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1. INTRODUCTION
The purpose of this paper is to establish the following theorem:

Turorem. . For each n, any linear search tree that solves the n-dimensional knapsack
problem requires at least {n® comparisons. '

Previously the best known lower bound on this problem was 7 log # [1]. The result
presented here is the first lower bound of better than # log # given for an NP-complete
problem for a model that is actually used in practice. Previous non-linear lower bounds
have been for computations involving only monotone circuits [8] or fanout limited to one.
Our theorem is derived by combining resuits on linear search tree complexity [4] with
results from threshold logic [11]. In Section 2, we begin by presenting the results on
linear search trees and threshold logic. Section 3 is devoted to using these results to obtain
our main theorem.

2. Basic CoNcerTS

In this section we introduce the basic concepts necessary to the understanding of our
main theorem. To begin, we present the model for which our bound holds. It has
previously been studied in [6, 7, 10].

DEeFINITION. A lLinear search iree program is a program consisting of statements of one
of the forms:

(a) Lgiff(x) >0 then go to L; else go to Ly;
(b) L;: halt and accept input x;
(c) L;: halt and rejéct input x.

* Portions of this research were supported by the Office of Naval Research under Grant N00014-
75-C-0450 to the first author and the National Science Foundation under Grant DCR-74-12870
to the second author.
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. In (a) f(x) is an affine function (i.e., f(x) = Xs.; a%; + a, for some 4y, ay ,..., a,) of the
input ¥ = (% ,..., #,) which is assumed to be-from some euclidean space E®. Moreover,
the program is assumed to be loop free.

In a natural way each linear search tree program computes some predicate on E#. The
complexity of such a program on a given input is the number of statements executed on
this input. ‘

In proving our results, we shall make use of the following theorem which is proved here
for completeness.

TreeOREM [4]. Any Uinear search tree program that determines membership in the set

U 4

iel
where the A, are patrwise disjoint nonempty open subsets of Em requires at least log, | I |
queries for almost all inputs. - . 4

Proof. We prove that any such search tree T" with leaves bl yes Dy basr = | Il and
hence a path of depth > log, | I |. The leaves partition E” and, for each J» D;1s an accepting
leaf if D; C | Jie; A; and a rejecting leaf otherwise. The theorem then follows from the
observation for each j 7, Dj can intersect at most one 4, since any convex region contalnlng
points of 4; and 4, , (i + ¢’) must contain points not in User 4 I

In this paper we shall study the complexity of linear search trees for the n-dimensional
knapsack problem, which we state as a geometric problem. It should be noted, however,
that our methods can be applied to many other problems. We may state two equivalent
versions of this problem.

Kwapsack ProBLEm (KSn). (i) Given a pomt (21 500y x,,) € E7, does there exist a
subset I such that >, x, = 12

(ii) Given the hyperplanes H, , « € {0, 1}* where

é (y1 - o Yn) € EP

n
Z oY = 1()

i=1

does (x; ,..., x,) lie on some hyperplane ?

Clearly, these two formulations are equivalent and they both correspond to the usual
knapsack problem which is NP-complete [5].

The lower bound established here is proved by appealing to results from theshold
logic. Before defining the necessary terms from this field, we demonstrate our method and
the chief obstacle in applying it. ' '

Let I' = {0, 1}* — {07}. Say a point x is above (below) the hyperplane H, with a € I"
provided

Z X, — 1

i=1
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is positive (negative). Also let R, for I C I'" be the set
{x € En | x is above H, with o e and below H, with « ¢ I}.

Intuitively, R, is one of the regions formed by the hyperplanes. There are 22" possible
such regions; however, many of these regions are empty. For example,

a2 x> 1, Xs+ 2 > 1, x+x <1, X+ 2y < 1

is empty. This example shows that the key problem is to determine how many regions are
formed by the hyperplanes {H Ja e I".

The answer to this problem lies in threshold logic. We will now sketch the relevant
results. Further details appear in [9].

Dermvimion. Let A be a subset of {0, 1}*. Then the partitioh of {0, I} into 4 and
{0, 1}* — A corresponds to a threshold function provided there’ exist weights w, ,..., w,
such that

1) = x4 iff we, + -+ w,;x,, > 1.
Q) # x g diffwx, + - + wex, < 1.
Note that (2) does not follow from (1). ’
Let N(n) be the number of such threshold functions, then [11] shows that
217" < N(n) < 27,

In the next section we use this result to obtain our lower bound.

3. Mamv REesuLts

In this section we prove our main result, i.e., that any linear search tree for KS,
requires at least 1n2 comparisons. We first state a technical lemma:
q 2 1%

Lemma. (1) Ryis an open set for IC T
2) R11 = R,2 wmplies that I, = I, for I, , [, C T.

The proof of this is elementary and is omitted. This lemma shows (part (2)) that we
need only prove that R, is nonempty for many sets I in order to prove our theorem. The
next lemma does this. '

Lemma.,  Suppose that A partitions {0, 1} and gives rise. to a threshold function. Then
R, is nonempty.

Proof. Letw,,..., w, be weights for 4. Now we claim that w = (w, ,..., w,) € R, .
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(a) Let abein 4. Then wis above H, since

n
Z oW, > 1

i=1

by the definition of threshold function.
(b) Letabein{0, 1}» — A. Then w is below H, since

n
Z oW, < 1

i=1

and again this follows by the definition of threshold function. Thus we have shown that
w<R;. |1

In summary we have shown that ‘there are at least 21/24" distinct open sets R/’s. An
appeal to our earlier theorem [4] yields the claimed lower bound.

Finding an upper bound on the linear search tree complexity of knapsack problem
appears to be a nontrivial problem. T'wo possible methods of attack are available. In the
first, an algorithm is sought that works uniformly in . That is, we seek a single method of
solving knapsack problems of all dimensions. The existence of such an algorithm that runs
in polynomial time is unlikely because this would imply that P = NP. But, for each n, it
may be possible to construct a linear search tree that solves all n-dimensional knapsack
problems. To construct such a tree; it is necessary to study partitions of the set of knapsack
regions by new hyperplanes in order to determine appropriate tests at each stage of the
algorithm. Based on considerations of the structure of the regions of the knapsack problem,
we conjecture that a polynomial-time algorithm does exist for this problem. The existence
of such an algorithm would resolve an open question posed in [3] but would not show that
P and NP are equal for the reason given there.

Note added in proof. We have recently discovered an algorithm requiring polynomial expected
time for the knapsack problem studied here..
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