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Abstract

A new approach to tensor ranking. that of implementing a set of
heuristics to automatically construct rankings 1is presented. The

exact rank of any 2xpxq tensor over Z and near optimal ranks of mxpxq
2

tensors can be calculated via this method. Fur thermore. the success
of these automated heuristics points out the value of such an experi-
mental tool 1in offering the researcher new insights into a difficult

mathematical problem.
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1. Introduction

Tensors (or 3-way arrays) and the tensor ranking problem occur in
such contexts as arithmetic complexity [4], the statistical methods of
individual difference scaling [9], and in problems of data compression
[11]. For the purposes of this paper, a tensor can be thought as a
three dimensional array or, more specifically, a set of m p by q ma-

trices over a field K. 1In this paper K will be Z , the field of in-
2

tegers mod 2. Tensor rank is a generalized version of the rank of a
matrix but. with a decomposition into a minimum linear combination of
rank 1 tensors instead of the matrix decomposition into a linear com-

bination of rank 1 matrices.

Unlike the two dimensional case, however, there is no efficient,
constructive procedure for calculating the rank of an arbitrary ten-
sor. This problem is shown to be mathematically difficult by the
recent work of de Groote [6]. Decidability is only known over alge-
braically closed fields (by the super-exponential Tarski decision
procedure [16]) and over finite fields (by the exponential enumeration
procedure). In the past, specific tensors have been ranked through
careful, yet ad hoc examination of their structure. The techniques
which have been applied have combined sophisticated ideas from linear
algebra as well as trial-and-error methods designed for the tensor
being studied. For example, the tensor representing matrix mul tipli-
cation has been analyzed in detail and the exact complexity of the 2
by 2 matrix case is known, although the upper and lower bounds for the
3 by 3 case remain open with the tensor rank lying somewhere between

18 and 23. These approaches usually do not aid in finding efficient,
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constructive solutions for large classes of tensors.

A different method for tensor ranking is described heref By ob-
serving the structure of "small" tensors and the role they play in the
structure of more complicated tensors, a set of heuristics is formu-
lated. When automated. these heuristics can calculate ranks of small
tensors exactly and can be applied to larger tensors resulting in

ranks that are reasonably close to exact in many instances.

The immediate advantage to this formulation is that_ a computer
implementation allows the heuristics to be applied to problems too
large to solve by hand calculation. In addition, the results of the
"experimental” applications give a broader sense of the power of these
heuristics and feedback as to where they fail and how they can be im-
proved. Apart from the ranking problem this approach has merit in its
own right as a new methodology for solving a hard mathematical problenm
whose solution in the general case has thus far remained intractable.
Since these heuristics are designed to determine, in low degree poly-
nomial time. an exact or approximate solution to a problem for which
all known solutions require exponential time. they can be viewed as
belonging to the class of methods for approximating NP-complete prob-

lems [8].

Section 2 places the ranking problem in the proper context and
describes the implementation and application of the heuristics for
constructing upper bounds. A brief algebraic coding theory background
and the lower bound theorem is presented in section 3. Seétion 4 de-

scribes a normal form in which all 2xpxq tensors over Z field can be
' 2
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represented. The heuristics, when applied to these tensors, are shown
to generate exact upper bounds. Section 5 discusses the implications

of these results and further directions to explore.

2. The Heuristics and the Implementation

2.1 The Model

The tensor model has been studied in detail by arithmetic com-
plexity theorists such as Brockett and Dobkin [2],[4], Fiduccia [5],
and Hopcroft and Musinski [7] as a means of classifying bilinear form
multiplication problems. The notation here is that of Dobkin [4].

An mxpxq third order tensor is a set of m p by q matrices {G },

i
~1<i<m. This set can be characterized in two dimensions by a degree
one matrix polynomial in m indeterminants called G(s).

m
Definition G(s) = I s G where {G } is a set of matrices and the
ci=1 i i i

s s are indeterminants functioning as placeholders.
i

The G matrices are called the basis matrices and G(s) the
i

characterist@g matrix of the oproblen. If a, b, and ¢ are vectors

whose elements are members of Z , the tensor product a@b@c with
2

i,j,kth element a b c¢ is a rank 1 tensor or dyad. The rank of G(s)
i3jk

is the minimum d for which G(s) is expressible as the sum of d dyads.

