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Abstract

Programming distributed-memory machines requires that data associated with a given com-
putation be partitioned and distributed to the local storage of each individual processor. How
this distribution is done affects the amount of data movement required to carry information
between different parts of the machine, which in turn affects program performance. This work
addresses the issue of data movement between processors due to cross-references between mul-
tiple distributed arrays. The problem of indez domain alignment is formulated as finding a set
of suitable alignment functions that map the index domains of the arrays into a common index
domain so as to minimize the cost of data movement due to cross-references between the ar-
rays. The cost function and the machine model used are abstractions of the current generation
of distributed-memory machines such as the Warp systolic machine [1], the Intel iPSC/2 [2],
and the NCUBE hypercube multiprocessors [13]. The problem as formulated is shown to be
NP-complete. A heuristic algorithm is devised and shown to be both efficient and providing
excellent results.




1 Introduction

Programming distributed-memory machines requires partitioning of the program data structures. Slightly
more subtle is the problem of aligning multiple data structures, in which the relative locations of these
data are determined. In all of the CSP[7]-based languages with explicit “send” and “receive” commands,
such information is provided by specifying directly the mapping of data structures to each processor.
In higher-level languages that automate the generation of communications (e.g. AL[15], DINO[14], and
Parascope[3]), partition and alignment are explicitly specified by the programmer using directives.

In this paper, we focus on the problem of automatically generating array alignment information based
on array reference patterns in the source program. This method is used in the Crystal compiler[4, 12] and
can be applied to the parallel implementations of other programming languages on distributed memory
machines as well (e.g. those for parallelizing Fortran source programs).

We view a distributed data structure as a function from some index domain to some value domain (e.g.
floating-point numbers). The data structures under consideration here are restricted to multi-dimensional
arrays. In other words, index domains that are Cartesian products of interval domains, where an interval
domain is a set of consecutive integers.

Alignment addresses the issue of reducing data movement between processors due to cross-references
among different distributed arrays. The problem of alignment is formulated as finding a set of suitable
alignment functions that map the index domains of these arrays into a common index domain.

The rest of this paper is organized as follows: Section 2 introduces some notation and provides a
programming example illustrating domain alignment. In Section 3, we motivate the need for domain
alignment and discuss the benefits and limitations of domain alignment as a compilation technique. Next,
in Section 4, a model of a distributed memory machine and the cost of array references in the model are
defined. In Section 5, the class of alignment functions under our consideration is presented. Section 6
provides the model of the component alignment problem. Discussions of the complexity and a heuristic
algorithm for solving the problem are presented in Section 7. A few concluding remarks are given in
Section 8. Finally, a proof of NP-completeness of the alignment problem is included in the appendix.

2 Notation

The Crystal language contains special data types for representing distributed data structures. First, an
indez domain specifies the shape of a data structure. Functions over index domains, called data fields,
represent distributed data structures, unifying the notion of arrays and functions. Since they are functions,
a set of data fields can be defined recursively.

A primitive index domain is an interval domain, denoted by [m..n], where m and n are integers and
m < n. An interval domain represents a set of consecutive integers. More complex index domains can be
constructed from primitive domains by using domain constructors, which include product, disjoint union,
etc. In this paper, we restrict index domains to be Cartesian products of interval domains. A data field
defined over such an index domain represents a parallel computation defined over a multi-dimensional
array. We use dom(a) to denote the index domain of a data field a. Each of the interval domains that
constitutes the Cartesian product domain is referred to as a component of the product domain. The p-th
component of domain dom(a) is denoted by dom(a, p).

Syntactically, index domains and data fields are specified as in the following example

dom Dy =[0..n],
dom Dy = Dy x Dl,
dfield a(¢) : Dy = i + 2,

. .o _Ji=0—=0,
dfield b(7, 7) + D2 _{ else — b(i — 1,7) + a(j) }’




where domain D; is an interval domain and D, is constructed from D; by the product constructor. Data
field a is defined over domain D; while data field b is over domain Ds.

The general form for a conditional expression is

1 — 7T

Pn — T

where the p;’s are boolean expressions called guards, and the 7;’s are arbitrary expressions. The guards p;
are mutually exclusive, and the value of the conditional expression is 7 if py is the guard whose value is
true.

