
One of the challenges in data analysis is to distinguish between different
sources of variability manifested in data. In this paper, we consider the
case of multiple sensors measuring the same physical phenomenon, such
that the properties of the physical phenomenon are manifested as a hidden
common source of variability (which we would like to extract), while each
sensor has its own sensor-specific effects. We present a method based on
alternating products of diffusion operators, and show that it extracts the
common source of variability. Moreover, we show that this method extracts
the common source of variability in a multi-sensor experiment as if it were a
standard manifold learning algorithm used to analyze a simple single-sensor
experiment, in which the common source of variability is the only source of
variability.
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1 Introduction

Measurement systems typically have many sources of variability. When
multiple sensors are used to measure the same physical phenomenon, some
sources of variability are related to the actual physical phenomenon, whereas
other sources of variability are irrelevant, sensor-specific effects. In this
case, extracting the common source of variability and discarding the sensor-
specific sources may uncover the essence of the data, separating the relevant
information from the irrelevant information. We note that sensor-related
sources of variability are not restricted to noise and interferences, but also
include variables with “structures”, such as the position and orientation of
a sensor, environmental effects, and channel characteristics.

Unsupervised Manifold Learning is a class of nonlinear data-driven meth-
ods, e.g. ISOMAP [1], locally linear embedding (LLE) [2], Hessian Maps [3],
and Laplacian Eigenmaps [4], often used to extract the sources of variabil-
ity in given data sets. Of particular interest in the context of this paper is
Diffusion Geometry [5, 6, 7, 8, 9], a manifold learning framework, in which
discrete diffusion processes are constructed on the given data points; these
diffusion processes are designed to capture the structure of the sources of
variability. In the case of multiple sensors, despite having more informa-
tion, adding sensors adds sources of variability, making it more difficult to
extract the common source of variability. Various methods have been pro-
posed to analyze data from multiple sensors within the framework of Man-
ifold Learning. Often, the vectors representing the data are concatenated
into one vector, but in this case it is not clear how the data from each sensor
should be scaled, especially if the sensors are of very different nature. It has
been proposed in [10] to use Diffusion Maps to obtain a low-dimensional
representation of data from each sensor, and then to concatenate the low
dimensional representations. However, this method does not overcome the
general problem of many sources of variability.

A different approach designed to extract the common source of variability
from two sensors is Canonical Correlation Analysis (CCA) [11], which re-
covers highly correlated linear projections in linear systems, but has limited
applicability to non-linear problems. Kernel CCA (KCCA), the generaliza-
tion of CCA to the kernel feature space (e.g. [12, 13]), treats some aspects of
nonlinearity, but it relies on inversion of covariance matrices, an operation
that raises statistical and numerical issues in applications. Another related
method [14] also assumes certain linearities in the problem.

In this paper, we propose a data-driven method based on a product of dif-
fusion operators. In the context of supervised learning, linear combinations
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of kernels have been the subject of considerable work on Multi Kernel Learn-
ing (e.g. [15]). In the literature of multi-view problems, several approaches
have been proposed for metric-fusion, clustering and classification, based on
various manipulation of affinity matrices (e.g. [16, 17, 18, 19]), Markov and
diffusion matrices (e.g. [20, 21]), graph Laplacians (e.g. [22, 23]) and sets of
nearest neighbors (e.g. [24, 25] ). Tensor products of Markov matrices have
been proposed in [26] and products of Markov matrices and their transposes
have been proposed in [27]. A recent work on products of kernels in [28]
considers the fusion of different manifestations of the same variables, in the
absence of sensor-specific variability. The models and goals in these studies
are different, and the algorithms, theoretical justifications and proofs have
only limited applicability to the common variable problem in unsupervised
manifold learning.

The main contributions of this paper are the presentation of an alternating-
diffusion method and showing that it solves the common variable extraction
problem. We show that the common source of variability is extracted by
this method from multiple sensors as if it were the only source of variability
in a single sensor, extracted by a diffusion method.

In the analysis of the algorithm we distinguish between two types of
objects: observable objects, which are quantities that can be approximated
based on the measurements (following the standard practices of Manifold
Learning), and hidden objects, which are not approximated/accessible di-
rectly. We discuss a hidden effective diffusion process and use it to develop a
manifold learning method for extracting the hidden common variable. While
the hidden effective diffusion is merely a formal object that is not accessi-
ble directly, we present an algorithm that is based on observables that is
equivalent to computing the hidden manifold.

The structure of this paper is as follows. In the remainder of Section
1, we formulate the common variable problem and present some intuitive
motivation for the algorithm. In Section 2, we briefly describe some of
the notation and mathematical methods used in this paper. In Section 3,
we present the alternating-diffusion method. In Section 4, the method is
analyzed and the theoretical results are presented. In Section 5, we present
several modifications that are useful in implementation. In Section 6, we
demonstrate the performance of the method on simulated and real data.
Finally, in Section 7 we summarize our conclusions.

The data sets used in this paper with code examples and additional re-
sults are available online at http://roy.lederman.name/alternating-diffusion/
.
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1.1 Problem formulation

Consider three hidden random variables (X,Y, Z) ∼ πx,y,z(X,Y, Z), from
the (possibly high dimensional) spaces X , Y and Z, where, given X, the
variables Y and Z are independent. In other words, the joint probability
density of the hidden variables can be factorized as

πx,y,z(X,Y, Z) = πx(X)πy|x(Y |X)πz|x(Z|X), (1)

where πx is the marginal density of X, πy|x is the conditional density of Y
given X, and πz|x is the conditional density of Z given X.

We have access to these hidden variables through two observable random
variables

S(1) = g(X,Y ) (2)

and

S(2) = h(X,Z) (3)

from the (possibly high dimensional) spaces S(1) and S(2), where g and h
are bilipschitz functions.

One realization of the system consists of the hidden triplet (xi, yi, zi) and

the corresponding measurements (s
(1)
i , s

(2)
i ); while xi, yi and zi are hidden

and not available to us directly, s
(1)
i = g(xi, yi) and s

(2)
i = h(xi, zi) are

observable. We refer to s
(1)
i and s

(2)
i as the measurement in Sensor 1 and

the measurement in Sensor 2, respectively. We note that both s
(1)
i and s

(2)
i

are functions of the hidden common xi, whereas yi and zi are the sensor-
specific components.

From n realizations of the system {(xi, yi, zi)}ni=1, we have n pairs of

corresponding measurements
{

(s
(1)
i , s

(2)
i )
}n
i=1

. Our goal is to recover a

parametrization of the samples of the common variable {xi}ni=1.

1.2 Illustrative toy problem

To illustrate this setup, we consider the following toy problem. We placed
three objects: Yoda (the green action figure), a bulldog, and a bunny, on
three rotating displays, as depicted in Fig. 1(a). Two cameras were used
to take simultaneous snapshots of the rotating objects: the field of view of
Camera 1 included Yoda and the bulldog, as presented in Fig. 1(b), and the
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(a)

(b) (c)

Figure 1: (a) The experiment setup of the toy problem. (b) Sample snapshot
taken by Camera 1, where only Yoda (the green action figure) and the
bulldog are visible. (c) Sample snapshot taken by Camera 2, where only the
bunny and the bulldog are visible.
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field of view of Camera 2 included the bulldog and the bunny, as presented
in Fig. 1(c).

