Abstract:

In the preceding paper [16] we presented several systolic algorithms for Factorial Data Analy-
sis all running on the same triangular systolic array with orthogonal connections:SARD A (Systolic
Array for Data Analysis). We restricted our study to matrix computations.In this paper we will now
turn ourselves to the symmetric eigenvalue problem on SARDA and study especially tridiagonal-

ization followed by multissection for the eigenvalues and inverse iteration method for the associated
eigenvectors.
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1. Introduction:

Let us remind our purpose:we wanted to devise efficient algorithms for Factorial Data Analysis
all running on the same triangular systolic array SARDA.We are now studying the symmetric
eigenvalue problem on the symmetric positive definite matrix W of size k (for the other algorithms
involved see part I [16]).

As we have a systolic array of size s with usually k > s,we use subspace iteration with block-
partitioning (see [5],[15])and with these two techniques we can restrict our study to the symmetric
eigenvalue problem on W' of size s and obtain the t largest eigenvalues of W with ¢ < s.

Actually a large variety of systolic algorithms have been studied for the symmetric eigen-
value problem [10].We can distinguish two main classes of methods: the first is the Jacobi method
[1],[20],the second is a tridiagonalization followed either by QR iteration with shift [8],or by bissec-
tion [21]. No method actually proposed is linear in time.

Other methods are possible when the symmetric matrix W is positive definite: LR Cholesky
(chapter 8 of [22]) which is an adaptation of the LR algorithm to the symmetric case on the matrix
W tridiagonalized before,or the singular value decomposition (SVD) of R upper triangular matrix
got by Cholesky factorization of W(W = RT R).(see [15])

Let us now describe briefly several of the methods listed above and some of their drawbacks.

e The Jacobi method [1] consists of applying planar rotations on the rows and columns of W to
annihilate its non diagonal elements.This algorithm requires a square array of s2/4 processors
with octogonal connections (every processor has eight neighbors).After O(slogs) time steps
we obtain the eigen elements of W'.This method is quite fast but it shows some difficulties to
implement because at every time step,every processor has to communicate with its 8 nearest
neighbors.So it requires a programmation of data exchanges quite complex.Moreover as we
have no diagonal connections between processors we have to simulate them which complicates
the programmation and delays the computations.

e The QR iteration for band matrices can be applied to the symmetric tridiagonalized ma-
trix W (see [8],[9]).One iteration takes about 2s time steps but without shift the convergence
is slow.(The non diagonal elements wl‘_l,,. A =2,...,8 of W,: converge to O at the speed of
wf /wf:llﬂ. = O((Xi/Ai=1)*) where the eigenvalues \;,i = 1,...,s are arranged by decreasing
order). The problem is that in the QR iteration you need to have the kth shift o} to compute
the kth QR factorization W; — 0] = QiR and you can only get it when you have finished
the preceding iteration W;—1 = Rp_1Qk—1+ 0k—11.So you cannot fit the iterations into each
other and there is a great loss of time.

e The LR Cholesky iteration can also be applied to the symmetric tridiagonal matrix W" (see
[22]).One iteration takes about 2s time steps and the iterations can fit into each other but
the convergence is very slow especially when several eigenvalues are close to one another.

(The non diagonal elements w{"_l’i,i = 2,...,8 of W,: converge to O at the speed of

wf—1,£/wl°:11,i = 0(()‘€/f\i—l)k/2))-

e We did not use the methods related to the SVD of R,the Cholesky factor of W (W =
RT R),because they are of the same type as the Jacobi method described above.The Hestenes
method consists of applying planar rotations to the columns of R to orthogonalize them
([2],[19]).1t is analogous to the Jacobi method applied to RT R.The SVD-Jacobi method ap-
plies once more planar rotations on the rows and columns of R to annihilate its non diagonal
elements but as R is not symmetric the rotations applied to the rows and the columns of R
are not the same ([3],[14]).




After this short overview of the methods actually available for the symmetric eigenvalue prob-
lem,(see also table 1),we will now detaile our choice: the tridiagonalization of W' ,described in
section 2,followed by the multissection method,described in section 3,for the eigenvalues of W'.In
section 4 we explain how to get the eigenvectors of W' with the inverse iteration method.

