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Abstract

We investigate systems of Boolean constraints which allow negative constraints such as f Z g and
give results that form the basis for algorithms to determine satisfiability, validity, implication,
equivalence and variable elimination for such systems. These algorithms have applications in
spatial query decomposition, machine reasoning, and constraint logic programming. Proofs of
the results rely on independence of inequations, which enables us to lift results for systems with
a single inequation to systems with many inequations.
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1 Introduction

Since Boole [2], systems (or conjunctions) of positive constraints f C g over a Boolean algebra
have been extensively studied. Here, we introduce and study a more general notion of Boolean
constraint system in which negative Boolean constraints f g are also allowed. Systems of positive
and negative constraints have not yet been widely studied in their own right. This may be because
in the case of two-valued Boolean algebras, negative constraints add no power since the constraint
r ¢ yisequivalent toz =1Ay = 0. For more general Boolean algebras, however, systems of
general Boolean constraints are strictly more powerful than systems of positive constraints and
allow inequality and strict containment to be expressed.

Our main technical results are in two areas. The first is determining satisfiability. The problem
whether a Boolean equation is satisfiable is well known to be NP-complete. We show that deciding
satisfiability of propositional formula over Boolean equations is also NP-complete. This implies as
special cases NP-completeness of testing satisfiability for general Boolean constraints and co-NP-
completeness of testing validity, implication and equivalence. We also show that the height of the
Boolean algebra exactly characterizes the propositional formula which are satisfiable in it.

The second area is variable elimination. Systems of positive Boolean constraints S are closed
under existential quantification, that is, 3z.S can always be expressed as a system of positive
Boolean constraints. Thus, variable z can be eliminated from S. This ceases to be true if negative
constraints are added. However, we show that general systems of constraints are closed under
existential quantification for a class of reasonable Boolean algebras, namely the atomless algebras.
Further we give a simple formula to compute the equivalent unquantified system.

Positive Boolean constraints have many applications in computer science. Negative constraints over
general Boolean algebras also arise naturally in several areas, in particular in applications involving
sets.

One such area is spatial query languages with application to geographic information systems [5,
16, 22, 23], CAD systems, or VLSI design rule checkers [27]). Here, general Boolean constraints
allow us to express overlap and strict containment queries on regions in addition to the non-strict
containment queries which are expressed by just positive constraints. Using the results given here,
arbitrary multivariate spatial queries can be decomposed into sequences of univariate queries, as
is illustrated in Section 7. Previously, spatial query languages were restricted to queries with
acyclic variable dependencies in order to make query decomposition feasible [28]. This has been
investigated in more detail in [13, 14].

A related application is the efficient parsing of two-dimensional languages such as statecharts or
mathematical notation. Interest in these “visual languages” has increased since the arrival of
pen-based computers in which diagrams can be entered by hand. We have investigated in [12] a
visual language syntax given by context-free productions whose right hand side is a set of symbols,
together with a system of general Boolean constraints over these symbols. Symbols are either
simple gestures or composite sub-diagrams. The variable elimination results given here can be used
in the parser to constrain the search for symbols which match the right hand side of a production.
The satisfiability results given here can be used to terminate such a search early if no combination




of symbols satisfies a given right hand side.

Another application is in machine reasoning as simple Boolean inequations suffice to complete all
possible syllogistic moods, and thus complete Aristotelian logic (see Chapter 10 of [24]).

A final application is in programming and database query languages. Recently there has been
interest in constraint logic programming languages [15] which extend logic programming languages
and in constraint query languages [17] which extend relational database query languages by allowing
different constraint domains. In particular, systems such as CHIP [8, 25] and Prolog-III [7] are
extensions of Prolog which provide positive Boolean constraints. The results given here allow such
languages to be further extended to handle negative Boolean constraints without increasing the
worst-case complexity of the constraint solving algorithm.

The rest of this paper is organized as follows: In Section 2, properties of positive Boolean constraints
are reviewed. Section 3 investigates systems with a single inequation. Section 4 investigates inde-
pendence of negative constraints. Sections 5 and 6 use these independence results to lift results
of Section 3 to systems with more than one inequation. Section 7 illustrates the application of
variable elimination to diagram parsing. Section 8 discusses related work and Section 9 concludes.