In this problem, the rotation angles of the bulldog, Yoda and the bunny
are the hidden variables X, Y and Z, respectively, and the snapshots from
Camera 1 and Camera 2 are the measurements S(1) = g(X,Y ) and S(2) =
h(X,Z), respectively. The goal is to find a parametrization of the common
variable X, i.e., the rotation angle of the bulldog, from the snapshots.

The proposed algorithm is data-driven and it does not rely on prior
knowledge of the problem setup; in particular, the algorithm does not assume
that the common variable X is the rotation angle of an object. The setup
is given here for the purpose of illustration.

To demonstrate the underlying concept, we describe a caricature of the
alternating-diffusion based on the toy problem. We start with an arbitrary
pair of simultaneous snapshots, for example, the pair presented at the top
row in Fig. 2. On the left is the snapshot taken by Camera 1, and on the
right is the corresponding snapshot taken by Camera 2.

We find the nearest neighbors of this initial pair in the entire sequence.
For this nearest neighbors search, we consider only the snapshots taken by
Camera 1, ignoring the snapshots taken by Camera 2, i.e., in this step, two
pairs are similar if and only if their respective snapshots from Camera 1 are
similar.

We compute the average of these neighbors and present it in the middle
row of Fig. 2: the average image of the snapshots taken by Camera 1 is
presented on the left, and the average image of the corresponding snapshots
taken by Camera 2 at the same times is presented on the right.

The average image on the left is sharp and very similar to the initial
image taken by Camera 1, implying that both the bulldog and Yoda are
at similar rotation angles in the nearest neighbors snapshots. However, in
the average image on the right, the bunny is blurred, implying that it was
in different rotation angles in the nearest neighbors snapshots. This result
stems from the fact that the bunny was visible only to Camera 2, and it
was completely ignored when we computed the nearest neighbors based on
snapshots taken by Camera 1.

Now, we take each one of the nearest neighbors that we found in the
previous step, and find its nearest neighbors, however, this time we search
for the new nearest neighbors based on similarity in the snapshots taken by
Camera 2. We refer to the nearest neighbors in Camera 2 of all the nearest
neighbors in Camera 1 as the indirect nearest neighbors.

We aggregate all the indirect nearest neighbors, and compute their aver-
age images, presented in the bottom row of Fig. 2. In the two new average
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Demonstration of the alternating-diffusion. The images on the
left column are snapshots taken by Camera 1 (or average snapshots taken
by Camera 1) and the images on the right column are snapshots taken by
Camera 2 (or average snapshots taken by Camera 2). Two actual snapshots
taken by Camera 1 are presented in the top row. The averages of neighbors
are presented in the middle row. The averages of indirect neighbors are
presented in the bottom row.
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images, only the bulldog is sharp, while Yoda and the bunny are blurred.
This implies that the bulldog was in very similar rotation angles in all the
indirect nearest neighbors, whereas Yoda and the bunny were oriented in
“random” directions. In other words, the rotation angle of the bulldog
is coherent across the indirect nearest neighbors, while the angles of the
camera-specific objects, Yoda and the bunny, are incoherent.

In summary, the coherence in the rotation angle of the bunny is sup-
pressed when we process the nearest neighbors in Camera 1, and the coher-
ence in the rotation angle of Yoda is suppressed when we process the indirect
nearest neighbors in Camera 2. However, the coherence in the rotation angle
of the bulldog is largely preserved.

In this paper we will use these coherence and incoherence properties
across indirect nearest neighbors to recover the structure of the coherent
common variable, while discarding the incoherent sensor-specific variables.

We note that the averaging of images in this example is performed only
for the purpose of illustration. While the averaging of images is convenient
for visualization in the case of consistent specially separated objects, it is
inadequate in other models. The algorithm does not assume special separa-
tion and does not compute average samples, but rather essentially compares
the sets of indirect nearest neighbors of different points in order to measure
the similarity between points.

2 Preliminaries

2.1 Notation

We find it convenient to use the expected value notation for integration;
the underlying probability density πx,y,z generating the data is implied by
the expected value notation, whereas operators, kernels and functions are
presented explicitly.

Unless specifically stated otherwise, the underlying probability density
throughout this paper is assumed to be the probability density πx,y,z speci-
fied in the problem formulation in section 1.1.

We denote by Ex,y,z the expected value with respect to the probability
density πx,y,z; the expected value of the function f(x, y, z) is defined by

Ex,y,z (f(x, y, z)) =

∫
X ,Y,Z

f(x, y, z)πx,y,z(x, y, z)dxdydz. (4)

The expected value with respect to a marginal probability density, such
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as πx of X, will be denoted by Ex; the expected value Ex is defined by

Ex (f(x)) =

∫
X
f(x)πx(x)dx (5)

where

πx(x) =

∫
Y,Z

πx,y,z(x, y, z)dzdy. (6)

The expected value with respect to a conditional probability density,
such as πy|x of Y given X, will be denoted by Ey|x; for a given value of
x ∈ X , the expected value Ey|x is defined by

Ey|x (f(x, y)) =

∫
Y
f(x, y)πy|x(x, y)dy (7)

where

πy|x(y|x) =

∫
Z πx,y,z(x, y, z)dz∫

Y,Z πx,y,z(x, y, z)dzdy
. (8)

2.2 Diffusion geometry

This section provides a short overview of a version of diffusion geometry
that is convenient in the context used in this paper. For more detailed
descriptions and additional variations and generalizations see, for example,
[5, 7, 8]. We will discuss both the asymptotic continuous form of diffusion
geometry and its discrete counterpart on sample sets.

Suppose A is a metric space and πa is a probability density defined on
A. The operators in diffusion geometry do not have direct access to the
variables in A ∈ A, but rather through S = ρ(A), where S is a metric space
and ρ : A → S is a mapping from A to S.

The primary component in diffusion geometry is a diffusion operator; for
any function f : A → R, the diffusion operator is defined by

(D(f)) (a) = Ea′
(
K(a, a′)f(a′)

)
, ∀a ∈ A (9)

where the kernel K(a, a′) is a “local” kernel; for simplicity, we assume a
“local” Markov kernel in this paper, so that

Ea ((D(f)) (a)) = Ea (f(a)) . (10)
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The “local” kernel is defined based on the observable variable, often using
a weighted Gaussian kernel, e.g.