The reduction operator “\” takes as arguments a binary associative function @ : 7' x T' — T over some
data type T" and an array a = [a3,. .., a,] of elements of type T, and is defined as

\Ga=a1®---®an.
For example,
\+(1,2,3,4,5,6] = 21.
Reduction can also be applied to sets of elements, provided @ is commutative.

In the following, the Greek letters denote arbitrary expressions. Square brackets [] are used to select
a subexpression. For example, when we want to emphasize the term a(4, 5) in the expression a(z, j) + b(j),
we use 7[a(3, j)] to denote the expression. Quasi-quotes "' are used to emphasize that we are interested in
the syntactic form of the quoted expression.

Definition Given a data field definition of a containing a data field reference to b as follows:
dfield a(i1,...,im) : D = ¢[y — b(r1,...,m)],
the symbolic form
fa(iy,...,tm) < b(m1,..., 7)) : 7"

is called a reference pattern.

A reference pattern represents a collection of dependencies in an aggregate form. Multiple reference
patterns can be derived from a data field definition if there are more than one instances of data field
references occurring on the right-hand side of the definition. A reference pattern is either a self-reference

pattern to the same data field (e.g. a calls a) or a cross-reference pattern between different data fields (e.g.
a calls b).

Throughout this paper, we use Gaussian elimination with partial pivoting as an example to illustrate
the alignment algorithm. A Crystal program for solving this problem is included in the appendix.

In the Crystal compiler, a program is first decomposed into phases; each phase comprises a set of data
fields which are closely coupled to each other in terms of data dependence. A phase is treated as a unit
in domain alignment. For the above example, two phases are constructed: one consists of data fields a,
ipivot, apivot, and fac; the other consists of  and psum. The formal definition of phase can be found in
[12].

3 Issues in Domain Alignment

Below are the definitions of two data fields a and b.
dom D = [1..n] x [1..n],
dfield a(i, j) : D = b(j, %),
dfield b(¢,5) : D = 1,




The reference pattern derived from the definition of a is
a(i, §) < b(j, 1)’

Even though the two arrays are of exactly the same shape, the distribution of their elements to processors
need not necessarily be done in the same way. Due to the way b is referenced by a, it is beneficial to store
a(%,7) and b(j,%) on the same processor to eliminate the need of communication. This simple example
indicates that the compiler can choose the relative location of arrays by analyzing array reference patterns.
In all of the examples that follow, data fields a and b are defined over index domain D as defined above.

The following example illustrates conflicting reference patterns:

fa(i,j) «—b(i,5—2) : 1"
(i, 4) < a(4,7) : 72"

Whether a(s, §) is aligned to b(j,¢) or b(i,j — 2), the communications due to one of these two reference
patterns cannot be reduced. Thus, the alignment problem must be formulated as an optimization problem
where reference patterns may carry different weights.

Now let us look at a slightly more involved example where a reduction operator occurs in the definition
of data field a.

dfield a(é,7) : D = \+ {b(k,4) | 0 < k < n},

its reference pattern is
‘a(i,j) «— b(k,i): 0 < k < n

We consider first the simple scenario of mapping one element per processor. For each (4, j) € dom(a), a
set of elements of b is referenced. If we store a(4, ), b(i, j) at processor (i, j), then for each i we must do a
reduction across the ith column of elements of b and distribute the result along the ith row. Alternatively, if
b(4,1) is stored in processor (i, j), only a reduction operation over a row is needed, provided the processors
are connected by networks such as hypercubes, butterflies, etc., because the broadcast can be achieved at
the same time as a side-effect of reduction [9, 6]. Thus alignment is related to the communication routines
specific to the interconnection network of the target machine. We will discuss in the next section the
abstract model of a target machine and the corresponding communication cost.

Next, for the same example, suppose each domain is partitioned into sub-domains, each of which is
mapped to a processor: by aligning a(4, §) with b(j, ) for all (i, j) € D (i.e. transpose of b), and partitioning
the domain along the first dimension (mapping a row into a processor), there will be no communication
involved at all since the reduction operations now take place within a single processor. However, if a(3, j)
and b(%, j) are mapped to the same processor, some communication must occur no matter how partitioning
is done. We want to point out here that choosing the right partitioning strategy so as to “internalize”
as many communications as possible is considered in a separate domain partitioning stage in the Crystal
compiler dealing with minimizing the cost of self-references, and is beyond the scope of this paper. This
example illustrates that alignment always helps in reducing cross-references from a to b, independent of
domain partitioning. k

The following example illustrates a reference pattern whose first component is a non-linear expression.
‘a(d,§) — b(® = 4,i+3) 7

Though it might be possible to align a and b in such a way as to avoid communication, the cost of
evaluating the extra conditional and non-linear expressions generated by the alignment process may exceed
the cost of communication. Thus, there are some tradeoffs involved in doing alignment. We will discuss
the class of alignment functions under our consideration.

