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Abstract
On Expressing the Mutation of State

in a Functional Programming Language

Juan Carlos Guzman
Yale University
1993

A long standing problem in functional programming languages is how to efficiently
manipulate large data structures since the underlying computational model adopted
by these languages makes no provision for reutilization of data structures—a small
change in a structure results in a completely new object. This might reflect the
programmer’s intention, but the original structure is usually no longer used after
the modification occurs, and thus it can be directly reclaimed in allocating the new
object with substantial savings in space and time complexity. However, there is no
effective method for detecting precisely which data structures can be reused. The
known heuristics are obscure. Even if a program is suitable for optimization, it is
up to the compiler whether or not to perform it. But most importantly, the user is
unable to ezpress the fact that the structure must be reused.

The expressiveness of modern (i.e., higher-order, nonstrict, polymorphic) func-
tional languages can be extended with the ability to destructively manipulate state
without losing referential transparency. Such an expansion can be designed in a way
that the resulting state semantics is easy to reason about and implies a direct and

obvious implementation. Further, information about mutability properties can be



totally reconstructed statically, and this information can be fairly intuitive for the
programmer to understand, and thus, a valuable aid in the development of programs
that handle state more efficiently.
To that effect, I present Single-Threaded Lambda Calculus—an extension to
Lambda Calculus with graphical rewrite rules, a notion of store, and mutators (i.e.,
- update!, etc.) to express mutations of state. In addition, I present an extended type
system that carries information about operational properties of programs, includ-
ing mutability. The type of a program is statically decidable by a type reconstruc-
tion algorithm. All expressions may exhibit type polymorphism, and are inherently
polymorphic in their higher-order operational properties. Further, Single-Threaded

Lambda Calculus is confluent when restricted to well-typed programs.
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Chapter 1

Introduction

In recent years various calculi, logics, and type systems that deal with notions of side-
effects, sequencing, and related operational concerns have emerged. The most notable
of these are Felleisen’s A-v-CS-calculus [Felleisen, 1988], which captures the essence
of languages such as Scheme with side-effects and first-class continuations; Girard’s
Linear Logic [Girard, 1987], which captures the essence of linear computations; and
Gifford’s Effect Systems [Lucassen and Gifford, 1988}, which capture within a type
system notions of side effects and aliasing. My work shares a bit of all these in both

motivation and technical detail, but differs in the following way:

My primary goal is to devise a method to express mutations to state in a modern
(higher-order, polymorphic, non-strict) functional language, without sacrificing ref-
erential transparency, and with a simple, easy to reason about semantics. Although
collectively these properties seem contradictory, I will describe a solution that I find

quite satisfactory.

Aside from the fundamental property of referential transparency, the two key
properties that I wish to maximize are simplicity and ezpressiveness. The system must
be easy to use: expressing mutations to state should be natural, and the resulting
behavior should be easy to reason about. I believe that A-v-CS-calculus, for example,

may be difficult for a programmer to reason about, and linear logic is too constraining

1



2 CHAPTER 1. INTRODUCTION

(and thus not natural). Effect systems are much closer to my goal, but the starting
point there is an imperative language, whereas mine is functional, and thus the system
falls short in meeting certain goals that I will describe shortly.

In this document:

1. I first describe Ay, or single-threaded lambda calculus, whose graphical rewrite
rules exhibit a certain degree of linearity properties (with respect to reduction

strategies). Confluence can be proven for A,; over all reduction strategies.

2. A class of mutators for expressing the mutation of state, is introduced, as well
as the corresponding é-rules which give the semantics of mutators within Ag;.

We show that A, is then no longer confluent.

3. I extend A,; with a polymorphic type and liability system which rejects all pro-
grams that may not be confluent. I show that the resulting calculus, poly-A,

is confluent yet able to express mutations of state in a natural way.

This extended type system is the most interesting aspect of my development,

and possesses the following properties:

(a) It is polymorphic in both types and mutability properties of objects. (In-

deed it is expressed as an extension of the Hindley-Milner type system.)
(b) Type reconstruction® is decidable.

(c) Non-destructive operations are permitted in contexts that allow destructive
operations (but not vice versa), and thus a subtype hierarchy is induced,

with coercions permitted between functions in the hierarchy.

The practicallity of my results should be obvious: Programming languages may
be designed around poly-),; that share all of the desirable properties of modern func-

tional languages such as Haskell [Hudak et al., 1992], yet are strictly more expressive

11 adopt the term type reconstruction to denote the process of inferring types in the absence of
explicit type annotations, to avoid confusion with the term type inference which is sometimes used
in contexts where a certain amount of type information is syntactically available.



in their ability to express mutations of state. This promises to solve a long-standing
open problem in programming language research: combining functional and impera-

tive programming techniques within one consistent framework.

1.1 Computation in Functional Languages

Functional programming languages are based on Lambda Calculus—a term rewriting
system that formalizes the meaning of functions [Barendregt, 1984]. This calculus has
a very simple and elegant semantics based on term reduction. The operational se-
mantics of functional languages, however, is that of graph reduction rather than term
reduction. The graph reduction semantics used is ‘compatible’ with the term reduc-
tion semantics implied by the calculus, with the advantage that graph sharing results
in shorter reduction sequences to normal form [Wadsworth, 1971]. A A-expression
is a term, and thus has no notion of sharing. Viewed as a graph, a A-expression is
a tree. However, applying graph reduction to A-terms will eventually develop into
shared graphs, with the advantage that since a shared graph corresponds to several
terms, reduction of a graph node corresponds to several term reductions. Consider,

for example, the A-term
(Az. zxz) ((Ay. y+y) 1)

Figures 1.1 and 1.2 show a possible term reduction path, and a possible graph re-
duction path for the above expression. It can be observed there that while the first
term reduction duplicated the subterm ((Ay. y+y) 1), the graph reduction version
did not duplicate the term. Instead, the first graph reduction induced sharing—e;
and e represent the same graph. Therefore, unlike in term reduction, reducing e,
results in ey being also reduced. The practicality of the results of graphvreduction are
such that functional programmers think in terms of graph reduction when reasoning

about operational properties of their programs such as sharing, and thus time and



4 1.2 STATE MANIPULATION—THE PROBLEM

(Az. zxz) ((Ay. y+y) 1)
((Ay- y+y) Dx((Ay. y+y) 1)
(1+1)=((Ay. y+y) 1)
2+((Ay. y+y) 1)

2%(1+1)

2x2

4

L A A

Figure 1.1: Term Reduction Steps for (Az. zxz) ((Ay. y+y) 1)

space complexity. For example, the above A-term, and

((Ay- y+y) D*((Ay- y+y) 1)

have the same value—they both reduce to 4—but the former does so in fewer graph
reductions. Figures 1.2 and 1.3 show a reduction path for each of these A-terms.
Note that while e; and e; correspond to the same graph (Figure 1.2), and thus
are reduced simultaneously, the reductions of €], and e, (Figure 1.3) are independent
since they do not correspond to the same graph, but are simply isomorphic—sharing

can only be obtained through (graph) reductions.

1.2 State Manipulation—The Problem

One of the ‘advantages’ of functional languages is that the notion of implicit store (a

huge data structure that holds all the values of your program) is absent. All values

used by a functional program have to be explicitly given; i.e., state is explicit.
Having no notion of sharing, lambda calculus also lacks the notion of store reusabil-

ity. This is a disadvantage when manipulating large portions of state, since a small
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Figure 1.2: Graph Reduction Steps for (Az. zxz) ((\y. y+y) 1)
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Figure 1.3: Graph Reduction Steps for ((Ay. y+y) 1)*((Ay. y+y) 1)
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modification of a large data structure may represent a duplication of the data. Ef-
ficient manipulation of large data structures has been a long standing problem in
functional languages. Solutions have been proposed mainly along the lines of ab-

stract interpretation, like the ones in [Hudak, 1986,Bloss, 1989].

The kind of large data structures that I will be considering throughtout this dis-
sertation is arrays, along with a reduced set of primitives: a constructor mkarray—
(mkarray i x) creates an array of i elements, all of them having the value x—an
update operation update—(update a i x) is an array similar to a except that ele-
ment i has value x—and an element lookup operation lookup—(lookup a i) returns

the ith element of the array.

In general, the value of the array before the update remains available even after
the operation is done. In the worst case, (part of) the updated array must be a
copy of the original. This becomes very expensive both in additional time and space
needed for the copies, and possibly in array access time when updates are used since
they tend to be used for every element of the structure. Further, there are data
structures, like files, or communication channels, that cannot be duplicated. In any
case, it more often happens that the value of the structure before the update is in
fact not used anymore after the update is performed, in which case reusing the now
inaccessible data structure to hold the new updated value would make more sense.
Clever implementations, of course, can improve the efficiency greatly, and indeed
this has been a rather popular research topic in recent years. The most successful
implementation will manage to perform all such updates by re-using the old array

and performing the updates destructively.

But regardless of how successful such optimization techniques might be, the prob-
lem is that a user has no simple way to reason about the efficiency, unless one has
perfect knowledge of the optimization methods being used in a particular implemen-

tation.



1.3 The Proposed Solution

The solution that I advocate is to allow the programmer to specify ezplicitly that
a particular update is to be done destructively (just as one would in an impera-
tive language), but at the same time not have to worry about destroying referential
transparency. However, the destructive updates cannot be expressed in the lambda
calculus, even with the graph reduction semantics.

Directly providing an operator update! similar to update but that would perform
an update in place (modify the structure itself rather than making the modification
in a copy) would result in a non-confluent calculus. For example, the value of the

following program would depend on the reduction order:

nonconfluent i =

let a = mkarray i 0

let x = lookup (update! a i 1) i

in (lookup a i) + x

It’s value would be 2 if update! a i was evaluated before lookup a i, and 1 other-
wise.

The previous example shows one instance where a destructive operation would
result in a referentially opaque program. The value of (part of) a is allowed to change,
and that value change is noticeable: (lookup a i) has access to the value of a after
it has been destructively updated. In this thesis I am concerned only on destructive
updates that result in referentially transparent programs. A necessary condition to
ensure referential trasnparency is that arrays that are destructively updated are not
shared at the time they are updated. To allow data reutilization while retaining

referential transparency I will need five things:
e a paradigm where destructive operations can be expressed—A\,;-calculus,

® a destructive version of update (let’s call it update!),
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e a copy operation that creates an unshared copy of the array,

e a way to sequence destructive operations (I will use let*, similar to a let

expressions but with a strict sequential semantics), and
e a type system to ensure that the programs are “safe.”

As an example, consider a function that swaps two elements in an array. Using the

non-destructive update, it could be written as:

swap a i1 j =

let x = lookup a i

y = lookup a j

in update (update a i y) j x

In the proposed type system, simply changing the update’s to update!’s will result
in an ill-typed program, because in general there is no guarantee that the lookup’s
will be done prior to the updates. However, if in addition, let is changed to let*,

the following well-typed program is obtained:

swap! a1 j =

let* x = (lookup a i)

y = (lookup a j)

in update! (update! a i y) j x

This program is simple, easy to reason about, and, for arrays of immutable types, has
the same efficiency as its imperative counterpart. Furthermore, my type system will

infer the type of swap! to be:
Array T B Int B Int = Array T

The ws above the first arrow indicates that swap “writes” its first argument, the rs
above the second arrow indicates that it only “reads” the second argument (but the

argument is not part of the result), and the cs above the third arrow indicates that



the value of the third argument is “captured” as part of the result. The type variable
T represents any type. Using this information the type sytem will ensure that swap is

only used in single-threaded contexts. For example, this expression will be ill-typed:
(swap! a i x, swap! a j y)

since swap! mutates its first argument and in this context must do-so in two incom-

patible ways. On the other hand, this use is well-typed:

if (lookup a i x)
then (swap! a i j)

else (swap! a i k)

since the type system “knows about” conditionals.

