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“Mathematics as an expression of the human mind reflects the active will,
the contemplative reason, and the desire for aesthetic perfection. Its basic
elements are logic and intuition, analysis and construction, generality and
individuality. Though different traditions may emphasize different

aspects, it is only the interplay of these antithetic forces and the struggle
for their synthesis that constltute the life, usefulness, and supreme value of
mathematical science.” 'Richard Courant (1941).

“One expects that logic, as a branch of applied mathematics, will not only
use existing tools from mathematics, but also that it will lead to the
creation of new mathematical tools, tools that arise out of the need to
model some real world phenomena not adequately modeled by previously
known mathematical structures.” *Jon Barwise (1988).

Abstract: We employ the Zermelo-Frinkel Axioms that characterize sets as
mathematical primitives. The Anti-foundation Axiom plays a significant role in our
development, since among other of its features, its replacement for the Axiom of
Foundation in the Zermelo-Frinkel Axioms motivates Platonic interpretations. These
interpretations also depend on such allied notions for sets as pictures, graphs, decorations,
labehng and various mappings that we use. A syntax and semantics of operators acting
on sets is developed. Such features enable construction of a theory of non well- founded
sets that we use to frame mathematical foundations of consciousness. To do this we
introduce a supplementary axiomatic system that characterizes experience and
consciousness as primitives. The new axioms proceed through characterization of so-
called consciousness operators. The Russell operator plays a central role and is shown to
be one example of a consciousness operator. Neural networks supply striking examples
of non well-founded graphs the decorations of which generate associated sets, each with a
Platonic aspect. Employing our foundations, we show how the supervening of
consciousness on its neural correlates in the brain enables the framing of a theory of

consciousness by applying appropriate consciousness operators to the generated sets in
question.

Key words: foundations of consciousness, neural networks, non well founded sets,
Russell operator, semantics of operators




1. Introduetion ‘

Analytic wntmg on consciousness dates to Aristotle’s De Amma (Ross ed., 1961)
Yet to this day the phenomena of consciousness continue to elude 111um1nat1ng smentlﬁc
charactenzatlon We should not be surprised at this since,

“A phys1cal scientist does not introduce awareness (sensatxon or perceptlon) into his
theories, and having thus removed the mind from nature, he cannot expect to ﬁnd it
there” (Schrodinger, 195 8) -

The self- referentlal qualities of consciousness place it outside convent1onal logic(s)
upon which scientific models and frameworks have heretofore been constructed.
However more contemporary mathematical development has begun to deal with features
of self- reference. We shall address Schrddinger’s critique by assembling and extending
- such development thereby putting self-reference as a form of awareness into theory. In
this way we shall frame mathematical foundations for a theory of consciousness. Then as.
an application to a neural network model of brain circuitry, we shall exhibit a theory of
consciousness usmg these foundatrons :

1.1 Mathematlcal thought and its limits
- Platonism, that is, the interplay of ideal and physical worlds characterizes a central
: feature of mathematical thought. The briefest summary of the evolution of this Platonic |
~ dualism in mathematical thought and modeling might be made by citing the contributions
- of Buclid (the axiomatic method), Aristotle (the law of the excluded middle), Cantor;
1895 (set theory), Russell, 1910 (the paradox of set theory), Zermelo, 1908 and Frinkel,
1922 (the axioms of set theory that serve to accommodate the paradox) and Godel
(incompleteness, a self-refereritial development). Indeed we shall extend this line and:
employ the ax10mat1c theory of sets to further charactenze self—referentlal features.

The work of Zermelo-Frankel and others transformed sets from so-called naive ob] ects

~ into mathematical primitives (i.e., ideal Platonic obj ects). The Russell paradox and its -
accommodation demonstrate: hrmtatrons on mathematical thought (about sets and related ’
constructs). Today we are not surprised at the existence of such a limitation, since we

‘have the well-known example of ‘Heisenberg. The Platonic character of the latter is -
characterized by the Heisenberg inequality, its ideal form (Dym, McKean, 1972) and its .
real world character by the limitation on the accuracies with which certain concurrent.
measurements can be made. The quality of self-reference (set self-membership)
‘undetlying the Russell paradox informs development of the ideal Platonic structures (i.e.,
of placing awareness into theory) required for constructing the mathematical foundatlons
we seek. : C

1. 2 Conscmusness and lts hmlts
- As within naive set theory, the self-referent1a1 character of consciousness appears
paradoxical. It seems to be an illusion. The mcompleteness of mathematical thought
- shown by Godel, suggests that all thought, and so, consciousness in particular, is not
~ explainable via a conventional approach such as by a Turing machine computation for




instance (Penrose, 1989). Incompleteness, while precluding establishment of certain
knowledge within a system, allows for its establishment by looking onto the system from
the outside. This knowledge from the outside (a kind of observmg) 1s reminiscent of
~consciousness that provides as it does a viewing or experiencing of what’s going on in
thought processing. Note the correspondence of these observations to Freud’s meta-
.psycholo gy where he recogmzes a disconnect between mental and physmal states,

...mental and physical states represent two dzﬁ'erent aspects of realzty
each irreducible to the other.” (Solms, 1994).

However we may say that Freud’s psychoanalytic' method is a tool devised for
penetrating the mental from the outside via the physical. Compare these dual aspects of
reality with the res cogitans (Platonic) and the res extensa (physical) of Descartes, 1637.

To frame a set theoretic correspondent to these features note that a set has an inside

(its elements) and an outside (the latter is not a set, as we shall see), and this allows a set

~ to be studied from the outside. We-liken this to interplay between the ideal (Platonic) and
physical (computable) Worlds the latter characterizing a model for study from the outside
of the former. So we expect consciousness to be accessible to study through extensions

~ of the self-reference quahty characterized by axiomatic set theory, in particular, by a
special capacity to study a set from the outside. We | pursue this approach as an effectual

way to introduce awareness mto theory

1.3 Summary : ’

Sect. 2-begins with a descnptlon of the crises in mathematlcal thought precipitated by
Cantor’s set theory and characterized by the Russell paradox. We describe how Gédel’s
discoveries inform the crises and furnish motivation for our development. We introduce
a mathematical framework that includes sets, graphs, decorations, and the notion of non
well-founded sets and which enables annunciation of the anti-foundation axiom of set
theory. This axiom allows replacement of the Russell paradox by a logically coherent
dichotomy and is key to framlng our approach charactenzed by observatlon of sets from
~ the outside. : '

In Sect. 3 we introduce the Russell operator R a distinguisher between so-called |
normal and abnormal sets. A number of properties of R is collécted, these to play a
central role in the foundations to be developed. Then we introduce a number of other
~ operator mappings along with interrelations, these to supplement R in the analysis of sets

 to follow. This operator syntactlc framework is followed by a semantic development in -
which experience and consciousness are introduced as primitives. A Semantic Thesis for
- consciousness is then proposed, and a list of axioms for associated operators, along w1th a
- descriptive semantics for each axiom is given (compare Aleksander, Dunmall, 2003).

