Yale University
Department of Computer Science

GEMMW: A Portable Level 3 BLAS Winograd
Variant of Strassen’s Matrix—Matrix Multiply
Algorithm

Craig C. Douglas, Michael Heroux, Gordon Slishman,
and Roger M. Smith

YALEU/DCS/TR-904
May 17, 1992

This work was supported in part by the Office of Naval Research (grant N00014-91-J-
1576), Yale University, Cray Research, and and the Research Division of International
Business Machines.

GEMMW: A PORTABLE LEVEL 3 BLAS WINOGRAD VARIANT OF
STRASSEN’S MATRIX-MATRIX MULTIPLY ALGORITHM*

CRAIG C. DOUGLAS!, MICHAEL HEROUX}, GORDON SLISHMANS AND ROGER M.
SMITHY

Abstract. Matrix-matrix multiplication is normally computed using one of the BLAS or a
reinvention of part of the BLAS. Unfortunately, the BLAS were designed with small matrices in
mind. When huge, well conditioned matrices are multiplied together, the BLAS perform like the
blahs, even on vector machines. For matrices where the coefficients are well conditioned, Winograd'’s
variant of Strassen’s algorithm offers some relief, but is rarely available in a quality form on most
computers. We reconsider this method and offer a highly portable solution based on the Level 3
BLAS interface.

Key words. Level 3 BLAS, matrix multiplication, Winograd’s variant of Strassen’s algorithm,
multilevel algorithms

AMS(MOS) subject classifications. Numerical Analysis: Numerical Linear Algebra

1. Preliminaries. Matrix-matrix multiplication is a very basic computer oper-
ation. A very clear description of how to do it can be found in many textbooks, e.g.,
[1]. Suppose we want to multiply two matrices

A:MxK and B:K XN,

where the elements of A and B are real or complex numbers and M, K, and N are
natural numbers.

Strassen’s method recursively works with sets of 2 x 2 submatrices to form the
product using 7 matrix multiplications instead of the obvious 8. This is not terribly
different from standard multilevel methods used routinely to solve partial differential
equations. Strictly speaking, we compute

[Au Asa] [Bi1 B] - [Cin1 Chra]
Az Azz Ba; B Ca1 Caa

* Yale University Department of Computer Science Report YALEU/DCS/TR-904, New Haven,
CT, 1992.

t Mathematical Sciences Department, IBM Research Division, Thomas J. Watson Research
Center, P. O. Box 218, Yorktown Heights, NY 10598, and Department of Computer Science, Yale
University, P. O. Box 2158, New Haven, CT 06520. E-mail: bells@watson.ibm.com or douglas-
craig@cs.yale.edu.

t Mathematical Software Research Group, Cray Research, Inc., 655-F Lone Oak Drive, Eagan,
MN 55121, E-mail: mamh@cray.com.

§ Mathematical Sciences Department, IBM Research Division, Thomas J. Watson Research
Center, P. O. Box 218, Yorktown Heights, NY 10598, E-mail: slishmn@uwatson.ibm.com.

T Department of Computer Science, Yale University, P. O. Box 2158, New Haven, CT 06520.
E-mail: smith-roger@cs.yale.edu.

using the following algorithm (Strassen-Winograd):

S1 = Ag + Aa M; = 5556 Ty = M, + M,
S2 =81 — An M; = A1 By To=T1+ M,
S3=An—An M3 = Ay12B2
1) Sa=A12- 5 My = S357
Ss = B12 — By Mg = 5155 Ci1= Mz + M3
S¢ = Bz — S5 Mg = S4B22 Cio=T1 + Ms + Ms
S7 = Baa — By M7 = A33Ss Cn=T—-M;
Sg = S¢ — Ba1 Cp=Tr+ Ms

This is not a terribly convenient way to define this algorithm, but it is the standard
textbook definition. Unlike textbook exercises, we do not require square matrices nor
restrict the dimensions to 2F for some natural number k.

While there are only 7 matrix—matrix multiplications and 15 matrix-matrix
additions and subtractions in (1), there is no hint as to how to implement this
efficiently. The crossover point, mindim, when Strassen—Winograd is more efficient
than the classical algorithm, can be computed. It depends on the difference in
cost between performing an arithmetic operation and loading or storing a number
in memory. When arithmetic is relatively expensive, mindim = 32 is common. When
arithmetic is less expensive relatively, 96 < mindim < 192 is common.

Extra storage is required to hold sums of quadrants of A and B. Since the shape
of C may be quite different from these two matrices, extra storage of approximately
the same size as the quadrants is required. Hence, any extra storage required for
the intermediate results may be a considerable percentage of the entire memory of a
computer.