1.4 Related Work

Girard’s linear logic [Girard, 1987] is a constructive logic designed to capture linear
computations: variables can be used only once; not more, not less. Its advantages
are that space can always be reused, and in fact run-time garbage collection can be
avoided entirely. Its main disadvantage is that using variables non-linearly amounts
to explicit copying of its value, and it does not adequately distinguish the destruc-
tive accesses from non-destructive ones. I feel that the resulting programs are not
at all natural, at least with regard to what we are used to in modern functional lan-
guages. Wadler [Wadler, 1989] has generalized Girard’s system somewhat, but the
fundamental limitations of linear logic remain. ]

Gifford and Lucassen’s polymorphic effect systems [Lucassen and Gifford, 1988] are
targeted for an imperative language such as Scheme that has a purely functional sub-
language; the goal is to distinguish levels of “imperativeness” within a program. There
are important differences between my work and theirs, ranging from the nature of
the language (mine is functional, theirs is imperative), to the ability to control where

mutations happen (we control variables (objects), they control “regions” (heaps)).
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Felleisen’s A-v-CS-calculus [Felleisen, 1988] was designed to reason about programs
in Scheme-like languages. The approach is to develop a calculus that models the two
most salient features of Scheme: side-effects and continuations. It is notable in the
achievement of a calculus to reason about state, and in that sense shares much with
the calculus presented here. However, whereas A-v-CS-calculus is used to reason
about unrestricted side-effects in an imperative language, poly-A,; is used to reason
about a disciplined form of side-effects in a purely functional language. I hope that
the latter will prove easier, while at the same time providing enough expressiveness

to enable natural manipulations to state.

This work has also spawned the work of Odersky[Odersky, 1991] where a richer set
of operational properties was used to more precisely abstract the behavior of mutation

in a Functional Language.

1.5 Thesis Organization

Chapter 2 presents an overview of Lambda Calculus and Graph Reduction. Single-
Threaded Lambda Calculus (,;:-calculus) is introduced in Chapter 3. This calculus
enables the user to reason about sharing and mutation simultaneously. Also in Chap-
ter 3, the operational properties of A;-calculus that are of interest for this dissertation
are presented. The Extended Type System, a type system polymorphic in types, and
abstract properties of programs is presented in Chapter 4. A soundness proof relating
the type system’s inferred types to the actual operational behavior of the program
is also provided in that chapter. Several examples of actual programs typed with
the system are shown in Chapter 5. These present the reader how problems can be
attacked using the typed A -calculus. Finally, a type reconstructor algorithm is given
in Chapter 6, and an actual implementation in Chapter 7. The algorithm is proven
guaranteed to compute the principal type for any legal A:-expression for which a type

can be inferred.
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1.6 A Word on Referential Transparency

Referential transparency has long been a pretext for declarative programming. The
premise replace equals by equals has been the driving force for functional programming:
side effects are considered harmful, since they do not satisfy the premise.
Paradoxically, this notion, which is central to all declarative programming is not
precisely defined anywhere. Most people have some intuition of what it means, but
cannot describe it precisely. The following quotations are two attempts at character-

izing what referential transparency means:

“... each expression denotes a single value which cannot be changed

by evaluating the expression or by allowing different parts of a program
to share the expression. Evaluation of the expression simply changes the
form of the expression but never its value. All references are therefore
equivalent to the value itself and the fact that the expression may be
referred to from other parts of the program is of no concern.” [Field and

Harrison, 1988]

“... The most important feature of mathematical notation is that an
expression is used solely to describe (or denote) a value. ... Furthermore,
the value of an expression depends only on the value of its constituent
expressions (if any), and these subexpressions may be replaced freely by
others possessing the same value. ... every mathematician understands
that variables do not vary: they always denote the same quantity, provided

we remain within the same context of definitions associated with them ...”

[Bird and Wadler, 1988]

In the above quotations, the word value represents the meaning of the expression
under the semantics in which it is being considered—usually, the so called stan-

dard semantics. However, value may well represent the meaning under the static
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semantics—its type—or its complexity, or the meaning under any other semantics. I
will illustrate this by example:
“Untyped A-calculus” has been the language of choice for many advocates of

referential transparency. The expressions
length [1,2] + length [’a’,’b’]
and

f length
vhere f g = g [1,2] + g[’a’,’b’]

are interchangeable.

However, with the introduction of types and the design of the Hindley-Milner type
system [Hindley, 1978,Milner, 1978], the above expressions are no longer interchange-
able: The type property—static semantics—of these expressions differ (the latter
expression does not type check), although their most important characteristic—their
dynamic semantics—remains the same.

On the other hand, consider the expressions
fx+fx
and

y + y where

y=1fx

and their operational semantics in a typical functional programming language. The
static types for these expressions are the same but they are not operationally inter-
changeable because the complexity of the latter is less.

Then, as these examples point out, missing from the previous quotations is the
notion of semantics. Referential transparency needs to be defined in terms of the se-

mantics under consideration, since a replacement rule may be referentially transparent
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under one semantics, and opaque under another. Undoubtedly, the most important
semantics under which referential transparency is desired is the standard semantics.
But it is also true that transparency is desired for other semantics of interest.
Alternative semantics deal with aspects of the computation which are not captured
by the standard semantics. Type disciplines, strictness properties, partial evaluation
strategies have all been developed as alternative semantics. All of them attack prob-
lems which are at best semidecidablein their pure form, but, because these semantics
are used as compilation tools, the problems have to be simplified into decidable, and
even into polynomial heuristics. An interesting trade-off appears then, when decid-
ing which aspects of the semantics to simplify in order to make it decidable, while
retaining the spirit of the original property. The trade-off is typically solved by im-
posing additional restrictions that guarantee a decidable semantics at the expense of
weakening other properties like referential transparency. In the first example above,
the decision to restrict the domain of types to the so called shallow types—quantifiers
only permitted at the outermost level—led both to a semantics that can be computed
effectively, and to the opacity of the example. In this respect, the Hindley-Milner type
system has been criticized for the special treatment of the types of let-bound variables.

It has survived as a practical polymorphic type system for two reasons:

e the locality and simplicity of the opacity—transformation between A- and let-

variables are not transparent, and

e the opacity itself is the result of a trade-off which was solved in an ingenuous

way.

In my thesis, I address another facet of referential transparency—the opacity of
replacements under operational semantics, while maintaining transparency under the
standard semantics. Further, in my work, I will point out objects that are opera-

tionally distinct, but indistinguishable in terms of the standard semantics.






Chapter 2

Lambda-Calculus and Graph

Reduction

2.1 Introduction

Lambda Calculus (A-calculus) is widely recognized as the operational semantics of
functional languages. In turn, implementations of A-calculus are usually based on
Graph Reduction (GR), which provides an efficient way to transform expressions
into normal form. However, an essential difference between these two models of
computation, is that object sharing is present in graph reduction, but it is absent in
A-calculus. Graphs in GR constitute not only the program, but also the store while
expressions in A-calculus lack store. In fact, A-expressions are represented as trees in
A-calculus. Sharing is only an operational notion arising from the way expressions in
the calculus are implemented, and various implementations of the A-calculus are free
to introduce sharing for efficiency considerations. In this respect, a single reduction
on a shared graph corresponds to multiple reductions on the “corresponding” A-

expression.

This chapter presents both paradigms, along with basic results that will be needed

in later chapters. Lambda calculus is developed in Section 2.2, and graph reduction

15
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f,v € Ide 1identifiers
e € Ezp ezpressions
wheree = v identifiers
| (Av.e) A-abstractions

| (e1 e2) applications

Figure 2.1: Lambda Calculus Syntax

is introduced in Section 2.3. Readers familiar with either formalism may wish to
skip to the next chapter. In any event, readers should read the introductory part of
Section 2.3 since it introduces the notation for graph reduction used throughout this

dissertation.

2.2 Lambda Calculus—A\

In this section, I do a quick review of Lambda Calculus without, and with constants:
their syntax, reduction rules, and some of their most important properties, including

the Church-Rosser property.

2.2.1 “Pure” Lambda Calculus

Pure A-calculus is a language of identifiers, A-abstractions, and applications. Its
syntax is shown in Figure 2.1.

In applications (e; e2), e; is called the function, and e; the argument. In ab-
stractions (Av.e), v is called the bound variable or bound identifier, and e the body
of the abstraction. It is said that v is bound by (Mv.e), or that (Av.e) binds v. An
occurrence of an identifier is said to be bound if there is an enclosing A-abstraction

binding that identifier, and it is said to be free otherwise. A variable v is free in e if
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-/ Exp — Ezp — Var — Ezxp
kle'/v] = k
v[e//v] = ¢

nle'fv] = vy

(M.e)[e//v] = (Av.e)
(Mvy.e)[e’/ve] = (Av.e[e/va])
(e1 €2)[€'/v] = (ex[e/v] eale’/v]))

Figure 2.2: Substitution in A-Calculus

there is a free occurrence of v in e. A A-expression is closed if it does not contain any
free occurrences of any variable. The notation C'[ ] will be used to indicate a context
with holes—a A-expression with missing subexpressions. C [e] is the expression that
results from filling all the “holes” of C' with expression e.

Variable substitution e[e; /v] is defined in the A-calculus in the usual way. However,
care must be taken in order not to inadvertently bind any free variable of ¢’ in e. It
is assumed that free variables of €/ are not bound in e. Its definition appears in
Figure 2.2.

Binary relations can be defined on the expressions of this language, also known

as reduction rules. They are rules of the form

€1 — €2

B: ((Mv.e) e2) — erlea/v]

Figure 2.3: B-Reduction Rule for the A-Calculus
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and indicate that any expression Cle;] (any expression where e, occurs as a subex-
pression) can be reduced to Clez]. The B-reduction rule is one such relation, and
is defined in Figure 2.3. It states that any application for which the function is a
A-abstraction can be replaced by the expression resulting from substituting all free
occurrences of v inside €; by e; (i.e., e1[e2/v]). The occurrence of e;—a subexpression
of the form ((Av.e;) e3) for f—is called a redex (shorthand for reducible ezpressions),
and the resulting subexpression, e; is called the contractum. Computation proceeds
in this calculus by successive applications of the reductions rules.

Strictly speaking, e; —} ez if e; is obtained from e, by one application of the
B-rule (one-step f-reduction), e; —} ez notates the reflexive, and transitive closure
(B-reduction), and e; <7 e denotes the reflexive, symmetric, and transitive closure,
also known as B-conversion. Redexes and contracta are usually denoted by A. As
such, C[A] is an expression with redex A. Reductions are characterized by the re-
dex they reduce. Therefore, reductions will sometimes be written as e; —4 e if
e1 = C[A], ea = C[A"], and A —5 A'. A reduction path is a sequence of reductions
€0 —3 €1 —pg €2 —g .... Reduction paths can also be specified by just giving the se-
quence of redexes being selected for reduction. Thus eg —a, a,... denotes the reduction
path

€0 —A; €1 A, €2 A, .

This reduction sequence may be of finite, or infinite length. A reduction path is finite
if it is of finite length, and it is infinite otherwise. Figure 2.5 shows 2, a A-expression
that has an infinite reduction path.

An expression is said to be in normal form if the B-reduction rule cannot be applied
to any of its subexpressions. Normal forms are considered the result of computation
of expressions; i.e., their values. Figure 2.4 shows several examples of A-expressions.
There, 1 represents the Church Numeral 1, a A-calculus encoding for number 1. Sim-
ilarly 2 represents Church Numeral 2, and succ is the A-expression that impléments
the successor function. These three expressions are already in normal form. In that

figure, a series of reductions show that the normal form of (succ 1) is convertible
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1 = Azhy.(zy)
2 = AzAy.(zzy)
succ = Aa.Ab.)e.(b(a b))
(succ1l) = (Aa.Ab.Xe.(b(a b)) Az.Ay.(z y))

—g Ab.de.(b Az Ay.(z y) b ¢))
—g Abe.(b (Ay.(by) ¢))
—5 Ab.Ae.(b (be))

- 2

Figure 2.4: A A-expression and its Reduction to Normal Form

to 2. The expression Q) (Figure 2.5) has no normal form: it only contains a redex—
the whole expression—which reduces to itself. There are also expressions which may
have both finite and infinite reduction paths. That is the case of (Az.Ay.y) ©, which

is shown in Figure 2.6.

2.2.2 Residuals

Sometimes it will be necessary to keep track on how a particular subexpression e is
affected by a reduction path A; ... A, starting with the expression C[e]. It will usually
be the case that e will be transformed somehow. Maybe A; reduced a subexpression
of e, or it was duplicated, and each of its copies was affected in a different way. A
way to control how e changes, is by marking it with an identifier that will perdure the
reduction path. By examining the resulting expression €', and looking for the mark,
it can be determined which parts of the new expression came from e. This marking
must satisfy that it cannot alter the reduction process in any way. In order to be able
to provide such a marking scheme, a modification to the A-calculus needs to be done.