The axioms along with their semantics are used for characterizing both the primitives and
the Conscmusness Thesis. R'is shown to satisfy the axioms, giving it thereby the role of
a so-called consciousness operator. This existence of a consciousness operator
 establishes consistency of the new axioms. Examples both of sets and operators
illustrating the syntax and semantics are glven




In Sect. 4 we give a descnptlon of tools for building a theory of consciousness upon
the foundations developed. This begins with a formal process for labeling and then
decorating a graph. The process establishes a way to induce existence of a virtual set
associated intrinsically with a graph (a two-level or self-referential feature). A mapping
construct called a histogram is then introduced, a tool for applying this set with graph
association process to a special class of graphs arising in brain circuitry. The M-Z
equation is then developed, this equation characterizing a method for specifying the
intrinsic set in question, including those that arise in brain circuitry. Finally the theory of
consciousness is formulated as an apphcatlon in which we employ neural network theory
(Hebb’s rule for synaptic weight change and the McCulloch-Pitts equation for neuronal
' mput-output dynamics, (see Haykin, 1999)) to specify the special class of labeled graphs
in question. This two-level procedure is interpreted as a Platonic process (that is, the
association of a virtual set with a graph) by means of what we call a Neural Network
Semantic Thesis. To complete the description of information processing from sensory
perception through to consciousness, a third, purely physical, so-called Neuro- v
physiological Thesis is introduced. Sect. 4 concludes with a critical descrrptlon both of
these three theses and the analytic formalisms developed carlier. This critique serves to
illuminate the mathematical foundations of consciousness developed.

In Sect. 5 we ascribe syntactlc and semantic nomenclature toa collectlon of basic

* opeérators, also offering speculative interpretations of the role each plays in our theory.
The flow of information from sensory input to conscious experlence 1s described along
with a speculation on the role of the sets we have constructed in the experience. Finally

-speculations on a class of operators that produce qualla are offered

The axioms of set theory that we employ are given in an appendlx Th1s is followed by
a glossary .

2. Preliminaries

In this section we describe the crises in mathematical thought engendered by the
notions developed by Cantor, Russell and others. Then we describe the evolution of the
crises according to the development of Zermelo-Friinkel, Gddel and others. -‘We continue
with the introduction of terminology and propertles that prov1de the setting for our work.

- 2.1 Crises in mathematical thought
We begln with Cantor’s definition of a set, often regarded as the naive notion of set.

“A set isa collectzon into a whole of def inite, distinct
objects of our mtuztzon or thought.”

~ When specificity is required, we shall hereafter use the term collectzon for a set in the -
“sense of Cantor’s definition. .




Cantor s use of the word “thought” shows that set theory 1s entwined with
consciousness from the start. In fact, Cantor’s definition is circular, replacmg one
mystery by another. It replaces the unanswered questions: what is a definite object? what
is thought? by others, namely: who does the collectlng‘7 the thinking? The latter have a
correspondence to-the questions often raised in consciousness studies, “Who is doing the
looking? the experiencing?” Suppose the words “1ntu1t10n or thought” in Cantor’s
definition are replaced by the word “consciousness”. This would make it an exception to
Schrddinger’s critique, relating it to what is perhaps the only other known exception,

- namely to Von Neumann’s (mysterious) appeal to the observer’s consciousness (of the
outcome of a measurement) to specify the moment of collapse of the wave function
during a quantum mechanical measuring process.

Cantor’s deﬁnition of a set supports a logical inconsistency, resulting in several
paradoxes. The most accessible of these is the Russell paradox that goes to the essence
of that inconsistency. This paradox is expressed in terms of the Russell set N, which is
the collection of all sets x such that x is not a member of X, ‘The lo gical 1noon31stency of
N is revealed by the followmg observations: :

1. Smcele a set, cither N e N,or NeN.
2. f Ne N, then N¢g N. If N-¢ N,then N € N. : o 2.1

The annunciation of this paradox by Russell (Zermelo is thought to have known
earlier of the paradox) precipitated a major crisis in mathematical and philosophical
thought. Frege had just completed development of an axiomatic treatment of sets when a
letter to him from Russell informing him of the paradox overturned his central thesis.

'Various mathematicians (Bernays, Gédel, Hilbert, Russell, Von Neumann, Whitehead...)
- attempted to rework the foundations of mathematics so as to resolve the(se) paradox(es).
It is the axiomatic approach to set theory that provides for us the most fruitful resolution,
. motivating our own development. (See the appendix for these axioms.) The key feature
of the axiomatic approach is to regard the concept “set” as a primitive (an undefined
notion), and the concept “is an element of” as a primitive relation. The axioms are -
chosen to ensure that there does not exist a set y such that x € y if and only if x ¢ x; in
other words, within axiomatic set theory, there is no Russell set. Even so, this axiomatic
approach allows for a coherent elaboration of the quality of self-reference in set theory,
and so, it supports the connection of the study of sets to the development of the
mathematlcal foundations we are after.

_ ‘For our development we use Z—F the Zermelo- Frankel axioms of set theory, however

replacing FA: the Foundation Axiom (a latter day addition by Von Neumann to the
original Z-F list) by AFA: the Anti-foundation Axiom. When it is necessary to
distinguish a set in the sense of these axioms from a collection of Cantor we shall use the
terminology, bona fi de set.

Although successfully ao'commodating the paradoi(, the axiomatic development of set
- theory brought with it a deeper problem: is the axiomatic system itself consistent? That
is, can we derive a logical inconsistency from the axioms? . Godel produced a two level




approach to this issue. At a mathematical level is a set theoretic formula, and at a meta-

- mathematical level is the proposition assertmg the consistency of set theory. We 1nterpret
this as an instance of self-reference, a viewing of a mathematical object meta-
mathematically, that is from the outside. Gddel showed that if axiomatic set theory is
consistent then it is incomplete. This 1ncompleteness is widely celebrated (see Gdodel-
Escher-Bach of Hofstadter, 1979, Emperor’s New Mind of Penrose, 1989, Scientific
American, 1968...).