Finally, any compilation technique is limited by what is known at compile time, and alignment is no
exception. Below is an example where a reference pattern contains an indirect reference a(,j — 1) whose




value may not be known until the program is in execution. Hence, such reference patterns shall not be
taken into account by the alignment algorithm.

fa(z,j) < bla(i,j —1),7) : "

To summarize, alignment should use cost functions that reflect the communication costs on real ma-
chines and the symbolic forms of the alignment functions should be simple enough for a compiler to derive
and to implement.

4 Reference Cost

In order to optimize domain alignment, we need to have a notion of reference cost. We classify reference
patterns according to their “uniformity”. The idea is to map individual index domains occurring in a
program into a common index domain so that the reference patterns achieve maximum “uniformity”.

- Consider a reference pattern defined over a common n-dimensional index domain,

fa(is, ..oy ipy . oyin) — O(T1y ey Tpy ooy Tn) 2 Y
We say the pattern is uniform in pth dimension if
™ ="y + ¢
where ¢ is a small constant independent of domain bounds, and & denotes that the two expressions have

the same canonical form. !

With this concept, we can classify reference patterns with respect to their uniformity, namely patterns
that are uniform in every dimension; those that are non-uniform in one, two, three, etc. dimensions; and
those that are non-uniform in every dimension.

In particular, we have the following special cases:

e Local Memory Access:

o~

fa(iy, 42, ...,1n) < b(T1,72y...,Tn) : 7" Where 1y = iy,..., T = ip.
e Neighborhood Access: patterns that are uniform in all the dimensions as in
Ta(iy,d2,...,05) < b(i1 + c1, 42 + €2,y in + ¢n) 17" whereey,...,c, are constants.
e Random Access: patterns that are non-uniform in all the dimensions.

A memory access within a processor is often far faster than inter-processor communication. The differ-
ence in cost can be as big as 2 or 3 orders of magnitude.

To communicate with nearby processors within a constant distance, a message needs only to be routed
through a small constant number of processors. Message collisions can be avoided. So neighborhood
communications are the most efficient inter-processor communications.

Non-uniformity implies non-local communications, which are likely to cause message collisions. The
more the non-uniform dimensions a reference pattern has, the higher the chance of message collisions.

Another reason for favoring more uniform references is because index domains will be partitioned into
subdomains where each subdomain is assigned to a processor. Non-local communications can be eliminated
by mapping the non-uniform dimensions into the memory of a single processor.

1A canonical form of an expression is a syntactic form in which variables appear in a predefined order and constants are
partially evaluated. For example, "2 — 7 + j7and j — i + 3 — 17 would have the same canonical form " —  + j + 2T Symbolic
transformations and partial evaluations are carried out by a compiler to obtain canonical forms.




5 The Class of Alignment Functions under Consideration

An alignment function is a mapping from an index domain D to another index domain E. Correspondingly,
a data field defined over D will be transformed to a new definition over F. This transformation of the
definition can be done mechanically once the function is given [8]. The goal of selecting alignment functions
is to transform those reference patterns in the original data field definition to ones that have the least cost
in the new definition.

The uniformity notion defined earlier suggest that we relate the components of two index domains in
such a way that maximum uniformity will be achieved. It also suggest that we reduce the constant offsets in
each dimension of a reference pattern. Corresponding to these needs, we focus our attention to four simple
types of alignment functions namely, permutation, embedding, shift, and reflection. All these alignment
functions have a simple symbolic form and are easy to compute. This is important because otherwise the
transformed program may have a very high computation overhead. In addition, finding optimal alignment
can be expensive.

Without lost of generality, we assume that all the index domains are aligned to a common domain,
and all the components of the common domain are large enough to accommodate any component of the
individual index domains. For simplicity, we omit the boundary conditions in all the following definitions.