This modification affects both expressions (the markings), and reductions (how to
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Q = ((z.(zz))(Ne-(c2)))
Q

A

Figure 2.5: Expression with Infinite Reduction Paths

(AeAy.y)Q = Az dy.y)((Oz.(c2))(Az.(22)) — D1 (Ag.p)
A,

(A2 Ay.9)(Az-(z2))(Az-(z2)))

A,

(Az.Ay.y)((Az.(zz))(Az.(22)))

A,

(Az.Ay.y)Q

: A,
. v

I
o)

Figure 2.6: Expression with Finite and Infinite Reduction Paths
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reduce marked expressions). The marks are done by annotating the expression with

an integer index, as follows:

| v

| (Av.e)

| (e1 e2)i
An expression is indezed if its main node has an index. The notation e, will be used to
refer to an expression without indicating whether or not it is indexed. The reduction

rule A3 is modified to 8., which reduce redexes with, and without indices.

Be: ((Av.er)s €2)s — erfez/v]

Note that no new indices are generated by the application of the f,-reduction rule.
Rather, it consumes indexed expression nodes.

Let e,C[e] € Ezp Lift Cle] to C[e/] by replacing the occurrences of e with an
expression were all abstractions, applications, constants, and variables have been
tagged with tag 1. The residuals of e relative to A; ... A, is the set of occurrences of
maximal indexed expressions. This definition can be extended to control the residuals

of a set of expressions.

2.2.3 Confluence in A\-Calculus

As mentioned before, computation in A-calculus is performed by means of S-
reduction—expressions are reduced until normal form is reached. If a normal form is
obtained, then it is the value of the original expression. There is no guarantee that an
expression can be reduced to normal form, and even if it can, Figure 2.6 showed that
there can still be reduction paths that do not lead to normal form. Further, there are
expressions with more than one redex; Can there be expressions with more than one
normal form? Can it be guaranteed that, if a normal form can be reached, there will

be a way of reducing to it?



22 2.2 LAMBDA CALCULUS—A

B
B %
€3

€

€y €2

Figure 2.7: Church-Rosser Theorem for A-Calculus

These questions address the issue of confluence. Confluence is regarded as a
desirable property for any deterministic calculus. It states that any expression has at
most one normal form. As such, all reduction paths leading to normal form will result
in the same normal form. Fortunately, there is a landmark result in the A-calculus

that guarantees confluence. It is known as the Church-Rosser Theorem:
Theorem 2.2.1 Church-Rosser Theorem, [Barendregt, 1984, Theorem 3.2.8].

1. For all A-expressions e, €1, and e, if € =} €1, and e —7 g, then there erists

e3 such that e, —7 e3, and e; —7 €3.
2. If ey +% €3 then there exists e3 such that e —} €3, and e; —7 es.

Figure 2.7 shows a diagram that summarizes this result. Confluence is guaranteed as

a corollary to the previous theorem:
Corollary 2.2.2 [Barendregt, 1984, Corollary 8.2.9).
1. For all e, and ey, if e is a normal form of e;, then e; —% es.

2. For all e, e can have at most one normal form.
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It is often the case that a A-expression has several redexes. By virtue of the
Church-Rosser Theorem, it does not matter which redex is reduced, the normal form
for that expression can always be found if it exists.

In order to control how computation is performed, reduction strategies are estab-
lished. These are “selection policies” that limit the number of possible redexes to
reduce. Two of the most important strategies are normal-order reduction which for
any expression, the next redex to reduce is always the one that starts leftmost, and
applicative-order reduction, in which the redex to choose is the one that starts right-
most. A second version of the Church-Rosser Theorem establishes the fact that if
an expression has a normal form, it can be obtained by following the normal-order
reduction strategy (hence its name).

The reader is encouraged to read [Barendregt, 1984} for a throrough development

of the theory of the A-calculus.

2.2.4 Lambda Calculus with Constants

A very important variant of the Lambda Calculus is a version which allows the use
of constants, or atoms—objects of known semantics, such as the natural numbers,
and arithmetic functions on them. Constants are used pragmatically wherever it is
more practical to encode values as known objects, rather than in A-expressions, as
is the case of natural numbers. Also, functional languages are not really based on
pure A-calculus, but on this variant due to implementation issues including efficiency,
and closer machine representation of constants and functions on them. The syntax of
the A-calculus version that I will be using throughout the rerﬁainder of the thesis is
presented in Figure 2.8. Among the member of the constants’ set Kon are the boolean
constants true and false, the numbers and arithmetic operations, the conditional
function i f, the array constant Array, the array constructor mka, the lobkup function
on arrays lookup the update function on arrays update, and the fixpoint operator

fiz, with the usual reduction rules. I use the convention that (Array %e1...%; ... "e,)
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fiv € Ide identifiers

€ Kon constants

1 € IntC Kon integers

e € Ezxp eTpPressions
wheree = k constants
| v identifiers

| (Av.€) X-abstractions

| (e1 e2) applications

Figure 2.8: Syntax of Lambda Calculus with Constants

B ((Mv.e1) €2) —  erfea/v]
bis (if truee; e2) — e

(if false ey e) — e
Omka (mkaie) — (Array’e ... %)
bupdate (update (Array ley...%;..."%,) i €') — (Arrayle;...%e..."%,)
e (fiz f¢) = el(fiz f €)/]

Figure 2.9: Reduction Rules for the Lambda Calculus with Constants
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((Az.((+2) 1)) 1) —=p (+ 1) 1) —s 2

Figure 2.10: A A-expression with Constants and Its Reduction to Normal Form

denotes an array of n elements, with ‘e being the sth element.

The reduction rules for this calculus appear in Figure 2.9, and include the tradi-
tional B-rule, as well as several é-rules that encode the operation of constant functions.

A sufficient condition for this calculus to remain Church-Rosser is that the é-rules
satisfy the condition that at most one of them can be applied at any single redex (the
rules are disjoint), and that they are closed under reduction and substitution. This
is guaranteed by [Barendregt, 1984, pp 401, Theorem 15.3.3 (Mitschke 1976)]. As in
the case of pure A-calculus, normal-order, and applicative-order reduction strategies
are defined to control reduction to normal form. Figure 2.10 shows a A-expression

and its reduction to normal form.

2.3 Graph Reduction

In this section, I provide an overview of graph reduction (GR), a modification to the
A-calculus that formalizes sharing properties among expressions (alternatively called
graphs). Embedded in the calculus is a notion of location, although no formal store
is introduced. Hence, it is possible in this calculus not only to reason about the
value of a graph (or its normal form), but also to reason about the sharing properties
among its components. Its reduction rules are expressed as graph reduction rules,
rather than term reduction rules. Its syntax is introduced in Figure 2.11. The graphs
just introduced differ from A-expressions in that all sub-expressions are labelled; the
notation e’ attaches label £ to expression e. The intended operational semantics of

these labels is to represent sharing: expressions with the same label represent the
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f,v € Ide identifiers
k € Kon constants
1 € IntC Kon integers
£ € Label =1Int labels
g € Graph graphs
whereg = k¢ constants

| v identifiers
| (M.g)®  A-abstractions
| (91 g2)° applications

Figure 2.11: Syntax of Graph Reduction

same object. Operationally, this means that all occurrences of expressions with the
same label must be reduced at the same time. Several restrictions are needed to

guarantee that this property is satisfied across reductions. These are

1. graphs may only have a finite number of nodes;
2. if two nodes are labelled the same, then they have to be consistent:

e they have to be isomorphic, and

o the labels of the corresponding subgraphs must match;

3. the binding of a variable node must be consistent throughout the graph; to that
effect, a variable node cannot be bound in more than one place, and all variables
nodes with the same label must be bound at the same place, or else they all

must be free.

The first two restrictions imply that a node cannot be labelled the same as one

of its predecesor, thus disallowing any circularity; i.e., these graphs are really finite
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A
| AvA

((Az.(zh z8)2)5 (Az.(z8 zh)l)b)l ((Az.(zh 22)8)4 (Az.(zf 2%)ir)k)%

Figure 2.12: Two Different Graphs and Their Notations

DAGs. Graphs that satisfy these restrictions are called well-formed graphs. Graphical
representation is only possible for graphs that satisfy the first two restrictions. In
graphical representations there is no duplication of nodes with the same label—labels
are actually omitted. The third restriction imposes a discipline on sharing of DAGs:
a DAG with free variables can be shared as long as the variables remain free. A
similar restriction was first introduced by Wadsworth in [Wadsworth, 1971, chapter 3].
Well-formed graphs that satisfy restriction 3 are called admissible, and inadmissible
otherwise.

Figure 2.12 shows two graphs that differ only in their sharing properties. There
you can appreciate the difference between the alternative notations.

Let me first introduce a series of primitives that will prove useful in manipulating
graphs. Their formal definitions appear in Figure 2.13. For an arbitrary graph g, the
label set (lab g) is the collection of all labels that appear in g, the labelling relation £
is a mapping of labels to sets of subgraphs of g labeled by £ (£ is the label of the root
of the subgraph), and B associates the labels of every variable node with the labels of
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the lambda nodes where such variables are bound. There is also a special value free,
not in the domain of labels, which is associated with variables that are not bound.
This is called the binder relation, since it associates each variable with its ‘binder’.
Note that for any domains D, Dy, and Ds, the domain D — 2P1*D2 (the domain
of functions from D to sets of pairs (d;,d;), dy € Dy, dy € D) is isomorphic to the
domain D — D; — 2P (the domain of functions that map objects from D to func-
tions from D; to subsets of D). The following function F is an isomorphism between

them:
F (D — 2D1xD2) 5 D — D, — 2D:

Fg = hsuchthatVde D, d, € Dy, dy € D,
(di,d2) € (9d) «=d; € (hdd)
Hence, (L g) is a set of tuples, or a relation between labels and graphs, whereas
(L g ?) is the set of subgraphs to which £ is related to. Also, |D| is the cardinality of
the set D.
Well-formed graphs are precisely those for which the subgraphs associated with

any two occurrences of the same label must be identical; i.e.,
Vee (labg) |[(Lg o)l =1

for these graphs, the labelling function L is defined as
L: Graph — Label — Graph

-

Lgl = ¢giff ((,g)€(Lyg)

When a graph does not satisfy the property, then the graph is il-formed.
Admissible graphs [Wadsworth, 1971] are well-formed graphs for which each vari-

able node has exactly one binder;! i.e.,

Ve € (lab g) |(Bg £)] < 1

1Wadsworth’s binder relation associates variable names with places in the graph where they are
bound. The notion of binder relation introduced here is slightly different: it associates labels of
variables with points in the graph where the variables are bound. Labels of non-variable nodes are
associated with the empty set (@).
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lab: Graph — 2Lebe
L : Graph — Label — 267orh
= Graph N 2[7abeleraph
B: Graph — Label — 2LetetlJ{fTee}
= Graph — 2Lebelx (Label | J{free})

lab kt = {£}
labv* = {£}
lab (\v.g)* = {£}U(lab g)
lab (g1 g2)¢ = {€&}U(lab ¢y) U(lab g,)
Lk = {4k}
Lo = {(£vH)}
L (M.g)" = {(¢£ (Mv.g))}U(Ly)
L (g1 92)" = {4 (g1 92))}U(Lg1) U(Lg2)

Bg = B g (Mv.free)

B' kf env
B' vf env
B’ (Av.g)t env
B' (g1 g2)* env

1%}

{(¢,env v)}

B’ g env[v—/]
(B' g1 env) U(B’ g2 env)

Il

I

Figure 2.13: Important Relations for Graphs

Therefore, the binder function B is defined for admissible graphs as

-

B: Graph — Label — Label J{free}
Bgt = £iff (6,¢)e (Byg)
I will be using £, and B rather than £, and B in contexts when it is clear that the
graph is admissible, and thus these functions exist.
Figure 2.14 shows an admissible graph to the left, as well as an inadmissible graph

to the right. In the latter, z% is bound both to £4, and £;. The requirement of a graph

to be admissible is akin to the usual requirement that variables be bound in only one
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A
IVAVAN

((Az.(zf z9)%) (Ax.(z8 zh)2)e)a  ((Az.(zh zB)=)4 (Az.(z% 2%)%)ir)b

Figure 2.14: An Admissible, and an Inadmissible Graph

place. Substitution performed to inadmissible graphs may result in a new graph
which does not “behave” as intended; e.g., the expansion of the substituted graph
as a lambda expression may not match to the substitution of the lambda expression

represented by the graph.