‘ One might say that Godel replaced one crisis in mathematical thought by another.
Subsequently, mathematicians (Aczel, 1988...) did show that if Z-F with FA deleted is
consistent, then Z-F with AFA replacing FA is also consistent. These results of Godel
and his successors provide for us the framework to develop our self-referential two level
approach that consists, in particular, of a syntactic level and a semantic level.

2.2 Sets, graphs, decorations, the axiom of antl-foundatlon

The special nature of set theory can be traced in part to the use of two dlfferent
notions of belonging associated with sets. One is denoted by € (the primitive concept ‘is
 an element of”) and the other by < (for the concept ‘is a subset of ).

For clarity we adopt the following notational conventions.

a) Sets will be denoted by Latin characters, q, 4, b...

Braces will also denote a set, the contents of which and/or conditions specifying the set

placed within the braces: {listof set elements and | or conditions for being a set element}.
" b) Mappings between sets will be denoted by lower case Greek characters, a, B...

c) Relations and operators as well as certain special objects to be introduced called

classes will be denoted with upper case script Latin letters, }7\, B.. R A generic -

operator will be denoted by an upper case script O.

d) The empty set {x|x # x } will, as usual, be denoted by &. The existence of @
follows from the Z-F Axioms of Existence and Comprehension (see the appendix).

We shall restrict our attention to pure sets:.
Definition: A setisa pure set if its elements are sets.

~ Note that any finite collection (naive sét) of objects that are not bona fide sets
furnishes an example of a not pure set.

We also note the distinction between normal sets and abnormal sefs:
Det_‘ihition: A set x is normal if x ¢ x. Itis abnormal if x € x.

Our presentation involves normal and abnormal sets. The Qdine atom (dénoted by.
- Q), the set defined by the condition Q= {Q}, supplies an example of an abnormal set.




We shall make use of a collection of notions specified in the followmg paragraph
(See Aczel, 1988, Chap. 1.) -

A graph will consist of a collectlon N of nodes and a collectlon E of edges, each edge
being a pair (n,n") of nodes. We have no knowledge of the nature of the elements of N. -

If (n n ) is an edge, we shall write # — »' and say that »' is a child of its parentn. A
path is a sequence (finite or infinite) - :

» Ry —> A —>Hy —>--:

of nodes n,n, n, ... linked by edges (ry, n,), (n,,n,)... A pointed graph is a graph

- together with a distinguished node called its point. A pointed graph is accessible if for
every node n there is a path n, — n, —--- — n from the point n, to the node n. If this
path is always unique then the pomted graph is a free, and the point is the root of the tree.
A decoration of a graph is an assignment of a set to each node of the graph so that the
elements of the set assigned to a node are the sets assigned to the children of that node.
Alternatively a decoration is a set valued function d on N such that

VaeN, da‘=‘{db|a—‘->b}. | . 2.2)

A pzcture of aset 1is an accessible pomted graph (apg) that has a decoratmn in Wthh the
- set is assigned to the point. -

Being well foiin'ded is a key quality of graphs and sets:
B Definition: A graph is well founded if it has no infinite path It i 1s non well founded

otherwise. An alternate name for a non well-founded set is a hyper-set but we. prefer ,
never to use the latter R
Wlth thlS termmology, we collect the known results stated in the followmg proposition. :
Proposntlon i) every Well founded graph hasa umque decoratlon
' if) Every well-founded apg 1s a pleture of a unique set

it) Bvery set has a plcture

Continuing, we define well foundedness for sets.

Definition: A setis well founded if its picture is well founded It is non well founded
“otherwise.

We now state the anti-foundation axiom that is central to the development Note it is -
stated for general graphs that are not necessarrly access1ble

AFA: Every graph has a unique decoration.




Some consequences of this axiom are given in the following proposition.

Proposition:1. Every pointed graph is the picture of a umque set.

2. Non well founded sets exist.

3. Every non well founded graph will have to picture a non well- founded
set.

The relationship between these concepts is summarrzed in terms of two mappings, the
tree mapping 7 and the decoration of the point P mapping J, schematized as follows.
r: tree map
Pointed graphs : y Sets

& :decoration
of the point

There are many graphs I';, the decoration of whose pomt isa given set A. That i is, for
the map J, we have ’
o, =7d,=-=4.

However thereis a umque pomted graph I,=T, (A) called the tree of 4, such that
51“ =4 and

rA I (A)

We shall use &(T, p) to denote the set assoc1ated with the node D of the graph l" in the
decoration of the latter. So " = 5(F P)is the set in the decoration of the pointed graph -

I that corresponds to the point P of I'. Then a sufﬁment condition for normahty if a set
is grven in the following proposrtlon :

Proposition: If for every child ¢ of P, §(F c)#&(T, P) then (T, P) is normal.

2.3 Classes and mappmgs '

Classes are primitives introduced by Godel A collection of sets with a common
property is called a class. A set is also a class; a class that is not a set is called a proper
class. The elements of a class are sets, the sets being the primitives defined by the Z-F .
axioms with the AFA replacing the AF. Conversely, any set 1s a member of a class. -

. We now formalize the notions of several types of mappings to.be used. These are:
“relations, function, and.operators. They are illustrated by the nest of concepts the
outermost member of which is compnsed of the Classes as shown in Fig. 2.1.-

Inside of classes i is'the collection of relatrons A relatzon 1s a class consrsting of
ordered pairs of sets.

Inside of relations is the collection of functions. A function is relation with the graph
property. Namely, if (x,y) and (x,z), both being ordered pairs of sets in a relation F,
implies that y =z, then F is said to have the graph property.




Inside of functions is the collection of bperators An operator is a function whose
domain is the class of all sets. To see that an operator O i isa relatlon note that O x equals
the unique y such that (x, y) eO.

Classes

Relations

Functions

i Operators

Figure 2.1: Nesting within the model

3. The Russell Operator, Operator Synt‘ax and S'emantics, Semantic Thesis, Axi_OmS

In this section we supply syntax and semantics for some operators of relevance for our
axiomatic treatment of consciousness. We start in Sect. 3.1 with the characterization of
the Russell operator, since it plays a central role. Then in Sect. 3.2, we introduce a
relevant collection of operators and develop mathematical properties (syntax) for them.