2. Tridiagonalization of W':

Let W' be a symmetric matrix of size s,we have to define a unitary matrix P such that
Wo = PW'PT is tridiagonal.To assure the numerical stability (see [22]) the matrix P can be either
a product of Householder transformations [11],or a product of rotations [7),[8],[9].The tridiagonal-
ization is done column by column:we apply series of projections or rotations by premultiplication
to annihilate a column of W' then by postmultiplication with the transpose matrix of these op-
erators,we annihilate the corresponding row.So we get a matrix unitary similar to W' with one
column and row annihilated [17],[18].This method requires O(s?) time steps,a triangular array of
s(s + 1)/2 processors and a systolic shifter which allows to transpose matrices without delays.We
use Givens rotations to annihilate the elements of W'.Their utilization is up to date especially for
the QR factorization [7],[9].

Let [w;_l,j,w;,j]T be a couple of elements of W'.In order to annihilate w; ; by using the pivot

cosf;; sinb;; ) defined by:

1. 3 : ti R N
w;—1,; we build the Givens rotation R; ; (_ sinf;; cosf; s

p= [w,?_l,j + w?’j]llz , COS 0,"" = w,-__l,j/p , sin 0,',,' = w,-,j/p.
We have then R;j{wi—1,;,w; ]T = [p,0]7.
Set down W' = (w; ;)1<i j<.-We apply (s — 2) rotations by premultiplication to the (s — 1) last

rows of W' in order to annihilate successively W 1, Ws—1,15- -+, W3,1.
w,,1 is annihilated with the pivot w,_1,; and Ry 1[ws—1,1, ws1]T = [w}_l,l,O]T.

w}_l,l is annihilated with the pivot ws_2; and Rs_l,l[wa_z,l,w}_l’l]T = [wi_z’l,O]T.

After the (s — 2)th rotation we have the (s — 2) last elements of the first column of
QTW' = Rs;... R;_1,1R,1W' annihilated. This operation is called the first “forward pass”.We
then apply these (s — 2) rotations by postmultiplication to the (s — 1) last columns of QTW' and
we compute QT (QTW')T = QTW'Q,.This is the first “backward pass”.In fact we only compute the
product of QT with the (s — 1) last rows of (QTW')T because we already know that the first row
of QTW'Q; is equal to the first column of QTW' . And we get:

wi,1 w%,l 0 e 0
1 2 3 2
W21 Wi W33 ... Wi,
3 3 3
QIW'Qi=| 0 wsy wis ... wy,
2 3 2
0 wiy, wyg ... wy,

The upper indices of the elements of QfW'Ql represent the number of rotations applied to
the elements during the first forward and backward passes.

Then we apply (s — 3) rotations by premultiplication to the (s — 2) last rows of W1 = Tw'g,
in order to annihilate successively 'wf,z, wf_l’z, cee w;zz.lf Q7 is the product of these (s — 3) rota-
tions the second forward pass consists of C)’{W1 and the second backward pass,of QF (Q'{WI)T =

QIRIW'Q:1Q:.




Finally after (s — 2) forward and backward passes we get the symmetric, tridiagonal matrix
Wo=Q1 Q13- QTW'Q1...Qs-3Qs2.

All these unitary transformations,products of Givens rotations,are applied by the mean of a
triangular array of s(s+ 1)/2 processors with orthogonal connections initially conceived by Gentle-
man and Kung [7] for the Q R factorization of a dense matrix.This array is composed of cells of two
types: the diagonal cells which create the rotations and the non diagonal cells which apply them to
the input data they receive (see figures 3a and 3b).The matrix is introduced into the array column
by column,each column to annihilate entering the cell which creates the rotations,and the other
columns entering the other cells of the same row.The first column of the matrix is treated by the
last row of the array composed of s processors (number of non treated columns of the array),the
second column is treated by the next to last row composed of (s — 1) processors and so on until the
(s — 2)th column treated by the third row composed of three processors.