Similar to A-calculus, the notation C'[ ] is used to indicate a context with holes.
C[g] means that the holes are filled with graph g. Note that g may be shared by

several graphs; in graph reduction, all instances of ¢ must be peers.

Labels were introduced solely for identifying peer expressions, and have no other
significance. Therefore renaming of labels has no relevance in equality of graphs,
provided the new label is not already used in the graph (no new sharing relations
are introduced) and the old label is replaced across the entire graph; i.e.. that all
the instances of the old label were replaced by the new one (no sharing relations are
eliminated). When one graph (g1) is obtained from another (g,) by doing such a

label substitution, the former is obtained from the latter by y-reduction (g2 —” g1);
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J-/]: Graph — Graph — Var — Graph

Hlg®fo] = ¥
fg® /] = ¢*
vi[g" Jvs] = of

(Mv.g)lg” /v] = (Mv.g)*
(Morg)'lg” fva] = (hv.glg® /vs])’

(91 92)1g“ o] = (aulg” /0] galg® [0])9)

Figure 2.15: Substitution in Graph Reduction

~-convertibility is the reflexive and transitive closure of y-reduction. Formally,
Clg] =" Clg"] iff €' ¢ (lab Clg))

where (lab g) is the set of labels identifying the nodes of g, and is defined in Fig-
ure 2.13.

2.3.1 Substitution

Substitution on graphs is essentially the same as substitution on A-expressions. It
definition appears in Figure 2.15. All subgraphs sharing the same label are called
peers and denote the same graph (the reduction rules act ‘simultaneously’ on them)
[Wadsworth, 1971, pp 146]. In constrast, there can be isomorphic graphs with differ-
ent labels, in which case they are reduced independently.

Note that sharing of graph nodes is made explicit in the substitution: all free
occurrences of the target variable are replaced with peers of the same graph ¢'. In
fact, no new labels are introduced by the substitution. ‘

Unfortunately, allowing unrestricted graph substitution of well-formed graphs may

render an ill-formed graph, since labels may be ‘incompatible’, i.e., a label may be
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used in both operands to label two different subgraphs. In operational terms, this
may be interpreted as having two different graph nodes in one memory location!
The following lemma characterizes a sufficient condition for obtaining well-formed

graphs from substitution.

Lemma 2.3.1 For all well-formed graphs g,, and g;. If (fgl) u (Egz) is a partial
function, then g,[g2/v] is also a well-formed graph.

Proof (fgl) U (fgz) is a partially defined function if, and only if the labels common
to both g, and g, are labelling the same subgraph in both graphs. O

2.3.2 Reduction Rules

Substitution to an admissible graph will behave as intended. However, reduction
rules do not act on graphs as a whole, but on particular subgraphs (the redexes). In
this case, admissibility is just enough to guarantee that the semantics of the graph
substitution be compatible with that of the term substitution for the reder, but not for
the whole graph. In order to ensure semantic compatibility for the whole graph when
the substitution operation is performed on a subgraph, an extra condition needs to be
imposed to the graph: The root of the subgraph where the substitution takes place
needs to be unshared, i.e., pointed to by only one node. Otherwise, the expression
resulting from the substituted graph may not be as intended.

In the specific case of the f-rule, in order to guarantee semantic compatibility of
substitution, and admissibility of the reduced graph, it is necessary to ensure that
the operator node of the redex is only accessible through this redex, i.e., that the
redex does not share this node. Such an admissible graph is called an R-admissible
graph. Figure 2.16 shows an example of an admissible graph and an R-admissible
graph derived from it.

One way to enforce the R-admissibility of the redex is to copy enough of the
function node of the redex in such a way that the resulting graph is still admissi-

ble, just when performing the f-rule. Some duplication of the function graph—a
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Az : Az Az
° ° °
z T z

((Az.(zh z4)2)e (Az.(2h zh)hk)hb)4 (Az.(zh 2h)2)e (Ag.(2h zh)b)e)

Figure 2.16: An Admissible, and an R-admissible Graph

A-abstraction—will take place. The whole A-abstraction could be copied, thus guar-
anteeing the R-admissibility, but that would be wasteful. A technique presented
in [Wadsworth, 1971] is to copy only the nodes from the abstraction that cannot be
abstracted away; viz., all the nodes that are ancestors of any occurrence of the bound
variable of the abstraction, including—of course—the root node of the abstraction.
That guarantees admissibility of the resulting graph, since all the occurrences of the
bound variable are duplicated to ensure that the original occurrences of the variables
are only bound to the original abstraction. Also, R-admissibility is guaranteed for
the redex, since a fresh (unshared) copy of the A-node has been created. It is actually
unnecessary to copy the root A-node in the copy operation, since it will be discarded
when the f-reduction takes place. In the remainder of the dissertation, I will call
this copy technique as Wadsworth’s copy operation. Its notation is g, where g is the
graph being partially copied, and £ is the node label of the A-abstraction binding the
variable that causes the duplication. By abuse of notation, §° may also be used, where

z is the bound variable of the A-abstraction. Figure 2.17 presents an implementation
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—['

let L = set of unused labels

P
(g',L') =C gl L (B gl)
in g
Cg'lLb (¢%, L) if ' & (b?)
Cg'l'Lb C'¢g* V¢ Lb otherwise
C'v{f}ULb (v%, L)

C' Qwv.g") {LIJUL b =

(()‘v'gll )Z’ L)

C' (97" 922) {IUL b = let (¢5,L1) = Cgi Lb
(gﬁ4aL2> = C 952 Ll b
in (g g5)% La)

Figure 2.17: Wadsworth’s Copy Operation

of the operation.

The notation C [g;] — C [g,] is used to indicate that all peers of graph g, in graph
C are simultaneously transformed to graph g,. Note that C|gi] will be well-formed
only if all occurrences of g, have been transformed, else £ will be associated with two
different subgraphs rendering the graph ill-formed. The rules are designed in such a
way that it is guaranteed that if one peer graph is a redex the all its peers are redexes,
and thus the simultaneous reduction of all the peers can in fact be performed. Note
that this parallels graph reduction where all peers of a graph are represented by a
single graph, and reducing that graph corresponds to the simultaneous reduction of

all the peers.

Computation is performed in graph reduction by applying a set of reduction rules
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Cla"lgz [v)]

B Cl(w.g)" g32)] —
big C[if true gigs)] — Clgi]

C[if false g1 g3)] — Clg3]
Smka C[(mkai g)] — C[(Array ¢ ... ‘¢%)]
bupdate C [(update (Array ‘g ...%;...7%) i ¢)] — C[(Array g4 ... %4t . .7gt)]
bix C[(fi-’f (w.g)®)] — Clgl(fiz (Av.g))'/v]]
Scopy C[(copy (Array gr' ...g7))] — CllArray gt ...g2")]

Figure 2.18: Reduction Rules for Graph Reduction

to the original graph, or “program”. These rules are shown in Figure 2.18, and qualify
as notions of reduction.
The notion of substitutivity in graph reduction is as follows (note the complication

introduced to ignore the labels):
If g1 — g2, then YC3g,Clg:1]—Clg5] &g2="¢5

One-step reduction in graph reduction does not satisfy the diamond property.
In fact, it is not even confluent in the traditional sense; Figure 2.19 shows a coun-
terexample. In Subsection 2.3.4, I will introduce a notion of confluence that graph

reduction satisfies.

2.3.3 Relation between A-calculus and Graph Reduction

In this section, I explore the relation between expressions in A-calculus and graphs
in graph reduction. On one side, graph reduction has a richer syntax, since it allows
graphs to be labelled whereas A does not allow any kind of labelling. Labelling, as

mentioned before, is the mechanism through which sharing properties are specified. I
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Az Az Az
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Ay z °
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g2 91 gs

Figure 2.19: Reductions that do not Satisfy the Diamond Property
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will define an unravelling function U that strips all labelling information from graphs,
removes all sharing information that could be akin to van Eekelen’s unravel [Eekelen,

1988].

U : Graph — Ezp

In the opposite direction, there are several sensible functions that map M-
expressions to graphs. Among them is the function that folds all identical subex-
pressions into the same DAG. Here I will only consider the mapping that transforms
each expression into a tree (a graph with no shared nodes). This seems natural, given

that A-expressions do not have any sharing information.
T : Exp — Graph

U and T behave respectively like abstraction and concretization functions in abstract
interpretation jargon; U removes information, and 7' provides just the most conser-
vative assumptions about any sharing information that it is not able to reconstruct.
As expected, U-T' = tdgg,, i.e., A-expressions do not gain, or loose any information
by being concretized to a graph, and later abstracted back to Ezp. On the other
hand, T-U # tdgrapr, Which reflects the fact that information is being lost by the
abstraction. However, T-U is idempotent (modulo 4-conversion), which means that
all sharing information is lost at once. The actual definitions of U, and T appear in
Figure 2.20.

In his dissertation, Wadsworth introduced Graph Reduction as an operational
semantics for the A-Calculus. There he provided projections between the language
of A-expressions and that of admissible graphs. He also showed that reduction steps
within graph reduction corresponds to reduction paths in A-calculus. However, due to
the fact that graph reduction incorporates the notion of sharing, there are graphs that
are not fgr-convertible, but when their sharing features are ignored via the trivial
abstraction to A-calculus, the resulting expressions are Sj-convertible. Figure 2.21
exhibits an example of such an anomaly. This fact was not relevant in Wadsworth

work, since he was interested in abstracting the sharing features away.
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U: Graph — Ezp
T: Ezp— Graph
T': Ezp— Label* — Graph

Ukt = &k

Udvt = v
U (d.g) = (l.(Uyg))
Uerex)l = ((Ue)(Uer))

Te = let (g,Ls)=T"e Ls
in g

T k?¢:Ls
T'vi:Ls
T' (Av.e) £:Ls

I

(K, Ls)

(v, Ls)

let (g,Ls'y=T"e Ls

in ((Av.g), Ls’)

T (ey ex) £: Ls = let (g1,Ls1) =T e; Ls
(go, Ls2) =T ey Lsy

in (g1 92)" Loa)

il

Figure 2.20: Functions U and T

2.3.4 Confluence in Graph Reduction

As it was shown in Figure 2.19, graph reduction is not confluent—in the spirit of the
Church-Rosser Theorem presented in Section 2.2.3—because the sharing properties of
graphs are not preserved across different reduction paths. However, different normal
forms for the same graph differ only in their sharing properties: their unravellings are
isomorphic.

Confluence is a desirable property to have in any calculus, since it guarantees de-

terminism. In general, confluence is dependent on a subsidiary property—uniqueness

of normal form in A-calculus. However, the property of interest may not be that
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/N
WATAN

g 2 succ T
/ \ g 2 (succ 1)

(Az.(g z z)) (succ 1)

Figure 2.21: Non-3-Convertible Graphs whose A-Expressions Are 3-Convertible

one, but any property of the normal form, or, in general, any property of the reduc-
tion sequence. This shows that the notion of confluence is as relative as referential
transparency (see Appendix 1.6), and should be interpreted as the satisfiability of
a uniqueness property, rather than being fixed to its notion in A-calculus. In graph
reduction, the uniqueness of the unravelling of the normal form serves as the notion
of confluence. This property reflects the intention of computing via graph reduction,
but reasoning about the value of the associated expressions within the framework of

the A-calculus.

Lemma 2.3.2 Let g be a graph. If g —p:_ ¢’ then (U g) —p: (U ¢').

Proof By induction on the number n of f5-reductions needed to reduce g to ¢'.

9=90 2pep N Zpop - perIn =9
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Bar ,

(Ug) ——=(Ug')
A

Figure 2.22: Relation Between £, and Sgr (I)

For each fggr-reduction, taking g¢; into ¢;41 by reducing redex A corresponds to mul-
tiple simultaneous reductions of (U g¢;) to (U g¢i4+1), each of them reducing a peer of

the redex A. Figure 2.22 provides a visual representation of the relation. O

Lemma 2.3.3 Let g be a graph. Then g is in normal form iff (U g) is in normal

form.