The obvious approaches to implementing Strassen-Winograd for general sized
matrices require either padding the matrices with extra zero rows and/or columns or
doing a number of rank one updates that are slow and produce spaghetti code.

All variants of Strassen’s algorithm are known to possess horrendous round
off properties, leading to stability problems. Simple examples exist where, due to
the unnatural submatrix additions, variants of Strassen’s algorithm get the wrong
answer while the classical algorithm gets the right answer. We acknowledge this
deficiency. Our response is as follows: for many problems, due to the reduction of
arithmetic operations, Strassen-Winograd has better round off properties than the
classical method. While the classical method can be implemented using techniques
which do the inner products as accurately as possible, the added cost of doing this
step usually eliminates it from real programs. Hence, for matrices A and B, we
assume the coefficients are “well conditioned” enough so that both methods get
acceptable answers. In other words, caveat emptor for either class of matrix-matrix
multiplication in real codes. Stability discussions are contained in [2] and [5] along
with their references. An interesting application to solving linear systems of equations
is contained in [1] and [3].

This paper is actually interested in a highly portable Level 3 BLAS interface for
computing

2 C — a-op(A)op(B) + 8- C,

where

X,

X transpose,

X conjugate transpose,
X conjugate,

op(X) =

and
op(A): M x K, op(B):KxN, and C:M x N.

Most of the discussion will ignore the conjugate and transpose cases, but the
implementation is that of (2).

This paper addresses how Strassen—-Winograd can be implemented portably with
a minimum of extra storage, no rank one updates for general matrices, and whatever
library the user wishes to use on a particular machine. In §2, one solution is
constructed. In §3, a special case of classical matrix—matrix multiplication for complex
matrices is discussed. In §4, a hybrid matrix-matrix multiplication is constructed
which minimizes communication along with the justification for its existence. In §5,
numerical experiments are presented for both the serial and parallel cases.

2. Serial computer implementation. In this section, we describe a practical
and highly efficient implementation of (1) for serial machines. This includes the flow
of computation, how odd sized matrices are handled, and the memory requirements.

Each one of the temporary variables S;, M;, and T; in (1) can be considered a
register. Hence, register optimization techniques can be applied based on the directed
data flow graph. Each temporary variable is stored in an appropriately sized register
and accessed only as needed. Clearly the dimensions of each intermediate result must
be considered. Further, when M, K, or N is odd, there is considerable flexibility in
choosing the dimensions of the quadrants (in fact, using irregular shaped quadrants
is better than regular ones).

Since we are computing C = AB, parts of C can be freely used as the registers
or work areas. The data for each matrix is assumed to be stored in column order as a
single data area (i.e., Fortran style), rather than as a collection of row vectors with a
column vector of pointers to the rows (i.e., C style). Hence, the number of elements
of any work areas can be bound by a single number. As will be shown, only two large
work areas, Wik and Wk, are needed. When M is odd, an additional short vector
of length N/2 is required. The size of each large work area is

M max(K,N)+ M + max(K,N) + 4 KN+K+N+4

WMK:L) JandWKN:L 7

where the floor symbol refers to rounding down to the nearest natural number. The
total amount of extra storage required over all levels (including the possible additional
short vector) is bounded by

®) $IM max(K, N) + KN + 5[M + max(K, N) + K + 3N] + 32.

In addition, when 3 # 0 or C overlaps with A or B in (2), an additional M N storage
is required to hold AB before adding that to SC. Thus, when K = M = N in (3),
the auxiliary storage requirements are approximately cN?/3, where ¢ € {2,5}.

The actual order of operations and location of intermediate and final results for
our serial computer code is in Fig. 1. There are two special cases of note.

3

It

Step | Wk | C11 Ciz C21 Ca2 | WknN | Operation
1. Sz Bjy — Bys
2.1 53 A — An
3. My S3S7
4.1 5 Az + Az
5. Ss Bi2 — By
6. M; 5155
7. Se Byy — S5
8. 1S, S1—An
9. M, 5256

10. | S4 A — 5o
11. Ms S4Bay
12. T3 Ms + Mg
13. | M, A1 By
14. T M; + M,
15. Ci2 T+ T;s
16. T T+ M,
17. Ss S¢ — B2y
18. M- Az2Ss
19. C21 Ty — M~
20. Cas Ty + Mj
21. M3 Ay12B2
22. Ci1 My + M3

F1G. 1. WINOS: Implementation of Winograd variant of Strassen’s algorithm

Step | Array | Step | Function
4. Si (a) | If K is odd, then copy first column of Ay into Wik .

(b) | Complete S;.

10. Sy (a) | If K is odd, then pretend first column of Ay; =0 in Wy k.
(b) | Complete Sy.

11. | Mg (a) | If M is odd, then save first row of Ms.
(b) | Calculate most of Ms.
(c) | Complete Mg using (a) based on M odd or not.