From this array of Gentleman and Kung,Schreiber [17],[18] deducts an array with the same
structure which realizes the tridiagonalization of a symmetric matrix.This is done column by column
as we described it above.The last row of the array is composed of s processors (number of columns
of WO = W), the far right one constructs the rotations and the others apply them.This last row
computes first the matrix product QfW' (see figure 1).At the exit of the row the matrix QfW' is
transposed before being reintroduced in that same row for the computation of Qf(QfW')T (see
figure 2).

After this second pass in the last row of the array W! = QTW'Q; is introduced into the next
to last row of the array composed of (s — 1) processors (number of non treated columns of W1) for
the second forward pass, computation of Q%W then after transposition of Q3 W for the second
backward pass,computation of W2 = QT W1Q2.And so on until the (s —2)th forward and backward
passes where the matrix W2 at the exit of the third row of the array will be tridiagonal.We get
the tridiagonal elements of W*~2 in the diagonal cells where they are memorized when we apply
the forward passes (see for example figure 1). Finally we have:

0 1
( Wiy Wi \
1 2 4
Wy W9 Wi
4 6 8
Wzo W33 W3y
8 10
s—2 Wys Wyy
W = wl?
5,4
43—10 3s—7
ws—l,s—l ws—l,s
3s—7 2(s—2
\ ws,s—l w-!,(s ) }

[wf 1, w3} 4] are stored in processor s, s.[w] 5, w3 ,] are stored in processor s — 1,5 — 1,...,

- - -7, 2(s=2 .
[wie 1’180_1, wff,]l] and [wfﬂl?s, w,,(: )] are stored in processors 2,2 and 2,1.
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Figure 1: Moving of the (s — 1) last rows of W' in the array
for the matrix product QT W' (s = 4).
first forward pass: Qf = Ry—1,1R, 1.

The duration of the first forward pass is 2s time steps.The first backward pass can only begin
from the instant (2s + 1)T when we have computed the last element of QTW".
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Figure 2: Moving of the (s— 1) last rows of (QTW')T in the
array for the matrix product QT (QTW")T (s = 4).
first backward pass.

The duration of the first backward pass is 2(s — 1) time steps.The second forward pass can
begin as soon as we get the first elements of W! = QT W'Q1,50 from the instant (2s + 3)T.
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Figure 3: (3a) program of a diagonal cell:The rotation R
which annihilates y with the pivot z is computed:

(-0 () s o

s =y/p. Then z = p is memorized in the array.
(3b) program of a non diagonal cell:The rotation R is apllied:

(3,) =R (;).Then y is memorized in the cell.

Let us now evaluate the duration of the tridiagonalization.The first forward pass takes 2s time
steps.The second forward pass begins at the instant (2s + 3)T = [2(s + 1) + 1]T' and ends at the
instant [(2s43)+2(s—1)—1]T = 45T .The third forward pass begins at the instant [2(s+1)+2s+1]T
and ends at the instant [(4s + 3) + 2(s — 2) — 1|T.

The (s—2)th forward pass begins at the instant [2(s+1)+2s+...+2((s+1)—(s—2)+2)+1]T =
(2[(s+1)+s+...4+ 5]+ 1)T,the (s — 2)th forward and backward passes take 10 time steps.So the
tridiagonalization ends at the instant (2[(s + 1)(s +2)/2 — 10] + 10+ 1)T = [(s + 1)(s + 2) — 9|T
and it takes ((s + 1)(s + 2) — 9) time steps.

Nevertheless for the tridiagonalization of a symmetric matrix of size s on his triangular array
of s(s+1)/2 cells Schreiber [17],[18] assumes the existence of a systolic shifter which transposes the
matrices between each forward and backward passes without delay time.It is possible to avoid the
use of this shifter by creating in the memories of each non diagonal cell internal stacks (LIFO Last
In First Out) allowing the storage of intermediate results of the matrices W* between the forward
and backward passes.Thus we create three internal stacks for the cells 1,5 — 1 for 1 = 3,...,s,0ne
internal stack for the cells 7,1 for ¢ = 3,...,s and two internal stacks for all the other non diagonal
cells.