2 Preliminaries: Boolean Algebras and Positive Boolean Con-
straints |

Boolean algebras and positive Boolean constraints were first introduced by Boole [2] in an effort
to automate reasoning. Since that time they have been extensively studied, and have proved
fundamental in numerous application areas.

In this section we introduce our terminology and review properties of positive Boolean constraints
that we shall make use of in the sequel. We assume that the reader has an elementary knowledge
of Boolean algebras and Boolean equations. Suitable references are [3] and [18].

A Boolean formula is a variable, a constant @ or 1, the complement of a formula, a disjunction of
formulas, or a conjunction of formulas. A formula is atomic if it is a variable or a constant. A literal
is an atomic formula or its complement. A term is a conjunction of literals. A Boolean function
is a function that can be described by a Boolean formula. A positive Boolean constraint is of the
form f C g where f and g are Boolean formulas.

Boole showed that any system of positive Boolean constraints can be rewritten to an equivalent
Boolean equation of the form f = ) where f is a Boolean formula. Boole’s “fundamental theorem of
Boolean algebra” allows us to rewrite a Boolean formula f into a form in which any given variable
z in f is isolated. Letting f;(a) denote the formula obtained by replacing all occurrences of z in f
by a, we have that:

Theorem 2.1 (Boole) f =z - f;(1) +Z - fz(0).
Applying Theorem 2.1 to all variables in a Boolean formula f yields f’s (ertended) disjunctive
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normal form, dnf(f). Note that each term in the extended disjunctive normal form contains all
variables in the system.

Theorem 2.2 (Boole) For every Boolean formula f in variables zy, ..., Za:

f= T S e

(81,e00an)E€{~1,1}"

where z=! =% and z! = z.

A fundamental result of Boole is that positive constraints are closed under existential quantification:
Theorem 2.3 (Boole) 3z.f =0 & f;(0)- (1) = 0.

_ This result is the basis for so-called “Boolean unification” algorithms as it allows systems of positive
constraints to be rewritten into a solved form. Using Schréder’s theorem we can rewrite an equality
f. = 0 into an equivalent range constraint over variable z:

Theorem 2.4 (Schroder) f =0« f:(0) C z C f=(1).

One important example of a Boolean algebra is the power set ¢ X of any set X, where set union, in-
tersection and complement are the disjunction, conjunction and complement operators respectively.
Another example are the propositional formula.

A field of sets is a subset of a power set that is closed under complements and finite unions and
intersections. Fields of sets are important to the study of Boolean algebras because of Stone’s
Representation Theorem:

Theorem 2.5 (Stone) Every Boolean algebra is isomorphic to a field of sets.

A useful corollary is that every finite Boolean algebra is isomorphic to a finite power set. Another
useful consequence (see [18], Proposition 2.19) is that:

Proposition 2.6 A system of positive Boolean constraints is satisfiable in some Boolean algebra
iff it is satisfiable in all Boolean algebras.

Definition. The height of an element z of a Boolean algebra, denoted by h(z), is the least upper
bound of the lengths of all chains between § and z. The height of a Boolean algebra is the height
of the top element 1 in this algebra. A Boolean algebra is infinite if it has infinite height.

For instance, the height of z € # X is the cardinality of z.




Definition. A non-empty element z of a Boolean algebra M is atomic iff there exists no element
y in M such that § C y C z. M is atomless iff it contains no atomic elements.

An example of an atomless Boolean algebra is the set of (equivalence classes of) measurable subsets
of ®*, in which two sets are considered equivalent when they are identical “almost everywhere”.
This Boolean algebra corresponds to the data model in spatial databases in which regions are not
arranged on a grid.

In the sequel we investigate an extension of Boolean constraints in which negative constraints are
allowed. A negative Boolean constraint is of the form f ¢ g where f and g are Boolean formulas.
Systems with negative and positive Boolean constraints not only provide containment, equality and
non-containment, but also provide inequality and strict containment, as

z#¢y © z-§+T-y¢0,
tCy & zCyAyZz.

3 Systems with a Single Inequation

We have seen that any system of positive Boolean constraints can be rewritten to an equivalent
Boolean equation. Thus, any system of Boolean constraints is equivalent to a system of the form:

f=0AGn#0A...ANga #0

where f and the g;’s are Boolean formulas.

