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Abstract

In his seminal paper on probabilistic Turing machines, Gill [Gil77] asked
whether the class PP is closed under intersection and union. We give a positive
answer to this question. In fact, PP is closed under polynomial-time multilinear
reductions. In circuits, this allows us to combine several threshold gates into a
single threshold gate, while increasing depth by only a constant. Consequences
in complexity theory include definite collapse and plausible separation of certain
query hierarchies over PP. Consequences in the study of circuits include the
simulation of circuits with a small number of threshold gates by circuits having
only a single threshold gate at the root (perceptrons), and a lower bound on
the number of threshold gates needed in order to compute the parity function.

1. Introduction

The class PP was defined by John Gill [Gil77] and Janos Simon [Sim75]. PP is the
class of languages accepted by a polynomial-time bounded nondeterministic Turing
machine that accepts when more than half of its paths are accepting and rejects
when more than half of its paths are rejecting (ties can be eliminated by standard
techniques). Gill noted that PP is closed under complement, but stated that it was not
known if PP is closed under intersection and union. Though other closure properties
~of PP were later proved [Rus85, BHW89] and numerous researchers studied the class
[Wag86, PY84, BDG8S8, Tor88, KSTT89, Tod89, Tod88, GNW90, ABFR90], Gill’s
question remained open, and it was widely conjectured that PP was not closed under
intersection or union.
We prove that PP is in fact closed under intersection and union and even under
polynomial-time conjunctive and disjunctive reductions. Consequently, PP is closed
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under polynomial-time truth-table reductions in which the truth table predicate is
computed by a bounded-depth Boolean formula, and hence under polynomial-time
Turing reductions that make O (logn) queries. That is, P%lzlogn)-T = PP. Relative
to oracles, this collapse cannot be extended to a larger number of queries. For func-
tions computed with a bounded number of queries the behavior is quite different:
PFF&I)_“ ¢ PF{¥ ; for any oracle X unless P = PP.

Our strongest closure property is that PP is closed under polynomial-time truth-
table reductions in which the truth predicate is computed by an explicitly produced
multilinear polynomial (this includes all symmetric functions as a special case).

Similar results hold for circuits with a single threshold at the root. If g is computed
by a depth-d circuit with a symmetric gate at the output, polylogn threshold gates at
the next level, and 2P°¥°¢® AND, OR, and NOT gates at the remaining levels, then
g is computed by a depth-(d + 2) circuit having a single threshold gate at the root
and 2P°vls® AND, OR, and NOT gates at the remaining levels. We also prove that
no constant depth circuit with o(logn) threshold gates, 2**” AND, OR, and NOT
gates (in arbitrary positions), and 2" wires can compute parity. This is the first
natural example of a function that is known to require more than a constant number
of threshold gates.

2. Polynomials

Definition 1. For a non-deterministic Turing machine, N, let ACCEPT(N, z) de-
note the number of accepting paths of N on input z, and REJECT(N,z) be the
number of rejecting paths of N on input z.

Definition 2. A language L is in PrTIME(t(n)) if there exists a ¢(n)-time bounded
nondeterministic Turing machine N such that for all strings X, if X € L then
ACCEPT(N, X) — REJECT(N, X) > 0, and if X ¢ L then ACCEPT(NV,X) —
REJECT(N, X) < 0.

Definition 3. PP = PrTIME(n%),

Beigel, Gill, and Hertrampf [BGH90] and Gundermann, Nasser, and Wech-
sung [GNW90] have used polynomials in order to prove closure properties of various
counting classes defined by nondeterministic Turing machines. We begin this section
by analyzing some of the techniques of the former paper and applying them as well
to circuits.

A threshold gate outputs true if more than half of its inputs are true, false other-
wise. By perceptron we mean a circuit with a single threshold gate at the output and
with constant-depth Boolean circuits as inputs to the threshold (all gates are assumed
to have unbounded fanin). (Green [Gre90] calls these PP(PH) circuits. Minsky and




Papert [MP88] and others define perceptrons more generally.) Size and depth of per-
ceptrons are defined as for general circuits (for convenience we take size to be the
number of wires). The top fanin of a perceptron is the fanin of the threshold gate.
For convenience of exposition, we will use —1 to represent false and 1 to represent
true in our circuits — a slight departure from standard practice. All logarithms in
this paper are base 2.