K(a, a′) =
1

ω(a′)
e−‖ρ(a)−ρ(a

′)‖2S/ε, (11)

where ‖ρ(a)− ρ(a′)‖S is the distance in the space of observations S and

ω(a′) = Ea′′
(
e−‖ρ(a

′)−ρ(a′′)‖2S/ε
)
. (12)

Intuitively, the diffusion operator “smoothens” functions; suppose that
p0 is the Dirac delta function at α ∈ A, then the function p1 = D(p0) is a
“bump” around α and p2 = D(p1) = D2(p0) is a wider “bump.” This way,
a sequence of increasingly wider “bumps” {pt}∞t=0 is defined by successive
“smoothening” operations:

pt(a) =
(
Dt(p0)

)
(a), a ∈ A. (13)

We refer to this sequence of functions as the propagation of p0.
The other component used in diffusion geometry is a norm. The typical

choice in the literature is a weighted L2 norm. In this paper, we consider a
more general form; we define the seminorm of a function f : A → R using a
quadratic form:

‖f‖M =
√

EaEa′ (f(a)M(a, a′)f(a′)), (14)

where M(a, a′) is a positive semidefinite kernel.
The diffusion operator and the seminorm are used to define the diffusion

distance dt(α, α
′) at the propagation time t between any two points α, α′ ∈

A;

dt(α, α
′) = ‖pt − qt‖, (15)

where the initial functions p0 and q0 of the sequences are delta functions at
α and α′ ,respectively.

In the discrete setting, we consider n samples {ai}ni=1 of the random
variable A ∈ A, sampled from πa. These samples are not accessible directly,
but rather via si = ρ(ai).

The discrete counterpart of the diffusion operator D is an n× n matrix
K typically of the form

K(i, j) =
W(i, j)

w(j)
, (16)
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where

W(i, j) = e−‖si−sj‖
2
S/ε, (17)

and

w(j) =
n∑
l=1

e−‖sj−sl‖
2
S/ε. (18)

In these expressions, ‖si − sj‖S is the distance between si and sj in the
metric space S.

The discrete diffusion can be interpreted as a Markov chain on a graph
G = (V,E). Each of the n samples is represented by one of the vertices
in V = {1, . . . , n}, i.e., the i-th vertex represents the i-th realization of the
system ai and the i-th measurement si = ρ(ai). The weight of the edge
eji ∈ E between the vertices i and j is W(i, j). Then, K can be viewed as
the transition probability matrix on this graph: the probability of transition
to vertex i from vertex j in a single step is K(i, j).

Note that the weights of the edges and the transition probabilities are
computed based on the observable measured samples, whereas the graph
vertices represent realizations of the entire system, so that the i-th sample
is associated with the observable si and the hidden ai.

Let v0 = (0, 0, . . . , 0, 1, 0, . . .)T be the vector of dimensionality n, of all
zeros, except for the i-th position. The propagation from the i-th point is
defined as a sequence of vectors {vt}∞t=0 such that

vt+1 = Kvt. (19)

The vectors v0 and vt are the discrete counterparts of the functions p0
and pt; the j-th element of vt is viewed as the sample of the function pt(aj)
at the point aj .

Intuitively, the transition matrix K can be viewed as allowing a transition
from the vertex j to the vertex i only when ‖si−sj‖S ≤

√
ε. For a bilipschitz

function ρ, it implies that the transition is allowed when ‖ai − aj‖ is small.
As a result, after the first step of the discrete diffusion initialized at the j-th
vertex, the vector v1 has non negligible values in elements i, such that ai
are a small neighborhood around aj . Following a similar argument, each
additional step extends this neighborhood of elements with non-negligible
values to a larger neighborhood around aj .

The discrete diffusion distance between sample i and sample j is defined
using a Euclidean distance (or a weighted Euclidean distance, see [7])

dt(i, j) = ‖vt − ut‖2, (20)
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where vt and ut are vectors in the propagation sequences (defined in (19))
from the sample i and the sample j, respectively.

The diffusion distance has been shown to be a powerful metric of com-
paring samples that capture the structure of the graph, e.g., it is invariant
to small topological distortions and moderate noise [7, 29]. While the Eu-
clidean distance ‖si − sj‖S compares two individual samples, the diffusion
distance integrates other samples and measures the “connectivity” between
the two samples via the entire sample set.

3 Algorithm

The alternating-diffusion method discussed in this paper is detailed in Al-
gorithm 1.

3.1 Description of the algorithm

In the common variable problem discussed in this paper, we have two sample

sets, {s(1)i }ni=1 and {s(2)i }ni=1 from Sensor 1 and Sensor 2, respectively. For
each sample set, we construct the affinity matrices W(s1) and W(s2), speci-
fied in (21), and the associated diffusion operators K(s1) and K(s2), specified
in (22). By construction, K(s1) and K(s2) are Markov matrices.

The propagation from the i-th sample is defined as a sequence of vectors
{vt}∞t=0 such that

vt+1 =

{
K(s1)vt, t = 2m

K(s2)vt, t = 2m+ 1
(25)

for every integer m ≥ 0, where the initial vector v0 = (0, 0, . . . , 0, 1, 0, . . .)T

is a vector of dimensionality n, of all zeros, except for the i-th position. It
follows that the even steps of the propagation defined in (25) can be restated
as

v2m = Kmv0. (26)

where K is the alternating-diffusion Markov matrix defined in (23).
We define the diffusion distance between sample i and sample j based

on the alternating-diffusion as the following Euclidean distance

dt(i, j) = ‖vt − ut‖2, (27)

where vt and ut are vectors in the propagation sequences (defined in (25))
from the sample i and the sample j, respectively.
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Algorithm 1 Alternating-diffusion

Input: aligned samples from the two sensors
{

(s
(1)
i , s

(2)
i )
}n
i=1

.

Output: diffusion distances d2m(i, j). Optionally, refined diffusion dis-
tances and diffusion maps embedding.

1. Calculate two pairwise affinity matrices (kernels) W(s1) and W(s2)

based on a Gaussian as follows:

W
(s1)
ij = exp

(
−
‖s(1)i − s

(1)
j ‖2

ε(1)

)
; W

(s2)
ij = exp

(
−
‖s(2)i − s

(2)
j ‖2

ε(2)

)
(21)

for all i, j = 1, . . . , n, where ε(1) and ε(2) are the kernel scales.

2. Create two diffusion operators K(s1) and K(s2):

K
(s1)
ij =

W
(s1)
ij

n∑
l=1

W
(s1)
lj

;K
(s2)
ij =

W
(s2)
ij

n∑
l=1

W
(s2)
lj

(22)

3. Build an alternating-diffusion kernel:

K = K(s2)K(s1). (23)

4. Compute the diffusion distance at time 2m between each two points
i, j:

d2m(i, j) =

n∑
l=1

(
(Km)l,i − (Km)l,j

)2
. (24)

5. (Optionally:) Compute refined diffusion distances and refined diffusion
maps using a standard diffusion maps algorithm (see A), by substitut-
ing the diffusion distance d2m(i, j) computed in the previous step into
the distance between measurements in the input of the diffusion maps
algorithm.
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The diffusion distance defined in (27) is computed according to (24)
using the columns of the matrix Km. The two expressions (27) and (24) are
equivalent since the i-th column of Km is equal to the vector vt.

We will show in Section 4 that the new alternating-diffusion operator
K is related to an “effective” diffusion operator, and that it captures the
structure of the common variable and ignores the variables specific to either
sensor. It follows that the diffusion distances (24) inherit the properties of
diffusion distances computed from data where the common variable is the
only source of variability.