Before studying the general case, we will look at the “simple” case when the system has a single
inequation. We shall see that they behave very much like positive systems.

Definition. A system of Boolean constraints is simple if it has the form f = OAg#0.

Simple systems have a straightforward test for satisfiability. In a rewording of Proposition 10.1 in
Rudeanu [24] we have:

Proposition 3.1 Let S be the simple system f =0 A g # 0. S is satisfiable iff g Z f. ®

As proven in [13], simple systems admit quantifier elimination:

Lemma 3.2 (Double Diamond) For arbitrary elements a, b, c, d:

Hz.agz(_ibA—»(cngd)@a_C_b/\-(bgdAcga).

Proof: Figure 1 illustrates the proof. First consider the “=” direction. Clearly, a C b follows from
the antecedent. Assume that the second part of the consequent does not hold, then b C d A c C a.
Together with ¢ C b this implies c C a C b C d, which contradicts the antecedent.
Now consider the “<=” direction. If we assume a C b A b € d, the consequent holds with z = b.
On the other hand, assuming a C b A ¢ € a, the consequent holds with z =a. ®
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Figure 1: Double Diamond

Proposition 3.3 Let S be the simple system f=0Ag#0. Then
32.5 ¢ £(0)-£1)=0 A £(D) - 9:(1) + %(0) - 9:(0) # 0.

Proof: Let A be £,(0), B be f;(1), C be g, (0) and D be g,(1).

Jz.S & 3z.ACzCBA-(CCzCD) (from Theorem 2.4)
& ACBA-(BCDACCA) (from Lemma 3.2)
& ACBA(BZDvCgA)
& A-B=0A(B-D#QVC-A#0)
& A-B=QAB-D+C-A#0. m

In the sequel we will extend these results to the general case. We do this by finding sufficient
conditions for “independence” of inequations to hold. We distinguish two types of independence.

Definition. Weak independence (of inequations) holds for a Boolean algebra M iff for any con-
straint system S, of the form f =0 A g #0A...A g, # 0 say,

ME 1.563.(f=0Aa#0OA.AT.(f=0Ag, #0)
where 3. .5 denotes the existential closure of system S.

Strong independence (of inequations) holds for M iff for any variable z and constraint system S, of
theformf:ﬂAgl#(OA...Ag,,;éﬂsay,

M E z. 503z . (f=0Aqa#0A..Adz.(f=0Ag, £0).

Clearly, strong independence implies weak. Weak independence allows satisfiability tests for the
simple case to be lifted to the general case, while strong independence allows quantifier elimination
techniques to be lifted. We note that if arbitrary constant symbols are allowed, then strong and
weak independence are equivalent.

Unfortunately, neither strong nor weak independence holds for all Boolean algebras. In the next
section we show that strong independence holds for exactly the atomless Boolean algebras and that
weak independence holds for exactly the Boolean algebras of infinite height.
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4 Independence

In this section we characterize when Boolean algebras are strongly or weakly independent. We first
consider weak independence.

The next lemma is a key technical result of the paper. Given the disjunctive normal form of a
formula, it allows us to construct a Boolean algebra M such that there is an assignment for M
which satisfies exactly the terms in the disjunctive normal form. What is technically difficult is to
ensure that the height of M is bounded by the number of terms in the disjunctive normal form.

Lemma 4.1 Let T be the set of terms constructed from the variables zi,...,Zn, n 2 1,and T%
a non-empty subset of T. Let M be the powerset of height | T*|. Then there is an assignment o
from zy,..,z, to M such that o t ZQ & t € TT.

Proof: The proof is by induction on the number of variables n. A simple case analysis shows that
the hypothesis holds when n = 1.

We now prove it for n > 1. Let S be the set of terms constructed from zj,...,zn—1. Then T =

{2, - t, T, - t|t € S}. Let

S+
S*

{teS|za-te T VT, -te T},
{teS|z.-te T* ATz -t e T}

Then |T*| = |St |+ | S*|. Let M’ be the powerset of height |S*|. By the induction hypothesis,
there is an assignment o’ from zj,...,Z,—1 to M’ such that V¢ € So't#£0 & teST. Wenow
embed M’ in M, the powerset of height | T+|, by adding |S*| extra atoms. For each t € S* pick an
atom a; C o’ t. Add extra atoms a}, one for each a;, to M’ to give M. Define

oz = a’z+z{a;|ag§a'a:}.