Lemma 4. For1 <i <k, let z;,,...,2;; be the outputs of an ACq circuit having
size s and depth D—1, and let ; = ¥1¢j<5 Ti;j. Assume that f > 2. Let p(z1,...,%k)
be a polynomial of degree d, whose coefficients are integers and are bounded in absolute
value by M. Then there exists a perceptron with inputs ;; for 1 <i < k,1<j < f,
top fanin M fO(d + 1)k, size ks + MfO@(d + 1)¥, and depth D + 2 that returns
true if and only if p(z,,...,zk) is positive.

Proof:  Write each coefficient in p as a sum of 1’s or a sum of —1’s. Write each z;
as r;; + -+ + ;5. Expand each monomial in p using the distributive law, to obtain
a sum of monomials over the z;;’s, each monomial having coefficient —1 or 1. The
number of monomials is at most M f¢ (d:" . Each monomial has degree d or less.
The value of each monomial is —1 or 1 and can be computed by a depth-2 Boolean
formula (in CNF or in DNF) having size (d + 1)2¢. Therefore there is a perceptron

which determines whether p(zy,...,zx) > 0 and which has top fanin M f¢ (d','c'k), size
My (d‘;k) +(d+1)2¢fe ('“,;k) + ks (note in this calculation that there are at most

fé Sd':k) distinct monomials, and their values need not be computed more than once),
and depth D+ 2. 1

Lemma 5. Let Ny,...,N; be t(n)-time bounded nondeterministic Turing ma-
chines. Let p(zi,...,zx) be a polynomial of degree d, whose coefficients are
integers and are bounded in absolute value by M. Then there exists a prob-
abilistic Turing machine N that runs in time [log (.M(d',tk))] + dt(n) such that
for all X, ACCEPT(N,X) — REJECT(N,X) = p(z1,...,zx), where z; denotes
ACCEPT(N;, X) — REJECT(N;, X).

Proof:  Similar to the proof of Lemma 4. |

The order of a rational function is the degree of its numerator plus the degree of
its denominator.

Lemma 6. For1 <1 < k, let z;1,...,z;; be the outputs of an ACy circuit having
size s and depth D—1, and let z; = ¥y <<y Tijj. Assume that f > 2. Letr(zq,...,zk)
be a rational function of order d whose coefficients are integers bounded in absolute
value by M. Then there erists a perceptron with inputs z;; for 1 <i < k,1<j < f,
top fanin M2fO(d 4+ 1), size ks + M?fO(d + 1)*, and depth D + 2 such that
when r(zy,...,xx) is defined the perceptron returns true if and only if r(zy,..., %)
s positive.
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Proof: Let r(z,...,zx) = p(z1,...,2%)/q(z1,- .., k), and let s(z1,...,zk) be the
polynomial p(zy,...,zx) q(z1,...,2x). Then r(z,,...,zx) and s(z1,...,zk) have the
same sign whenever the former is defined. The degree of s is equal to the order of r.
The maximum coefficient in s is bounded in magnitude by M?(d + 1)*. The result
follows by applying Lemma 4. |

Lemma 7. Let Ny,..., Ny be t(n)-time bounded nondeterministic Turing machines.
Let r(zq,...,zx) be a rational function of order d, whose coefficients are inte-
gers and are bounded in absolute value by M. Then there ezists a probabilis-
tic Turing machine N that runs in time [log ((d + 1)***2M?)] + dt(n) such that
ACCEPT(N,X) — REJECT(N, X) and r(z1,...,zx) have the same sign for all X
where the latter is defined, where z; denotes ACCEPT(N;, X) — REJECT(N;, X).

Proof:  Similar to the proof of Lemma 6. |

The polynomial A, defined below is the key to proving that PP is closed under
intersection. When restricted to lattice points (z,y) such that 1 < |z|,|y| < 27, the
polynomial A,(z,y) is positive if and only if both z and y are positive.

n

P,(z) = (:lv——l)l-‘[(ac—2'.)2

=1

Qu(e) = —3(Pa@) + Pa(-2))
) = P.(z)
Rﬂ() - Qn(x)
—2P,(z)

Fr(z) + Pu(-2)
An(z,y) = 2P(2)Qn(y) + 2Pa(y)Qn(2) + Qu(2)Qn(y)
= Qn(2)@n(y)(2Rn(z) + 2Ra(y) +1)

Lemma 8. For all n,

For all z, P,(z) + P.(—z) < 0.