Then the computations are done as following:the forward passes are executed as described
before,the matrix W* is introduced vertically,column by column, but the elements of each column
are memorized in the first LIFO of each non diagonal cell s — 1,5 called F,_;; instead of being
sent in the shifter (see figure 5).Except the elements of the next to last column of W* which are
stored in F,_; ;_;_3 and then reintroduced vertically in the cell s — ¢,s — ¢ — 1,the other columns
J of W' are reintroduced vertically in the cells s — ¢, 5 and then horizontally to the right neighbor
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cells s — 4,5 + 1 for the backward pass and stored in the second LIFOs B;_; j+1 from where they
will be taken out for the next forward pass (see figure 6).These second LIFOs B,_; ;1 are linked
up directly with the cells s — ¢ — 1,7 of the (s — ¢ — 1)th row of the array which requires a slight
modification of the array (see figures 5-6-7).

As the Systolimag machine,(see part I [16]),has no physical diagonal connections we can sim-
ulate them as following:see figures 4a,4b.We can consider that there is no delay time when we use
the diagram 4b, instead of the diagram 4a if we work by data flow.In fact in that case as soon as
the processor ¢ — 1, j receives the data from the processor 1, 5 it sends it to the processor 1+ — 1,7 —1
without delay time.It follows that the backward passes are not executed in the same way as in the
array of Schreiber.In his model the rotations computed by the diagonal cell s — i,s — ¢ during the
(¢4 1)th forward pass are memorized and then resent in the (s — ¢)th row of the array at the good
time to execute the backward pass.These rotations reach every processor of the (s — 7)th row one
by one and then are applied to the rows of Q:ﬂ_lW". In our model the rotations sent during the
forward pass along the (s — ¢)th row have to be memorized in the processors from their first utiliza-
tion,the jth rotation memorized in the (5 + 1)th processor of the row in order to be reused during
the backward pass.Without using systolic shifter,the times to execute the forward and backward
passes are doubled.The loss of time comes from the transposition of the matrix W* between every
forward and backward passes.

The first forward and backward passes take [2s + 2(s — 1)] time steps.The second forward and
backward passes take [2(s — 1) + 2(s — 2)] time steps.

The (s — 2)th forward and backward passes take [2(s — (s — 3)) + 2(s — (s — 2))] time steps.So
the tridiagonalization takes (252 — 8) time steps.

4
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i/ L/

Figure 4: (4a) is replaced by (4b).
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Figure 5: First forward pass: computation of the matrix
product QTW' (s=4). QT =R -11R, 1.

The duration of the first forward pass is still 2s time steps.After applying the rotations R, ;
and R,-1,1 the columns of QTW' are stored in the LIFOs F,; ,1=1,...,8 — 1. Only the used
connections for the first forward pass are represented by continuous lmes
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Figure 6: First backward pass: computation of the matrix
product QT (QTw")T.

The first backward pass begins at the instant (2s + 1)T after the computation of the last
element of QTW' and takes 2(s — 1) time steps.The second forward pass can here only begin at
the instant (4s — 1)T after the computation of the last element of Q7 W'Q;.Only the active parts

during the first backward pass are represented by continuous line.
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Figure 7: Second forward pass: computation of the matrix
product QT W?!. QT = R, ,.



3. Multisection method:

The bisection method can be applied to tridiagonal symmetric matrices.It allows to determine
all the eigenvalues of the matrix in an interval fixed in advance.

As in Factorial Data Analysis the eigenvalues are all positive,we can determine a research
interval for the eigenvalues from the beginning,for example [0, ||W’||1](||W||1 = max; 3; |wi ;|) We
can often choose [0, 1].This method relies essentially on the following theorem (see [6] pp120-123).Set
down:

by ¢
c1 b2 c
(]
Wo =
Cs—1
Cs—1 bs

We define the Sturm series of characteristic polynomials of the dominant submatrices of size j of
Wopo(A) = 1,p1(A) = (b1 — A), .. .,p(A) = (b5 — N)pj-1(X) — c_ypj-2(A). Set down 1 < j < s and
1 € R,if we define:

() — { sien(pi(w),  ifpi(u) #0
29mp; (1) { sign(p;-1(w)), if pj(u) =0
then the number N (j; 1) of sign changes of the set E(j; u) = {sgnpo(), sgnp1(p), ... ,sgnp;(n)} is
equal to the number of roots of the polynomial p; which are strictly smaller than p.