21. | Ms (a) | Calculate M5 using an index shift.

F1G. 2. Modifications to avoid corruption

e Odd M and/or N: Conceptually we duplicate A’s odd middle row or B’s odd
middle column. The product would then have a duplicated middle row or
column accordingly. Letting the output quadrants overlap by a row (column)
eliminates the duplicated row (column) produced from conceptual A and B.
Conceptual A and B are used in the recursion.

e 0Odd K: Conceptually we duplicate B’s odd middle row and insert a column
of zeroes after A’s odd middle column. In each operation involving A5 or
Apa, the first column is either omitted (because it is zero) or is handled as a
virtual column of zeroes.

For example, consider the product of two 3 x 3 matrices:

111 3 21 6 5 3

1 2 2 2 2 1|= 9 8 5 1.

1 2 3 1 11 10 9 6

Conceptually, we use dimensions divisible by 2:

1101 3 2 21 6 5 5 3 6 5 3
1 2 0 2 2 2 21 _ 9 8 8 5 = 9 8 5
1 2 0 2 2 2 21|~ 9 8 8 5 10 9 6
1 2 0 3 1111 10 9 9 6

Actual A and B provide easy access to conceptual A and B. For typical problems,
the total elimination of rank one updates and matrix—vector operations more than
compensates for the duplication of rows and/or columns. In all cases, the output
matrix C is divided into four perhaps unequal quadrants as follows:

e Cy1: MR x NR, where MR =[M/2] and NR=[N/2]
e Ci2: MR x NT, where NT = | N/2]
e Cy1 : MT x NR, where MT = | M/2]
° sz :MT x N T,
where the ceiling symbol refers to rounding up to the nearest natural number.

Each intermediate result is computed in dimensions just sufficient to fill dependent
quadrants of C. Consider the case of odd M: a single storage conflict arises within C
as Ms and Ms are stored in the right half of C and both require M R rows. A single
row copy resolves this conflict (see Fig. 2). An algorithmic revision transforms the
row copy into a column (stride one) copy. Unfortunately, this introduced a number
of unpleasant side effects elsewhere in the algorithm, so it was not implemented.

Conceptual A and B are of size 2M R x 2K R and 2K R x 2N R respectively. The
first M R rows of conceptual A come from the first M R rows of actual A, and the last
M R rows of conceptual A from the last M R of actual A (similarly, for KR and NR).
Hence the duplication of the odd rows and columns is indeed free.

Duplication of the odd row and column of the common dimension, K, would
corrupt the inner products. Simply by taking the duplicated odd column of A to be
zero in A2 and Azy avoids corrupting the inner products. Hence, trivial adjustments
are needed in only the four places where A2 and Asy are used: S;, Si, M3, and M~
(see Fig. 2).

The benefits of this duplication method are speed and simplicity. The solution
involves no rank one updates and no matrix—vector operations to deal with odd K,
M, or N. The code follows a virtually straight path from top to bottom for all M,
K, and N.

TABLE 1
First letter of each routine

Letter | Data type

c single precision complex

d double precision real

s single precision real

z double precision complex

TABLE 2
Major operation macros
Macro BLAS/ IBM NAG Complex | Operation
name LAPACK/ ESSL only
Cray SciLib

VCOPY _copy —copy _f06eff/9ff — y=2¢2
VAXPY _azxpy axpy -fO6ecf/gef — y=oax+y
VYAX _yaz* _yaz _fOBfdf /hdf — y=azx
MATMUL | _gemm gemm _f06yaf/zaf _gemul3* | C = op(A)op(B)
MATADD | _geadd* -geadd _f06ctf/cwf — C = op(A) + op(B)
MATSUB | _gesub* _gesub _f06ctf/cwf — C = op(A) — op(B)

* provided as part of a set of extended BLAS routines.

The actual code is organized into three major routines. Each one takes its first
letter from Table 1. There is actually only one copy of each routine; they are each
compiled with a different compiler definition for floating point to get the correct name
and compilation. The data types, subroutine names, and mindim are all defined using
macros. This reduces the cost and chance of errors should any of these routines need
to be modified at some later date.

The actual recursive Strassen-Winograd routine, which is not meant to be called
directly by a user, is _winos, where one of the letters in Table 1 is substituted for
the “” symbol. The user actually calls _gemmuw, which does error checking, memory
allocation (if necessary), calls _winos, and completes the calculation of (2). A special
version of the standard Level 3 BLAS routines cgemm and zgemm is provided as
—gemul3 (see §3).