Proof Suppose g is not in normal form; i.e., it has a redex ¢’. Then (U g) has all
peers of (U ¢') as redexes.
Conversely, suppose (U g¢) is not in normal form, so it has redex e. Then e must

correspond to some ¢’ in g such that U ¢’ = e. Therefore ¢’ is a redex in g. O

Theorem 2.3.4 Church-Rosser Theorem for Graph Reduction.

1. For all graphs g, g1, and g2, if g =5 . 91, and g —ep 92, then it is true that
(U g) =5, (U4'), (U g) —p, (U g"), and there ezists e such that (U ¢') —3, e
and (U ¢") =}, e.

)

2. If g1 «}_, g2 then there exists g3 such that g —her 93 and g2 =% gs.
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Figure 2.23: Church-Rosser Theorem for Graph Reduction

Proof The theorem states that the diagram of Figure 2.23 is true. The two upper
boxes are consequence by Lemma 2.3.2. The lower diamond is the Church-Rosser

theorem for A-calculus (Theorem 2.2.1). O

Extended confluence is guaranteed as a corollary to the previous theorem:

Corollary 2.3.5 1. For all g, and g3, if g2 is a normal form of g,, then there
exists g3 such that g1 =% gs, and (U g3) = (U g¢,).

2. For all g, if g1,...,9n are all normal forms of g, then, for all 1 < 1,57 <mn,
(U @) = (U g;)-

Proof By simplification of the diagram in Figure 2.23, when ¢’, and ¢” are assumed

to be in normal form. The simplification is shown in Figure 2.24. O

Theorem 2.3.4, and Corollary 2.3.5 are of particular importance, not only because
they guarantee confluence in the calculus, but also because they relate graph normal

forms to A-normal forms. In fact, the following theorem states that a M\-expression can
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Figure 2.24: Confluence for Graph Reduction

be transformed to a graph, and be reduced via normal order reduction to a normal
form in graph reduction, and transformed back to a A-expression. The resulting

expression—in normal form—is guaranteed to be the same one computed by 3*.

Theorem 2.3.6 For all A-expressions e, if e is reducible to a A-normal form €', then

(T e) is reducible to a graph normal form g'.

Proof This is a restatement of Wadsworth’s Theorem 4.4.4 [Wadsworth, 1971, pp
176]. O

2.4 Summary

Lambda calculus and graph reduction were introduced in this chapter. Confluence
properties were reviewed for both paradigms. Transformations between both mod-
els were presented. These are of particular importance since lambda calculus is the
semantics of choice for functional languages, while graph reduction is just an effi-
cient operational semantics for lambda calculus. With these transformations, users
take advantage of faster computation by graph reduction while reasoning about their

programs within the lambda calculus.
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Chapter 3

Single-Threaded Lambda Calculus

3.1 Introduction

The basic elements of lambda calculus and graph reduction were presented in Chap-
ter 2. My interest in graph reduction is to use it as the basis for Single-Threaded
Lambda Calculus—an extension of graph reduction were space reutilization can be

expressed.

Object sharing becomes an issue when manipulating aggregate data structures,
like arrays. These can be manipulated monolithically—the data structure is built
up, and all values within it are specified at the same time—or incrementally—small
changes to the structure are performed in order to update the contents of a certain
field. In case they are manipulated incrementally, it is usually the case that the
previous data structure is not manipulated any further. Several works have been
done in order to detect when this is the case and extend the implementation to reuse
the old data structure rather than creating a new one with the change in it. However,
this optimization is performed “behind the scenes”, and there is no feedback to the
user to report where the optimization was done and where it was not done. In any
case, the user intention of reusing a data structure cannot be expressed, therefore

the user has to rely on the implementation to make sure that his/her intentions were

45
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detected by the compiler.

I have followed another line of reasoning, in which the user is allowed to be explicit
about his intentions of reusing an object. It is thus guaranteed that any implementa-
tion of the program will reuse the object. For this purpose, I introduce an alternative
model of computation, single-threaded lambda calculus (A-calculus), an extension to
graph reduction that allows the user to reason about sharing, and how to manipulate
and reuse shared objects.

The advantage of A,;-calculus over A-calculus and graph reduction is that the user
has a simple way to reason about efficiency. Explicit sharing introduced by the user
is not dependent on a particular implementation, but it is guaranteed to happen on
all conformant implementations. In order to accomplish this goal, it is necessary to

understand the notions of
1. sharing of structures,
2. structure copying,
3. updating a structure (or store reuse), and
4. sequencing expressions.

Section 3.2 extends graph reduction to include notions 2, 3, and 4. Section 3.3
summarizes Single-Threaded Lambda Calculus. Section 3.4 characterizes operational
properties of the extended calculus. Section 3.5 introduces abstract uses, and abstrac-
tion of the operational properties. Finally, Section 3.6 presents abstract liabilities, a
general technique designed for computation of abstract properties within a type sys-

tem.

3.2 Extending Graph Reduction

Graph reduction already has the notion of structure sharing. I will introduce three

other elements, one by one, and then form a new calculus—Single-Threaded Lambda
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Calculus—which

e structure copying,
e mutation of state, and

® sequencing expressions.

3.2.1 Introducing Copying of Structures

The first extension to graph reduction is to provide a primitive to explicitly copy a

structure. This takes the form of a constant function with the following é-rule:

bcopy C[(copy (Array gi* ...g&))] — C[(Array gi*...gt)]

Note that the rule copies the array while preserving the sharing properties of its

elements.

3.2.2 Introducing Mutation of State

Intuitively, a mutation is a change of value of any object. In the context of graph
reduction, a mutation is any change on the contents of any pre-existing graph node
in the graph to which the rule is applied.

Implementations based on graph reduction use mutation to implement graph sub-

stitution. Specifically, the substitution §1°[g2/v] in the B-reduction rule

B Cl(wv.g)® g2)2] — Clar*lg2/v]]

is implemented as a mutation of §;*. However, given that g7 is a copy of g¢;, it can
be proven that any node that is changed in g7 is not in g¢;; i.e., it is newly created by
the copy. Thus, the mutation does not occur in any node of the original graph g.

If the Bgr-rule were not so precise as to establish that the function needed to be

copied, but rather, that the graph C [((Av.g1)% g2)*] be R-admissible in the reducing
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redex {thus implying that when the graph is R-admissible, no copy would be neces-
sary), then there would be cases for already R-admissible graphs where the original
graph was mutated. However, the mutated g; would only be visible through the
hole C'[ ] in this case, and thus, the resulting graph would have the same unravelling
regardless of its mutation.

In other words, if (:g — ¢’ is a rule in the calculus, a mutation is any change of g
implied by the application of the (-rule. The change consists of a label that appear
in both g and ¢’ labelling different objects. The rule is called a mutator rule, and the
redex g is called a mutator. As an example of a mutation, the following é-rule for
update! specifies that the label associated with the original array be the same as the

label associated with the resulting array.

bupdater  C [(update! (Array 'g1...%;...7%.) 1 ¢')] — C[(Array ‘g, ...%"...",)]

The fact that field ¢ of location £ is mutated is represented by using the same label on
both sides of the arrow for the modified object in location £. In graph reduction terms,
the graph node is rewritten, or mutated to reflect the change. Unfortunately, the
introduction of such rules renders graph-reduction non-confluent, as the example of

Figure 3.1 shows, where different values are obtained for different reduction sequences.

3.2.3 Introducing Sequential Constraints

The Church-Rosser property is one of the most important features of the A-calculus.
With the introduction of mutator rules—as the example of the previous section points
out—graph-reduction loses this property: i.e., there are graphs that reduce to different
normal forms on different reduction paths. For a deterministic language, this is
very distressing, but is a consequence of the unrestricted coexistence of sharing and

mutation. In fact, graph reduction is confluent, and so is a calculus where no sharing
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(f (update! a' 1 1) (update! a' 1 0))

(update! a' 1 1) (update! a' 1 0)

(f a'[1—1] (update! a'[1—1] 1 0)) (f (update! a’[1—0] 1 1) a'[1—0])

(update! a'[1—1] 1 0) (update! a’[1—0] 1 1)

(f a'[1-0] a[1-0]) (f a'[1-1] a'[1-1])

Figure 3.1: Nonconfluent Expressions Involving Mutators

is available, as the A-calculus. Note that the substitution operation on graphs—a,
mutation operation—is only accessible “packaged” within #-reduction, along with a
copy operation that ensures confluence. This is an example of a controlled coexistence
of sharing and mutation.

In an otherwise non-confluent calculus, a way of guaranteeing confluence is to
restrict redexes only to those that satisfy a property which, in turn, would imply
confluence.

This can be done either by specifying a reduction strategy, and verifying that
confluence is satisfied by all reduction paths that are permissible under the reduction
strategy, or by modifying the calculus in such a way of restricting the choice of redexes.
In any case, a well-formedness property may be imposed on expressions in such a way
that the confluence of the calculus can be proven when restricted to well-formed
expressions.

The choice of the solution largely depends on the nature of the problem being

solved. In that respect, reduction strategies can be devised to select redexes from
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within a particular group. Chosen redexes usually satisfy a global property on the
expression, such as being outermost redex, or being leftmost redex, etc. These usually
work well when the property being verified is a property on the current expression.
On the other hand, modifying the calculus to devise notions of reduction that would
work as intended have the advantage that the restrictions are encoded within the
would-be redex, and thus is a local property, and the restrictions can be altered by
the modified reduction rules. In either case, confluence becomes an issue to be solved
if the starting calculusis non-confluent.

In this dissertation, sequential constraints are added to graph reduction in two

fashions:

e by introducing a new type of application, evaluated in applicative order, that
would indeed guarantee—for first order values—that the argument to the ap-
plication is in normal order before the reduction of the applicative redex takes

place; and

¢ a control mechanism whereby it is guaranteed that only certain redexes can be
considered for reduction.
Strict Application

A new application is introduced to graph reduction with the following syntax:

[ {g1 g2)¢ strict applications

with extension to the § reduction rule to reduce only whenever the argument is in

weak head normal form. This is the standard implementation of call by value:

B CRMw.g)" g2)] — Clales /)]
if g2 is in whnf
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Weak head normal form (whnf) is a term used to indicate that the form of g, is not
and application: it can be either a variable, a constant, an abstraction, or a data
structure whose elements have to satisfy these same constraints. For expressions that
evaluate to basic domains (integers, etc.), weak head normal form and normal form

are the same. An array is in weak head normal form only if all its elements are.

Boxing

The solution proposed in order to regain confluence in the A-calculus with mutators

involves

e an extension to the calculus to introduce notions of reductions that, in effect,
impose sequentiality restrictions to the order on which redexes can be chosen

for reduction, and
¢ a well-formedness property of graphs which takes the form of a type property.

A characterization of well-formed graphs, as those that satisfy the single-threadedness
restriction will be introduced later in the chapter.

As it is, A-calculus already has a notion of sequentiality, based exclusively on data
dependency. Data dependencies control where redexes appear, and it is possible to
write expressions for which there is only one redex at any point in their reduction
path, like in continuation passing style. However, sometimes sequentiallity is desired
but there is no data dependency to enforce it, as in the case of conditionals. For

example, in the A-expression
(if ee €2)

the expression e; is “needed” if, and only if, e; is not. Without going into the details
of strictness analysis, and with the assumption that if ¢ does indeed reduce to normal
form € then € is either true or false!, it might well be advantageous to fully reduce

e before reducing any single redex in e; or ;. Enforcing this fact in graph reduction

1This assumption is guaranteed by a type discipline: e must be of boolean type.
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has the added advantage of allowing mutators to be in either e, e;, and/or e,, and
restrict when they can be reduced. In fact, if no reductions in e, and e, take place
until the :f node is reduced, then mutations in e; will only be reduced if e, is not
reduced, and vice versa.

Sequentiality is introduced by segregating graphs nodes that can be considered

for reduction from those which cannot. This can be accomplished in two ways:
e using reduction strategies that enforce the sequentiality constraints, or
e by building these constraints within the reduction rules of the calculus.

The first option would lead to a calculus which is not necessarily confluent over all
reduction strategies, but which would be confluent for those reduction strategies that
satisfy some property The second option, on the other hand, can result in a “fully”
confluent calculus and is the option we choose here. A key advantage of this approach
is that deciding whether an expression is a redex is a local problem—the decision never
depends on the context in which the expression appears.