3.1. description of the method:

It is based on the ideas of Schreiber [21].Suppose we are using (s + 1) processors,that is to
say for example,the last row of our triangular array plus one supplementary processor.The s first
compute the series (p;(u)) for ¢ = 1,...,s,u € R and the last,stores the numbers N(s;u) for
different values of u.The array works like this:we introduce a real u into the first processor s, 1
which computes p;(x) and N(1;4) and sends its results to the second processor s,2 which,at its
turn,computes pz(u) and N(2;u) and so on until the sth processor s,s which computes p,(1) and
N(s; pu).Every time we send a real p in the row of (s + 1) processors,we have to wait s time steps
to get N(s;u).The goal is then to use as best as possible every processor at every time step,and
for that,to choose judiciously the values 4 to introduce into the array in such a way that every
processor is as active as possible during all the course of the method.In the other way we have
to choose the multisection method as efficient as possible,that is to say,the one requiring as less
arithmetic operations as possible.In order to do that let us compare different methods: assume we
have A\; < A2 < -+ < A, contained in [ag, bo] and that we search the ith eigenvalue J;.

1. bisection method: we set co = (ao + bo)/2 and we compute N (s;co),if N(s;¢c0) > ¢ then
A; € [ao, co],we set a3 = ag and by = co.else \; € [co,bo] and we set a; = co and b; = by. We set
¢1 = (a1 + b1)/2 and we compute N(s;cy),...Thus we determine a series of intervals fitting into
each other [ak,bi],k € N such that \; € [ag,bi] and b — ai, = (bo — ao)/2k.

2. multisection of order p: we set ¢; = ao + j(bo — ao)/p and we compute N(s;c;) for
J=0,...,p— LI N(sjc;) — N(s;cj—1) = 1 then )\; € [cj_1,cj],we set a} = ¢j—1,b] = ¢; and
¢j = aj + j(b) — a})/p,and we compute N(s;c;) for  =0,...,p — 1,...Thus we determine a series
of intervals fitting into each other [a},b}],k € N such that \; € [a},d)] and b}, — a}, = (b — ao)/p*.

Assume we want to get the eigenvalue )\; with a precision PREC.,if at the kth step we set
LBIi] = (ax + bg)/2 we get A; with a precision of (ar — bx)/2.For the method 1 we will need to
do k computations of N(s;¢;) with k = [In((bo — ao)/2PREC)/In2] and for the method 2,p x k
computations of N(s;c¢;) with k = [In((bo — ao)/2PREC)/Inp].The efficiency of the multisection
method of order p related to the bisection method is then: E, = O(log, p/p) [13].The optimal

11




number p* will have then to be as small as possible and also optimize the output of every processor
(idle times minimized).

Let us look now at the parallelized method principle.We are only interested in Factorial
Data Analysis in the greatest eigenvalues,for example those greater than a bound X fixed in
advance.We then cut the interval [Xo, |[W'||1] into (s + 2) pieces of equal length po = (||W'||; —
Xo)/ (s + 2) and we introduce successively the reals X) = Xo + ipo at the instants (¢ + 1)T for
¢ =0,...,8+2 into the array.It then computes N (s; X?) fori = 0,...,8+2and NB[i] = N(s; X?)-
N(s; X2 ) fori =1,...,s + 2. At the instant sT we get N(s; Xo),we know then that there are
k:=s— N(s; X)) elgenva.lues contained in [Xo, ||W'||1]. When the last X? is introduced into the
array the first difference NB[1] is computed;we can then, from this instant,define new values X,-1
to introduce into the array for the second sweep (if NB[1] > 1).We choose,as for the first sweep,
and for all the next sweeps,a set of about (s+ 2) values X} such that they are as less interruptions
as possible of the activity of the processors between two sweeps.We will have at most k subinter-
vals [X ,_I,X?] containing eigenvalues;we thus choose to cut each of them into I equal parts with
I := [(s + 2)/k].These I parts will be of length p; = (||W’“1 - Xo)/(s + 2)I.