The three major routines call a collection of Level 1 and Level 3 BLAS routines
to do the bulk of the computation. The code is flexible enough that by modifying
the macro definitions in one header file, essentially any library can be substituted for
the default ones. In this manner, it is trivial to make the code work with the BLAS,
Cray Scientific Library [6], ESSL [7], NAG [8], or any other library the user chooses.
We used the BLAS distributed with LAPACK. A list of the macros and the routines
that are actually called is contained in Table 2.

Some of the operations required by Strassen-Winograd (e.g., op(A) + op(B))
are not part of the Level 3 BLAS. Further, Fortran-90 does not provide adequate
capability for using transposes without copying the data. Hence, an additional
collection of routines (in both Fortran-77 and Fortran-90 formats) are provided for
people who need to use a library without this capability.

Our approach leads to a very clean implementation that supports many numerical
libraries on a variety of platforms. Further, the numerical results in §5 demonstrate

6

that we are competitive with hand tuned codes on various machines.

3. Complex Strassen—Winograd. Provided with _gemmw is a specialized
version of the classical matrix multiplication algorithm for complex matrices. Let
P, @, R, and S be real matrices. A well known trick [1] calculates

(P + Qi) - (R+ S7)
using the formula
[P-(R-S)+(P-Q)-9)]+[(P+Q)-R—P-(R-S).

Note that there are only 3 matrix multiplies instead of the usual 4.

When applying this trick to Strassen-Winograd there are two options:

1. Decompose op(A) and op(B) into real and complex parts first and then apply
Strassen—-Winograd to the three products (as real matrix multiplies).

2. Apply Strassen—Winograd directly to the complex matrices and decompose
the small matrices that the classical matrix multiplication algorithm is
ultimately used on.

The first option actually runs slightly faster (=2 2 — 3%) than the second, but uses 2.5
times as much storage in the process. Only a hardware manufacturer (e.g., [7] or [6])
would ever consider delivering the first approach without testing the second approach
first.

Note that by using the second option and a Level 3 BLAS routine (e.g., dgemm
or sgemm) that requires no extra storage, the storage requirement given in (3) is still
valid. Needless to say, .gemmw and _winos use the second option in the complex cases.

Unlike at least one commercially available Strassen-Winograd matrix multiplica-
tion routine for complex data [7], our routines do not attempt to re-order the matrices
op(A) and op(B) in order to achieve stride 1 vectors. We note that the matrices may
not always be in a part of memory that allows writes or is quick to do so. Ex-
amples include read-only shared memory segments (common when computing and
input/output are overlapped in a multitasking situation) or the matrices are actually
on disk (either by choice or having been paged). Another obvious advantage to not
re-ordering the matrices is that op(A) and and op(B) can overlap without causing
problems.

4. Parallel environments. There are two quite different parallel environments,
namely, inexpensive data access (e.g., shared memory machines) and relatively
expensive data access (e.g., distributed memory machines). The latter seems to
be what most parallel computer manufacturers are designing now and what many
members of the scientific community are using.

Each level of Strassen-Winograd involves twenty two matrix operations: fifteen
matrix additions and seven matrix multiplications. The blocked version of the
classical method requires twelve operations: four matrix additions and eight matrix
multiplications. Thus, Strassen—Winograd is inferior to the classical method when the
cost of matrix operand loads and stores is high. Assuming matrix loads and stores are
expensive, we developed a hybrid algorithm: classical among the parallel processors
but Strassen—-Winograd within each processor.

Initially, a heuristic iteratively partitions the processors and matrices A, B, and
C until each processor has a submatrix multiplication to perform independently and
in parallel with the others. Assume there are p processors, which can be factored into

7

the product of primes:

Without loss of generality, we assume p;_; < p;, 2 < i < n. Start with one set of p
processors. In step 7, the heuristic partitions each set of processors into p; subsets and
divides the maximum of {M;, K;, N;} by p;. Also, the number of processor partitions
grows by a factor of p;, as does the number of submatrix multiplications. Each
submatrix multiplication decreases in complexity by an identical factor of p;. After n
steps, each processor has an independent submatrix multiplication.

For example, suppose p=12=2-2.3, C = A X B, and A and B are 3 x 4 and
4 x 5 matrices respectively. Graphically, processors 1 — 12 collaborate on one matrix
multiplication. The matrices are partitioned initially as whole matrices:

aaaa bbbbb ceeee

aaaa | X bobbb = | cccec

aaaa bbbob ceeee
bbbbb

First, the heuristic uses the first 2 in the prime factorization of 12 so that two processor
groups are formed (e.g., 1 — 6 and 7—12). These collaborate on two submatrix
multiplications:

aaaa bbb | bb cee | cc

aaaa | X bbb | bb = | ccc|ce

aaaa bbb | bb cec | cc
bbb | bb

Second, the heuristic uses the second 2 in the prime factorization of 12 so both
processor groups are split in half (e.g., 1—3, 4—6, 7—9, and 10 —12). These
collaborate on four submatrix multiplications:

aa | aa cce | cc
aa | aa X = cce | cc
aa | aa cce | cc

Third, the heuristic uses the last prime (3) in the prime factorization of 12 to get 12
processor groups with one processor in each group. These collaborate on 12 submatrix
multiplications:

aa | aa ccc | cC
aa | aa X = ccec | cc
aa | aa cce | cc

Finally, each processor performs its matrix multiplication independent of the others.