The way we accomplish this is to mark syntactically with a boz all would-be
redexes that cannot be considered for reduction. These nodes are said to be bozed,
and unbozed nodes are those which are not boxed. Boxed nodes may have unboxed
nodes among its descendants. The reduction rules are modified so that new nodes can
become susceptible for reduction as the graph is reduced (unbozing—this is typically
done when sequentiality restrictions are lifted). Also, once a node becomes unboxed
it never becomes boxed again. Thus, boxing is a mechanism through which sequential
restrictions on how to reduce the expression are imposed. These restrictions are lifted
when appropriate redexes are reduced, i.e., when the sequential restriction has been
satisfied.

Technically, boxing is considered an extension to the language of expressions by
providing two versions of each expression type, one boxed, and one unboxed. Below

are the extensions to A-calculus and graph reduction that support boxing.
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Boxing in A-calculus

In this subsection, the concept is introduced in the familiar framework of the A-
calculus. Although A-calculus does not need boxing, it is introduced here because
this calculus is presumed to be a familiar framework for the reader, and because
comparisons between this calculus and graph reduction are useful.

As was explained above, boxing is introduced by extending the syntax of expres-

sions to boxed nodes:

| ka | va

| (Av.e)n

| (61 62)(:1 | {e1 e2)o

| (2f ep € €a)n
where eg means a boxed expression. The notation e, is used to represent an expression
e without specifying whether or not it is boxed.

Users are not supposed to directly write boxed expressions. Instead, there exists

a boxing function B : Ezp — Ezp which takes a standard A-expression and returns

a corresponding one with the following restrictions:

e The consequent and alternate subexpressions of ¢ f-expressions are boxed, thus
imposing the restriction that the expression corresponding to the predicate must

be reduced before any redexes in the branches.

e The body of lambda abstractions are boxed to ensure that only closed expres-

sions are reduced.

e No other nodes are boxed.

Its definition appears in Figure 3.3. Figure 3.2 gives an example of a boxed expression.
The function O : Exp — Exp, on the other hand, is provided to opening selected

boxes of an expression. It does not recursively unbox expressions within lambda
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e = (Az.My.y) ((Az.(z 2)) (Az.(z 7))
Be = (Az.(Ay.yo)o) ((Az.(zo zo)a) (Az.(zo za)n))

Figure 3.2: A A-expression and Its Boxed Counterpart

abstractions, nor does it unbox the consequent and alternate subgraphs of ¢ f-nodes.
Its precise definition appears in Figure 3.3.

Finally, the function & : Ezp — Ezp is the unboxing function: it removes any
boxes in the expression. Its definition also appears in Figure 3.3.

A partial order < is defined on the structure of boxed expressions as follows:

e; <X ey if
® €1. = €s., and

e for each boxed subexpression of e;, the corresponding subexpression of e, is also

boxed.

i.e., e; X ey if €1 is “less constrained” by boxing than e;.
The reduction rules are changed so that the new B-rule unboxes the resulting
expression, and the new é;¢-rule unboxes the consequent or alternate expression de-

pending on the predicate. Formally, the new rules are as follows:

B (Az.91) 92) — (O gqilg2/2])
bis  (if truegr g2) — (O ¢1)
(¢f false g1 g2) — (O g2)

Lemma 3.2.1 For all expressions e such that (B e) —* ¢" then, e % €', and
e X (B¢).

Figure 3.4 shows graphically the contents-of this lemma.
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Figure 3.3: The “boxing” function B for the A-calculus
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(Be')

Figure 3.4: Weakening of Boxing Constraints by Reduction

Proof This proof is essentially the weak diamond property proof necessary to prove
that B is Church-Rosser, except that fewer cases exist. Let us examine the rela-
tive positions of A, and A,, the redexes of e that cause reductions to e;, and e,,

respectively.
® Al = Ag, Then €1 = €9 == €3.

e A;NA; =2 (the two redexes are disjoint). Then e —?! ¢;—32 ¢35, and

e —B2 62—->A1 €3.

e A; C Ay, then it must be the case A, appears in the argument of A; (it would
be boxed otherwise). es can be constructed by either reducing A;, and then
_ reducing all occurrences of A, (note that (A; does not affect the boxing property
of any other expressions in A;). It can also be obtained by reducing A, first,
and then reducing A;. In both cases, the boxing property the A,-redex remains

the same.
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Theorem 3.2.2 The A-calculus thus modified to support bozing is Church-Rosser.

Proof This is a direct consequence of Lemma 3.2.1, which ensures the weak diamond

property for Ap, and the fact that 85 is a subset of 5. O

Boxing in Graph Reduction

Boxing is introduced in graph reduction in a fashion similar to the way it was intro-

duced in the A-calculus.

| kG | g
| (Mv.g)g
| (91 92)é | (g1 gz)é
| Gf 95 9¢ 9)0

| (fiz 9)§

| (copy 9)h

with the corresponding modifications to the reduction rules:

B Cll(we)s e)?] = CHO &ler/v])]
by C[if true e; e2)'] — Cf(O &1)]
C[if false e; €2)'] — C[(O e)]

Also, the functions O, and B described for the A-calculus are defined similarly for
graph reduction, with the caveat that B is only well-defined for trees, as it is intended
that the boxing of all peers of a node be consistent (either all are boxed, or none are).

Although graph reduction plus boxing is confluent, the introduction of mutators
still renders a non-confluent calculus. The Example 3.1 shown previously is still
a valid example of non-confluence in graph reduction thus modified. However, with
boxing, it is much easier to impose restrictions that will result in a confluent reduction.

Figure 3.5 shows an example of a confluent graph due to boxing.
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B (if true (update! a' 1 1) (update! a' 1 0))
(update! a' 1 0)

(update! a' 1 1)

al[li—)ll

Figure 3.5: Example of a Confluent Graph using Boxing
3.3 Single-Threaded Lambda Calculus—);

Single-Threaded Lambda-Calculus (A4-calculus) is a calculus that gathers the modi-
fications suggested in Section 3.2. Note the presence of the strict application. Also,
the conditional z f, fixpoint operator fiz, and copy function copy are presented as part
of syntax. Although not strictly necessary, this will be useful in stressing the fact
that the type system presented in Chapter 4 handles them in a special way. The copy
operator creates an unshared copy of its argument while preserving sharing properties
internal to its argument. Its syntax is introduced in Figure 3.6, and Figure 3.7 shows
the corresponding reduction rules.

Concepts leading to R-admissible graphs extend directly to Ag-calculus. Substi-
tution is also ‘borrowed’ from graph reduction. Also, the Church-Rosser theorem for
graph reduction holds in Ag-calculus for those graphs that do not contain mutators.

An advantage of this computational model over the A-calculus is that it allows the
user to reason about sharing and object reuse without the introduction of a formal
store. Thus, the user has a simple way to reason about efficiency. Explicit object
reutilization introduced by the user is not dependent on a particular implementation,

but it is guaranteed to happen on all conformant implementations.



59

fiv € Ide identifiers
k € Kon constants
i € IntC Kon integers
£ € Label = Int labels
g € Graph graphs
where g 1= K constants
| v identifiers
| (Av.g)* abstractions
| (g1 92)° applications
| (91 92)" strict applications
| Cf gp 9c ga)° conditionals
| (fiz g)* fizpoints
| (copy g)* copy primitive

Figure 3.6: Syntax of Single-Threaded Lambda Calculus

However, the introduction of object reutilization renders the calculus non-
confluent. Even with the extra apparatus provided by adding sequentiality the result-
ing calculus remains non-confluent. A new notion of well-formedness is needed. One
that can guarantee only to be satisfied by confluent graphs. A method for providing
such a property is to actually perform all possible evaluations of the graph and verify
that they all provide the same normal form. Unfortunately, finding a normal form is
a semi-decidable problem (a problem which is not enumerable, but recursively enu-
merable), which means that there is no effective algorithm (an algorithm that always

terminates) to compute it.

Other approaches must be taken. Mine is to enforce a type system on graphs such
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B Cll(w.g1) ¢7)] — Clalgs/v]]
Cli(w.g)s g2)] — Clglgr/v]]
if g2 ts in whnf

bi C[(if true giga)] — Cloi]

C[(if false g1 g3)] — Clg3]
bmka ClimkaigY)] — C[(Array 'y’ ... 4]
bupdate C[(update (Array Ygf...%;..."g%) i ¢%)] — C[(Array 4 ... ¢, 7g')]
Supdater  C [(update! (Array Yg; .. ‘g, ") i g)] = Cf(Array gi...% .. . "g,)Y]
bfic C[(fiw (M.g)4)] — Clg[(fiz (Av.g))*/v]]
Beopy C[(copy (Array g*...g7))] — C[f(Array git...g%)]

Figure 3.7: Reduction Rules for Single-Threaded Lambda Calculus

that graphs that satisfy the type discipline are guaranteed confluent. The discipline
must analyze an abstraction of some operational properties of graphs, such as se-
quentiality constraints, as well as which graphs may be subject to reutilization. The
availability of such a property provides us with a confluent calculus for well-formed
expressions. This type system will be introduced in Chapter 4. The remainder of this

chapter provides the foundation for that tool.

3.4 Operational Properties of )\ ;-Calculus

As was shown in Example 3.1, Ay-calculus is not confluent. In order to guarantee con-
fluence, I have chosen to impose a type discipline on the language that discriminates
confluent graphs from possibly non-confluent ones. This corresponds to a restric-

tion on the language to well-formed Ay-graphs. In this section, I present operational
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properties on Ag-graph that precisely characterize confluent graphs. The elaboration
of a type system that calculates abstractions of these properties is the subject of
Chapter 4.

I'am interested in capturing a combination of three key properties of how objects

are used when an expression is evaluated to normal form:
o Mutability—an object may be read-only, or written.

e Sharing—an object may be captured by another object (i.e. shared as substruc-

ture), or it may be free.

o Linearity—an object may be single-threaded (i.e. used at most once), or multiple-
threaded.

These properties carry a fair degree of intuition, and I feel are the minimum necessary
to reason about a suitably rich notion of state. Of course, these properties cannot
be inferred precisely; I only ask that the static type system capture and enforce a
useful approximation to them (in the same way that the Hindley-Milner type system,
for example, approximates a more general notion of types). This dissertation only
deals with these three properties, but the methodology is valid for any number of
them. The different abstractions to the operational properties of interest (abstract
uses) are presented in Section 3.5, and the technique through which these properties

are associated with objects in the program (liabilities) is introduced in Section 3.6.

3.4.1 Definitions

Definition 3.4.1 Given a graph g with sub-graph ¢' (e.g., g = C[g']), and a redex
A. it is said that ¢’ is mutated by A if

e A is a mutator,

o g’ is the the graph node that is being overwritten by the reduction of A.
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In the case of mutable arrays, A is a redez of the form (update! a i ), and ¢’ is the

array a.

This definition is extended to reduction paths as follows

Definition 3.4.2 g is mutated by A, ..., if a residual of g is the target of A;, for
some i € {1,2,...,n} in the reduction path.

Definition 3.4.3 A graph ¢’ is used read-only in g if it is not subject to mutation.

Definition 3.4.4 Given a graph g with sub-graph ¢' (e.g., g = C[q]), ¢’ is captured

n

by g if there exists a graph g" such that (g" g) can be reduced to g", with g" being a
Y p

residual of g'. In symbols:

9" € ({g'Y/(¢" [Ug]))as..on
Definition 3.4.5 The graph ¢’ is free by g if it is not captured.

Intuitively, a graph g is captured by a graph ¢’ if part of its structure is accessible
within the value of the graph (i.e., its normal form §'), in such a way that part of
g can be accessed by a suitable selection function. However, graph inclusion does
not correspond to capturings: occurrences of g within the condition part of an ¢ f-
expreséion does not correspond to a capture, since there is no way to extract from the
conditional any information on the condition; i.e., the conditional uses g internally

but no subpart of g is retained as part of the value for the conditional.

Definition 3.4.6 Given a graph g with sub-graph ¢, ¢' is directly shared in g if it

has more than one parent graph node, and the labels of all its parents differ.