We introduce successively the X; 1 — X° "y + Jp1 for ¢ such that NB[i] > 0 a.nd for j =1,.
[—1,into the array which computes the N(s; X}) aswell as NB1 := N(s; X})— N (s; X}_,).After thls
second sweep we determine subintervals of length (IW'||1 — Xo)/ (s +2)I containing elgenva.lues And
so on for the following sweeps:we set p; = p;—1/l and we cut the sublntervals containing the eigen-
values into [ equal parts of length p;.After K sweeps the subintervals [X; iin f’X:I(sup] containing the
eigenvalues W111 be of length (||W'|i - Xo)/(s + 2)IK 1By setting down
LB[{] = (XK iing T XK )/2 we will get the eigenvalue \; with a precision of

1,8up

(IW'llx — Xo)/2(s + 2)1%~1.
3.2. Number of arithmetic operations:

The computation of N(s; u) requires: s integer additions,(2s — 1) real soustractions,(4s—>5) real
multiplications and s sign comparisons. The first sweep requires (s + 2) computations of N(s;u)
and the following sweeps,at most [ X k computations of N(s;u) where I X k ~ s + 2.So K sweeps
will require about K (s+ 2) computations of N(s;u). To get the eigenvalues of W' with a precision
PREC we will have to take K = [In((||W'||1 — Xo0)/2kPREC)/In(s + 2)/k],and so to execute
O(s(s + 2)/In(s + 2)) arithmetic operations.

3.3. Duration of the algorithm:

The first sweep requires 2(s + 2) time steps,(s + 2) time steps for the introduction of the X?
into the array,and (s + 2) for the computation of the N(s; X?).The following sweeps require k x l
time steps, that is to say about (s + 2) time steps for the computation of the N(s; X?).So our
method requires (K — 1) X k X I + 2(s + 2) ~ (K + 1)(s + 2) time steps.Finally our multisection
method can be executed in O((s + 2)/In(s + 2)) time steps with O(s(s + 2)/In(s + 2)) arithmetic
operations.

The figure 8 shows us the array for our method,as well as the sending of the data X? for the
first sweep.The processor s, j for 2 < 5 < s computes the jth characteristic polynomial p; (Xo) for
i=0,...,s+2 from the characteristic polynomials p;_;(X?) and p;_2(X?) and the elements ¢;_;
and b of the matrix Wy (Wp is the matrix W' tridiagonalized);c;—; and b; are memorized in the
cell for other computations of characteristic polynomials p;(X/™) for m = 1,2,... The processor
s,J also updates the variable NNCS which computes the number of sign changes of the series
(pi(X2)),5 =0,...,s.The last processor s,s + 1 computes the NB[i] = N(s; X?) — N(s; X?_,) for
t=1,...,8+ 2 and determines the intervals [X?_I,X?] containing eigenvalues.It fixes then a new
set of values X; 1= X° 1 +Jp1for j=1,...,1 -1 to test during the second sweep.
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Figure 8: Systolic array for the multisection method of order
(s+2) (s =4).

The first values of the set X},j = 1,...,I — 1 are defined from the instant (s + 3)T only if
N B[i] > 0,else we have to wait the instant when we find the first ¢ such that NBJi] > 0.
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4. Inverse iteration method:

After the tridiagonalization of W' into Wy with the product of Givens rotations P:
Wo = PW'PT jand after the computation of the eigenvalues of W' with the multisection method of
order (s + 2) on Wy,it remains to determine the eigenvectors of W' .