The user stores submatrices of A and B into the parallel data base. In our
example code, the Linda system [4] was used. The computation continues with a call
to the parallel matrix multiplication routine, matmulp, with seven parameters. These

8

include the original sizes (M, K, and N), the partitioning (M, K, and N), and the
number of processors (p) to use.
Then matmulp creates

ESNRM N

parallel processes to compute submatrices of C which are placed in the database.
Each parallel process runs a routine DoCij which is completely independent of the
other DoCij’s. Each DoCij process creates (K — 1)/K processes to compute one
term of the respective matrix inner product. Then DoC'ij computes the remaining
term itself. In total, p roughly equal, independent, and parallel Strassen—Winograd
processes execute, where

N N (E= (R

Each parallel DoC'ij, after using Strassen-Winograd to compute its submatrix term,
accumulates the outputs of its child processes. Once accumulation is completed, each
DoC'ij outputs its C submatrix to the database and quits. The result, C, remains in
the distributed database.

5. Numerical experiments. Simple experiments were run on a variety of
machines. The ones reported here are for squaring a matrix A. (The results of
the computation were verified.) In order to fairly compare our times with those of
other libraries, the matrix A was copied to matrix B before calling a matrix—matrix
multiplication routine. The results reported here are representative of a larger set of
experiments.

Both Cray’s Scientific and Math library and IBM’s ESSL have a Strassen—
Winograd subroutine. We used various routines from each of these libraries to do
the basic block matrix operations like addition or multiplication (classical algorithm
only). Since the BLAS do not include matrix addition or subtraction, some simple
routines are supplied to do these essential operations.

The basic operations are accomplished using calls to subroutines written in a
variety of languages (Fortran or assembly language normally). Which subroutines
are actually called and the correct order of the parameters is defined through a set
of macros in a header file. In addition, the internal name mapping used by the C
and Fortran compilers (e.g., underscore additions or capitalization) is included in the
macro definitions. So, our code handles data typing, library names, and compiler
dependent name mapping transparently.

The routines were tested on the following machines:

Machine mindim | gemmw matmulp
Cray—2 128/768 X

Cray Y-MP 64 X

Cray Y-MP C90 128/256 X

IBM 3090S (VM, MVS, and AIX/ESA) | 192/256 X

IBM RISC System 6000 192 X X
Sequent Symmetry 32 X X
SUN SparcStation 96 X X
Intel iPSC-2 32 X

Note that for CPU’s which can do a number of things simultaneously, mindim is
much larger than on ones without this capability. On a 4 processor Cray 2 used with
micro-tasking, mindim = 768 appears to be the crossover point on a system with
time sharing in effect. Note that on a standalone Cray 2, mindim = 128 is good. On
the IBM 3090S, mindim = 192 is good when either ESSL or NAG is used with our
routine, but mindim = 256 is good when the BLAS are used.

In computing (2), there are two cases of interest regarding auxiliary storage. The
first is when B # 0 and A and/or B overlaps with C in memory. The second is the
opposite situation. For multiplying N x N matrices the memory requirements for
Strassen implementations are

Implementation B#0or A, B B=0and A, B
overlaps with C | do not overlap with C

gemmuw 1.67N? 0.67N*

Cray gemms 2.34N? 2.34N?

IBM ESSL gemms-rteal not possible 1.40N2

IBM ESSL gemms—complex | not possible 1.70N2

The IBM ESSL routine gemms assumes & = 1, 8 =0 in (2), and no overlapping of

A B,or C.

Table 3 contains the results of the example problem for 64 bit real data. The
highlights of the table as follows:

Cray Competing against the hand tuned classical parallel matrix-matrix multiplica-
tion supplied as part of the Cray Math and Scientific Library turned out to
be surprisingly difficult. Cray’s Strassen code seems to do the parallelization
in a different manner than ours. By varying the size of mindim as a function
of the number of processors we are able to run as fast or faster than the Cray
GEMMS, however.