Definition For two n-dimensional index domains, D and E, an alignment function g : D — F is said to
be a permutation if

y(il,iz,..‘,in) = (iquiqza"-’iqn)

where (g1, ¢z, .. .,qn) is a permutation of (1,2,...,n).

Definition For an m-dimensional index domain D and an n-dimensional index domain E, where m < n,
an alignment function g : D — F is said to be an embedding if

9(i1, 92, im) = (Tgy, Ggzs - - r1q,)
where (q1,¢2,...,4qn) is a permutation of (1,2,...,n), and the expressions 5, where m < k < n, are
expressions that may contain 41, ..., %m. ‘

For example, functions ¢(4, j) = (4,0, §) and g(3, j) = (i, + j, j) are both embeddings.

Definition Let D and E be two interval domains. An index domain function g : D — E is said to be a
shift if g(i) = i — ¢ where c is an integer.

Definition Let D = [l..u] and E = [(—u)..(=!)]. An index domain function g : D — E is said to be a
reflection if g(i) = —i.

Permutation and embedding deal with transformation between different components of a domain
(inter-component), while shift and reflection deal with transformation within a given component (intra-
component). The inter-component alignment functions are useful in transforming reference patterns into
more uniform ones. The intra-component alignment functions can be used to decrease the reference cost
further by reducing the constant offsets.

Since the inter-component and intra-component alighment functions are independent of each other,
the domain alignment problem can be solved in two separate steps: first by considering permutation and
embedding, and then shift and reflection. Retiming [11] can be brought to bear on finding shifts. Our
approach to finding reflections is ad hoc: we try to match special patterns. It turns out that generating
appropriate permutations and embeddings is the central problem. Since it deals with only inter-component
alignment, we call this problem the component alignment problem which is the focus of the following
sections.




6 Modeling the Component Alignment Problem

In the definition of reference pattern given in Section 2, associated with the reference pattern "a(i, . . ., im) —
b(ry,...,m) : 7" are two domains: the m-dimensional domain of data field a and the n-dimensional domain
of data field b.

Definition Given a cross-reference pattern
fa(is, ..y tpyevyim) — b(T1y ooy Tgy ooy Tn) 1Y)
two domain components, dom(a, p) and dom(b, q), are said to have affinity if
T 2", + ¢

where ¢ is a small constant.

The affinity relation between two domain components reflects a preference for aligning them. Since
aligning components according affinity relation will increase uniformity. For example, from the following
reference pattern:

ra(i, .7) - b(]) Z) : 71
two affinity relations can be derived, one between dom(a, 1) and dom(b, 2) and the other between dom(a, 2)

and dom(b, 1). If the two domains are aligned according to these relations, a(i, 7) and b(j, i) will be mapped
to the same processor, and hence no communication is needed.

We want to point out that the definition of affinity depends on the definition of reference cost, which
varies with the communication characteristics of the target machines and the degree to which one desires
to model them. The affinity definition can always be refined to allow special patterns to be included.

6.1 Component Affinity Graph

Component alignment is modeled as a graph problem. An undirected, weighted graph called a component
affinity graph (CAG) is constructed from the source program based on the reference patterns as described
below. '

The nodes of the graph represent the components of index domains to be aligned. They are grouped
in columns: each column contains those nodes representing components from the same index domain.

Using the concept of affinity, edges in a CAG are constructed as follows: For each distinct reference
pattern (excluding self-reference ones) in the program, an edge is generated between two nodes if the two
corresponding domain components have affinity. An edge is denoted by a pair (dom(a, i), dom(b, 7)) where
dom(a, ) and dom(b, 7) are the two corresponding domain components.

Note that self-reference patterns are ignored, because alignments occur only between index domains of
different data fields. Also, different instances of the same reference pattern are considered only once since
a datum can be referenced many times after it is communicated.

Using edges to represent affinity relations between domain components does not take into account
conflicting reference patterns. We introduce edge weights for this purpose.

Definition Two or more edges in a CAG are said to be competing if they are generated by the same
reference pattern and they are incident on the same node.