Then, forall t € S,0t # 0 < o' t # 0, and, for all ¢ € §*, o ¢ is not an atom. Let X be the
following element of M.

¢ ifz-teTtandz-te T
X=Y{ ot ifs-teTHandz-t¢ T+ [teS*
ot ifz-tgTtandz-t€ Tt

Extend o to zy,...,z, by defining o z, = X. It is straightforward to verify that for all t € T,
ot#0 & te Tt, which proves the inductive step. ®

The next lemma allows us to lift this result to Boolean algebras of greater height.

Lemma 4.2 Let ¢’ be an assignment from variables zy,...,2, to a Boolean algebra M " of finite
height d. Then, for any (possibly infinite) Boolean algebra M with h(M) > h(M') there is an
assignment o from zj,...,Z, to M such that o t =0 & o' t = 0.




Proof: By Stone’s representation theorem, we can choose M’ to be the powerset 9{a;, ..., a4}. Since
h(M) > h(M'), we can partition M into d pairwise disjoint elements s;, one for each atom {a;} in
M'. Define

az:Z{s;la;Gcr'm}

It is straightforward to verify o t =0 in M iff o’ ¢ = PinM'. =

Proposition 4.3 Given Boolean formula f, g1, .-, gn, in any Boolean algebra M with k(M) 2 n,

3.f=0AG#OA .. AG#0 & I.(f=0AaZ0A..AT.(F=0Ag. #0).

Proof: Direction “=" is trivial. We now show “<”. Let 3_ T’ be the disjunctive normal form of
f and 3_ T; the disjunctive normal form of g;. Since each system f = 0 A g; # 0 is satisfiable, we
have that for each i, there is a term t; € T; \ T'. From Lemma 4.1 there exists an assignment o
to the powerset of height n such that o t # 0 « 3t; .t = t;. Thus, o is a solution of the original
system in this powerset. The result follows then from Lemma 4.2. =

We can now exactly characterize those Boolean algebras which are weakly independent.
Theorem 4.4 (Weak Independence) A Boolean algebra is weakly independent iff it is infinite.

Proof: The “«<” direction follows immediately from Proposition 4.3. Now consider the other di-
rection. The proof is by contradiction. Assume that M is a finite Boolean algebra of height n. Let
S be the system corresponding to the constraints 0CzC2C...Cz, Cl. It is straightforward
to verify that weak independence does not hold for S. m

Next we develop a characterization of those Boolean algebras which are strongly independent.
Using a construction similar to that used in the proof of Lemma 4.1 we can show that:

Proposition 4.5 In any atomless Boolean algebra:
. f=0AGa#FOA .. A #0 & Bz.(f‘=0Agl#0)/\.../\3::.(]‘:@/\9,.#@).

Proof: Direction “=>” is trivial. The proof of “«<” is similar to that of Lemma 4.1. Let the free
variables in the system be zj,...,Zm. Let S be the set of terms constructed from zi, ...,z and
T={z-t,z-t|t€S}

Consider some assignment ¢’ to zi,...,Zm such that for each g;, there is an X; such that the
assignment o; = o[z — X;] is a solution of f = OAg #0. Let Tt={te T|3o;i.oit# 0} and
let St={teS|z-te TtVvz-te T*}. Note that for each t € S*, o' t is non-empty and not
an atom. Hence, there is for each ¢ € S+ an element s; € M such that § C s; C o' t. Define

s ifz-te Ttandz-te Tt
Xx=Y{ ot ifs-teTtandz - t¢ T+ |tes*
ot fz-t¢g Ttandz-te T
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and let o = o'[z — X]. It is straightforward to show that
VieT.ot#0& Jo;.o;t #0.

It follows that o is asolution of f =0 A g1 #0A ... Aga #0. ®
Theorem 4.8 (Strong Independence) A Boolean algebra is strongly independent iff it is atomless.

Proof: The “«<” direction follows immediately from Proposition 4.5. Now consider the other di-
rection. The proof is by contradiction. Assume that M is a Boolean algebra with atom a. Let S
be3dy.z-y#0Az-F#0. It is straightforward to verify that strong independence does not hold
for S when z is assigned a. W

In the sequel we shall see that these results can be used as the basis for algorithms for satisfiability
testing and variable elimination.