In Sect. 3.3, ‘we state the Semantic Thesis that characterizes consciousness as the action
of operators on experience. Consciousness and experience are introduced as primitives,
and an open axiom system for them is elaborated. The axmms are accompanied by

" -Semantic charactenzatlons of the associated operators.

3.1 The Russell operator
‘The Russell operator R plays a special role in the syntax and semantics of the
. development of the Semantic Thesis. R is defined by its action on a set 4 as fol[qws.

Definition 3.0: R4 = {x cdlx¢ x}.

So we see that R may be viewed as a selector of the normal elements of 4 and a .
rejecter of the abnormal. R is a special case of a generic operator O, specified in terms
ofa predlcate P(y) as

0,4=fp e 4P}

We recognize this as the Axmm of Comprehensmn So O, 4 is abona fide set. Then it
follows that _ -
xcy= OPx=me,~,y. o (3.1)'




This relation holds in particular for O, set equal to R.

The Russell paradox is no longer relevant asa paradox Itis replaced by the operator
- ‘R as examination of the proof of the following theorem reveals (compare (2.1).

Theorem3 1: VA, RA ¢ A

Proof: Assume there exists a set z such that Rz € z. Then by the definition of R there
are two options, both of Wthh lead to contradictions. Namely,

1. Rze Rz,inwhich case Rzeg Rz,
2. Rz ¢ Rz,inwhich case Rz € Rz.

A corresponding result is

Proposition: V4, Aeé RA.

Proof: :
" By definition, if x € RA, then it is both true that x gxand xe€ 4. Thend e RA
implies.both 4 ¢ 4 and 4 € 4, a contradiction. , O

We make the following observations associated with Theorem 3.1.

~a) Thereis no set of all sets.
b) Every set has an'inside and an outside,
where the inside of a set consists of its elements.
¢) The compliment of a set (the balance of a class) is not a set. -
d) If Vye B,y ¢ y,then B¢ B.
e) If ‘v’y eCyey,we cannot conclude that C e C.

‘Since R takes a part of 4 outside itself, note the relevance of b) to the ablhty to
observe a set from the outside described in Sect. 1.

~ e) is illustrated by the following two exarhples
Example 1: Since Qe Q, taklng C = Q satisfies the hypotheses and we have
CeC.
Example 2: Take x and y to be unequal normal sets, and let C= {x", "}
wherex" = {x", x} and y" = {", ¥} Weclaimthat C¢ C..

Let ’U—‘{x|x = x} be the class of sets. (‘U may be referred to as the univer.ée of sets.)
Let N = {x|x & x}, the collection of normal sets, and let A= {x|x e x}, the class of

abnormal sets. Then we have the followmg proposmon concermng the classes A, N and
‘U and the Russell operator R.




Proposition 3.2: a) Nis a proper class
b) ‘U is a proper class
' ¢) A is aproper class -
d) U= NUA.
e) RA=NNAVA.
Proof: We shall prove a), b) and c).

a) Assume not. Then N'=4 for some set 4. R4 ¢ 4 by Theorem 3.1.- But then '
" RA € N, a contradiction. :

, b) Assume not. Then ‘U=B for some set B. Now {x € B|x ¢ x} isasetby the
Axiom of Comprehension. However {x € B|x ¢ x}= /N, by definition. Thisisa -
“contradiction since' N isa proper class,

_ c) Suppose to the contrary that A is aset. Then 3! a set 4 such that xe A< x € x.
Then using AFA, Yy € N, y' € 4. Let C={x € A|3y e N'3x=y'}. By the Axiom
of Comprehension, C is itself a set that we may alternatively write as

C= {y*‘|y eN }= {{y*,y}l_y € N }.
Then using the Axiom _of Union, can write. }

Uc= U{y I

ey

where U is the m,on;ldi'c‘ union operator (.UA ={xix e a for some a € A}). Then
RUC)=U{p}= N

This is‘ a contradiction, since R(UC) is a set and N'is a proper class. o O

3.2 'vSyntax |

3.2.1 Fundamental operators
’ We shall employ the followmg four basic dyad1c set operatlons 0, \U, M, — deﬁned as
follows

o 0,00 =0,0,x
U: (0,00, x=(0x)u(0x)
A (0,n0,) x =(0,x)N(0,x)
~: (0,-0,)x=(0%) - (0,%)
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The last, the dlfference of operators, is defined in terms of set subtractlon which is
spec1ﬁed by the following Boolean rule.

x-—y=x-—(xhy).
The associative law (O, 02)0 =0,(0,0,) follows from the deﬁmtmn of o.
To supplement Rwe 1ntroduce four add1t1onal basic operators I E 2B and D. Let

a) I be the identity operator, Ix = x,

b) E be the elimination operator, Ex =,

c) B be the singleton operator, Bx = {x}, and

d) D be the duality operator, x" =D x = {x*, x}. ’

- a) employs the Axiom of Extensionality, and c) the Axiom of Pairing.

The following are four observations about these basic operators.

i) JO = OI, for any operator O. ' '
it) £ is only a left-zero operator, since for example, BE # Z. Note that Z is
idempotent (E*= E). Note also that (BE) x =B, so that in particular, (B"E) x =B" ¥%)
for any non-negative integer n. ,
zzz) Since {x, y} = {x}u {y}, showing that {x, y}isa denvatlve notion (see a) in Sect.
2.2), we can writeé
x* =(:Bx*)uB Xx.

iv) The set x* is called the dual of x. The ex1stence and uniqueness of the dual of a set
follows from the AFA (see Sect. 2.2). Note that

D =(BD)u _:B.

32.2 Properties of R

The quadruple of basic operators Z, I, R and B form a non-closed system 1llustrated
in the following operator multiplication table. '

‘E |I [R |B
£ | E F |E |E
I | |7 |R |B
R|E |R|R |RB
B |BE |B |BR | BB

11



Next we introduce the counter-Russell operator, T=I-R. Note that
TA=A-RA=ANA.
Consider the following proposition relating R and T to nermal and abnormél sets.

Proposition: Let B be a normal set and C an abnormal set. Then RB=Bbut RC=y,
~and reversely, TC=C but T B .