For all z, Qn(z) > 0.

If z < -1 then R,(z) < -2.

If x is an integer such that 1 < z < 2" then 0 < R,(z) < 2/3.

Proof:
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i. Since P,(z) + P,(—z) is an even function, we may assume, without loss of
generality, that £ > 0. If z < 1 then P,(z) and P,(—z) are both negative, so
the conclusion follows. If z > 1 then P,(z) > 0 and P,(—z) < 0. Therefore, it
suffices to show that |P,(z)| < |Pa(—z)|. Since |z —i| < |—z —i| for all 1 > 0,
each factor of P,(z) is greater than the corresponding factor of P,(—z), so the
conclusion follows.

ii. Immediate from (i).

iii. For z < =1, P,(—z) > 0. Therefore P,(z) < P.(z) + P,(—z) < 0 by (i).
Therefore —2P,(z)/(Pn(z) + Pa(—12)) £ —2P,(z)/Pu(z) = —2.

iv. Forz > 1, Py(z) > 0. By (i), Pa(z)+ Pa(—2) < 0. Therefore —2P,(z)/(P.(z)+
P.(-z)) 2 0. If £ = 1 then R,(z) = 0, so the second inequality follows.
Henceforth assume z > 2. We will show that |P,(—z)| > 4|P.(z)|. Since
2 < z < 2" there exists k such that 2 < z < 2¥*! and 1 < k < n. For all i we
have | —z — 2| > |z —2¢|. We also have | —z —2%| > 2-2% > 2|z — 2¥|. Therefore
|Pn(—z)| > 4|P.(z)|, as claimed. Therefore, —2P,(z)/(P.(z) + Pa(—2)) <
—2P,(z)/(Pn(z) — 4P,(z)) = 2/3, completing the proof.

Lemma 9. Assume that x and y are integers such that 1 < |z|, |y| < 2". For everyn,

. The degree of An(z,y) is O (n).

Each coefficient of An(z,y) has absolute value O (2"2).
Ifz >0 and y > 0 then A,(z,y) > 0.
If £ <0 ory <0 then Ay(z,y) <O.

Proof: The assertions about the degree and size of the coefficients are easily
verified.

Consider the sign of 2R,(z) + 2R,.(y) + 1. From Lemma 8(iii,iv) it follows that
2R.(z) + 2R.(y) + 1 is positive if z and y are positive, and negative if  or y is
negative. Since Qn(z) and Qn(y) are positive it follows that A,(z,y) is positive if z
and y are positive, and negative if z or y is negative. |

For non-zero integral values of z and y within a 2"*! x 2"*! square, A,(z,y) is
positive if and only if z and y are both positive. We can construct polynomials (still
with degree O (n)) that take on the correct sign in somewhat larger squares, though
the size of the coefficients increases in that case. Minsky and Papert [MP88] have
shown that no single polynomial in two variables can take on the correct sign for all
non-zero integral values of both variables. Careful analysis of their proof shows that a
polynomial in two variables of degree d with each non-zero coefficient having absolute
value between 1 and M cannot take on the correct sign in a 2"*! x 2"*1 square when
n > log M + dlogd.




Next we consider analogous polynomials in many variables. Suppose that [log k]
is odd.

Define
P®(z) = Py(z)Ner
Q®(z) = Qu(z)ME
(k)
ROG@) = PmEx;
z
k
Ag‘)(.’tl,zz,. . .,:l:k) = 22 (P(k) HQ(k)(l' ) H Q(k) CIIJ
1=1 i j=1

= (2RO (z1) + -+ +2BP (2x) +1) (@ (z1) - QP (zx))

Lemma 10. For 1 < i < k, assume that z; is an integer such that 1 < |z;| < 2™.
For each n,

i. The degree of A¥)(zy,...,zk) is O (n [logk] k).

~.

~.

i
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Each coefficient of A¥)(zy,...,z4) has absolute value O (2"2 n°5k]’°).

Ifz; > 0 for all i with 1 <1<k, then AF)(z,,...,24) > 0.

If z; < 0 for some i with 1 <i < k, then A¥)(zy,...,24) < 0.