Any decomposition of G(s) into t dyads is called a realization of G(s)
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of dimension t.

It is important to note that the tensors studied here have been

limited to the field Z + the integers mod 2. oOf course, any lower
) 2

bound over Z is a lower bound over the integers, and often an upper
2

bound over Z can be converted to one over the integers by inserting
2

the appropriate + and - signs. A simple example of a tensor which

represents polynomial multiplication is:

G =
1

G = G = so G(s) = 1 2
00 2 10 3 01 s s
2 3

[10’ 01 00 s s

A naive realization of G(s) consists of 4 dyads (one for each
position in G(s)), but a realization of 3 dyads is possible and as the
lower bound theorem will show later, this bound is exact:

s +s O s s 0 0
1 2 + 2 zj +
0 0 s s 0 s +s|

2.2 The_ﬂgggistics

The ideas developed for the tensor ranking programs have their
foundation in what may be loosely termed an artificial intelligence
approach, the simulation of intelligent behavior in solving a problem.
However, the tensor ranking system, once able to imitate human behav-
ior, is intended to go beyond human capabilities, ranking tensors that
have previously been to large to conceptualize. This approach takes
its motivation froﬁ heuristic programming as presented in Slagle [15],

symbolic and algebraic manipulation (121, [13], including such systems
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as MACSYMA, and automatic numerical analysis [14], with {its software
for solving ordinary differential equations and root-finding, for ex-
ample. Taken in this spirit, a tensor ranking system can be a exper-
imental tool wused by the researcher to aid in finding new insights

into the ranking problem.

The heuristics have been implemented as a set of programs which

construct Z realizations for tensors as close to exact as possible
2

with the knowledge of tensor structure the programs have been given.
The System of Programs for Tensor Ranking (SPTR) is based on three

simple heuristics:

(1) A large tensor can be divided into subtensors called building
blocks. These building blocks are "small" tensors for which a known

exact realization is better than the naive realization.,

(2) When the tensor is written as a sum of these blocks and if
the blocks are chosen and overlapped properly, its rank will be equal
to the sum of the ranks of the building blocks minus any savings from

overlaps.

(3) For the overlapping to be correct, the building blocks often

must be applied in a certain order.

For example if we consider the tensor

to be a building block, it can be applied to the following tensor 3
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times to produce an exact ranking of 6 dyads:

s s s s s O 0 0 o s 0 s
1 2 3 2 2 3 3
s s s = s s 0| + 0 s s + 0 0 o
2 3 4 2 2 4 4
S s s 0O 0 O 0 s s s 0 s
3 4 5 4 4 3 3
s +s +s 0 0
1 2 3
+ 0 s +s +s 0
2 3 4 ,
L 0 0 s +s +s
3 4 5

SPIR consists of a lower bound program, simplification programs,
a library of building blocks and a driver program all running in po-

lynomial time.

The lower bound program generates a bound which gives some mea-
sure of how exact the upper bounds are. The simplification programs
put the tensor into a less complicated form via several elimination
procedures. The driver program calls on the library to apply appro-
priate building blocks. Surprisingly, the building block library has

remained small.

By experimenting with SPIR a good understanding of the structure
of tensors has developed. The results for ranking 2xpxq tensors are
presented here since they are exact. It is easy to see that these
methods can be generalized to arbitrary mxpxq tensors. In fact, SPTR

will accept any size tensor.
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2.3 The Building Block Library

Only building blocks for the 2xpxq case will be considered here
since the proofs of exact bounds in this paper are restricted to this
size. There are four building blocks required to rank all 2xpxq ten-
sors. their basic forms, up to permutations of the rows and columns,

and decompositions into dyads are:

Ul) £ s 0] (s s 0 0 0 0 0s +s O]
1 2 .= 1 1 + + 1 2
0 s s 0 0 O 0 s s 0 s +s OJ
1 2 2 2 1 2
U2) [s s s s 0 s +s |
1 2 = 1 1 + 1 2
0 s +s 0 o 0 s +s |
1 2 ) ’ 1 2
U3) 5§ s 0 0 7 0 s 0 s~
1 2 2 2
0 s 0 0 0O 0 0 o
1 =
0 0s +s s 0 s 0 s
1 2 2 2 2
0 0 0 s +s. 0 0 0 o
1 2
s 0 0 s 0 o0 0 s +s”
1 1 1 2
0 s 0 0 + |0 0 0 0
+ 1
0 s 0 0 0s +s s +s 0
1 1 2 1 2
0 0 0 o0 0 0 0 s +s

U4) f eeeeees] =1 dyad
2 2

3. The Lower Bound Theorem

The lower bounds originate from results in algebraic coding
theory on the structure of O-1 matrices. In [3] and [4] these ideas

have been exploited to yield some crude general 1lower bounds and
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slightly better bounds for some specific tensors. A finer tuning for
the lower bounds is presented here and it plays an important role in

showing the upper bounds in section 4 to be exact.

A few definitions are needed at this point. For any realization

of a tensor, a "code" of {0,1} vectors can be constructed. Let v ,
i

1<i<m, be {0,1} vectors. v @v is a vector whose kth entry is the
i

exclusive OR of the kth entries inv and v. |v | is the Hamming
i i i

\

norm, (number of 1’s inv ). A code consists of m v ‘s each having
i i

the length 1. Given a realization of 1 dyads a corresponding code can

be constructed. The kth entry of v is 1 if and only if the kth dyad
i

includes an s and is 0 otherwise. If G has matrix rank k (recalling
i o i

that G has a 1 wherever an § occurs in the tensor), then |v | must

i i i

be > k. Similarly, if G €@ has rank k, then |v@v | 2 k, and so on
i j i ]

for all possible sums of G ‘s. All possible exclusive OR sums over
i

the v “s are called the constraints of G(s).
i

The code for the previously mentioned building block is:

v =1 0 0 s
1 1

v = 1 1 1 s
2 2

v = 0 0 1 s
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Exploiting some ideas from algebraic coding theory 1leads to a
lower bound which is easily calculable. As was mentioned previously,
any realization can be represented by a code and hence a lower bound

on the rank consists of calculating the constraints on the v ‘s and
i

constructing the minimum length code. Any realization for a tensor

G(s) has to have at least as many dyads as that length.

Theorem Let G(s) be an mxpxq tensor over Z .
2
m-1

The rank of G(s) > () | v 1)/2
- 1@1 i

i
IC{1,..,m}

Proof: Let w be a vector with jth entry the ith entry of v . Then,
h|

y D v
iin I i
Ic{l,....m}

m-k
is 2 times the number of subsets of {1,....k} with an odd number of
m-k k-1 o1l
elements where k=|w|. This quantity is 2 2 =2 e If v, sieL v
1 m

m-1
is a minimun length code for G(s), its length multiplied by 2 must

be equal to the sum of all the constraints since the sum over one en-
m-1

try of each of the v "s is 2 « The theorem follows immediately.
i

This theorem provides a concise way of calculating lower bounds.
As will be shown in section 4, the lower bound is exact in the 2xpxq

case except for instances of the following subtensors where the bound
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one dyad less than the rank:

in a pattern is considered to be that same pattern.)

some combination of the G

generality, the rank of G will be equal to n n since

Throughout this section

L1) |s s O
1 2

0 s 0
1

0 0 s

0 0 0

S—-

12) s
1

1

The Upper Bound Theorem

1

1

nants can always be renamed.

(+s)
2
0

0

S

2

it is assumed that

0

s (+s )
1 2

the

‘s is n for a 2xnxn tensor.

the

(Note that substituting s +s

1
0]
s
2
matrix

2
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for s
1

rank of

Without loss of

indetermi-

In order to rank any tensor with the building blocks Ul-U4 the

tensor must have a particular structure.