Optionally, the results can be refined using a standard diffusion maps
algorithm on the diffusion distances d2m(i, j) computed in the previous step
as the distances between measurements, thereby obtaining a low-dimensional
embedding of the data.

3.2 Intuitive interpretation

Applying standard diffusion to the set of measurements {s(1)i } builds a
Markov chain on a graph G(1) = (V,E(1)). Each of the n samples is repre-
sented by one of the vertices in V = {1, . . . , n}, i.e., the i-th vertex represents

the i-th realization of the system. The weight of the edge e
(1)
ij ∈ E(1) between

the vertices i and j is W(s1)(i, j). Therefore, the diffusion matrix K(s1) can
be viewed as the transition probability matrix on this graph: the probability
of transition to vertex i from vertex j in a single step is K(s1)(i, j). Simi-

larly, a separate application to the set {s(2)i } builds a Markov chain with a
different transition probability matrix K(s2) on a graph G(2) = (V,E(2)). In
other words, we obtain two graphs with the same set of vertices V , repre-
senting the samples, and two different sets of weighted edges E(1) and E(2),
determined by the distances between samples within each separate set of
measurements.

The alternating-diffusion operates on the same set of vertices V . How-
ever, the transition probabilities are defined as follows: the transition prob-
ability matrix in odd steps is K(s1), and the transition probability matrix in
even steps is K(s2). Therefore, the combination of two consecutive steps is
a Markov chain on a new (directed) graph G = (V,E), where the transition
probabilities are determined by the matrix K.

To illustrate the diffusion in more detail, we revisit the example in Fig.
2 and describe it more detail. We consider a sequence of vectors {vt}∞v=0

(defined in (25)) of alternating-diffusion propagation from sample i; this
state is represented by the initial vector v0 in the sequence, which is nonzero
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only at the i-th coordinate. At this initial state, the bulldog, Yoda, and the

bunny are oriented in angles xi, yi and zi, respectively; the snapshots s
(1)
i

and s
(2)
i are depicted in the top row of Fig. 2.

In the middle row of Fig. 2, we present the weighted average
∑

j v1(j)s
(1)
j

and
∑

j v1(j)s
(2)
j of the snapshots, based on the propagated vector v1. On

the left, we observe that the average image
∑

j v1(j)s
(1)
j is almost identical

to the initial snapshot s
(1)
i . It implies that the v1(j) is non-negligible only

if both the rotation angles of the bulldog xj and of Yoda yj are close to the
initial rotation angles xi and yi respectively.

On the right, we observe that the bunny in the average image
∑

j v1(j)s
(2)
j

is blurred; this implies that v1(j) is non-negligible at some of the coordinates
that correspond to samples where the rotation angle of the bunny zj is sig-
nificantly different from the initial rotation angle zi.

The middle image demonstrates that the propagated vector v1 (after the
first step of the alternating-diffusion) is non-negligible only in coordinates
that correspond to small neighborhoods of X and Y around the initial values
xi and yi, but to a large range of values of the variable Z, ignoring the initial
value zi.

In the bottom row of Fig. 2 we present the weighted average of the snap-

shots
∑

j v2(j)s
(1)
j and

∑
j v2(j)s

(2)
j based on the propagated vector v2. We

observe that both Yoda and the bunny are now blurred, whereas the bulldog
remains sharp in both the right and the left images. This implies that the
second step of the alternating-diffusion leads to a small neighborhood of X
around the initial xi, but to a large range of the variables Y and Z, ignoring
the initial values yi and zi.

In a similar manner, the following alternating-diffusion steps propagate
the values of the common variable X to gradually growing neighborhoods
around the initial xi. At the same time, the variables Y and Z are distributed
across large ranges, as evident from the first two alternating-diffusion steps.
We will show that this alternating-diffusion process can be viewed as a
diffusion process on the common variable X, ignoring the values of Y and
Z. In other words, the alternating-diffusion extracts the common variable
X from the given sample sets.

3.3 More than two sensors

The method applies to the problem of finding the common source of vari-
ability in measurement from more than two sensors. One approach to inte-
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grating more than two sensors is to replace (23) with

K = K(sm)...K(s2)K(s1), (28)

and optionally average over all the possible permutations in the order of the
operators. The extension of the algorithm and its analysis, which will be
presented in Section 4, is straightforward.

4 Analysis

4.1 Observable diffusion on Sensor 1 and Sensor 2

We denote the observable diffusion operator of Sensor 1 by D(s1). For a
function p : S(1) → R, the operation of D(s1) is defined by

(
D(s1)(p)

)
(s) = Es′

(
e−‖s−s

′‖2/ε

Es′′
(
e−‖s′′−s′‖2/ε

)) . (29)

This operator is approximated by K(s1) defined in (22). Since by (2) each
point in X × Y × Z is mapped to S(1) by the function g, the following defi-
nition is equivalent to (29):(

D(s1)(p)
)

(x, y, z) = Ex′,y′,z′
(
K(s1)((x, y), (x′, y′))p(x′, y′, z′)

)
, (30)

where K(s1)((x, y), (x′, y′)) is defined by

K(s1)((x, y), (x′, y′)) =
1

ω(s1)(x′, y′)
e−‖g(x,y)−g(x

′,y′)‖2/ε, (31)

and

ω(s1)(x′, y′) = Ex′′,y′′,z′′
(
e−‖g(x

′′,y′′)−g(x′,y′)‖2/ε
)
. (32)

We note that the variable z appears on the left side of (30), but does not
appear on the right side of the equation, because the measurement from
Sensor 1 is independent of Z given X; the significance is discussed in Lemma
1 below.

Similarly, we denote the observable diffusion operator of Sensor 2 by
D(s2), and its operation is defined by(

D(s2)(p)
)

(x, y, z) = Ex′,y′,z′
(
K(s2)((x, z), (x′, z′))p(x′, y′, z′)

)
(33)
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where K(s2) is

K(s2)((x, z), (x′, z′)) =
1

ω(s2)(x′, z′)
e−‖h(x,z)−h(x

′,z′)‖2/ε, (34)

and

ω(s2)(x′, z′) = Ex′′,y′′,z′′
(
e−‖h(x

′′,z′′)−h(x′,z′)‖2/ε
)
. (35)

We note that the variable y appears on the left side of (33), but does not
appear on the right side of the equation, because the measurement from
Sensor 2 is independent of Y given X; the significance is discussed in Lemma
2 below.