Proof:  The first two assertions are easily verified. By Lemma 8, R¥)(z) < —k
ifz < -land 0 < RP(z) < 1if1 <z < 2" Since Q¥)(z) is positive for all «,

A®)(zq,...,74) and (2 Yk R (z) + 1) have the same sign. The last two assertions
now follow easily. |

3. Applications to Probabilistic Turing Machines

It has been shown that PP is closed under complement [Gil77], under symmetric
difference [Rus85], and under polynomial-time parity reductions [BHW89]. In this
section, we will prove additional closure properties.

Theorem 11. The union of finitely many PrTIME(¢(n)) languages is in Pr'TIME(t(n)?).

Proof: This follows from Lemmas 10 and 5. ||

Toran [Tor88] asked whether PP is closed under conjunctive reductions, and he
noted that an affirmative answer would imply closure under O (logn)-Turing reduc-
tions (defined below).

Theorem 12. The class PP is closed under polynomial-time conjunctive reductions
and disjunctive reductions.




Proof: = We obtain closure under polynomial-time conjunctive reductions by apply-
ing Lemma 5 to the polynomial A®*)(z,,..., ;) discussed in Lemma 10. We obtain
closure under polynomial-time disjunctive reductions by applying Lemma 5 to the
polynomial —A®) (—zy,...,—zi). 1

Definition 13. A polynomial-time bounded-depth Boolean formula reduction is a
polynomial-time truth-table reduction in which the truth-table predicate is computed
by a bounded-depth Boolean formula that is explicitly produced by the reduction be-
fore any queries are made.

Theorem 14. PP is closed under polynomial-time bounded-depth Boolean formula
reductions.

Proof:  An easy induction on the depth of the formula. |

Definition 15. A polynomial-time f(n)-Turing reduction is a polynomial-time Tur-
ing reduction that makes at most f(n) queries.

Theorem 16. PP is closed under polynomial-time O (logn)-Turing reductions.

Proof:  Every polynomial-time O (logn)-Turing reduction can be converted to a
polynomial-time depth-2 Boolean formula reduction (write the reduction as a CNF
or DNF formula over the query answers). |

In other words, we have shown that Pg%ogn)_T = PP. It was previously known

that P{j,gny-7 € PP [BHWSY].

Definition 17. A polynomial-time threshold reduction is a polynomial-time truth-
table reduction in which the truth-table predicate is true if and only if at least half
of its inputs are true.

Definition 18. A polynomial-time symmetric reduction is a truth-table reduction in
which the truth-table predicate is a symmetric function, i.e., a function that depends
only on the number of inputs that are true.

Newman [New64] constructed rational functions that closely approximate |z| for
—1 <z £ 1. To show closure under polynomial-time threshold reductions, we will
define polynomials that closely approximate sign(z) for 1 < |z| < 2", (sign(z) = 1
ifr>0,-1ifz<0,and0if 2 =0.)

Recall from Lemma 8 that 0 < R,(x) < 2/3 for 1 < z < 2" and that R,(z) < —2
for £ < —1. Define

Rg‘)(z) — (Rn(z))z[logk]+2
2

-1+ —

1+ RP(z)
Then we have 0 < R{¥)(z) < 1/(2k) for 1 <z < 2" and R¥(z) > 2k for z < —1. It
is easily verified that |S{¥)(z) — sign (z)| < 1/k when 1 < |z| < 2.
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Theorem 19. PP is closed under polynomial-time threshold reductions.
Proof:  Define
T,Sk)(xl, ceey :ltk) = 25,(12")(11) + -4 25,(3,‘)(1‘1:) + 1.

Assume that 1 < |z;] < 2" for 1 < ¢ < k. Then T¥(z,,...,z4) is a rational
function that is positive if at least half of the z;’s are positive, and negative otherwise.
The order of T® is O(nklog k), and the absolute value of each of its coefficients is
20(n*+nk*logk)  The result now follows from Lemma 7. |

This immediately implies

Corollary 20. PP is closed under polynomial-time symmetric reductions.

Lemma 21. Suppose P(z1,...,zx) is a multilinear polynomial in k variables with
integer coefficients bounded in absolute value by M. Then there ezists a rational
function, Up(z1,..., ), of order k(4n — 1)XMoe:MN+k+3) " yyish coefficients bounded
in absolute value by O (22"2““("1”)*’“3)), such that for 1 < |z;| < 2",

. . 1
|P(sign(zy),...,sign(zk)) — Up(z1,...,2x)| < 5

Proof:  Let Uy(zy,...,zx) be P(SW(2y),...,5M(z4)), where b = kM2F+2. The
verification of the bounds on the order and coefficients is straightforward.