5 Satisfiability

In this section we are concerned with determining satisfiability of Boolean constraint systems and
propositions over these systems. There are really a number of different questions depending on
whether we are interested in satisfiability in all Boolean algebras, in some Boolean algebra or in
a particular Boolean algebra. It follows from Proposition 2.6 that for positive systems these three
questions are equivalent. However, this is not true in the general case.

We will lift our discussion to discuss satisfiability of propositional formula constructed from Boolean
constraints. For instance, if S and S’ are general systems of Boolean constraints, then example
propositional formula are S, S < S’ and § = §’. We are interested in these formula because decid-
ing their satisfiability not only gives us a means for deciding satisfiability of a Boolean constraint
system but also for determining equivalence and implication between Boolean constraint systems.

Definition. A Boolean formula proposition (Bf-proposition) is a positive Boolean constraint, the
complement of a Bf-proposition, or a disjunction or conjunction of Bf-propositions.

The set of Bf-propositions is clearly a Boolean algebra. Terms in this algebra are just systems
of Boolean constraints. Thus, every Bf-proposition is equivalent to a disjunction of systems of
Boolean constraints. Satisfiability of a Bf-proposition can therefore be tested by first computing
the disjunctive normal form of the Bf-proposition, and then testing if any system of Boolean
constraints in the disjunctive normal form is satisfiable. We will be concerned with the following
problems:

S1: Satisfiability in all Boolean algebras
Is a given Bf-proposition satisfiable in all Boolean algebras.

S2: Satisfiability in some Boolean algebra
Is a given Bf-proposition satisfiable in some Boolean algebra.
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S3: Satisfiability in a particular Boolean algebra
Given a Bf-proposition P and a height d, is S satisfiable in some/all Boolean algebras of height d.

We first consider problem S3: Satisfiability in a Boolean algebra of height d. In the case of finite
d, an (inefficient) way to determine satisfiability is to just consider all assignments in the power set
with d atoms. In the case of infinite d, the following theorem provides the basis for a satisfiability
test.

Theorem 5.1 Let S be a system of the form f =0 A g1 #0 A ... A go # 0, n > 1. Then, for any
Boolean algebra M with h(M) > n, S is satisfiable in M iff for all g;, g Zf.

Proof: A simple consequence of Proposition 3.1 and Proposition 4.3.

Corollary 5.2 Let S a system of the form f =0 A g1 #0A ... Agn #0,n 21, and let M be an
infinite Boolean algebra. S is satisfiable in M iff for all g;, g; Zf.

We now show that problems S1 and S2 reduce to problem S3. We first show that Boolean algebras
of the same height are “equivalent” with respect to satisfiability. As all finite Boolean algebras of
the same height are isomorphic it is immediate that:

Lemma 5.3 A Bf-proposition is satisfiable in some Boolean algebra of finite height d iff it is
satisfiable in all Boolean algebras of height d.

Lemma 5.4 If a Bf-proposition is satisfiable in some Boolean algebra of finite height d, it is
satisfiable in a Boolean algebras of height d + d’ (where d’ need not be finite).

Proof: Analogous to the proof of Lemma 4.2

Proof: Let M be the Boolean algebra ${ay,...,as} and let M’ be the Boolean algebra
©{a1, ..., @d, Qd41, .-, G444 }. Define the function f : M — M' by

f(z) = {z U{@d41s--s Bapar} if ag e.z
z otherwise
It is straightforward to verify that f is a homomorphism. Thus, if o is a solution to Bf-proposition
P for M, f o o is a solution to P for M'. =

Theorem 5.5

(a) A Bf-proposition is satisfiable in some Boolean algebra of infinite height iff it is satisfiable in
all Boolean algebras of infinite height.

(b) A Bf-proposition is satisfiable in a particular Boolean algebra iff it is satisfiable in all Boolean
algebras of that or greater height.




