that even
very large-scale problems result in acceptable CPU time requirements.

The study of a number of physical systems has benefited from particle sim-
ulation. Below, we list several areas where the approach described in this

dissertation offers advantages over previously published methods.

Astrophysics

Several interesting questions in cosmology have been investigated by the
computer simulation of many-body systems whose interactions are gov-
erned by Newton’s law of gravitation. Early work on the evolution of
stellar clusters by Aarseth and others used the direct method to compute
the necessary N? interactions at every time step [1]. More recent work
using particle/mesh methods [24] or clustering methods {7] allowed sim-
ulations with an order of magnitude more bodies. Both methods achieve

an increase in computational speed at the expense of accuracy.

81
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Plasma Physics

In particle models for plasma simulation, one follows the motion of a large
number of charged particles in their self-consistent electric and magnetic
fields [13,24]. Simulations using particle/mesh methods have greatly en-
hanced our understanding of collective phenomena in plasmas. Unfortu-
nately, there are several interesting problems which have been essentially
unapproachable with these methods, due to the uniformity of the grid,
aliasing, and smoothing. These include the simulation of “cold plasmas”
and ion beams. In addition, free space and exterior problems have been
difficult to handle, since the grids require the imposition of a boundary

whether it is desired or not.

Molecular Dynamics

Molecular dynamics is a technique for studying the properties of fluids
(and other phases of matter) by computer simulation. Once initial po-
sitions and velocities are chosen for some number of representative par-
ticles, their trajectories are followed by integrating Newton’s second law
of motion. In general, the particles are chosen to be individual atoms
or molecules which constitute the material under consideration. Much
has been learned from molecular dynamics about the fine structure and
thermodynamics of water, aqueous solutions, and a variety of other polar
and non-polar liquids [2,3,6,34]. Recent work has extended the method to
more complicated systems, such as polymers in solution [9], lipid bilayers

[31], and proteins [26,28].

In early simulations, only non-polar fluids were considered, with either
“hard-sphere” particle-particle interactions [4], or interactions governed

by a Lennard-Jones potential [29,33]

B(r;;) = 4e [(%)12 - (;”—1)6} . (5.1)
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At long range, this interaction has an attraction proportional to r~8, while
at close range, there is a =12 repulsion. Because of the rapid decay, in
most simulations, interactions are accounted for up to a fixed truncation
radius. As a result, the amount of computation per time step is propor-

tional to the number of particles N.

In polar fluids, the situation is quite different. A Coulombic term is added
to the potential function ® in (5.1), and all pairwise interactions should
be accounted for. If periodic boundary conditions are used, it is also

necessary to include the effects of all image charges.

The usual approach taken to increasing the allowable number of particles
in simulations of polar fluids has simply been to truncate the potential
at some fixed cut-off distance on empirical grounds. There are many
papers in the literature using this approximation [6,8,34]. Little error
seems to be introduced in the (local) atom-atom correlation functions,
but dielectric properties are poorly simulated [2,30]. The answer to the
question of why these dielectric properties are incorrectly computed is
currently unknown. The difficulty may be in truncation, it may be that
the number of particles has not reached the asymptotic range, and it may
be that the semi-classical molecular dynamics model is insufficient. The
use of the fast multipole method should help to distinguish between these
cases since it allows for rapid large-scale calculations without any error

due to truncation.

Fluid Dynamics

The governing equations for viscous fluid flow are the Navier-Stokes equa-
tions. The vortex blob method of Chorin [12] is a grid-free numerical
method for the solution of these equations. For a detailed description,
we refer the reader to the original work. We merely indicate here that
the dominant cost per time step is the computation of the interactions

between N vortex blobs. Over large distances, these interactions are
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Coulombic (simulating point vortices), while at close range the interac-
tions take a different form. Recalling that in the fast multipole method
we compute nearest neighbor interactions directly, there is no difficulty
in changing the local behavior of the field. The fast multipole method
therefore provides a significant reduction in what has been the dominant

computational cost of the vortex method.

Elliptic Partial Differential Equations

Boundary value problems for the Laplace equation can be reduced to
integral equations of the second kind by means of classical potential theory

[25]. For example, to solve the Dirichlet problem
V!8(p) =0 in Q

®(p) = f(p) on 09,
we try to determine a function o(t) such that

o

3(p) = [ +-Glpt)-olt) at,

where G(p,t) is the potential at p due to a unit charge at ¢{. To satisfy

the boundary condition, we must have

olp) + [ 2-Glp,1)- o(t) dt = (7 (52

(see, for example, [25]). Discretization of this integral equation leads to a
large scale system of linear algebraic equations, which are in turn solved
by some iterative technique. Most iterative schemes for the solution of
linear systems resulting from classical potential theory require the appli-
cation of the matrix to a recursively generated sequence of vectors. Ap-
plying a dense matrix to a vector requires order O(n?) operations, where
n is the order of the system. In this case, the dimension of the system is

equal to the number of nodes in the discretization of the boundary on.
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As a result, the whole process is at least of the order O(n?). However,
the matrix-vector product corresponds to evaluation of the field due to
n sources located on the boundary, at each of the source locations them-
selves. It is therefore possible, by using the fast multipole method, to
solve the original equation (5.2) in an amount of time proportional to
n. We also note that once the integral equation has been solved and the
source density o(t) determined, the field @ can be evaluated at m inte-
rior points in order O(m + n) operations. The rapid solution of integral

equations by this approach was originally reported by Rokhlin [36].

Let us now consider more general elliptic partial differential equations of
the form
a9 od

V2¢+a'—a';+ﬂ'—a"3;+7'@=5,

where a, 3,4, and § are functions of position. The solution can be repre-

sented in the form

d(p) = «/;n H(p,t) - oft) dt +‘/;H(p,'r) - p(r) dr

(see, for example, [37]). In order to satisfy the differential equation and
whatever boundary condition has been imposed, a system of two integral
equations for o and p must be solved. Since the function H (p,t) is taken
to be the field at p due to a unit charge located at ¢ (or some higher
derivative), it is clear that the fast multipole method allows for the rapid

solution of a broad class of such problems.

Numerical Complex Analysis
Many problems in complex analysis can be reduced to that of computing

fle) = o [ h) g (5.3)

T omitrt—z ,

where T’ denotes the boundary of some domain D in the complex plane.

a Cauchy integral

Examples include the evaluation of analytic functions, the solution of
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boundary value problems for harmonic functions, and conformal mapping

[22,40].

Discretizing the boundary curve into N equal segments, we have

N
27er Z=: (5.4)

In the situations mentioned above, we generally need to evaluate this
function f at some number of distinct points 2z, ¥ = 1,...,M. But
h(t;)/ (t;—=x) is just the electrostatic field at zx due to a charge of strength
h(t;) located at t;. By using the fast multipole method, it is therefore
possible to compute f at the M points 2; at a cost proportional to (M +
N), rather than M - N.

When M = N, and 2z; = t;, this calculation can be viewed as the applica-
tion of a Hilbert matrix to a vector. Given a collection of points z;,..., 2,
in €, the Hilbert matrix associated with the points {2} is defined as fol-
lows:

A,'j =

for 1 #3,
Zy — ZJ'
Ay =0,

The fast multipole method therefore provides an order O(N ) procedure
for applying an N x N Hilbert matrix to an arbitrary vector. The question
of whether it is possible to compute this matrix-vector product in fewer
than O(NN?) operations has recently been posed as the Trummer problem

[16,17,18,35).
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