P(sign(z1),...,sign(zi)) and U,(z1,...,zx) have at most 2*¥ monomials; the
error between corresponding monomials is bounded by

| Msign (21) -+~ sign (zx) — MSP (y) - - - S (xw)| < 2kM/h = 1/2541,

so |P(sign(zy),...,sign(zx)) — Un(zy,...,2)| < 1

Although seemingly stronger results may be stated, note that every polynomial
over variables in {—1,1} is equal to a multilinear polynomial over those variables.

Definition 22. A polynomial-time multilinear reduction is a polynomial-time truth-
table reduction in which the truth-table predicate is computed by a multilinear poly-
nomial that is explicitly produced by the reduction before any queries are made.

We now have
Theorem 23. PP is closed under multilinear reductions.

Note, by Lagrange’s interpolation formula, that multilinear reductions include
symmetric reductions as a special case. It is not known whether PP is closed under
general truth-table reductions.



4. Applications to Threshold Circuits

In this section we prove some simulation results for circuits. We also prove a lower
bound on the number of threshold gates needed in a constant depth circuit that
computes parity.

Theorem 24. Consider k perceptrons having top fanin f, size s, and depth D.
The AND of these k perceptrons can be computed via a perceptron having top fanin

20(klogk(logf)2)) size 20(klosk(lo$f)2) + ks, and depth D + 2.

Proof:  This follows from Lemma 4 and Lemma 10 with n = [log f]. 1

By threshold circuit we mean a circuit with any number of threshold, AND, OR,
and NOT gates.

Lemma 25. Consider any threshold circuit C having size s, depth D, and only
k threshold gates. There is a perceptron having top fanin 20(2kk3(l°5k)2(1°5’)4), size

90(2*k° (log k)* (log 2)*) + 251 (k+1)s, and depth D+4 which computes the same function
as C.

Proof:  Number C’s threshold gates 1,...,k. Let C(by,...,b) be the result of
replacing the ith threshold gate of C by the bit b; for every ¢ and then evaluat-
ing the resulting threshold-free circuit. Let A(by,...,b;) be a circuit that verifies
that the result of the ith threshold gate in C is b; for every ¢ (using the parame-
ters to A as the output values for any threshold gates below gate ¢). Negations can
be pushed to the leaves, so A(by,...,b) can be evaluated as the AND of k thresh-
olds. Since each of these thresholds has fanin bounded by s, A(by,...,bx) can be
computed by a perceptron having top fanin 90(klogk(log ’)2), size 20(klosk(logs)”) | ks,
and depth D + 2. The AND of C(by,...,b) and A(by,...,b;) can be computed
by a perceptron having top fanin 90(k 1°5k(1°5’)2), size 20(klogk(og2)*) | (k+1)s, and
depth D + 2, since C(by,...,b;) does not involve any thresholds. The output of C
can be computed by taking the OR over all 2% sequences b;,...,b; of the AND of
A(b,...,bk) and C(by,...,bx). This can be converted to a perceptron with top fanin

20(2"k3(losk)2(logs)‘), size 20(2"k3(logk)2(logs)’) + Zk(k +1)s, and depth D +4. 1

Theorem 26. Consider any threshold circuit C having size 2P°¥1°8™ depth D, and
O (loglogn) threshold gates. There is a perceptron having top fanin 2P°WI8™  gize
gpolvlogn - gnd depth D + 4 which computes the same function as C.

Proof: Immediate from Lemma 25. |}

The following is known:




Theorem 27 (F. Green [Gre90]). For any D > 2 there exists a constant ¢ such
that the following s true. Consider any perceptron with top fanin m, with depth D+1

2
and with subcircuits each of size ont/P" If the circuit computes parity of n variables
correctly, then

m > 26n(pw)/pﬁ -1

Using this, we show that threshold circuits with a small number of threshold
gates cannot compute parity — answering a question that arose during discussions
with Russell Impagliazzo. According to Roman Smolensky (personal communication,
1990) there was previously no natural example of a predicate that provably could not
be computed by constant depth threshold circuits with only a constant number of
threshold gates.

Theorem 28. Let C be a threshold circuit having size 2", depth O (1), and only
o(logn) threshold gates. Then C does not compute the parity function of n inputs.