We also have the following proposition exhibiting properties of R and B. |

~ Proposition: i) xe A< Bxc 4.
' i) R4¢ A< BRAc A.
i) RA ¢ RA.

-iii) implies that R4 is normal.

- Additional syntactlcal relations (conceptual operator statements) are glven in the
followmg theorem, proposition and corollary.

" Theorem 3.3: a)InR=R
| b) BANR=F
¢) IN(BR) =F
d) IN(RB) =F
) RB=B-1I
fy (RB) - (BR)= E
. (BR)- (RB)# E -

The two statements in f) are not the same since there is no monadic minus for sets.

Proposition 3.4: RBR = BR.
Proof: RBR=(RBR
- ’ - =(B-DR, using €)
= BR~R, by def. .
= BR-(BRNR), using set subtractmn ,
= BR—-((BRNI)NR), using a)
= BR-(ENR), using c)'
=BR-TE o B
'=BR. . : -

Corollary: ((RB)-BR)R = E, and (BR) - RB)R = .

* This corollary gives a connection between the Prop. 3.4 and relation f) in Thm. 3.3.

12




3.2.3 Characterization of R
The following proposition and corollary gives a complete characterization of R.

Proposition 3.5: Let O satisfy the hypothesis

xcy= Ox=thy. (3.2)
Then OB uniquely determines O.
The conclusion of the proposition may be restated alternatively as

Vx,O0x=1{y ex|0OBy= By}. (3.3)

Proof of Prop. 3.5: We make the following preliminary observations. (i) The
hypothesis implies that Vx, Ox < x, and hence (i) O’x = OxNOx = Ox.

We shall now address the question: whenis y € Ox? However y e Ox By cOx, .

by definition. In the hypothesis we may replace x with By and y with O x to conclude
that

OBy = BynO(Ox) = BynOx, (3.4)

the last employing (ii). Now By c Ox & By Ox =By, by definition. This and (3.4)
implies that y € Ox if and only if

OBy = By.
From this and (i) we conclude that y e Ox <y € x and OBy = By. O

Corollary: Let the operators O, and O, satisfy the hypothesis of the proposition, and let
O,B=0,B. Then O,= 0,.

R is characterized by the following two properties.

l.xcy=> Rx=xNRy.
2. RB=B-1I

The first follows from (3.1). The second is the result €) of Thm. 3.3.

Selectors: Another class of operators of interest are those that satisfy the hypothesis
xcy=> Ox=xnN0y of Prop. 3.5. We shall call such operators, selectors (see Def.
3.0). They form a commutative system. In particular, consciousness operators XK, being

selectors, commute. Theorem 3.3(f) provides an example of a non-commuting pair of
operators.
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3.2.4 Schematic illustrating syntax of sets and operators

The Venn type diagram in Fig. 3.1 illustrates some of the notions being discussed. The
diagram is intended to be composed in a homeomorphic representation of the
Euclidean plane. In the diagram sets are represented by open topological sets. That is,
they do not contain their boundaries. For example in terms of the rectangular coordinates j

o and f in the plane, the empty set is given by &= {a, ,Bl ot + p<0? }

A = Class 01‘ abnormal sets

RBD
) C :‘
RBC :\G
T B2 < BRD | \ |
BC= BRC
N— R

N'= Class of normal sets

Figure 3.1: A schematic illustrating the properties assembled in Theorem 3.3.
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In Fig. 3.1 the class of abnormal sets is shaded to distinguish it from the class of

- normal sets. Also illustrated are 6 possibilities for sets and 7 for fundamental operators: -

2 for set 4, depending on whether B4 < A or not.

1 for set C, namely, BC « C. .

2 for set D, depending on whether BD < D or not.

1 for I, a technical possibility, since & can not be illustrated.

The 7 illustrated fundamental operators are Z, I, B, R, 7, ZBR, and RB, although
ZE and I and T are illustrated 1mphcltly

The conclusions a) - d) of Thm. 3.3 are illustrated in the figure by the sets and/or
labels of sets that are pointed to by dashed arrows with the corresponding labels. These
labels are placed in the margins of the figure. For example, the c) in the left hand margin
labels both a dashed arrow pointing to the set BRA and a dashed arrow pointing to the
~ label of the set R4. These two sets are shown as disjoint in the figure, illustrating

conclusion c¢) of the theorem. One can see that conclusions e) and f) are also illustrated.

The result
| ~xcy= Rx=xnRy,

- which follows from (3;‘1) is illustrated in its three different cases.

1. RF, the part of Fin N equals thRA.
2. HcDe Athen RH=0.
3. GcCe Nthen RG=GNC.

3.3 Semantics '

-~ We now develop a model in Wwhich experience and consciousness are taken as

~primitives. These primitives may be composed of layers. If so, our primitives model the
corresponding basic layers, namely what we have knowledge and understanding about
through our sensations and perceptions (this last being a Cantor-like statement). When
necessary for clarity, the basic layers shall be called primary experience and primary

. consciousness, respectively. While we perceive these basic layers, they are essentially

ineffable. The higher layers, should they exist, might very well be beyond ineffability..

We focus on the basic layers, and we take our primitives to be models of them. Our goal

is to specify an illuminating axiomatic system for these primitives. So we may say that

as with set theory, we commence with a Cantor—hke (naive) manner and then refine it by

means of an axmmatlc approach.

We shall characterize a collection of operators called consciousness operators, the.
generic element of which is denoted by K. We take a set x to model a primary
experience. Such a set, being a primitive may be v1ewed as a Platonic object. Then our
Semantic Thesis is stated as follows. :

Consciousness is a result of operators being applied to experience.
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~ We now give the first four axioms of an open (and developing) system that serves to.
characterize the experience and consciousness primitives. The axioms and their semantic
‘interpretations justify the Semantic Thesis. We begin with the following definition.
Definition: Let x model a primary experience. Then K x models the awareness, an
induced experience. Consciousness is a specific operator K acting on experience.

The first three axmms along with their semantlc mterpretatmns and a name for each
are dlsplayed in the following table.

own awareness

Axiom Semantic interpretation Name of Axiom
, » , of the axiom _ R , '
a) | Vx, Kxc x | Experience generates its Generation

b) | Vx,x g Kx

Awareness does not generate Trreversibility
the primary experience

c) Vx, Kx g x

| Awareness is removed Removal
from experience

Axioms a) and b) are motivated by the propertles of the Russell operator a) and b),
, respectlvely given in Theorem 3.3

Note the following analyti'c statement of axiom c), asserting the normality of

awareness.