\

Example

fa(i,j) «— b(4,4) : 71"
(i, §) — a(i,§) : 72"




From the first reference pattern, two competing edges, (dom(a,1),dom(b,1)) and (dom(a,1),dom(b,2)),
are derived. From the second reference pattern, two non-competing edges, (dom(a,1),dom(b,1)) and
(dom(a, 2), dom(b, 2)), are derived. A non-competing edge indicates a strong preference for aligning the
two domain components. A competing edge indicating more than one equally good alignment in the
absence of any non-competing edge.

We assign weights to the edges of a CAG to reflect the strength of preference: each non-competing edge
is assigned weight 1, and each competing edge is assigned weight ¢ (a value much smaller than 1).

A CAG so defined may contain multiple edges between a pair of nodes since there might be multiple
reference patterns between two data fields. The graph can be simplified by replacing each set of multiple
edges with a single edge whose weight is the sum of their weights. Figure 1 illustrates the CAG of the first
phase (i.e. the forward elimination phase) of the Gaussian elimination program in the appendix.

dom(a, 3)

Figure 1: A component affinity graph.

6.2 Defining the Alignment Problem

Given a component affinity graph G as defined above, we can now define the component alignment problem
as follows:

Let n be the maximum number of nodes in a column of G (i.e. n is the maximum dimensionality of all
index domains to be aligned). Partition the node set of G into n disjoint subsets Vi, V5, ..., V,, with the
restriction that no two nodes belonging to the same column are allowed to be in the same subset.

The underlying idea is that those nodes in the same subset correspond to the domain components to be
aligned. Since our goal of alignment is to align those components that have affinity, we want to partition
the component affinity graph G so as to minimize the total weight of edges that are between those nodes
that are in different subsets.

Among the set of index domains D to be aligned, choose one which is of the highest dimensionality n
to be the target domain E. A domain morphism g mapping from a domain D € D (also of dimensionality
n) into the target domain E can be constructed using the above graph partition:

g:D = E, g(it,ia,...,1n) = (fg;, %5, - -, %q,)




where the nodes representing component D; and component E,; are in the same subset.

Similarly, an embedding morphism can be defined using the graph partition if D is of lower dimension-
ality than n. In this case, the component of the extra dimensions of E to which an elements of D maps
need to be determined. In the following example:

fa(i) «— b(i,i+ 1) : 7"

suppose the only component of dom(a) is aligned to the first component of dom(b), we now need to decide
where dom(a) should reside with respect to the second dimension in dom(b). We check the reference
patterns and find that the second component of dom(b) is referenced once with an expression i -+ 1 in the
definition of a. Clearly, if this reference pattern is the only one between a and b we want to align dom(a)
with those elements (7,74 1) in dom(b). In general, there can be more than one expression to be used if
there are more reference patterns. Our approach is ad hoc in this case, using default constants such as the
the lower bounds of the interval domains.

6.3 Alignment Results for Gaussian Elimination

Using the above definition, the optimal partition of the CAG of the Gaussian elimination program is
illustrated in Figure 2.

Figure 2: The optimal partition of the CAG shown in Figure 2.

The index domain of a, dom(a), is the target domain, since it is of highest dimensionality. dom( fac),
which is 2-dimensional, is embedded as a plane lying diagonally within dom(a) by aligning its components
with the first and third components of dom(a). The domains of ipivot and apivot are embedded in the
domain of fac at the same location. Formally, these alignment morphisms are defined as the following
functions mapping from the domain of a data field to the target domain dom(a):

g1 : dom(fac) — dom(a), ¢1(i,k) = (¢, k, k)
g2 : dom(ipivot) — dom(a), g2(k) = (0, k, k)
g3 : dom(ipivot) — dom(a), g3(k) = (0, k, k)

For this particular example, applying the optimal alignment results in a 20% reduction in communication
cost compared with a straightforward default alignment. 2

2The default alignment function for an m dimensional index domain is to map its components to the first m components
of the common domain with the original ordering.




7 Algorithms and Their Complexity

7.1 Component Alignment is NP-Complete

The component alignment problem described above, unfortunately, is expensive to solve. A special case of
‘the problem is one in which all the index domains are of two dimensions. We can reduce the simple max
cut (MAXCUT) problem [5] to this special case (with the number of index domains being the variable) and
show it to be NP-complete. The proof is presented in the appendix. Due to this result, we do not expect
any polynomial algorithm to find the optimal alignment for index domains of dimensions higher than two.
Unfortunately, a naive exhaustive search algorithm is not practical: for a group of six 3-dimensional index
domains, an exhaustive search algorithm may take two or more hours to find the optimal alignment on a
Sun 3/50. Thus, we have devised the following heuristic algorithm.