IBM There are two features of this table worth noting. First, the ESSL routine
DGEMMS (also a Strassen—-Winograd routine) uses about 2.5 times as much
extra storage as our DGEMMW. Second, we compiled our Strassen-Winograd
routine using a number of libraries. On RISC System 6000’s, the run times
were all essentially equivalent to each other and the ESSL hand tuned routine
DGEMMS. Hence, the free BLAS library distributed with the machine was
the price-performance winner for a companion library to our routine. On
the 3090S, the run times using VM/XA, MVS, or AIX/ESA were identical.
The DGEMMW-ESSL version performed comparably to DGEMMS, but
consistently outperformed DGEMMS for matrices larger than 4000 x 4000.

SUN The SUN 4/600 used is not licensed for NAG and ESSL does not exist for
SUN’s. Hence, our table has four empty columns (the NAG columns could be
filled in). Note that the Strassen—Winograd is an integer factor faster than the
classical algorithm even for moderately sized problems. Since most members
of the scientific computing community have SUN’s on their desks, they should
demand that this routine be added to the Level 3 BLAS immediately.

Tables 4 and 5 contain the results of the example problem for 64 bit complex
data. The highlights of the tables are as follows:

Cray CGEMMW did not do particularly well in this case. The performance appears
to be lost in the Fortran—90 version of CGEMUL3. This indicates a path for
further work for us. However, CGEMMW uses about one fourth as much
auxiliary storage as the Cray routine CGEMMS, potentially allowing us to

10

multiply larger matrices.

IBM The ESSL routine ZGEMMS runs a bit faster than ZGEMMW for moderate
sized matrices. However, since ZGEMMS uses 2.5 times as much memory
as ZGEMMW, it quickly runs out of memory or into paging situations that
are painful. There are two cases where ZGEMMS fails to perform at all (the
first is noted in [7] and the second is an undocumented bug). First, when
A, B, or C overlap with one or more of the other matrices, ZGEMMS calls
ZGEMM instead, resulting in terrible performance (see Table 5). Second,
for reasons discussed in §3, if either A or B is in a read—-only segment of
memory, ZGEMMS produces a core dump. In both of these cases ZGEMMW
produces the correct results. Specific to the RISC System 6000’s, the run
times for ZGEMMW-+BLAS were consistently faster than ZGEMMW+ESSL
or ZGEMMW+NAG.

SUN The difference in speed between ZGEMMW and ZGEMM is just as striking as
in the real data case.

Table 6 contains run times on a Cray 2 with 4 processors and a Cray Y-MP C90
with 4, 8, and 16 processors. Experience on the Cray—2 shows that that mindim
should be increased as a function of the number of processors. As can be seen from
the table, SGEMMW+SGEMM did fairly well up through 8 processors. Beyond 8
Y-MP C90 processors, larger problems or the algorithm from §4 should be used.

Table 7 contains run times on an 18 processor Sequent Symmetry for 64 bit,
real data using 1, 2, 4, 8, 12, and 16 processors. The matrix A is 512 x 512 in this
case, which was the largest problem we could run on this machine conveniently using
Linda. While the classical algorithm may have a very impressive parallel efficiency
(approaching 100%), it is quite slow in comparison with the hybrid algorithm. There
is every reason to believe that if larger problems are run, then the parallel efficiency
of the hybrid method will also approach 100%.

6. Conclusions. In this paper, we addressed three issues. The first was the
design of a a highly portable version of the Winograd variant of Strassen’s matrix—
matrix multiplication algorithm that uses little auxiliary storage. The second was an
efficient implementation of classical matrix-matrix multiplication for complex data.
The third was parallel implementation.

The serial code is sufficiently flexible so that only one source code is needed
for four data types: single and double precision of either real or complex. It also
is capable of using the BLAS (the ones provided with LAPACK or a proprietary
version), Cray’s Scientific and Math Library, IBM’s ESSL, NAG, or a library of the
user’s choice. It also handles different naming and calling conventions transparently.
Numerical experiments show that this is a very good algorithm to use instead of the
classical one for problems of even a moderate size.

A Linda—C specific parallel implementation of a hybrid algorithm is also described
here. Logic and simple numerical experiments show that this is better than a
straight forward parallel implementation of either the classical or Strassen-Winograd
algorithms when loads and stores of submatrices is expensive.

Our serial code strongly supports the argument that just writing numerical
libraries in Fortran and assembly language is obsolete from a software engineering
or human productivity point of view. This is a case where C provides a superior
solution, particularly when combined with computational kernels of mixed languages.

The portable Strassen—Winograd solution presented here competes well against
hardware specific codes, especially on larger problems which motivated this research

11

in the first place. When auxiliary storage is used as a measure, our code is greatly
superior to hardware specific codes, in some cases by as much as a factor of 4.

Acknowledgments. We would like to thank Jéréme Jaffré of INRIA for his
assistance early on in this project.

The source code for GEMMW is available either by sending the mes-
sage send gemmw from misc to netlib@na-net.ornl.gov or by ftp’ing the file
misc/gemmuw.shar directly from a netlib repository.