For a function p0 : X × Y × Z →R, we define the sequence of observable
propagated functions {pt}∞t=0 by

pt+1(x, y, z) =

{ (
D(s1)(pt)

)
(x, y, z), ∀t = 2m(

D(s2)(pt)
)

(x, y, z), ∀t = 2m+ 1
(36)

where m ≥ 0 is a nonnegative integer.
We note that the subsequence of the odd steps takes the form of standard

diffusion:

p2m+3(x, y, z) = (D(p2m+1)) (x, y, z), (37)

where D is the product of the standard diffusion operators D(s1) and D(s2)

D = D(s1) ◦D(s2). (38)

Let ‖ · ‖π denote the observable norm of functions on X × Y × Z; for a
function p : X × Y × Z → R, the norm ‖ · ‖π is defined by

‖p‖π =
(
Ex,y,z

(
p2(x, y, z)

))1/2
(39)

For t > 0, we define the observable diffusion distance d
(π)
t between

(xi, yi, zi) and (xj , yj , zj) by

d
(π)
t ((xi, yi, zi), (xj , yj , zj)) = ‖pt − qt‖π, (40)

where p0 is a delta function at (xi, yi, zi) and q0 is a delta function at
(xj , yj , zj), and {pt}∞t=0 and {pt}∞t=0 are the sequences of propagated func-

tions from p0 and q0, respectively. d
(π)
t is approximated by dt, defined in

(24)

d
(π)
t ((xi, yi, zi), (xj , yj , zj)) ≈ C · dt(i, j). (41)
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4.2 Properties of the diffusion operators D(s1) and D(s2) and
propagated functions

In this subsection we present some of the properties of the diffusion operators
D(s1) and D(s2) that will be used to show the main results. We show these
properties in the context of the sequence of functions pt(x, y, z), t = 1, 2, . . .
propagated from p0(x, y, z) by (36).

As an intermediate step towards the definition of the effective functions

on X, we define the hidden intermediate functions p
(i1)
t (x, y) on X ×Y and

p
(i2)
t (x, z) on X × Z by

p
(i1)
t (x, y) = Ez|x,y (pt(x, y, z)) , (42)

and

p
(i2)
t (x, z) = Ey|x,z (pt(x, y, z)) . (43)

Given X, the random variables Y and Z are independent, therefore,

p
(i1)
t (x, y) = Ez|x (pt(x, y, z)) , (44)

and

p
(i2)
t (x, z) = Ey|x (pt(x, y, z)) . (45)

In the remainder of this subsection, m ≥ 0 denotes a nonnegative integer.

Lemma 1 (Properties of the image of D(s1)). For every odd step t = 2m+1,
and for all z ∈ Z, the propagated function p2m+1(x, y, z) =

(
D(s1) (p2m)

)
(x, y, z)

satisfies

p2m+1(x, y, z) = p
(i1)
2m+1(x, y) (46)

where p
(i1)
2m+1(x, y) is the intermediate function of p2m+1 on X ×Y, specified

in (44).

Proof. By (36) and (30),

p2m+1(x, y, z) = Ex′,y′,z′
(
K(s1)((x, y), (x′, y′))p2m(x′, y′, z′)

)
. (47)

Since z does not appear in the right side of (47), p2m+1(x, y, z) does not
depend on the value of z. Therefore, by (42), we have

p2m+1(x, y, z) = Ez′|x,y
(
p2m+1(x, y, z

′)
)

= p
(i1)
2m+1(x, y). (48)
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Intuitively, Lemma 1 states that the operator D(s1) uses only the infor-
mation available at Sensor 1, i.e. g(X,Y ), and it has no information on the
variable Z. Therefore, it assigns equal values to the propagated function
p2m+1 at any two points (x, y, z) and (x, y, ζ), regardless of the values of z
and ζ.

The following lemma repeats the statements in Lemma 1 for the even
steps. The proof is analogous to the proof of Lemma 1 and therefore it is
omitted for the sake of brevity.

Lemma 2 (Properties of the image ofD(s2)). For every even step t = 2m+2,
and for all y ∈ Y, the propagated function p2m+2(x, y, z) =

(
D(s2) (p2m+1)

)
(x, y, z)

satisfies

p2m+2(x, y, z) = p
(i2)
2m+2(x, z) (49)

where p
(i2)
2m+2(x, z) is the intermediate function of p2m+2 on X ×Z, specified

in (45).

4.3 The hidden effective propagated functions p
(e)
j (x)

We introduce the hidden effective function p
(e)
t (x) : X → R, which is defined

by

p
(e)
t (x) = Ey,z|x (pt(x, y, z)) , (50)

where pt(x, y, z) is a function in a sequence of propagated functions {pt(x, y, z)}∞t=1,
defined in (36).

We remark that by (42), (43) and (50), the intermediate functions p
(i1)
t (x, y)

and p
(i2)
t (x, z) defined in (42) and (43) are related to the effective functions

via:

p
(e)
t (x) = Ey|x

(
p
(i1)
t (x, y)

)
(51)

= Ez|x
(
p
(i2)
t (x, z)

)
(52)

We introduce two hidden effective diffusion operators, D(e1) and D(e2),
defined by(

D(e1)(p(e))
)

(x) = Ex′
(
K(e1)

(
x, x′

)
p(e)(x′)

)
, (53)
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and (
D(e2)(p(e))

)
(x) = Ex′

(
K(e2)

(
x, x′

)
p(e)(x′)

)
, (54)

with the following effective kernels

K(e1)(x, x′) = Ey|x
(
Ey′|x′

(
K(s1)((x, y), (x′, y′))

))
, (55)

and

K(e2)(x, x′) = Ez|x
(
Ez′|x′

(
K(s2)((x, z), (x′, z′))

))
. (56)

Theorem 3. For every t ≥ 1, the effective function p
(e)
t+1(x) (defined in

(50)) is related to the preceding effective function p
(e)
t (x) by the effective

alternating-diffusion

p
(e)
t+1(x) =


(
D(e1)

(
p
(e)
t

))
(x), t = 2m(

D(e2)
(
p
(e)
t

))
(x), t = 2m+ 1

(57)

where D(e1) and D(e1) are defined in (53) and (54), respectively.

Proof. By (36) and (30),

p2m+1(x, y, z) = Ex′,y′,z′
(
K(s1)

(
(x, y), (x′, y′)

)
p2m(x′, y′, z′)

)
. (58)

By Lemma 2, for m > 0, the propagated function p2m(x′, y′, z′) does not
depend on the variable y′, and

p2m(x′, y′, z′) = p
(i2)
2m (x′, z′) (59)

where p
(i2)
2m (x, z) is the intermediate function of p2m on X × Z, specified in

(45).
Substituting (59) into (58), and rearranging the expression yields

p2m+1(x, y, z) = Ex′,y′
(
K(s1)

(
(x, y), (x′, y′)

)
Ez′|x′

(
p
(i2)
2m (x′, z′)

))
. (60)

Since z′ does not appear in the kernel K(s1) ((x, y), (x′, y′)), it is simply
integrated out, so that by (51),

p2m+1(x, y, z) = Ex′,y′
(
K(s1)

(
(x, y), (x′, y′)

)
p
(e)
2m(x′)

)
. (61)
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Taking the expected value given X over Y and Z yields,

Ey,z|x (p2m+1(x, y, z)) = Ey,z|x
(
Ex′,y′

(
K(s1)

(
(x, y), (x′, y′)

)
p
(e)
2m(x′)

))
.