7.2 A Heuristic Algorithm

The heuristic algorithm is essentially a greedy algorithm where a single index domain is chosen at each step
for aligning with the target domain, and there is no back-tracking. We use the fact that the problem of
aligning two index domains is just a bipartite graph matching problem and there exist efficient algorithms
[10] to solve it.

The problem with such a greedy algorithm is that the quality of the alignment result is sensitive to
that of the local alignment between two domains. A naive greedy algorithm that performs bipartite graph
matching on the subgraph consisting of nodes and edges within two columns simply does not generate good
results. The reason is that in this bipartite graph, the edge weights reflect adhesiveness only local to the two
index domains. For example, suppose we have two edges (dom(a,2),dom(b, 1)) and (dom(d, 1), dom(c, 1))
in a CAG. Even though there is no edge between dom(a,2) and dom(c, 1), there is a preference to align
these two nodes. What we really want is the closure of the adhesive relation. In the following heuristic
algorithm, we augment the bipartite graph obtained from CAG with a new edge between every pair of
nodes if they are connected in the original CAG. The weight of such an edge is defined precisely below.

Algorithm. Heuristic_Alignment(G)

This algorithm runs in N steps, where N is the number of columns in a component alignment graph
G. In each step, an arbitrary column is aligned to the target column by applying the optimal matching
procedure to a bipartite graph constructed from the nodes in the two columns. The graph contains global
information about alignment preference.

1. choose the target column Cr « a column of G with the maximum number of nodes;
3. While G; is not empty, do

(a) Pick a new column, C,.

(b) Gy < Form Bipartite_Graph(Cr, Cy, G1);
(¢) M — Optimal_Alignment(G,);

(d) G1 < Reduce_Graph(M, Cr, Cy, G1);

Procedure. Form_Bipartite_Graph(Cr,Cy,G1)

This procedure takes as input a CAG G; and two columns of nodes Cp and C,, and constructs a
bipartite graph with the closure of adhesive relation incorporated. Two nodes in the bipartite graph are
connected by an edge if there is a path between these two nodes in G;. The weight of such an edge is the
sum of all the edge weights in the connected component of G; that contains these two nodes.

For each node pair (z,y), where z € Cr and y € C;, do




1. Gy « the graph resulted from removing all the nodes in Cr and Cy, except for z and y, and all the
edges that are incident on those nodes from Gy;

2. Set up an edge between z and y if they are connected in Gb;

3. If the edge exists, assign its weight to be the sum of the weights of the connected component that z
and y belong to.

Procedure. Optimal_Alignment(G)

This is for finding the optimal weighted matching for a bipartite graph G. See [10] for polynomial time
algorithms.

Procedure. Reduce_Graph(M,Cr,Cy,G1)

Merge columns C, and Cr by combining the matched nodes according to the matching M. “Clean”
the graph by replacing multiple edges between two nodes with a single edge whose weight is the sum of
their weights, and deleting all self cycles.

7.3 Experimental Results

To see how the heuristic algorithm might work in general, we have conducted the following experiment:
apply three different domain alignment algorithms to a large number of synthetic component alignment
graphs. The three algorithms are: a naive algorithm that simply aligns two domains at a time with the
naive construction of the bipartite graph; the heuristic algorithm described above; and an ezhaustive-search
algorithm which produces the optimal result.

The data in each trial of the experiment is a synthetic component alignment graph with six columns
each consisting of three nodes (i.e. six 3-dimensional index domains). The edges in the graph are randomly
generated according to a fixed density (i.e. an edge appears in the graph with the probability equal to the
specified density). Edge weights are integers randomly chosen between 1 and 10, inclusive.

Fig 3 shows the total edge weight of the resulting graph. The naive algorithm generates alignments
which are at least 30% or more costly than the optimal ones. The alignments generated by the heuristic
algorithm deviate from the optimal results by less than 10% in most of the cases. As to the times these
algorithms take, both the naive and the heuristic algorithms run in a few seconds to a few minutes depending
on the graph density while the exhaustive algorithm runs in twenty minutes (density 0.1) to a few hours.