Proof: Consider (a). This follows because a Bf-proposition is satisfiable in a Boolean algebra iff
some term in its disjunctive normal form is satisfiable. A consequence of Theorem 5.1 is that a
system of Boolean constraints is satisfiable in some infinite Boolean algebra iff it is satisfiable in all
infinite Boolean algebras. Thus (a) holds. (b) follows from Lemma 5.3, Lemma 5.4, and (a). ®

Thus the height of a Boolean algebra exactly characterizes those Bif-propositions which are satisfi-
able in it. It is interesting to compare this to Tarski’s characterization of elementarily equivalent
Boolean algebras in terms of elementary invariants [18]. Other consequences of the theorem are:

Corollary 5.6 Let P be a Bf-proposition. Then P is satisfiable in all Boolean algebras iff P is
satisfiable in the two element Boolean algebra.

Corollary 5.7 Let P be a Bf-proposition. Then P is satisfiable in some Boolean algebra iff P is
satisfiable in some/all infinite Boolean algebras.

We now investigate the complexity of the above satisfiability problems.
Theorem 5.8 Problems S1 and S2 are NP-complete. Problem S3 is strongly NP-complete.

Proof: Since determining satisfiability of a single Boolean formula is NP-hard [9], it follows from
Proposition 2.6 that each of these problems is NP-hard. That 53 is strongly NP-hard follows
because the problem in which d is simply the constant 2 is still NP-hard. Proving that S1, S2 and
S3 are in NP is more difficult. We look at each in turn.

Consider S1. As satisfiability in all Boolean algebras is equivalent to satisfiability in the two element
Boolean algebra, S1 can be determined by non-deterministically guessing an assignment of 0and 1
to the variables and checking if it is a solution.

Now consider S2. Let P be a Bf-proposition over m different positive Boolean constraints. Let
M, be the power set with m atoms. Let P have disjunctive normal form S; V ... V Sn. Each
S; is a conjunction of at most m Boolean constraints. It therefore follows from Theorem 5.1 that
each S; is satisfiable in some Boolean algebra iff it is satisfiable in My,. Thus, P is satisfiable in
some Boolean algebra iff it is satisfiable in M. Clearly each element in M,, can be represented
by a bit-vector of length m. Thus, satisfiability in My, can be determined by non-deterministically
guessing an assignment of bit-vectors to the variables in P and checking if it is a solution.

Finally consider $3. Using a similar argument to that for 52, a Bf-proposition P is satisfiable in a
Boolean algebra of height d iff it is satisfiable in the power set with min {m, d} atoms, where m
is the number of positive Boolean constraints in P. The argument for inclusion in NP proceeds as
before. Note that we could not argue that S3 was in NP by just considering the powerset with d
atoms. This is because the length of the bit vectors required to represent elements in this power set
is d, but any reasonable representation of d in the problem instance has logarithmic length. =

Consequences of this are that testing for satisfiability of systems of Boolean constraints is NP-
complete, and that testing for validity, implication and equivalence of such systems is co-NP-
complete.
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Proof: Tt follows from Proposition 3.3 that 3z . § = proj(S,z). We now show that it is the
strongest implied constraint. Let R be an (unquantified) system, such that 3z . S = R holds.
With Theorem 6.1, we have M | proj(S,z) = R for all atomless Boolean algebras M. Now, a
consequence of Corollary 5.7 is that a Bf-proposition P is valid in all Boolean algebras iff it is valid
in all atomless Boolean algebras. Thus, M’ |= proj(S,z) = R for all Boolean algebras M’. ®

Example 6.2 Consider the system S,z -y #0AZT -y # @, from above. In this case proj(S,z) is
y # 0, the strongest implicant of 3z . 5. =

Note that Theorem 6.1 and Theorem 6.3 first appeared in [13]. However the presentation and
proofs given here are quite different and substantially simpler.

We can lift Theorem 6.3 to several existentially quantified variables by iteratively projecting on a
single variable. To do this we extend the definition of proj to more than one variable by recursively
defining proj(S, z1, 22, -, z'u) to be pmj(ij(S, 3, +ee3 Zn), 31)'

Theorem 6.4 proj(S, 1,22, ..., Tn) is the strongest Boolean constraint implied by 3z;.3z,....32,.5.