Definition A 2xnxn tensor is in normal form if it has the
structure:
1. G 1is the identity matrix.
1
2. (G ) is 0 unless
2 ij
i. i=j
ii. i+]1=j
iii.i>j and (6 ) (k¥ j,i) = 0 and (G ) (Wfj,i) =0
2 ik 2 kj
or iv. i>j and (G ) =1, (G ) =1
2 i,i+] 2 j,j+1

following



3. No kxk subtensor has the form G =I and (G ) =(1 if
1 21ij

i+1=j(modk) and 0 otherwise + possibly I).

A typical example of a tensor in normal form is:

s 0 0 0 0 0 0]
1
0 s +s s 0 0 0 0
1 2 2
0 0 s 0 0 0 0
1
0 0 0 s +s s 0 0
1 2 2
0 s 0 0 s +s s 0
2 1 2 2
0 0 0 0 0 s 0
1
0 0 0 s 0 0 S |
2 1

Lemma 1 Any 2xnxn tensor can be put into normal form with no change in

rank.

The‘proof is sketched here. Further details will appear in [10].
Proof: Let G(s) be a 2xnxn tensor. It is easy to see that if a row
(column) is replaced by the sum of that row (column) and another. the
rank of G(s) will not change. The following procedure puts G(s) into
normal form.

1. Use Gaussian elimination to put only s (+s )’s on the diagonal.
' 1 2

(structures 1. and 2i.)

2. Eliminate the extra s ‘s above the diagonal one at a time by
2

adding rows down and columns across to remove any extra s ‘s which
1

were introduced and vice versa. By rearranging rows the s ‘s can be
2 .
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placed at positions (G ) . (2ii.)
2 i,i+1
3. Remove the s ‘s below or across from an s at location i,i+1.
2 2

(2iii. and 2iv.)

4. If there is more than 1 s in a row or column below the diago-

2

nal, all but one to a row or colunn can be removed except for cases

handled by 6. (2iii.)

5. The kxk exception requires a procedure of adding rows 1 through
k-1 to k and column k to columns 1 through k-1, and repeating 2. 3.
and 4. (3.)

6. Certain cases with an extra s in column(row) must be treated

2
specially. Procedures 1-5 will not work for the following tensor
structure:
s (+s ) s 0 0
1 2 2
0 s (+s ) 0 0
1 2
s 0 s +(s ) s
2 1 2 2
s 0 0 s (+s L
2 1 2

In general this is simplified by adding the first two rows

appropriate columns across, and

(2.ii1)

Lemma 2 Any 2xnxn tensor G(s) can be

building blocks Ul through U4.

proof:

then applying 3-4

Assume G(s) is in the normal form.

ranked

down, the

if necessary.

exactly with the four
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The upper bound is calculated by first applying U4 across the
rows of G(s). Then building blocks Ul, U2, and U3 are located in G(s)

followed by L1 and L2. Suppose there are X U4’s occurring as:

oo 8 5 0 or [ ...s+s s 0
s

and there are U5 s ‘s and U6 s +s ‘s not contained by any of the other
1 1 2

patterns, and R remaining s ‘s, then an upper bound on the rank of
2

G(s) is:
301 +2U2 + 503 + U4 - X + U5 + U6 + 6L1 + 4L2 + R

Note that the names of the patterns are representing the number of

them located for these calculations.

To calculate the lower bound the information the building blocks

supply is substituted for the matrix ranks in the lower bound formula:

lower bound of G(s) =

(Iv I+|v [+|v®v |)/2 + patterns not matching lower bound formula =
1 2 1 2

(6Ul+ﬁU2+1OU3+2U4+2U5+2U6+10L1+6L2+2R—2X)/2 + L1 + L2

= 30Ul + 2U2 + 5U3+ U4 + U5 + U6 + 6L1 + 4L2 + R - X
and the upper bound is exact.

Theorem Any 2xpxq tensor G(s) can be ranked exactly with the four

building blocks Ul through U4.