8 Conclusion

Our primary goal is to automate the process of allocating multiple arrays on a distributed memory machine
with minimized communication cost. Our technique does not depend on a particular hardware, but a class
of machines which are captured by the reference cost model presented in the paper.

We feel that the importance of this array allocation problem cannot be over emphasized. In the
future we will have distributed memory machines with tens of thousands of processors; since the ratio of
message collision can be very high for random communication patterns on a large scale machine, reducing
communication and regulating communication patterns on these machines will become increasingly more
crucial to their performance. This paper makes both methodological and algorithmic contributions to the
problem. In the small number of applications written in Crystal, we found domain alignment to be useful in
reducing communication costs of target programs. However, to know the exact impact of domain alignment
as an optimization technique, we plan to make a comprehensive survey of a large number of applications
and study their performance improvement.
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Edge Density | # Fdges Total Edge Weights of the Resulting Graph
Naive | N/E | Heuristic | H/E | Ezhaustive
0.1 17 54 2.45 31 1.41 22
0.1 18 61 2.03 43 1.43 30
0.1 14 51 3.40 23 1.53 15
0.1 10 28 2.80 10 1.00 10
0.1 11 39 1.34 33 1.14 29
Average 46.6 2.20 28 1.32 21.2
0.2 27 135 2.29 72 1.22 59
0.2 32 101 1.53 66 1.00 66
0.2 32 120 1.82 72 1.09 66
0.2 33 126 1.56 86 1.06 81
0.2 34 130 1.48 89 1.01 88
0.2 31 98 1.40 79 1.13 70
Average | 102 1.70 64.2 1.07 60
0.3 39 154 1.50 110 1.07 103
0.3 43 129 1.32 98 1.00 98
0.3 39 150 1.44 136 1.31 104
0.3 55 203 1.33 160 1.05 153
0.3 44 154 1.36 120 1.06 113
0.3 43 167 1.64 105 1.03 102
0.3 45 168 1.33 127 1.01 126
0.3 55 188 1.46 138 1.07 129
0.3 53 204 1.45 159 1.13 141
Average 168.6 | 1.42 128.1 1.08 118.8
0.4 62 235 1.28 184 1.00 184
0.4 68 222 1.17 189 1.00 189
0.4 62 216 1.41 174 1.14 153
0.4 64 232 141 168 1.02 164
0.4 66 266 1.34 214 1.08 199
Average 234.2 | 1.32 185.8 1.04 177.8
0.5 66 292 1.42 213 1.03 206
0.5 71 301 1.31 248 1.08 229
0.5 79 347 1.50 232 1.00 232
0.5 70 255 1.28 216 1.09 199
0.5 77 350 1.22 295 1.02 288
Average 309 1.34 240.8 1.04 230.8

Figure 3: Experimental Results of Three Alignment Algorithms.
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Appendix

Gaussian Elimination Program in Crystal

The program implements the standard Gaussian elimination algorithm. In the forward elimination phase,
the program iterates over the columns of the input matrix. In iteration k a pivot element is chosen from
the elements in column k at or below the diagonal (say element (4, %)) and rows k and j are exchanged.
Then, the elements in the column below the diagonal are eliminated using the pivot element. In the back
substitution phase, the resulting vector is obtained in n steps where n is the input matrix size.

! Index domains:
dom D = D x Dy x Dy,
dom Dy = [0..n],
dom Dy = [1..n], "
dom Dy = [1..(n+ 1)],
! Data fields (A0 and n are inputs):
! Forward elimination phase:
k=0— A0[s, 4],
i<k —alijk-1),
dfield a(é,j, k) : D =4 i =k — a(ipivot(k), j, k — 1),
i = ipivot(k) — a(k,j,k — 1) — a(i, j, k — 1) * fac(i, k),
else — a(i, j, k — 1) — a(ipivot(k), j, k — 1) * fac(i, k)
! Pivot elements:
dfield apivot(k) : Dy = \ max {|a(¢,k, k- 1)| | k <= i <= n},
! Indices of pivot elements:
dfield ipivot(k) : Dy = \max {i | k <=i<=n:|a(i,k, k- 1)| = apivot(k)},
! Pivoting factors:
1<=k — 1.0,