[1] A.
[2] D.
[3] D.

[4] N.
[5] N.

[e] 3.

(7] L.

REFERENCES

Ano, J. HOPCROFT, AND J. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

H. BAILY, Extra high speed matriz multiplication on the Cray-2, SIAM J. Sci. Stat. Comput.,
9 (1988), pp. 603-607.

H. Bawy, K. LEE, AND H. SIMON, Using Strassen’s algorithm to accelerate the solution of
linear systems, J. Supercomp., 4 (1990), pp. 357-371.

CARRIERO AND D. GELERNTER, Linda in contert, Comm. ACM, 32 (1989), pp. 444-458.

J. HIGHAM, Ezploiting fast matric multiplication within the Level 8 BLAS, ACM Trans.
Math. Soft., 16 (1990), pp. 352-368.

MADSEN, Volume 8: UNICOS Math and Scientific Library Reference Manual (SR-2081),
Cray Research, Inc., version 6.0 ed., 1990.

MAasoN AND M. E. SLiVA, Engineering and Scientific Subroutine Library: Guide and
Reference, Version 2, IBM Corporation, Kingston, NY, 1.0 ed., 1992.

[8] NAG, NAG PFortran Library Manual, Numerical Algorithms Group, Ltd., Oxford, UK, Mark

14 ed., 1990.

12

TABLE 3
CPU time for 64 bit real computation

Machine Size | Classical algorithm | Strassen' -GEMMW +
BLAS? NAG3 BLAS? NAG3® ESSL*
Cray 2 206 0.04 0.04 0.04
1 CPU 511 0.59 0.55 0.59
882 3.02 2.66 2.71
1058 5.21 6.18 4.74
1269 8.97 8.91 7.99
1522 15.47 13.56 13.74
1826 26.72 20.33 21.98
Cray Y-MP | 206 0.06 0.05 0.05
6 ns 511 0.85 0.67 0.84
clock 882 4.39 3.18 3.20
1058 7.58 6.87 6.58
1269 13.06 10.46 9.90
1522 22.53 16.06 15.44
1826 38.91 25.10 24.61
Cray Y-MP | 206 0.02 0.02 0.02
C90 511 0.30 0.24 0.25
1 CPU 882 1.57 1.11 1.13
4.167 ns 1058 2.69 1.92 2.01
clock 1269 4.63 3.17 3.22
1522 7.97 5.20 5.26
1826 13.80 8.60 8.76
IBM 206 0.18 0.18 0.17 0.15
30908 511 2.61 1.79 1.81 1.49
Vector 882 13.74 6.22 7.65 5.72
1058 23.50 8.71 11.93 9.26
1269 39.98 13.90 18.32 14.42
1522 68.79 22.15 28.93 23.16
1826 | 119.34 * 53.02 37.10
IBM 206 0.19 0.21 0.19 0.20 0.21 0.20
RISC 511 2.98 3.06 2.68 2.66 2.87 2.67
System 882 15.12 15.79 12.37 12.87 13.22 12.94
6000-560 1058 26.84 27.25 20.63 21.21 22.81 21.32
1269 44.92 46.75 35.00 35.60 37.26 35.77
1522 77.29 80.69 58.29 59.71 6125 59.83
1826 | 134.13 140.33 96.29 99.53 102.77 100.12
SUN 4/600 206 4.28 1.67
1 CPU 511 64.40 17.50
882 | 334.90 64.56
1058 | 580.58 109.38
1269 | 1007.31 160.43

1 DGEMMS on IBM’s, SGEMMS on Cray’s; not available otherwise.

2 SGEMM on Cray’s, DGEMM on others; ESSL version on IBM’s, Cray Math and
Scientific Library on Cray’s, and LAPACK BLAS on others.

3 FO6YAF subroutine from Mark 14 library version. The vector version was not
available to us when this paper was written and the scalar results were uninteresting
on vector machines. We had no access to the SUN version.

4 Only exists on IBM machines (370 and POWER architectures).

* Not enough memory.