(62)

But by (50), the left side of (62) is the effective function p
(e)
2m+1(x),

p
(e)
2m+1(x) = Ey,z|x

(
Ex′,y′

(
K(s1)

(
(x, y), (x′, y′)

)
p
(e)
2m(x′)

))
. (63)

Rearranging the right side of (63), and using the independence given X
of Y and Z,

p
(e)
2m+1(x) = Ex′

(
Ey|x

(
Ey′|x′

(
K(s1)

(
(x, y), (x′, y′)

)))
p
(e)
2m(x′)

)
, (64)

so that by (55),

p
(e)
2m+1(x) = Ex′

(
K(e1)(x, x′)p

(e)
2m(x′)

)
. (65)

Equation (57), in the case t = 2m, is obtained from (65) using (53). The
proof for the case t = 2m + 1 is analogous and is omitted for the sake of
brevity.

Finally, we combine the hidden effective diffusion operators and define
the hidden effective alternating-diffusion operator D(e) by

D(e) = D(e1) ◦D(e2). (66)

The following corollary is an immediate result from Theorem 3.

Corollary 4. The subsequence of effective propagated function p
(e)
t (x) at

odd steps t = 2m+ 1, is given by

p
(e)
2m+3(x) =

(
D(e)(p

(e)
2m+1)

)
(x). (67)

where m ≥ 0 is a nonnegative integer.

In other words, the subsequence of effective functions p
(e)
2m+1(x) at odd

steps is analogous to a standard diffusion propagation on the common hidden
variable X as defined in (13):

p
(e)
2m+1(x) =

((
D(e)

)m
(p

(e)
1 )
)

(x). (68)

where m is a nonnegative integer. Although the effective functions on X are
not computed, the appropriate seminorm of the difference between effective
functions can be computed, as we will show in Section 4.4.
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4.4 The hidden effective alternating-diffusion distance

Let ‖·‖M be the hidden seminorm of effective functions p(e)(x) on X , defined
by

‖p(e)‖M =
√
Ex,x′

(
p(e)(x)M(x, x′)p(e)(x′)

)
(69)

where M(x, x′) is given by

M(x, x′) = Ex′′,z′′
(
Ez|x

(
K(s2)

(
(x′′, z′′), (x, z)

))
Ez′|x′

(
K(s2)

(
(x′′, z′′), (x′, z′)

)))
(70)

and K(s2) is defined in (34). We note that z, z′, z′′ and x′′ appear in (70)
only as dummy variables in integration.

The following theorem shows that the hidden seminorm of a difference

between two hidden effective propagated functions p
(e)
2m+1(x) and q

(e)
2m+1(x)

defined in (36) can be computed without explicitly using these functions
on X , but rather via the corresponding observable propagated functions
p2m+2(x, y, z) and q2m+2(x, y, z) on X × Y × Z.

Theorem 5. Suppose that {pt(x, y, z)}∞t=0 and {qt(x, y, z)}∞t=0 are two se-

quences of propagated functions as defined in (36), and that {p(e)t (x)}∞t=1 and

{q(e)t (x)}∞t=1 are the corresponding sequences of effective propagated functions
as defined in (50). Then,

‖p(e)2m+1(x)− q(e)2m+1(x)‖M = ‖p2m+2(x, y, z)− q2m+2(x, y, z)‖π, (71)

where ‖ · ‖M is defined in (69) and ‖ · ‖π is defined in (39).

Proof. We introduce the notation wt(x, y, z) to denote the difference

wt(x, y, z) = pt(x, y, z)− qt(x, y, z). (72)

Due to the linearity of the diffusion operators, the sequence wj can be ex-
pressed as a sequence of propagated functions, defined in (36):

wt+1(x, y, z) =

{ (
D(s1)(wt)

)
(x, y, z), t = 2m(

D(s2)(wt)
)

(x, y, z), t = 2m+ 1
. (73)

Similarly, let w
(e)
t (x) be the difference w

(e)
t (x) = p

(e)
t (x)− q(e)t (x). Then,

due to linearity it is the effective function of wt(x, y, z) as defined in (50):

w
(e)
t (x) = Ey,z|x (wt(x, y, z)) . (74)
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By a similar argument to (61) in the proof of Theorem 3,

w2m+2(x
′′, y′′, z′′) = Ex′,z′

(
K(s2)

(
(x′′, z′′), (x′, z′)

)
w

(e)
2m+1(x

′)
)
. (75)

Therefore, by (50),

(‖w2m+2‖π)2 = Ex′′,y′′,z′′
(
Ex,z

(
K(s2)

(
(x′′, z′′), (x, z)

)
w

(e)
2m+1(x)

)
·Ex′,z′

(
K(s2)

(
(x′′, z′′), (x′, z′)

)
w

(e)
2m+1(x

′)
))

.

(76)

Due to the linearity of the operations, we have

(‖w2m+2‖π)2 = ExEx′
(
w

(e)
2m+1(x)w

(e)
2m+1(x

′)

· Ex′′,z′′
(
Ez|x

(
K(s2)

(
(x′′, z′′), (x, z)

))
·Ez′|x′

(
K(s2)

(
(x′′, z′′), (x′, z′)

))))
. (77)

Using (69) and (70), we obtain

‖w(e)
t ‖M = ‖wt+1‖π. (78)

The importance of Theorem 5 is that the expression ‖p2m+2 − q2m+2‖π
has a discrete counterpart, and is approximated by the Euclidean norm of
the difference between propagated discrete functions (see (27)). In other

words, the theorem gives a method for approximating ‖p(e)2m+1 − q
(e)
2m+1‖M

based on the given sample set of measurements from the two sensors.

We define the hidden effective alternating-diffusion distance d
(e)
2m+1 by

d
(e)
2m+1 ((xi, yi, zi), (xj , yj , zj)) = ‖p(e)2m+1(x

′′)− q(e)2m+1(x
′′)‖M . (79)

where {p(e)t }∞t=1 and {p(e)t }∞t=1 are sequences of effective functions defined
in (50) associated with the sequences of propagated functions {pt}∞t=0 and
{pt}∞t=0, respectively, where p0 and q0 are delta functions at (xi, yi, zi) and
(xj , yj , zj), respectively.

It follows from Theorem 5, (40), (41) and (79) that the effective alternating-
diffusion distance is approximated by the distance d2m+2, computed by the
algorithm:

d
(e)
2m+1 ((xi, yi, zi), (xj , yj , zj)) ≈ C · d2m+2(i, j). (80)
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In conclusion, the distance computed by the algorithm approximates
a diffusion distance corresponding to a diffusion operator on the common
variable X.

5 Implementation

In this section, we briefly describe several modifications to the algorithm
presented in the paper. Some of these modifications are common in the
implementation of diffusion algorithms.

In our discussion and analysis we have required the normalized kernels,
such as, K(s1) and K(s2) defined in (22), to be Markovian. This choice is
convenient because it can be interpreted as a random process on a graph.
We have also assumed a Gaussian form of the affinity matrix. However,
we note that these assumptions can be relaxed and various “local” ker-
nels, not necessarily Gaussian or Markovian, can be used. In particular,
in diffusion geometry, row-stochastic matrices are often used rather than
column-stochastic matrices.