Definition 3.4.7 Given a graph g with sub-graph ¢, ¢’ is single-threaded in g ‘if
for all possible reduction paths any residual of g’ that is target of a mutation is not
directly shared; e.g., If C[g'] = a,..a, C'[g"], such that ¢" € (C[¢']/{g'})a,..a,, then
g" is the target of a mutator if, and only if, it is not directly shared. A graph g is
single-threaded if all its subgraphs are single-threaded in g.
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A sufficient condition for a graph to have confluent reduction paths is that it be

single-threaded.

3.5 Abstract Uses

Let R, F, and S denote the properties of being read-only, free, and single-threaded,
respectively. These are the properties of A;-graphs introduced in the previous section.
Each of them provides information about an operational aspect of the computation.
However, the combination of the three properties will provide a better representation
of the actual manipulation of the graphs. Some objects may possess more than one
property (a conjunction), and some may possess either of several (a disjunction, aris-
ing from indeterminate contexts, when alternative evaluations are possible). In other
words, I wish to consider these three properties closed over conjunction (A) and dis-
junction (V). Alternatively, properties can be characterized by the set of objects that
satisfy the property. From this point of view, properties become sets. Conjunction
becomes set intersection, and disjunction becomes set union. The property that is not
satisfied by any object is the empty set (@), and the one that is satisfied by all objects
is the universal set (U). This algebra has 20 different elements if it is assumed that
the three sets have non-trivial unions and intersections pairwise. The elements of the
algebra along with the inclusion relation form a lattice, which is shown in Figure 3.8.

However, many of the resulting 20 properties are indistinguishable; for example,
an object written in a multiple-threaded context results in error, regardless of whether
it is captured. The derived properties that are distinguishable are called abstract uses

(or just uses), and are described below:
1. The use L denotes no use at all (i.e. False, or o).

2. The use rs denotes read-only, free, and single-threaded (i.e. RA S A F). Aside

from no use at all, this represents the least “degree of use” of an object.
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wsvem \\

RUS RUF SUF

Figure 3.8: Lattice of Algebra of R, S, and F
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3. The use rm denotes read-only and free, with no constraint on linearity (i.e. R A

F).

4. The use cs denotes either rs, or read-only and single-threaded (i.e. RAS). This
is a more general use than rs in that it allows an object to be captured as long

as it is single-threaded (thus the name cs).

5. The use cm denotes read-only (i.e. R), but now with no constraints on captur-
ing or linearity; thus the name ¢m to denote the possibility of “captured and

multiple-threaded.”

6. The use ws denotes single-threaded (i.e. S). The name ws denotes the new
possibility of “written and single-threaded,” since no other consideration is made

on the fact that it could be captured on written.

7. The use wsVem (i.e. RV S) is self-descriptive, and arises in indeterminate

contexts (such as in a conditional).

8. The use wm denotes no constraints (i.e. True, or U) and thus the potential

error “write and multiple-threaded.”

Treating the boolean domain as a lattice with False = True, these 8 properties also
form a lattice, as shown in Figure 3.9. The structure of this lattice results from
collapsing the full lattice—each property is clustered by the least use stronger than

itself. Figure 3.8 has the properties corresponding to uses underlined.

3.6 Abstract Liabilities

Abstract Liability, or simply, liability, is a technique through which all free identi-
fiers of an expression are associated with the least abstract use they satisfy. It is
meant to represent the way the expression manipulates each identifier visible from its

environment.
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wsVem

SN
NS
N

Figure 3.9: The Domain of Abstract Uses

A liability is an environment mapping identifiers to abstract uses:
L € Liab= (Ide + {€}) — Use

The most trivial liability maps all variables, and the anonymous object to L, and is

denoted by Lr;u:

Lriqs € Liab
lriwé = 1
1

Lriay v
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Liabilities are built up incrementally using an environment update operation on them:

J-—]: Liab — (Ide + {€}) — Use — Liab
Lv—ulv = u
Lvi—ujv, = Lz

with the following conventions:

Lizy > uy,..,zoun] = (o (Llzg o w)) . ){ze — ug)
Lo = (L..(Llzy— L1])..)[zn— 1]

The liability of a constant such as 1 is just Lz;,3—i.e. the liability that maps every
identifier to the use L. The liability of the expression x is just L[z +— cs], as is
the liability of x+x (since + does not capture or mutate its arguments). The liability
of (update! a i x) is Lrisla — ws, ¢ +— rs, & — cs], since the array a is mutated,
the index i is read in order to index into the array (but in no other way forms part
of the result), and the object v is captured in the result, since a suitable lookup to
the resulting array will return the value of x.

But what is the liability of an expression such as (f x)? ‘Clearly it depends on
how £, as a function, manipulates its formal parameter. Suppose it is determined
that £’s use for its formal parameter is ws, then the liability of (f x) would be
Lrias[f — cs, ¢ — ws] (yes, the way functions are used is also controlled, since

applying a function may return an object captured by the function).

3.6.1 Anonymous Objects

Certain expressions, like mkarray, generate and manipulate objects which are not
associated with any variable. Note that, in any expression level, only named objects
can be shared among its subexpressions. Therefore, anonymous objects generated in
different subexpressions must be different. We use this fact to control with a single
abstract use the potential manipulation ef all anonymous objects generated in the
expression. To that effect, we introduce the special symbol £ not present in the Var

domain.
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Example The elements of the array that the expression (mkarray i x) generates
are all peers of the object x, i.e., all elements of the array share the same graph.
However, the array structure itself is generated by the function—not received as
parameter. In operational terms, everytime this function is reduced, a new structure

is generated. In fact
f (mkarray i z) (mkarray i z)

generates two identical, but distinct, arrays. The use of the anonymous object is cs
since both of them capture an anonymous object, but each one of them captures a

different one. Furthermore,
f (update! (mkarray < ) j y) (mkarray i z)

mutates the first array but does not mutate the second one. The use of the anonymous

object is ws in this case. Even in the case where both arrays were modified like in
f (update! (mkarray i z) j y) (update! (mkarray i z) j z)

the use of the anonymous object remains cs since each of the updates modifies a
different anonymous object. In fact, since these arrays are not associated with any

variable, they can only be manipulated in this context by their super-expressions.

3.6.2 Combining Liabilities

A liability maintains a record of how the free identifiers of an expression are used.
Note that the way these identifiers are used in any expression is a consequence on
how they get used in the evaluation of constituent subexpressions, and how their
evaluation interrelate—the evaluation of a subexpression may prevent the evaluation

of another, etc. In this thesis, three different interrelations are considered:

e Parallel—the expressions can be reduced in any order (e.g., the function and

argument in an application).
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e Sequential—one expression is completely reduced before another (e.g., the pred-

icate is fully reduced before either branch of a conditional).

o Alternate—the reductions are mutually exclusive (e.g., the alternate arms of a

conditional).

These interrelations are abstracted in basic operations that describe parallel, sequen-
tial, and alternate evaluation.

Determining sequential evaluation is very difficult in lazy languages, since its
model of computation specifies that only data dependencies determine the relative

evaluation ordering of the expressions.

Parallel Evaluation This is the most general of all operations and assumes no
knowledge of the relative order of the evaluation of the subexpressions other than
both may eventually be evaluated. This operator is used in function applications
to combine the liability of the function to that of the argument, since their relative
evaluation order could range from the function being fully evaluated without the
argument being demanded to the argument being fully evaluated before any reduction

is performed in the function.

Sequential Evaluation In order to guarantee that one expression is evaluated be-
fore another, there must be a sequential constraint that forces one of the expressions
(the first subexpression) to be fully evaluated before the other is considered for re-
duction. This is specially difficult to enforce in a normal order reduction strategy.
However, the predicate part of the conditional is one such expression that satisfies
the forementioned constraint. Note that in the case that the first subexpression is
captured in the value of the expression, it must be the case that no further reductions
whose root is inside (a residual of) the subexpression can take place. In particular,
some functions can be reduced to normal form, but when they are later passed an

argument, they continue to reduce, therefore they do not satisfy this restriction.
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Alternate Evaluation Alternate evaluation is easier to determine: it arises at
alternate branches of a conditional expression, whenever evaluating one branch pre-
cludes evaluating others. This is enforced for expressions properly boxed (those pro-

duced by function B).

Figure 3.10 shows a collection of operators that implement these operations on the
domain of uses. These functions are actually quite intuitive; %f)t is, as expected, just
the least upper bound operation on the domain of uses, since it merges information
of alternative threads of control. p(?)r and 351 are different ways to combine tasks in the
same thread of control. The function T is used in these operators simply to ensure
that the linear component of the result is not single-threaded in the event that both

arguments have a single-threaded use. These three operators are extended pointwise

to the domain of liabilities:

NOM: Liab — Liab — Liab
(L1®L2) v = (Ll ’U)@(LQ ’U)
(L1©Lg) € = (L U (L; €)

Note that all operations consider the anonymous object as a special case—they just
perform a least upper bound on the use of the anonymous object of both operands.
The reason is that anonymous objects cannot be aliased, and thus, the argument
liabilities are referring to different anonymous objects, so the upper bound provides

a use that is sure to encompass both uses.

Projection The final operation on abstract uses is that which is induced when a
function is applied; a function whose formal parameter has use u “projects” this use
onto the identifiers associated with the argument. The operator _- _ is introduced
for this purpose. Intuitively, the use of a variable in the argument gets ‘corrected’
by the use the function makes of the argument. This correction takes into account
that variables captured in the argument are subject to mutation by the function if

the function mutates its argument. Also if the function just reads the argument,
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alt seq par
O O, -0 Use— Use — Use
T Use— Use
-2 Use— Use — Use
alt
U10uU2 = Uy Upse U2
seq
©woOl = uy
seq
1 ®Ouq Ug
seq
s Uqg Ug
seq
rm G ug rm Upyse U2
seq .
u1Quz = (Tu1) Upse (Tuz) otherwise
par
(751 @ 4 = U1
par
1 ® U Ug
par .
u1 Quy = (Tuw1) Upse (T u2) otherwise
T1 = 1
Tu = rm fulrm
Tu = em ful em
Tu = wm otherwise
u-1 = 1L
u-rs = rs
l-u = u fwsCu
l.u = rs otherwise
cs-u = u
u-cs8 = u
cm-cm = cm
ws-ws = ws
Uy Uy = wm otherwise

Figure 3.10: Operations on Abstract Uses
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any variable that was captured in the argument is read-only by the application. Its
complete definition appears in figure 3.10. As with the first three, these operations

are extended pointwise to liabilities:

o Use — Liab — Liab
(u-Lyv = u-(Lv)

The anonymous object is not treated as a special case for projection since its use
by the argument must be corrected by the function in the same way as any named
object.

Note that all of the above operations are monotonic with respect to the domain

ordering given earlier for abstract uses.

3.7 Conclusions

In this chapter, Single-Threaded Lambda Calculus was introduced. This is a compu-
tational model that allows the user to reason about sharing and object reuse without
the introduction of a formal store. Thus, the user has a simple way to reason about ef-
ficiency. Also, explicit sharing introduced by the user is not dependent on a particular
implementation.

However, reasoning about object reusability has its price. It complicates the model
of computation with temporal (sequential) restrictions on the reduction process of the
graph. These restrictions have been absent from A-calculus, or graph reduction. Even
with this extra complexity, it is only promisory to write confluent programs, but there
is no guarantee yet that the program is confluent; e.g., the underlying semantics, graph
reduction, is not guaranteed to be confluent for what is usually regarded “well-formed
expressions” in A-calculus, or admissible graphs in graph reduction.

A new notion of well-formedness is needed. One that can guarantee only to be

satisfied by confluent graphs. The approach taken in this dissertation is to enforce a
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type system on graphs such that graphs that satisfy the type discipline are guaranteed
confluent. The discipline must involve an abstraction of some operational properties
of graphs, such as sequentiality constraints, as well as which graphs may be subject
to reutilization. These properties, as well as their corresponding abstractions, and
a technique to operate on them were introduced in Section 3.5, and 3.6. The type

system extended to utilize such properties will be introduced in Chapter 4.






Chapter 4

Extended Type System

4.1 Introduction

A type discipline for the Ay-calculus is introduced in this chapter. This takes the form
of an extension to the Hindley-Milner type system [Hindley, 1978, Milner, 1978]. The
very notion of type is extended to allow functional types to encode the abstract use of
their arguments, and, in addition, the notion of liability of an expression is provided.
The type and liability properties of an expression are considered inseparable, and
the rules reflect this fact by associating any expression with its type and liability
simultaneously.