Proof: Suppose |v |=n{p<{q. G(s) can be split into an n by n tensor
1
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in normal form bordered on the right and bottom by q-n columns and p-n

rows of s ‘s which are linearly independent. By first applying U4
2

across and down and proceeding as in Lemma 2. the tensor will be

ranked exactly.

5. _Qiscggsion

Further research [10] is being undertaken to expand the building
block 1library so that SPTR can be applied to more complex structures
normally impossible to study. Thus far, the class of 2xXpxq tensors
has been analyzed exactly with the help of SPTR, but this is not to
neglect other tensors. Experimental results imply that SPTR has the
potential for generating new information about larger classes of ten-
sors as well as specific tensors. SPTR at this point performs just as
well if not better than known methods for m slightly larger than 2
and, for example, with the addition of one building block SPTR was
able to find the algorithm for multiplying 3 by 3 matrices in 23 mul-

tiplications.

SPTR’s building block library and simplification programs are
being expanded in order to further examine three aspects of such an
approach to the tensor ranking oproblem. First, there are certain
tensors for which SPTR can generate exact bounds and it is interesting
to see what characteristics makes a tensor "easy" to rank. Second,
the system should always runs efficiently. when producing bounds,
whether exact or approximate, in fact. the procedures described here

3
run on the order of n time. This characteristic suggests the third

aspect. The researcher is aided in the search for insights into the
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structure of large classes of tensors by experimental results calcu-
lated by SPTR. This interaction speeds up the testing of new hypo-
theses and often suggests new conjectures which would not ordinarily
be discovered. In a more global sense, these results illustrate the
validity of approaching a difficult mathematical problem from the
perspective of automating and formalizing heuristics for searching out

and verifying solutions to instances of the problem.

References

[1] Elwyn R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New

York, 1968.

[2] Roger W. Brockett, & David P. Dobkin, "On the Optimal Evaluation
of a Set of Bilinear Forms", J. of Linear Algebra, to appear.

[3] Mark R. Brown & David P. Dobkin, "An Improved Lower Bound on
Polynomial Multiplication", unpublished manuscript, 1977.

[4] David P. Dobkin, "On the Arithmetic Complexity of a Class of
Arithmetic Computations", Ph.D. thesis, Harvard University, Sept.
1973. (Also, Yale University Computer Science Technical Report
23, Oct. 1973.)

[5] Charles M. Fiduccia, "On Obtaining Upper Bounds on the Complexity
of Matrix Multiplication". in Complexity of Computer Computations,
(Miller & Thatcher, Editors), Plenum Press, 1972.

[6] Hans F. de Groote, "On Varieties of Optimal Algorithms for the
Computation of Bilinear Mappings, Mathematisches Institut der
Universitdt Tubingen technical report, 1978.

[7] John Hopcroft & Jean Musinski , "Duality Applied to the Complexity

of Matrix Multiplication and Other Bilinear Forms", SIAM J. Com-




(8]

(9]

[10]

Page 16

puting, Vol. 2, Sept. 1973,

David S. Johnson, '"Approximation Algorithms for Combinatorial
Problems", J. of Computer and System Sciences, 9, 1974.

Joseph B. Kruskal, "Trilinear Decomposition of Three-way Arrays:
Rank and Uniqueness in Arithmetic Complexity and in Statistical
Models", J. of Linear Algebra, to appear.

Sharon J. Laskowski, "On Heuristics for Tensor Ranking", Ph.D.

thesis, Yale University, to appear.

[11] Richard J. Lipton & Robert Tuttle, private communication.

[12]

[13]

[14]

[15]

[16]

Joel Moses, "Algebraic Simplification: A Guide for the Per
plexed", CACM, vol., 14, Aug., 1971.

Joel Moses, "Symbolic Intergration, the Stormy Decade", CACM, vol.
14, Aug., 1971.

John R. Rice, editor, Mathematical Softwgzg, Academic Press,

1971,

James R. Slagle, Artificial Intelligenggi the Heuristic

Programming Approach, McGraw Hill Book Company, 1971.

A. Tarski, A Decision Method for Elementary Algebra and Geometry,

2nd edition, revised, Berkeley and Los Angeles, 1951.