(BKx)nx=0.

The following table displays algebraic statements of these axioms along with "
examples of operators that violate each statement. Q2 shows that B and 7 violate c).

- | Algebraic statement | Violating examples |
1) | KnI=%X K=I
b) | BAnK=F X=B,T
1) | (BI)NI=F K=%F B I

We now append a fourth axiom (that in fact is stronger than axiom a)). Note the
connection of this axiom to the notion of Selectors in Sect.3.2.3.

d) | If x < y,then | Awareness ofa sub-experience is determined by the
| Kx=xn Ky | sub-experience and awareness of the primary experience |

'| Selection

Axiom d) is motivated by the condition (3.2) of Thm. 3.1.

The consistency of the axioms a) - d) is demonstrated by producing an operator that
satisfies all of them. Indeed, R is such an operator as the following theorem shows.

16




Theorem: The Russell operator R sotisﬁes the axioms a), b), c) and d).

Axiom c) implies the following propoSition;
Proposition: JKBT = BE.

There are other operators besides R that satisfy axioms a) d) as the followmg
example C of a consciousness operator shows.

sz{yexly £ y; Vzey,z#Q}.A (3.5

So since all elements of Cx are normal, C x is a normal set. Mofeover Cx cRx, so that
Cis a sub-operator of R. To show that C # R note that for the set 4 = {{&, Q}}, we

have ’_RA =A,but CA=9. To show that C satisfies the axioms, we proceed as follows. -

a) By definition Cx c x, so axiom a) is satisfied.

b) Since Cx cRxandx ¢ Rx,then x ¢ Cx. So axiom b) is satlsﬁed

c) To prove that C satisfies axiom ¢), we show the algebraic equivalent to the axiom
already noted. Namely that BCNI =E. Then suppose Jz'such that Cz € z.
There are two options.
1. Cz € Cz. This implies that Cz ¢ C z,a contradlctlon since by deﬁmtlon
every element of Cx is normal.
2.Cz ¢ Cz. This implies that either Cz e Cz or Q € Cz Hence Cz ¢ Cz
implies Q € Cz.- However Q e Q, contradicting the normality of Cz."

d) (3.1) shows that Csatisfies axiom d).

_ * Note that the Anti-Russell operator T introduced in Sect. 3.2 isnot a consci_ousness'
operator since it violates axiom b). The idempotency, K* = X follows from axiom d).

' Generahzmg (3.5) yields a collection K, of consciousness operators parametenzed bya |

set 4.

Kx={ye x[ ye », T(ymA)# @} . (36)

In Sect. 5 we speculate on the connection of qualia to a diagonalization of this operator.

4 Labeling of Gfaphs, Histogram Construction, M-Z Equation, Neural Networks

We begin with a prescription for labeling a collection (Sect. 3.1). This is extended
“into a technique for labeling a decorated graph. Given a graph, this procedure forms the
basis for inducing existence of a set intrinsically associated with the graph. A histogram
construction is then made. The latter is a tool used in proposing the M-Z equation, which
- expresses the labeling of a decorated graph in terms of sets. Application of these
constructs is then made to graphs arising in neural networks. An interpretation is made
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that portrays the sets decorating a graph as virtual sets, in particular as Platonic
constructs, namely consciousness. This application and interpretation constltutes a theory '
of consciousness constructed on the foundatlons that we have developed.

4.1 Labelmg of graphs
Let N be the collection of nodes of a graph I' and E the edges A labeling L of I'isa
. set Valued function of N.

a /ld, Yae N.
A laheled decoration of I is a set valued function a = da, Where (compare (2.1))
da= {dlbla‘—é b}Ulda, Vae N.
This system of equatiens_ along with the followingtheorem shows how labeled
decorations are a basis for inducing existence of a set intrinsically associated with the

graph. (Compare.the notion of the picture of a graph in Sect. 2.2.) Ex1stenee and
uniqueness of d, is the subject of the followmg theorem.

Theorem 4.1: Given (N, E, '/1), a corresponding labeled decoration d,a exists and is
unique. (Aczel, Thm. 1.10.) (Compare with AFA in Sect.2.2.)

Example of a labeled decoratlon Take the set Q with node a. With Aa bemg any set
we have : o .
da= {d la}u /la | (4.0)
If da= {b}, a singleton, thend,a = {d,q, b}. Then d,a="b" =Db is the dual of b.
4.2 The hlstogram construction ' :
~ We now give a histogram construct that replaces a set valued function on a collection
by a set valued function on a pure set. This construct is used to apply Theorem 4.1 to a

special collection of graphs abstracted from brain circuitry to be introduc’ed in Sect. 4.4.

Let A bea collectlon (of 1nd1stmgu15hable elements), and let Bbe aset. Considerthe
_ mapping, f A — B, where

Ce)={ae A|f(a) bLVbe B.

We suppose that the number of elements in this set If"(b),, Vb is finite.

~ The histogfam H, of fis the set of pairs speelﬁed as follows.
H ={b|r"@))o e B 1 (¢)=2}

Note that H is a bona fide set (see Sect 2.1), and in particular, that H, ¢ BxN .
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4.3 The M-Z equation, the welght functlon, the voltage function
We call the set valued function w: E - Q, a weight function. The Rationals Q
comprise a set, since each rational g corresponds to the triple (m,n,%), where tm/n is

_the value of g. The choice of the Rationals for the range of w is made for simplicity.
- Let E, denote the set of edges of I" that terminate in the node a, that is,

E,={(p.a)lp—>a}Vae N.

We make the local finiteness hypothesis: Va, E_ is finite. Then let w, = w\ g, » SO that

w, 1 E, — Qs a function from a finite collection into the Rationals. (Recall that we
have no way of distinguishing among the elements of E_.)

Let H, be the histogram of w,. H, is a finite set since E, is. Note that
H, cQxN,.