Proof: By Lemma 25, C can be simulated by a perceptron having top fanin
27 size 27"V and depth O (1). By F. Green’s theorem, such a perceptron cannot
compute parity of n inputs. |

A maultilinear gate evaluates a multilinear polynomial of its inputs (represented as
—1 and 1) and outputs true iff the result is positive. Note, by Lagrange’s interpolation
formula, that every symmetric gate is a multilinear gate. Lemmas 21 and 4 yield the
following simulation result:

Theorem 29. If g is computed by a depth-D circuit with a multilinear gate at the
output, polylogn threshold gates at the nezt level, 2P°V1°6™ AND, OR, and NOT gates
at the remaining levels, and 2P°V1°8™ wires then g is computed by a perceptron that
has size 2P°W18™ gnd depth D + 2.

5. Query Hierarchies over PP

The class of languages polynomial-time reducible to a set A with at most f(n) adap-
tive queries is P?(n)-"r' The class of languages polynomial-time reducible to a set A

with at most f(n) nonadaptive queries is P}‘(n)_n. The analogous classes of functions
are PF?(n)_T and PF?(,‘)_“. By varying f, we obtain the query hierarchies over A.

In the preceding section we showed that P%lzlogn)-'r = PP. This can be viewed as
collapsing a query hierarchy over PP. There is an oracle A for which PYF?  C PP4 if

f(n)-T
and only if f(n) = O (logn) [Bei90]. Thus, with that same A we have P‘;&';_T = PP4
if and only if f(n) = O(logn). Thus, there is circumstantial evidence that our

collapse is the best possible. This is the first plausible example of collapse that does
not translate upwards in a query hierarchy. It is also known that PPP® # PP® for
almost all oracles R because PARITYPR ¢ PP for almost all R [ABFR90]. By

10




combining the techniques in those two references with the techniques of this report,
we can prove relativized separations at regular intervals between O (logn) queries
and n%1) queries. We will provide details in the final version of this report.

The behavior of the query hierarchies over PP is quite different when it comes to
functions. It is known that if A is a self-reducible set that is not in P and if there
exists k such that for all j > k we have P;‘.T = P{ 1, then A must be p-superterse,
i.e., for all 7 and all sets X we must have PFg- +1)u ¢ PFY; [Bei]. The class PP
has self-reducible complete sets and we have P57 = P17, so PF{} +1)-t¢ Must not be
contained in PF¥ for any i and X unless P = PP. This plausible separation of the
bounded query hierarchies of functions is quite a contrast to the collapse discussed in

the preceding paragraph. Plausible separations at higher levels in the bounded query
hierarchy of functions over PP follow from [ABG90]

6. Concluding Remarks

Paturi and Saks [PS90] have also used rational approximations in their study of
threshold circuits. We are grateful to them for sharing with us a preprint of their
paper, in which we discovered Newman’s theorem. That theorem was the inspiration
for our proofs that PP is closed under symmetric reductions and under multilinear
reductions (and the corresponding circuit simulations). We wish to note that the
other results in this report were obtained independently of our seeing Paturi and
Saks’s paper.

We have exploited a relation between thresholds and rational functions. Maass
and Schnitger report a relation between thresholds and sigmoidal functions
1/(1 + ezp(—=z)), though their simulation requires w(1) gates (personal communi-
cation, 1990).

We note that all previous proofs of containment in PP hinge on the existence of
certain polynomials having fixed degree, in fact 2 or less in each variable. (We will
discuss this further in the final version of the report.) We speculate that the need for
polynomials whose degree varies with the numerical range of the inputs is the main
reason why the questions answered herein remained open until now.

Our interest in the current research topic was inspired by discussions with Fred
Green of the bounded query hierarchies over PP. The idea of looking at multivariate
polynomials germinated during a visit from Gerd Wechsung.

We would like to thank Mike Fischer for helping us to clarify the proof of Lemma 4;
John Gill, Fred Green, Rao Kosaraju, and Gerd Wechsung for helpful discussions;
Andy Yao for pointing out several references, including Paturi and Saks’s paper;
Johan Hastad, Russell Impagliazzo, Ramamohan Paturi, and Roman Smolensky for
suggesting some open problems; Steven Rudich and Mike Fischer for helpful advice;
and Bill Gasarch for very helpful comments and proofreading.

The first author would also like to thank the second and third authors and Mar-
garet for their patience.
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