We use the inverse iteration method [4] which requires to know quite accurate approximations
of the eigenvalues to get a fast convergence.Assume o is an approximation of the eigenvalue A,then
to compute the eigenvector x associated with A,we build the series (gix)ren of unitary vectors
converging on z and defined by:

* g0 = u/l|ull2.
e resolution of (W' — 0l)z, = q4—1 , k=1,2,...

® gk = 2/ 2k||2-

It is the power method applied to (W' — oI)"lthe convergence factor is then:
|A —o||/ maxyz»,;(|A\s — o|) .-We apply here this method to the tridiagonalized matrix Wy and we use
as eigenvalues approximations,the values computed by the multisection method . The tridiagonal
system (Wo — 0I)2x = qx—1 can be solved by LU factorization or by QR factorization.As o is very
close to A the matrix (Wo — o) is almost singular,and we can not use the LU factorization without
partial pivoting for stability and pivoting does not parallelize easily.

So first we determine a product of (s — 1) Givens rotations QT such that QT (W, — oI) = R
is upper triangular and we compute u;—; = QTqr—; and then,we solve the triangular system
Rz = ug_1. The QR factorization is not done column by column from the triangular array of
s(s+1)/2 processors of Gentleman and Kung [7],but diagonal by diagonal from the array of Heller
and Ipsen [9] for band matrices.

In this array composed of w X g processors where w is the band width of the matrix and ¢,the
number of subdiagonals.The matrix is introduced diagonal by diagonal and the QR factorization
is done in 2(s + (¢ — 1)) time steps (instead of 3s for the array of Gentleman and Kung).Every row
of the array is composed of one cell which creates the rotations and that the diagonal of elements
to be annihilated crosses and of (w — 1) cells which apply and broadcast the rotations to the other
diagonals.The computation of the right hand member u;_; = QTqr_; can be done on the same
array if we add ¢ supplementary cells.

As (Wp — o) is tridiagonal,w = 3 and ¢ = 1.So we will only need 4 processors,3 for the
computation of QT(Wy — oI) = R (1) and one for the computation of QTq;_; = ug_; (2).R will
have then 2 upper diagonals and the band triangular system Rz = ug_; (3) will be solved by 3
processors linearly connected as described by Kung and Leiserson [12].For the operations (1) and
(2) we can use for example the fourth row of our tiangular array composed of 4 processors,and
for the operation (3),the third row. The figure 9 represents the QR factorization of (Wy — o).
(Wo — oI) = (ci—1,(bi — 0),¢i)1<i<s as well as ge—1 = (¢i)1<i<s are introduced into the fourth
row of the array and the matrix R = (ri;,7ii4+1,%i+2)1<i<s—2 as well as the right hand side
ug—1 = (us)1<i<s are stored into internal stacks (LIFO) of the four processors.The operation (3)
described in the figure 10 is executed from the data from the LIFOs.As we get the last value u, at
the instant (2s + 2)T,the resolution of the triangular system Rz = ui_; can begin at the instant
(2s + 3)T and we get z; after (2s + 1) time steps.

The speed of convergence of the series (gx)ren to the eigenvector depends on the accuracy of
the eigenvalue.In fact if o is such that (W' — oI + E) is singular with || E||; = € then it exists at
least one vector ¢ such that the solution z of (W' — 0I)z = q determines an eigenvector z of W'
exact at the precision € (that is to say such that z is an eigenvector of W'+ F with || F||2 = O(e);see
p 173 of [4]).So we can get from the approximation ¢ of A,with one step of the inverse iteration
method,an approximation of the eigenvector of the same order of accuracy in (4s + 3) time steps.
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We can reduce this execution time to an average of 2s time steps per eigenvector by adding a
LIFO to each of the four cells of the fourth row.Another resolution of tridiagonal system
(Wo — 0'I)z] = go can then begin at the instant 2sT,the new matrix R' = Q'T(Wo — o'I) and
the new right hand member ug = Q'T ¢y being stored in the new LIFOs.