TABLE 4
CPU time for 64 bit complez computation

Machine Size | Classical algorithm | Strassen’ -GEMMW +
BLAS? NAG3 BLAS? NAG® ESSL*
Cray 2 206 0.16 0.17 0.16
1 CPUS 511 2.45 1.85 2.45
882 12.59 8.46 11.30
1058 21.79 19.11 19.62
1269 37.44 28.28 | 33.46
1522 64.67 4291 | 57.55
1826 | 111.70 62.94 | 90.73
Cray Y-MP | 206 0.23 0.16 0.20
1 CPU 511 3.42 2.02 2.64
6 ns 882 17.56 9.28 11.76
clock 1058 34.24 17.46 | 20.79
1269 52.24 28.19 | 33.52
1522 90.64 45.01 54.92
1826 | 157.63 71.34 | 90.88
Cray Y-MP | 206 0.08 0.06 0.07
C901CPU | 511 1.19 0.74 0.93
4.167 ns 882 6.10 3.36 4.37
clock 1058 10.56 5.81 7.31
1269 18.15 9.56 12.02
1522 31.28 15.68 | 20.03
1826 54.15 25.96 | 33.84
IBM 206 0.41 0.40 0.41 0.41
30908 511 5.72 4.12 4.09 4.10
Vector 882 | 29.26 14.70 15.79 15.77
1058 | 51.15 2223 | 26.73 26.73
1269 85.04 34.81 | 40.03 40.03
1522 | 146.19 54.60 | 63.07 63.07
1826 | 255.83 91.74 | 103.44 103.44
IBM 206 0.66 0.70 0.62 0.67 0.72 0.69
RISC 511 9.38 9.72 8.32 8.81 9.22 8.87
System 882 | 46.61 48.65 37.70 | 4147 4276 41.98
6000-560 1058 | 82.70 85.49 62.84 | 67.52 72.58 68.06
1269 | 137.43 144.04 106.26 | 115.47 119.95 115.97
1522 | 237.05 248.40 *| 187.62 193.14 188.91
1826 | 407.15 437.85 *1 32945 330.34 332.92
SUN 4/600 206 11.97 4.92
1CPU 511 | 184.32 48.70
882 | 962.73 165.59

ZGEMMS on IBM’s, CGEMMS on Cray’s; not available otherwise.
2 CGEMULS3 on Cray’s and ZGEMULS on all others. Underlying that is CGEMM on
Cray’s, ZGEMM on others; ESSL version on IBM’s, Cray Math and Scientific Library
on Cray’s, and LAPACK BLAS on others. Also, mindim = 256 was used for the IBM
3090S vector entries.
3 FO6ZAF subroutine from Mark 14 library version. The vector version was not
available to us when this paper was written and the scalar results were uninteresting
on vector machines. We had no access to the SUN version.
4 Only exists on IBM machines (370 and YOWER architectures).
5 mindim = 768.
* Not enough memory.

TABLE 5
CPU time for 64 bit complez computation — overlapped matrices

Machine | Size | ZGEMMS! ZGEMMW?*
IBM 206 0.77 0.41
3090S 511 11.45 4.10
Vector 735 34.18 9.81
882 59.71 15.77

3784 4648.10 659.14

IBM 206 1.08 0.66
RISC 511 16.61 8.75
System 735 50.47 24.35
6000-560 | 882 85.34 41.49
1058 148.65 67.53

1269 253.70 115.44

1522 437.63 188.54

1 IBM’s ESSL Strassen-Winograd subroutine.
2 Using ZGEMUL3 and DGEMM.

TABLE 6
CPU time for simple parallel 64 bit real computation on the Cray 2 and Y-MP C90

Number of | Size | Classical algorithm Strassen | SGEMMW +
processors SGEMM | SGEMMS SGEMM
Cray 2 1058 1.82 1.43 2.42
4 CPU’s 1269 2.83 2.20 2.45

1522 4.06 3.48 6.25

1826 7.61 5.39 5.57
Y-MP C90 | 1058 0.66 0.54 0.69
4 CPU’s 1269 1.14 0.89 0.99
4.167 ns 1522 1.96 1.47 1.53
clock 1826 3.41 2.42 2.44
Y-MP C90 | 1058 0.33 0.28 0.30
8 CPU’s 1269 0.57 0.45 0.47
4.167 ns 1522 0.98 0.75 0.75
clock?! 1826 1.70 1.24 1.27
Y-MP C90 | 1058 - 017 0.17 0.18
16 CPU’s 1269 0.29 0.27 0.26
4.167 ns 1522 0.50 0.40 0.41
clock! 1826 0.86 0.68 0.69

1 mindim = 256 for 8 and 16 processors.

15

CPU time for parallel on a Sequent Symmetry (Linda-C tuple space)

TABLE 7

Number of | Using matmulp/ DGEM MW Using classical DGEMM only
processors Time Speedup % Efficient Time Speedup % Efficient
1 543.28 1532.14

2 277.71 1.9562 97.81 | 774.02 1.9794 98.97
4 159.49 3.4063 85.15 | 388.51 3.9436 98.59
8 86.84 6.2561 78.20 | 195.78 7.8258 97.82
12 55.93 9.7135 80.94 | 131.94 11.6123 96.76
16 49.55 10.9642 68.52 | 102.02 15.0180 93.86

64 bit data, 500 x 500 matrices.

16