Now given (N E ,w), label I" with the labeling A:at> H, . Then the labeled
decoration of I is spemﬁed by what we shall call the M-Z equatzon namely

da= {dbla——)b}uH Vae N. (4.1)

Companng thls to (2. 1) where a decoration is defined and noting that the set H _of labels
is arbltrary, we may 1nterpret the set H, asa forcmg term in the M-Z equatlon for the
decoratlon da. '

‘We shall be interested in an extension of this construction that involves what we call a
voltage functzon v: N —{0,1}. (The choice of {0,1} is made for convenience.) Take -

_{(p,a)lp—>a v(p) 1}Vae N,

and let w = wl Now label T with the labeling /1 rat> H, . Then the M-Z

~ equation that specifies the labeled decoration of T’ (when both Welghts and voltages are
prescribed) is

da={dpla>b}UH, , Vae N (4.2)

4.4 Application to a neural network model of brain circuitry, NN semantic thesis

The brain is commonly taken as the seat of consciousness; the latter supervening on the
workings of the brain’s neural networks. (While for some, it is the entire physical body
that is taken as the seat of consciousness, there is no loss of meaning for our argument to
_ take the more limited view.) We shall show how our model applies to a neural network
to produce a labeled decorated graph, this in turn, supplying the mathematical foundatlon
of consciousness we seek in the context of that neural network. '
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Take a neuron P and trace its inputs (afferents) backward and its outputs (efferents)
forward to elaborate a neural network. Replacing the neurons by nodes and the synapses
by edges, there results a graph I emanating from the node (also called P) corresponding
to the chosen neuron. . Typically this network has reentrant connections, and so, I is non
well founded. An illustration of a simple possible I is given in Fig. 4.1. (Note the
correspondence to the cords and knots of Kanger, 1957.)

rfode P

efferent edges -

afferent edges

re-entrant edge
Figure 4.1: A neural net with a'single node P interpreted as a graph picturing a set.

This network and so also T is associated with two families of parameters, namely, the
synaptic weights w of its neurons and the output of its neurons’ activities. The latter are
-expressed as voltages, denoted v. Hebb’s rule is the customary model of synaptic weight
- change. The changes in voltage outputs are modeled by I-O threshold equations, the
simplest version of which is. the McCulloch-Pitts model (Haykin, 1999). For clarity, we -
- use the simplest meaningful form of these two relations that specify updates of w and v,
written as w,, (a —> b) ey (a—b) and va,d(a)“—"""“——w (a), respectively.

‘hew hew

Hebb’s rule: o W (a = b)=wy(a—> b)=av,,(a,., (b) , O @3)

Here a is an afferent neuron and b a corresponding efferent. ‘w(a — b) is the synaptic

weight of the synapse connecting neuron a to neuron b. (For convenience we allow one

such connection per pair of neurons.) v(a) is the neuronal activity of g, that activity
customarlly modeled as a voltage. For consistency with Sect. 4. 3 the scaling constant &
‘1S chosen to be a rational number.

McCulloch-Pitts eqn: vm,w(a) [pra,d p—)a)vo,d(p) 9|. , (4.4)
. p->a

Here £ is the Heaviside function, & is a threshold, and the sum is over .t all neurons p that
forward connect directly to neuron a. '

At any instant of time, the dynamical systems (4.3) and (4.4) may be viewed as

specifying all the current values in the parameter collections v and w. Referring to the
weight and voltage functions of Sect.4.3, we use the v and w to specify a labeling,
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’ /’{w;v ra> H, ofthe graph I as described in that section. Then we may use (4.2) to
 specify a labeled decoration, d 4, Of ['. We shall also refer to d 4, s the labeled
‘decoration of the corresponding neural network. .

We now state our Neural Net _Semantic Thesis (see the Semantic Thesis of Séct. 3.3)

Each value of d,_, a Platonic set, encodes a dynamic preconscious.

experience associated with the cofresponding neuron (equivalently, node of T').

We take the set in d s corfesp’onciing to the.node P of T (namely d a, (P)) to encode the

preconscious experience of the entire graph I'. The remaining sets in the decoration of
T, being subsets of d, canbe viewed as encodings of subordinate or supporting

* preconscious experiences. Every neuron generates otie or more graphs I". As the brain
processes information, the weights and voltages change as characterized. When a
neuron’s efferent voltage, a binary valued variable changes, the graphs containing that
neuron gain or lose an edge, as the case may be, and so, these graphs along with their
corresponding labeled decorations (sets) undergo changes.

Platonism: The neural networks along w1th their weights and voltages are physical, that
is, they may be observed and measured. The sets corresponding to the labeled
decorations d 4, are not physical and so are unobservable. Since they are located in some

. virtual space, we regard the d 4, a8 Platonic. (Compare Schrédinger’s quote in Sect. 1.)

If I is well founded, its labeled. decoration d 4, can be constructed in a straightforward
- recursive manner. However while the AFA supplies an existence statement for the
decoration of a non well-founded graph, it does not give a method to construct that
decoration. The universe of graphs is divisible into two parts, one in which labeled
- decorations are recursively computable and its compliment. Call the latter d ’Z‘ (P)- The

computability of the former might be a reason for classifying these corresponding sets as
physical and not Platonic. The non-computability of the & ::t (P) reinforces their Platonic
status.

4.5 Correspondence of the semantic theses :
‘The relationship among the semantic theses of Sect. 3.3 and Sect. 4.4 is schematized
in Figure 4.2. Each of the three arrows in Fig. 4.2 describes a flow of information. The
lowest is a flow of physical information. The second is a flow from physical to psychic
(i.e., to Platonic) information. The highest is a flow of psychic information. By the
Neuro-physiological Thesis in Fig. 4.2, we shall mean the conventional movement of
sensory information from a sense organ to the brain where it is processed to frame an
internal physical representation of that information, and from where, according to our -
~ theory, a primitive called consciousness is called into existence in a virtual space. Note a
parallel between the information flow in Fig. 4.2 with Plato’s line of knowledge (Plato,
360 BCE). ' ‘
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Operator
Semantic Thesis

NeizralNétwork
“Semantic Thesis

Conscious
processing

'Preconscious.
processing

Neuro-physzologzcal ﬁ

Thesis

Brain assemblies
(neural networks)

J

A

\

Sensory input

/

> Unconscious
| processing

Figure 4.2: The theses of consciousness. The shading demarks the Platonic realm.