If ¢; is an eigenvector of Wy,then PT ¢, is an eigenvector of W'.It remains then to compute this
matrix-vector product.We can get the matrix P by introducing the identity matrix I, just after the
matrix W' during its tridiagonalization (from the instant (s + 1)T':see figures 5-6-7) and by only
applying the forward passes to I, (resending of the rotations memorized in the diagonal processors
along the rows from the right to the left).The product PTq; can be done in 2s time steps with s
processors linearly connected.We have only to introduce the matrix P row by row and the vector
g coordinate by coordinate (the ith row and the ith coordinate entering the ith processor).

5. Conclusion:

The study of systolic algorithms for matrix computations on our triangular systolic array
SARDA has showed us the possibility to use a systolic array for a great number of systolic algorithms
without having to modify the interconnection structure between the different operations.In fact the
processors have only to have a memory large enough to allow,during the programmation of the
nodes,the creation of a great number of processes and internal or external FIFOs and LIFOs.

On the other hand the asynchronous programmation of the algorithms has allowed us to
simplify the supervision operations of the host system and to save time. These operations are now
reduced to sending the data and receiving the results.Nevertheless we have to replace the global
synchronization of the system by local controls in each cell such as tests or loops counters (see [15]).

However this study has above all pointed out the necessity of adding to the systolic array
another computational system to process the data efficiently, that is to say,receive the results
and store the intermediate computations such that the systolic array be as active as possible.In
particular the system should be able to store automatically the matrices by rows,columns or blocks
and to transpose the matrices asynchronously.In that way the sending of data and receiving of
results could be done asynchronously as the operations inside the array.

On page 18 a summary table describes the algorithms we have studied for the symmetric

eigenvalue problem.First,to determine the eigenvalues (Jacobi or tridiagonalization + multisec-
tion),second,to determine the eigenvectors (inverse iteration method).
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These computations require (2s + 2) time steps.
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~ The processor 3,1 computes the norm of the vector zx = (2;)1<i<, as further the coordinates
z; enter its internal stack.We get z; at the instant (4s + 2)T and q; = z/||2:||2 at the instant

(4s +3)T.
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algorithm

Jacobi method on a
symmetric matrix of
size s X

tridiagonalization of a
symmetric matrix of
size s X 8

LR-Cholesky method
on a tridiagonal matrix
of size s X s

multisection method
of order (s + 2) on a
tridiagonal matrix of
size s X 8

inverse iteration
method on a tridi-
agonal matrix of size
sX 8

singular value decom-
position (SVD) of the
Cholesky factor of W'
of size s X s

shape and connections
of the array

number of time steps

square array of s%/4
processors with octogo-
nal connections

3slog s time steps

triangular array of (s? + 3s — 7) time steps
s(s + 1)/2 processors
with orthogonal con-
nections + a systolic
shifter [fig 1-3]
triangular array of (2s% — 8) time steps
s(s + 1)/2 processors

with horizontal and

diagonal connections

and internal LIFOs [fig

4-6]

triangular array of
s(s + 1)/2 proces-

very slow convergence.
2s time steps per

sors with orthogonal iteration

connections

(s + 2) processors O((s+2)/1og(s + 2))
linearly connected [fig  time steps

8]

4 processors linearly
connected with internal
LIFOs + 3 processors
linearly connected and
diagonaly connected
[fig 9-10]

average of 4s time
steps per eigenvector
(and per iteration)

8/2 processors linearly
connected with 2
FIFOs per processor

3s time steps +
O(s(s — 1)log s) time
steps

square array of s%/4 3s time steps +
processors with octogo- O(slogs) time steps
nal connections

Table 1: Eigenelements computations
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authors and special
features

Brent-Luk, Schreiber
[1],[20]: utilization of
cyclic permutations

Schreiber [17],[18]:
is done column by
column and row by row

Porta* [15]: is done
column by column and
row by row

/

Schreiber,Porta*[19],
[13]

Heller-Ipsen,Kung-
Leiserson,Porta*
[01,[12],[15]

Schreiber,Brent-Luk
[19],[1] Cholesky fac-
torization + Hestenes
method

Brent-Luk-Van Loan,
Luk [3],[14]:Cholesky
factorization + SVD-
Jacobi method
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