Proof: The proof is by induction on the number of variables n. With Theorem 6.1 we have for in
all atomless algebras M: '

proj (S, 21, 22, .0y Zn)
& 3z .32p...32, .5
& proj(3zp...32,.5,71)
& proj(proj(S,z2, ...y Zn), 71)

With Corollary 5.7 this result carries over to all Boolean algebras. W

7 Example: Diagram Recognition

The following example illustrates the use of variable elimination. It arose from our work on dia-
gram parsing [12] and concerns the recognition of state-charts [11]. In our approach to diagram
parsing, production rules are repeatedly used to group sub-diagrams into larger diagrams until a
complete parse tree is formed. A key problem in this approach is to find the group of sub-diagrams
which constitute the right-hand side of a production rule. Each production rule specifies the types
of its components and spatial relationships between them. Here we will be interested in those
relationships that can be expressed as Boolean formulae over the component regions.

For example, the components of a state-chart are states, represented by rectangles, and transitions,
represented by arrows and consisting of two elements: the head and the shaft. A pattern that
describes a transition to a local state (see Figure 2) is given by the following relationships between
objects by, by, h,t: box by is inside box b;; the head h of the arrow touches by but its shaft ¢ does
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6 Variable Elimination

We now turn to the problem of variable elimination in systems of Boolean constraints. That is,
given a system S of Boolean constraints and a variable z, we wish to find an unquantified system
which is equivalent to 3z.5S. Boole, Theorem 2.3, showed that positive constraints are closed under
existential quantification. Unfortunately, arbitrary systems of Boolean constraints are not closed
under existential quantification. To see this, consider the following counter-example:

Example 6.1 Consider the system S, z-y #0AZT-y # @. Then 3z . S implies that |y| > 2, but
there is no system of Boolean constraints over y which can capture exactly this. B

However, as we have seen, simple systems are, unlike general systems, closed under existential quan-
tification (Proposition 3.3). Further, strong independence of negative constraints holds in atomless
Boolean algebras (Proposition 4.5). Thus, in atomless Boolean algebras, systems of Boolean con-
straints are closed under existential quantification.

Definition. Let S be the system f =0 A g1 # O A ... A gn # 0. Define proj(5,z) to be
A-B=0AB-D1+A-C#0 A ... AB-Da+A-Cr#0

where A is f;(9), B is f.(1), C; is (g:)z(9) and D; is (gi)=(1)-

Theorem 6.1 Let S be a system of Boolean constraints. In any atomless Boolean algebra,

3z .S & proj(S,z).
Proof: A simple consequence of Proposition 3.3 and Proposition 4.5.
Corollary 8.2 Atomless Boolean algebras admit quantifier elimination.

Proof: Let P be a Bf-proposition. Then from Theorem 6.1,

Iz.P& \/ proj(S,z) and Vz.P& A\ -proj(S,z). m
Sednf(P) Sednf(~ P)

For Boolean algebras with atomic elements, 3z . § « proj(S, z) need not hold, as shown by
Example 6.1. However the system proj(S,z) still gives us information about 3z . S. We can show
that proj(S,z) is the strongest (unquantified) system which is implied by 3z . S in all Boolean
algebras. Thus it can be used as a “filter” when computing solutions of S, as any solution of S can
be obtained by extending a solution of proj(S$,z). This is the basis of the spatial database query
optimization illustrated in the next section. More formally,

Theorem 6.3 proj(S,z) is the strongest Boolean constraint implied by 3z . S.
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Figure 2: Transition into local state

not; and the arrow enters from the outside of b;. These conditions are captured by the following
system of Boolean constraints over the regions By, By, H, T of the objects by, by, h, t.

S(Bl,Bz,H,T) = B, CBA
‘ HCB A
HNB,#0A
HNnT#0A
T¢Z B A
TNB,=90

A naive strategy for recognizing a transition to local state would form all possible combinations
(b1, b2, h, t) and indiviually check the constraints for each of them. A better strategy is to make use
of the spatial relationships to limit the search. For example, one should use the constraint H C B;
to limit the choices for kA once a candidate for & is found. Ideally, we would like to decompose
S into a sequence of four univariate constraints, one for each variable. If the constraint system
is acyclic, this is trivial: Just pick a retrieval order such that every retrieved object depends only
on objects retrieved before. Then substituting known values successively will yield the required
univariate constraints. However, since S contains cyclic dependencies, this technique is not appli-
cable. Instead, we use variable elimination to achieve the same effect. As a first step, the system
is rewritten into one equation and three disequations:

H'?z-i- T'Bz+-B_1'Bz=m
B By #0,H-B;#0, H-T#0, T-Bi #0

Assume an externally given retrieval order, say k, ¢, by, b;. Eliminating variables repeatedly, using
the definition of proj and Theorem 6.4, yields:

S(H,T,B,,B)) ¥ s
S(H,T,B) ¥ proj(5,B) ~
: B T=0ANB,H-T#0 A B, - H#O A H-T#0
S)(H,T) Y proj(S, By, By) ‘
= proj(S5s, By)
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= H-T#0ANH-T#0 AN H-T#90

Si(H) Y proj(5, T, By, Br)
= proj(5:, T)
= true
From Theorem 6.3 we get
Sl(H) <+~ HTHBZE!BIS'
Sz(H, T) < 3B2.':'|B1.S
S3(H, T, Bg) < 3315
S4(H,T,B3,B;) = S

and every system S; is the strongest Boolean constraint such that “<” holds. Thus we can retrieve
objects h, t, by, by by first using S;(H) to constrain the search for h, then substituting the region H
of h into Sy(H, T) and using this to constrain the search for ¢, and similarly we use Ss(H, T, B2)
and Sy(H, T, Bz, By) to constrain the search for by then b;. This is particularly useful if objects
are stored in a spatial database as current databases support univariate range queries which can
be used to efficiently answer this sequence of univariate Boolean constraints.

8 Related Work

Our results concerning satisfiability and quantifier elimination fall between analogous results ob-
tained for positive Boolean constraints by Boole [2], and the result of Tarski [26] that the elementary
theory of Boolean algebras is decidable. Boole’s results form the basis for so-called “Boolean unifica-
tion” [4, 21] used in constraint logic programming systems that allow positive Boolean constraints.

To prove decidability of the elementary theory of Boolean algebras, Tarski showed that the theory
supports quantifier elimination. This should not be confused with our result, as quantifier elimi-
nation for general formula with disjunctions does not imply that formula without disjunctions are
also closed under existential quantification: in fact Example 6.1 showed that they are not. An
alternative proof sketch that propositional formulae over atomless Boolean algebras are closed un-
der quantification Corollary 6.2 may be found in Exercise 6.13 of Koppelberg [18]. Note that this
implication works only in one direction: the Corollary (and proof sketch in Koppelberg) does not
imply that propositional formulae without disjunctions are closed under existential quantification
(Theorem 6.1).

Kozen [19] has shown that the decision problem for the elementary theory of Boolean algebras
and many interesting subclasses including the atomless Boolean algebras is <jo-complete for
USTA(*,2°", n) where STA(*,2°",n) is the class of sets accepted by an alternating Turing ma-
chine running in time 2° which may make only n alternations of universal and existential states,
where n is the input length. Related results were also obtained by Berman [1). Gradel [10] has
shown that the subclasses of formula in which quantification alternation is bounded by m have
essentially the same complexity as the entire theory whenever m > 1. He did not consider the
case when m = 1, that is when the variables are either all existentially quantified or all universally
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quantified. A consequence of Theorem 5.8 is that, in this case, if all variables are existentially
quantified the complexity is (only) NP complete and if they are all universally quantified then it is
co-NP complete.

The most closely related result appears in Rudenau [24] who gives a characterization of satisfiability
for systems of constraints in which there is a single negative constraint. However he states that the
general problem with arbitrary negative constraints is still unsolved. In fact we show that weak
independence is the key to lifting this result to the general case.

Recently there has been interest in weak independence, usually called independence in the literature,
as a general means of lifting satisfiability and canonicity results from conjunctions of positive
constraints to conjunctions with negative constraints. In particular Lassez and McAloon [20] studied
canonical forms and Colmerauer [6] has investigated sufficient conditions for weak independence
of equations and inequations in a general algebraic setting. However, Colmerauer’s results do not
apply in the Boolean domain as positive Boolean constraints do not admit “eliminable variables”
in his precise sense. To our knowledge the notion of strong independence has not been explicitly
identified before.

9 Conclusion

We have investigated systems of Boolean constraints which allow negative constraints as well as
positive constraints. In particular, we have given results that can form the basis for algorithms to
determine satisfiability, validity, implication, equivalence and variable elimination for such systems.
These results have relied on independence of inequations, so as to lift results for systems with a
single inequation to systems with many inequations. The results have application in spatial query
decomposition, machine reasoning and constraint logic programming.
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