In some datasets, where the scales of the distances between samples
varies significantly, the graph specified by the affinity matrices (such as (21))
may have both highly connected vertices and vertices that are effectively
isolated. This may imply that the constant kernel scaling ε is inadequate.
Therefore, the expression for the affinity matrices is often replaced with

Wij = exp

(
−‖si − sj‖

2

√
εi
√
εj

)
, (81)

where εi is a local scaling factor around the i point. Typically,
√
εi is taken

to be in the order of the distance from si to some of its nearest neighbors.
In practice, mainly due to noise, the data samples often do not lie on the

underlying manifold, but rather scattered around it. We note that according
to the noise analysis presented in [30], setting the diagonal terms of the
affinity matrix to zero makes the manifold learning in kernel-based method
more robust to noise.
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6 Experimental results

6.1 Simulated data I

We simulate the three hidden variables (X,Y, Z) as three statistically inde-
pendent uniform random variables, i.e.,

X ∼ πx(X) = U [0, 1], Y ∼ πy(Y ) = U [0, 1], Z ∼ πz(Z) = U [0, 1] (82)

We generate n = 1000 samples (xi, yi, zi) of (X,Y, Z), and define two sets
of simulated samples in R3 by

s
(1)
i =

 (R+ r(1) cos(2πyi)) cos(2πxi)

(R+ r(1) cos(2πyi)) sin(2πxi)

r(1) sin(2πyi)

 (83)

and

s
(2)
i =

 (R+ r(2) cos(2πzi)) cos(2πxi)

(R+ r(2) cos(2πzi)) sin(2πxi)

r(2) sin(2πzi)

 (84)

where R = 10, r(1) = 4 and r(2) = 2, for i = 1, . . . , n. Thus, each set
of measurements lies on a different 2-dimensional torus embedded in R3,
where the “major angle” X is common and the respective “minor angle”,

Y or Z, is different. In other words, s
(1)
i and s

(2)
i are two samples in R3 on

two different tori, where their major angle parametrization the two tori is
common, and their respective minor angles are independent. See Fig. 3 for
illustration.

We apply Algorithm 1 to the two sets
{
s
(1)
i , s

(2)
i

}1000

i=1
and obtain a corre-

sponding diffusion maps embedding {x̃i}1000i=1 based on the diffusion distances
from (24) (For details about diffusion maps see A). Figure 4 presents a scat-
ter plot of the 2-dimensional embedding. The embedded samples are colored
according to the ground truth/common variable X – the “major angle”. We
observe that the two new coordinates x̃i = (x̃i,1, x̃i,2) parametrize the com-
mon variable, approximately via (x̃i,1, x̃i,2) ≈ (a cos(2πxi + c), a sin(2πxi +
c)), where a and c are some constants.

To demonstrate the challenges stemming from the nonlinearity in this ex-

ample, we apply CCA to
{
s
(1)
i , s

(2)
i

}1000

i=1
. Figure 5 depicts the first two com-

mon components obtained by CCA. We observe that the CCA parametriza-
tion merely projects the samples onto the first two coordinates of the mea-
surements, without extracting the “major angle” (the true common variable)
nor without suppressing the “minor angle”.
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Figure 3: (Simulation I) The two sets of measurement samples lying on two
tori. The samples are colored according to their common variable – the

major angle parametrizes each of the tori. (a) s
(1)
i , i = 1, . . . , 1000. (b)

s
(2)
i , i = 1, . . . , 1000.

To illustrate the alternating-diffusion procedure, we plot in Fig. 6 a prop-
agated function after 10 alternating-diffusion steps initialized at an arbitrary
sample (marked in green). The color represents the value of the propagated
function on each point, where red denotes large values and blue denotes small
values. Figure 6 demonstrates that after 10 alternating-diffusion steps, the
propagated function “covers” the entire range of the minor angle, but only
a small neighborhood of the major angle is covered. To further demonstrate
the alternating-diffusion, in Fig. 7, we map the tori back to the hidden
variable (X,Y ) and (X,Z).
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variable obtained by Algorithm 1 applied to the two measurement sets{
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}1000

i=1
of samples lying on two tori. The parametrized samples

are colored according to the true value of the common variable.
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Figure 5: (Simulation I) The parametrization of the common variable ex-

tracted from the two measurement sets
{
s
(1)
i , s

(2)
i

}1000

i=1
. The parametrized

samples are colored according to the true value of the common variable. (a)

The samples s
(1)
i projected on the first two common components obtained by

CCA. (b) The samples s
(2)
i projected on the first two common components

obtained by CCA..
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Figure 6: (Simulation I) The propagation of functions. (a) The initial sample

in the space of the measurement set
{
s
(1)
i

}
marked in green. (b) The initial

sample in the space of the measurement set
{
s
(2)
i

}
marked in green. (c) The

propagated function after 10 alternating-diffusion steps in the space of the

measurement set
{
s
(1)
i

}
. (b) The propagated function after 10 alternating-

diffusion steps in the space of the measurement set
{
s
(2)
i

}
.
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Figure 7: (Simulation I) The propagated distribution after 10 alternating-
diffusion steps. (a) The alternating-diffusion in (X,Y ). (b) The alternating-
diffusion in (X,Z).
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6.2 Simulated data II

We repeat the experiment with “twisted” tori. Now, the measurement sam-
ples are given by

s
(1)
i =

 (R+ r(1)(1 + ρ cos(2πxi))) cos(2π(xi + θyi)) cos(2πyi)

(R+ r(1)(1 + ρ cos(2πxi))) cos(2π(xi + θyi)) sin(2πyi)

r(1)(1 + ρ cos(2πxi)) sin(2π(xi + θyi))

 (85)

and

s
(2)
i =

 (R+ r(2) cos(2π(xi − 2zi))) cos(2πzi)

(R+ r(2) cos(2π(xi − 2zi))) sin(2πzi)

r(2) sin(2π(xi − 2zi)))

 (86)

where θ = 4 and ρ = 0.25, for i = 1, . . . , n.
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Figure 8: (Simulation II) The two sets of measurement samples lying on two
“twisted” tori. The samples are colored according to their common variable.

(a) s
(1)
i , i = 1, . . . , 1000. (b) s

(2)
i , i = 1, . . . , 1000.

We generate n = 1000 samples of X, Y , and Z and their correspond-
ing measurements S(1) and S(2) in R3. The new sets of measurements are
presented in Fig. 8.

Figure 9 presents the 2-dimensional embedding of the sets obtained by
Algorithm 1 and diffusion maps. Similarly to the previous experiment, the
obtained new coordinates x̃i = (x̃i,1, x̃i,2) parametrize the common variable.
Figure 10 presents the results obtained by CCA in this case. As expected,
the linear CCA does not extract the common variable in these nonlinear
settings.
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Figure 9: (Simulation II) A 2-dimensional parametrization of the common
variable obtained by Algorithm 1 applied to the two measurement sets{
s
(1)
i , s
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i

}1000

i=1
of samples lying on the “twisted” tori. The parametrized

samples are colored according to the true value of the common variable.
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Figure 10: (Simulation II) The parametrization of the common variable

extracted from the two measurement sets
{
s
(1)
i , s

(2)
i

}1000

i=1
on the “twisted”

tori. The parametrized samples are colored according to the true value of the

common variable. (a) The samples s
(1)
i projected on the first two common

components obtained by CCA. (b) The samples s
(2)
i projected on the first

two common components obtained by CCA.
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6.3 Toy problem

We now revisit the toy problem from Section 1.1 and describe it in more
detail. Yoda’s platform rotates clockwise and completes approximately 310
cycles in the duration of the experiment, the bulldog’s platform rotates
counterclockwise and approximately completes 450 cycles, and the bunny’s
platform rotates counterclockwise and approximately completes 270 cycles.
See Fig. 1 for the setup illustration.