Section S. Specxilations: syntacti'c and semanti’c nomehclature, qualia, evolution

Further elaboration of the consciousness operators developed will prov1de additional
applications of the theory presented here. The basic operators of set theory introduced
will contribute to this elaboration. This is suggested by the syntactic and semantic _
nomenclature ascribed to these operators, summarized in the Table 5.1. Also shown in .
this table is an interpretation of each operator along with the Z-F axiom(s) that the

operator codifies.

op Syn’tacfie

Semantic

Interpretation

Axiom(s) .
T | Elimination | Erasing/Forgetting Set representirnig Existence of &
Platonic experience '
| _ erased
I | Identity Accepting/Receiving Leaves set unchanged Extension
| B | Brace  Conceiving ' Creates higher order set | Pair and
o ‘ (a singleton) out of a set | singleton
R | Russell Perceiving | Bifurcates set contents | Comprehension
3‘ & retains normal
_ , elements ‘
T | Anti- | Rejecting/Denying Counters R, retaining | Union
Russell ‘  the abnormal elements
D | Duality Reinforcing/Elaborating | Extension of conceiving | AFA

Table 5.1: Semantic interpretations of basic operators
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In F1g 5.2 we schematize the flow of information from sensory input to conscious
experience. The upper boxes describe the syntactic level, the lower the semantic. The
d’:‘ (P)»-correspond to neural networks in the brain.- They are schematized in the box -

labeled ‘collection of virtual sets d,” in Fig. 5.2. Is it a time dependent one of these that
emerges into consciousness? If so, how is this distinguished neural network selected?

Preconscious processing
A

Unconscious processin ' Conscious processin
' P Jif N A p» g

Neuronal propagation ;
Sense K Neural |
organ ¥ R _network ¥
Sensory | Representa-
input tion in brain
Physical space
' * Physical realm ’ o Platonic realm

Figure 52: Cbnsciousnéss: Syntactic and semantic \?iewskof the processing from the
physical to the virtual. Shading distinguishes the Platonic realm from. the physical.

Diagonaiization of X ,, qualia: . Diagonalizati()n of the operator K, in (3.5) gives
KAy ={yex|y¢y,and Vzexmvy,ze‘z}'. - ,

K satisfies axioms a) - c) of Sect, 3.2. However taking A = {{2.Q}} and
B={2,Q, {0, Q}}, it follows that K% 4 is not a subset of K3 B. So failing axiom d)
precludes K4 from being a consciousness operator. We expect this operator to be a
member of an operator collection of interest. For instance, take the set d,a specified in
(4.1) and put a equal to p, the point of a graph corresponding to a neural network. If this
neural network is the neural correlate of a quale, we ascrive the semantics of that quale to
the Platonic set X 28d,p, itself located in a virtual space. This quale is positioned in the
rightmost box in Fig. 5.2. ' ' :

Evolution: We expect that variations of ouf development will provide fnathematical
foundations for the study of evolution driven by selfish replicators, both genetic and
mimetic (Dawkins, 1979, Blackmore, 1999).
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'Appendix: Axioms of Set Theory

We use the following axioms of set theory.

~ Existence: =
Extensionality: - Vz(z € a<>z € b) —-> a=b.
Pairing: . Izlaez&bez].
Union: Jz(Vx € aXVy € x)y € z).
Comprehension: Ei_z‘v’xv[x' €zerxe av& ¢(x)]

Here @ canbe any formula in which the variable z does not occur free.

Except for the axiom of existence these axioms along with the Axioms of Infinity,
Collection, Power Set and Choice can be found in Aczel (1988). We do not state the latter
four axioms since we don’t use them. Note that Aczel uses the name Axiom of
_ Separat1on for the Axiom of Comprehens1on The

Axmm of Foundatlon Ex(x e a)—) (Bx € a)(‘v’y € x)—(y € a)

is not mcluded in the onglnal Z-F list. It was proposed by Von Neumann We don’t use '
the AF, and we replace it by the

~ Anti-Foundation Axiom-: "Every graph has a,uniqite decoration.

The AFA, due to Aczel, is central to our develo-pment.

Glossaryl
" Terminology -
Experience/primary expenence .a set x/pnmary layer when there are layers of experience
Consciousness...Kx, where K is a consciousness operator. See Semantic Thesis in §3.2

Awareness. ...JKx, where X is a consciousness operator. See Semantic Thesis in §3.2

Graph. ...a collection of nodes with certain pairs of the nodes specified as edges

Directed graph. ...a graph in which the nodal pairs are ordered (edges are directed)

Pointed graph....a directed graph with a distinguished node, the point

Accessible pointed graph (apg)....a pointed graph, every node of which is reachable from
the point by a chain of directed edges

Decoration....the unique a551gnment (specified by (2.2)) of sets to the nodes of an apg

! For convenience, somie of the deﬁmtlons llsted here are abbrewated In such cases more
complete definitions are found in the text '
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Picture of a set.. the pointed graph in whose decoratron the set corresponds to the point
Labeled graph....a graph with an arbitrary assignment of sets (the labels) to the nodes
Labeled decoration....a labeling dependent decoration of a graph (specified by (4.0))
Histogram....construct replacing a collection by a set as domain of a set valued function
M-Z equation....specifies the labeled decoration of a graph arising from neural networks
Hebb’s rule....specifies the synaptic weight change in a model neuron

McCulloch-Pitts equation....specifies the output of a model neuron

Set types »

Collection....a set as defined by Cantor

Naive set....another name for a collection

Set....a primitive construct, the subject of the Z-F axioms - ~

Bona fide set....a set, emphasizing its being specified asa prlmmve defined by Z-F

~ Pure set....a set whose elements are sets

Path....a sequence of nodes (finite or infinite) linked by edges . » :
Well-founded picture....a graph whose paths are finite (in particular one without loops)
Non well-founded picture....a graph with an infinite path

Well-founded set.... a set whose picture is well-founded

Non well-founded set. ...a set whose picture is non well founded

Normal set....a set whose elements do not contain themselves

Abnormal set....a set with an element that contains itself -

Platonic set....a not physical set, a not computable set, a set located in a virtual space

Classes '

Class....a collection of sets with a common property
Proper class....a class that is not a set

‘U....the universe of sets

A....the class of abnormal sets

IN ....the class of normal sets

- Fundamental Operators

.. .ehmmatlon

...identity

...brace, singleton

...Russell

...anti-Russell

...duality operator :

-2 particular consciousness operator

b@ﬁ@@wﬁ

Types of Operators

O....a generic operator

X....a generic consciousness op'erator

XK, ....aspecial class of consciousness operators parameterized by aset A
x¢ "“’g ...diagonalization of X, acting on a set x

Selectors. ...operators O with the following property: xc y = Ox=xnQy
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