. . _ ) i =ipivot(k) —
dfield fac(i, k) : D1 x Dy = a(k,k, k —1)/a(ipivot(k), k, k — 1), !

else — a(i, k, k — 1)/a(ipivot(k), k, k — 1)
! Backward substitution phase:
dfield (i, §) : D1 x D ={ i<io gzgzirn1+j)1 ) = poumlin g+ D)fat dom), } :

dfield psum(z, j) : Dy x Dy ____{ J=n+1-0.0, }’

it <=j — psum(s, j+ 1)+ a(i, j,n) * z(3, )
! Resulting vector:
2(1,5) 11 <=j <=n],

NP-Completeness Result

We call an undirected graph G with even number of nodes a multi-pair graph if the nodes are grouped in
pairs and no edge exits between the two nodes of the same pair. A simple example of a multi-pair graph is
the new graph obtained by putting together two copies of a given graph and pairing the nodes according
to the isomorphic relation between the two copies.
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Consider the domain alignment problem where all domains are two dimensional. Its component align-
ment graph has the property that every column consists of exactly two nodes. Since no edge exists in
any column of a CAG (due to the construction rule that self reference patterns are ignored), a CAG is a
multi-pair graph.

The problem of finding the optimal alignment can now be defined as follows:

Component Alignment Problem (ALIGN).
Instance: A multi-pair graph G = (V, E') and a positive integer K.

Question: Can V be decomposed into two equal-size sets V4 and Vp by putting one node of each pair into
V4 and the other into Vg, such that the number of edges bridging V4 and Vg is < K?

To show this problem to be NP-complete, the most natural NP-complete problem to use seems to be
the minimum cut into bounded sets (MINCUT) problem. However, there is a little problem in getting
the reduction to work. When we put together two copies of a general undirected graph (an instance of
MINCUT) to form a multi-pair graph (an instance of ALIGN), the latter is already in the optimal form
with respect to the ALIGN problem. To resolve this problem, we introduce the following problem.

Dual component alignment problem (D-ALIGN).
Instance: A multi-pair graph G = (V, E) and a positive integer K.

Question: Can V be decomposed into two equal-size sets V4 and Vg by putting one node of each pair into
Va and the other into Vg, such that the number of edges between V4 and Vg is > K?

Lemma The coordinate alignment problem and its dual problem are equivalent.

Proof: This is simply because we can define a dual graph for each multi-pair graph G in which non-edges

become edges and edges become non-edges. A min-cut solution to G' corresponds to a max-cut solution to
the dual graph. Q.E.D.

Theorem The dual coordinate alignment problem is NP-complete.

Proof: The problem is obviously in NP. To show it is NP-hard, we reduce an NP-complete problem, the
simple mazcut problem (MAXCUT), to D-ALIGN. We show that for each instance of MAXCUT, we can
construct an instance for D-ALIGN such that a solution to the latter can be transformed into a solution
to the former.

First, we construct an instance. Let G = (V, E) be an undirected graph serving as an instance of
MAXCUT. Create an isomorphic copy of G and call it G' = (V', E'). Let G = (V+ V', E+ E' ). Nodes in
V 4+ V' are paired according to the isomorphic relation. G is a multi-pair graph and hence an instance of
D-ALIGN.

Second, we convert a solution of D-ALIGN to that of MAXCUT. Suppose there is an algorithm solving
D-ALIGN. Provide an input G to the algorithm, we get back a solution (VA, Vs, C) where V, and Vg
decompose the edge set of G and C is the set of edges which have one endpoint in V, and one endpoint in
Va.

The cut set C can be decomposed into two disjoint sets C' and C’, where C' contains only edges from
G and C’ contains only edges from G’. Due to the isomorphic relatlon between G and G’ and the rule of
decomposition defined in D-ALIGN, we know that C and C’ are isomorphic to each other. We claim that
C is a maxcut (an edge set) of G. Assume it were not. Let C” be a maxcut of G. Then |C| > |C|. Let
V4 and Vj be the decomposition of V' corresponding to C*. For G’, we have the isomorphic counterparts,
C”’ vy and Vg'. Now that Vi + V§', V' + VY and C" + C”’ define a solution to D-ALIGN. But
|C"+C"| > |C’+ C’|. This contradicts the result that V4, Vg and C is a solution to D-ALIGN.  Q.E.D.
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