The sample set of n = 4000 pairs of synchronous image snapshots (mea-
surements) taken at the same time by Camera 1 and Camera 2 is denoted

by {s(1)i , s
(2)
i }ni=1. In other words, s

(1)
i is an image taken by Camera 1, and

s
(2)
i an image taken at the same time by Camera 2.

We apply Algorithm 1 to the two sets of images {s(1)i , s
(2)
i }i. We note

that the chronological order is not taken into account, although the images
are collected in a sequence. For comparison, we also use diffusion maps (see
A) to analyze each set separately.

Figure 11 presents 2-D scatter plots of two separate diffusion maps em-
beddings, i.e., x̃i = (x̃i,1, x̃i,2), created for the snapshots taken by Camera
1 and the snapshots taken by Camera 2. We observe that these diffusion
maps are torus-like. Figures 12 and 13 present the embedding generated by
Algorithm 1.

To demonstrate the notion of the “intrinsic” distance implied by the
embedding, we inset snapshots corresponding to several embedded points.
In Fig. 11, we observe that close embedded points correspond to similar
snapshots, and that remote points can correspond to snapshots where the
bulldog is in the same rotation angle. This suggests that the distance in the
embedding does not respect the common variable in this experiment – the
rotation angle of the bulldog. In Figs. 12 and 13, we observe that distance in
the embedding does respect the rotation angle of the bulldog: close (remote)
embedded points correspond to snapshots where the bulldog is in the same
(different) rotation angle.

Figures 14(a-c) show the absolute value of the discrete Fourier transform
of the principal component x̃i,1 obtained from the diffusion maps applica-
tions to the data from Camera 1, Camera 2, and from Algorithm 1. Figure
14(a) shows a sharp peak centered at 310. This suggests that the principal
component obtained based on snapshots taken by Camera 1 mainly captures
the frequency corresponding to the rotation angle of Yoda. In Fig. 14(b),
a sharp peak is obtained at 270 and suggests that the diffusion maps em-
bedding based on the snapshots taken by Camera 2 captures the rotation
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angle of the bunny. Figure 14(c) shows that the diffusion maps embedding
obtained by Algorithm 1 captures the rotation angle of the bulldog, the
common source of variability, as we obtain a sharp peak at 450.

The results from Figs. 11, 12, 13 and 14 imply a successful extraction of
the common variable by the alternating-diffusion algorithm. The separate
analyses of each set suggests that Yoda and the bunny are the dominant
objects in the snapshots acquired by Camera 1 and Camera 2, respectively.
Nevertheless, the alternating-diffusion is able to extract the “weaker,” but
common, bulldog.
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Camera 1 : 1523 Camera 2 : 1523

Camera 1 : 1913 Camera 2 : 1913

Figure 11: (Toy example) Scatter plots of the diffusion maps embeddings
x̃i = (x̃i,1, x̃i,2). A diffusion map of the snapshots taken by Camera 1 is
presented on the left, and a diffusion map of the snapshots taken by Camera
2 is presented on the right. In each row in the middle, we present a pair
of snapshots taken by Camera 1 and Camera 2 at the same time. the red
arrows point to the place on the diffusion map where each snapshot was
embedded. The bulldog is approximately in the same position in all the
snapshots presented here.
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Figure 12: (Toy example) Scatter plot of the diffusion map embeddings
x̃i = (x̃i,1, x̃i,2) generated by Algorithm 1. The same pair of images presented
in Fig. 11 are presented here, each pair is mapped to a point in the scatter
plot. Since the bulldog was in the same position in all the snapshots, all the
pairs are mapped to the same point.
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Figure 13: (Toy example) Scatter plot of the diffusion map embeddings
x̃i = (x̃i,1, x̃i,2) generated by Algorithm 1. Sample snapshots from Camera
1 are presented to illustrate the embedding where the bulldog is in different
rotation angles.
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Figure 14: (Toy example) The absolute value of the discrete Fourier trans-
form of the principal component x̃i,1 obtained from the diffusion maps ap-
plications to the snapshots taken by Camera 1 (a), Camera 2 (b), and from
Algorithm 1 (c).
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7 Conclusions

An alternating-diffusion method has been presented for the extraction of the
common source of variability from measurements in multiple sensors. The
method uses diffusion operators which are computed for each sensor sepa-
rately from its measurements. The information from the multiple sensors
is combined by creating a new alternating-diffusion operator, which is the
product of the separate operators. We have shown that this alternating-
diffusion operator is, in effect, a diffusion operator computed from data
where the common source of variability is the only source of variability.

The method has been demonstrated on simulated data and on an image-
processing toy problem. Alternating-diffusion is a data-driven method that
does not require strong assumptions on the nature of the sensors. There-
fore, this method is not restricted to computer-vision and image processing
applications, nor to multi-view problems, and it applies to multimodal prob-
lems, where the sensors are not necessarily of the same type. Moreover, the
method is not restricted to physical measurements, and the different “sen-
sors” can be replaced by different processing pipelines. Such applications
will be demonstrated in future work.
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A Diffusion maps

In this appendix we present a brief description of the diffusion maps algo-
rithm, presented in [31].
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Algorithm 2 Diffusion Maps

Input: Samples {si}ni=1 and a corresponding distance metric d(i, j).
Output: Embedding {s̃i}ni=1 and diffusion distances d̃t(i, j).

1. Compute the affinity matrix W as follows:

Wij = exp

(
−‖si − sj‖

2

ε

)
, ∀i, j = 1, . . . , n.

2. Compute the diagonal normalization matrix Qii =
(∑n

j=1Wij

)−1
.

3. Normalize the kernel K̃ = QWQ.

4. Compute the second diagonal normalization matrix Q̃ii =(∑n
j=1 K̃ij

)−1/2
.

5. Normalize the kernel K = Q̃K̃Q̃ for the second time.

6. Compute the n eigenvectors u0, u1, ...un−1 and eigenvalues
λ0, λ1, ..., λn−1 of K.

7. Create the n− 1 weighted vectors ϕ1, ϕ2, ...ϕn−1 by ϕi(j) = ui(j)
u0(j)

.

8. Build the d-dimensional embedding for t ≥ 0 of each point i = 1, . . . , n

by s̃i =
(
λt1ϕ1(i), λ

t
2ϕ2(i), ..., λ

t
n−1ϕn−1(i)

)T
.

9. Define the diffusion distance between each two points i, j by d̃t(i, j) =
‖s̃i − s̃j‖.
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