As the reader will find out when the inference rules are presented in Section 4.4,
types and liabilities are intertwined: the liability of an expression may be affected by
the type of constituent subexpressions (i.e., in function applications), and the type of
an expression depends on the liability of its subexpressions (i-.e., in A-abstractions).
Thus changing the liability facet of this analysis would affect the type facet. The type
aspect of the analysis is a well known problem, and I have chosen to base the type
system in this thesis on the one originally proposed by Hindley [Hindley, 1978] and
Milner [Milner, 1978]. The liability aspect, on the other hand, is my contribution, and
is loosely based on the Effect Analysis introduced by Lucassen and Gifford [Gifford

75
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and Lucassen, 1986,Lucassen and Gifford, 1988].

With respect to the liability aspect of the system, it should be noted that the
liability presented in the thesis was chosen due to its simplicity, and that other feasible
choices, however more complex, do exist.

It is desirable for any type system to have a notion of principal type property—any
expression that can be properly typed by the system can be given a type from which
all other types can be derived. It will be shown on Chapter 6 that the revised system
introduced in this chapter indeed has a principal type property.

For ease of understanding, the presentation of extended type system has been
divided into two stages. Initially, only constant abstract uses allowed inside type ex-
pressions. Such a type system is shown in Sections 4.2, 4.3, and 4.4. Section 4.5 shows
several examples of extended type reconstruction using the simple system, as well as
inherent limitations—it can infer principal first-order types based on assumptions of
higher-order types, but it cannot infer principal higher-order types.

Sections 4.6, 4.7, and 4.8 establish a revision to the extended type system by
introducing abstract use variables. This type system is capable of producing principal
higher-order types as well. Finally, Section 4.9 presents a formal proof that the typing

rules are sound.

4,2 Preliminaries

A static type system characterizes the type of values used in programs; i.e., it is
concerned with properties satisfied by the values in the programs. A liability system
on the other hand, is concerned with how the values are used in the program: i.e.,
how often they are used, whether they are mutated, etc. In the type system hereby
presented a decision was made to qualify with a single use each function’s formal argu-
ment. This corresponds to associating a use with each free variable in the expression.
In addition, it has been necessary to associate a single use with all graphs that are

manipulated in the expression, but that cannot be associated with any variable, thus
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o € TypeSch = pu
| Vao Type Schemes
p € MutType == 71
| Array 7 Arrays
7 € Type = Int| Bool | ... Basic Types
| Pair 7y 7 Pairs
| g1 — po Functions
| a Type Variables

Figure 4.1: Syntax of Type Expressions

called anonymous objects. Therefore, liabilities associate abstract uses with named,

as well as anonymous, objects.

4.2.1 Type Expressions

The usual syntax for Hindley-Milner types with data structures is adopted, and is
shown in Figure 4.1. In the syntax, T'ype is the domain of immutable monomorphic
types, MutType is the domain of mutable monomorphic types, and TypeSch is the
domain of type schemes, or shallow polymorphic mutable types. Shallow polymorphic
types are those in which type variables may be quantified (thus introducing polymor-
phism by separate instantiation of the quantified type variable), with the restriction
that quantification has to affect the whole type expression; i.e., quantifiers can only
appear in the outermost level of the expression. This, in fact, is a restriction over the
language of polymorphic types, which has proven to be natural, simple, and effectively

computable.
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4.2.2 Extended Type Expressions

In order to correctly capture the behavioral aspect of a function within its type,
the language of types is extended to annotate the function constructor (—) with
the abstract use of the bound variable above, and the use of anonymous objects
below, thus resulting in eztended types. In these paragraphs, the expressiveness of
this addition is explored, and restrictions to this extension (akin to shallow typing)
that capture the same “interesting” extended types while being “better behaved” are
introduced. The syntax of abstract use expressions and extended type expressions is
given in Figure 4.2. I will make the distinction of the sublanguage of types which does
not involve functions, defined in Figure 4.3. Note that & ranges over TypeSchg,.,
whereas & ranges over Typ/eyc/hgz,; i.e., the former can be instantiated to any type,

while the latter can only be instantiated to types that do not contain functions.

Coercions restrict the range of values over which types hold: a type is valid only
if every coercion in its coercion set is satisfiable. extended types may have coercion
sets at any level there is a bound use variable. This leads to a very general language

of extended types.

Type assumptions (T) are environments that map identifiers to types. They are

used in the type inference rules to maintain the types of all free identifiers.

First-order types are those that can be associated with first-order values. A type

is a higher-order type otherwise.

4.3 Extended Type Instantiation/Coercion Rules

The language of types defined in the previous section naturally lends itself to a hier-
achy of the type domain. On one hand, a type may be “specialized”, or instantiated
when a bound type variable is instantiated to a type expression, or when a bound use

variable is instantiated to a use expression. Consider the identity function’s extended
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u € AbsUse == L|rs|rm

6 € TypeSchgg

i € MutTypege:

TE TypeEa:t

c € Coercion

C € CSet
S IdUse
a € IdType

(,C)
| Voo

T

| Array 7

Int | Bool | ..

| Pair 71 7,
Uy
| %

Hou [

|

u1>ug
l P pe

{e1yy. 5¢n})

| es | em | ws | wsVem | wm Abstract uses

Type Schemes

Arrays

Basic Types

Pairs

Functions

Type Variables

Coercion on uses
Coercion on types
Coercion Sets

Use Variables
Type Variables

Figure 4.2: Abstract Uses, and Extended Type Expressions
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g€ Ty/ngchEﬂ w= (F,0)
| Voo
Q€ MvﬁTypeEn n= 7
| Array 7 Arrays
TE fg?p?Ed C Typegs = Int| Bool | ... Basic Types
| Pair 71 7o Pairs
| & Type Variables

Figure 4.3: Extended Type Expressions not Containing Functions

type
Va.a = a (4.1)

which means that the function takes an argument of any type and returns an object
an object of the same type as the argument’s, and that the argument’s structure is

‘captured’ within the returned value.! More specialized types for this function are:

Int = Int (4.2)
Va.(Array a) = (Array o) (4.3)
(@ = a) 2 (a3 a) (4.4)

This specialization is known as type instantiation and is present in the Hindley-Milner
type system. The type (4.2) is less general than the type (4.1) since all instantiation
of type (4.2) are also instantiations of type (4.1), but not vice versa.

On the other hand, the type signature

Va.a 3 o (4.5)

UIn fact, it is the returned value.
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is also a valid type for the identity function. This type indicates that the identity may
mutate its argument, although it actually does not. As before, (4.5) is less general
than (4.1), but in t?xis case, it is said that (4.1) coerces to (4.5). This follows because
it is true that ¢s C ws in the use domain. Therefore, if it can be asserted that the
function may capture its formal argument, then it can be asserted that it mutate
it—even when it actually does not. This notion of coercion involves knowledge of a
partial order on types since non-variable pdrts are replaced in the type expressions. It
is known as subtyping, and is not expressible within the Hindley-Milner type system.
Instead, an explicit set of rules, the coercion rules, are given which specify the valid
coercions. This relation subsumes instantiation.

In the case of the extended type system, coercions embed within the type structure
the partial order given for the abstract uses. This subtyping relation percolates
through the functional types, since they are the ones that first introduce uses into

the system.

4.3.1 Substitution/Instantiation

Substitution on extended types is done in the usual way, and thus its definition is

omitted. Uses annotating the function types are not substituted for.
[-/J:(TypeSchgy — TypeSchg,s — Idgy — TypeSchi.:)

It is usually the case that the same substitution is applied to several expressions, then
it is natural to abstract the first operand from the definition resulting in a function

usually called S.

4.3.2 Coercion Rules

The notation 7, > 7, (1 coerces to 73) is valid when the set of semantic values as-
sociated with type 7 is contained in the set of semantic values associated with 7.

Similarly for u; > u;. A coercion set C is just a set of coercions on types and coer-
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cions on abstract uses. A substitution (S) is a mapping from type variables to types
expressions, and from use variables to use expressions.

Also, the notation C; b C; is used to indicate that for all substitutions that cause
all coercions in () to be valid also satisfy all coercions in C;. The first three rules
just state basic properties on coercion: it subsumes instantiation, and is a reflexive,

and transitive property.

1. Instantiation
Spn = fi
SC =10
C t {fu>ps}

If iz is an instance of ji; under a substitution that does not affect the coercion

set C, then ji; can be coerced to fis.

2. Reflexivity
C + {upu}

C + {icp}

3. Transitivity
C F {wibuy, usbus}
C + {ullZU3}

C ¥ {f>fs, fo>fis}
C F {i>ps}

4. Abstract Uses

C F {u1?UQ},ifu1 C U
Coercion on uses corresponds to domain ordering on them (Figure 3.9).
5. Arrays

C k {f1> 7}
C v {(Array #1)>(Array 72)}
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If the type of the elements of an array is coercible to the type of the elements
of a second array, then the type of the first array is coercible to the type of the

second one.

6. Pairs
C F {fub a}
C + {f12 b 722}

C l}' {(PGZT' %11 %12)E(Pair %21 %22)}

Similarly for pairs, if the type of each of the components of a pair is coercible

v

to the type of the corresponding component of the second pair, then the type
of the first pair is coercible to the type of the second pair.

7. Functions

C F {ﬂzlkﬂu,ﬁnEﬂzz,UuEuzl,umEuzz}

uy u2

C  {in 'L"_li 122 flay EE fioz}
It has been known that function types are contravariant for standard subtyping
disciplines [Mitchell, 1984]—if 155051 and fiy1> 12, then 11 — iy — flas.
This inversion of the direction of the relation is known as contravariance—
coercion is contravariant on the types of the domains of functions. However, it

1s not contravariant on the uses.

8. Type Schemes
C + {6,262}
C t+ {Va.6:>Va.6,}

Coercion is generalized to type schemes in a straight-forward way: if types are

coercible, then quantifying them by the same variable retains the property.

4.4 Type/Liability Inference Rules

In this section, the type/liability inference rules for \,;-calculus are introduced. These

rules resemble those of Hindley-Milner, with extensions to deal with liabilities. The
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notation C,T F e:(6,L) asserts that under use and type coercion set C, and type
assumptions T', the expression e has type & and liability L.

In addition to type expressions, we have the usual domain of type assumptions:
T E Typing = Ide — Type

We assume the presence of an environment K for typing constants of signature
K : Kon — (Type x Liab)

The types of a small group of constants used in this thesis are shown in Figure 4.4.
. The commentary after each rule is limited to the liabilities and uses, since the
types so closely resemble those of Hindley-Milner.

Note that the coercion set remains constant throughout the rules. However, the
set appears in the rules, rather than being assumed as a constant (like the function
K) because it is particular to the program being inferred. Part of the job of the
type reconstructor is to infer a suitable set that satisfies all coercions imposed by the
application of the rules.

The rules presented assume that the objects being typed are programs, i.e., Ay-
trees. This may seem a drawback, but, in fact, it is not. Type reconstruction is a static
analysis—done at compile time. As mentioned before, source programs in A4-calculus
do not contain shared nodes, only information on reutilization of nodes. Sharing
results as a direct consequence of graph reduction. Typing arbitrary Ag-graphs,
_althoﬁgh interesting, is not really necessary since user programs can be adequately

represented as trees.

1. Constants

C,T +k:K(k)

The type and liability of a constant are given by the function K. The liabil-
ity must map every identifier to L, but could have a non- L mapping for the
anonymous object, as in the case of Nil, or 1, where the value of the constant

is a “new” object.
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mkarray : (Int S o % (Array @), Lrip[€ — cs])
lookup : ((Array a) 3 Int D o, L)
update: ((Array ) S Int 5 a = (Array o), L)
update!: ((Array a) BIntSa> (Array @), Lrio)
pair: (o> B = (Pair a B), LLia)
fst: ((Pair o B) S a, Lria)
snd: ((Pair o f) = B, Liab)

Figure 4.4: Type/Liability Signatures for Selected Constants

2. Identifiers

C,T +Fov:{(T(v),LLislv+ cs))

The liability of a lone identifier is ¢s (it’s been used once in the expression,
not mutated, and captured). The liability maps all other identifiers—and the

anonymous object—to L.

3. Lambda Abstractions

C,Tlvw )& e: (g, Llv — uy, & — ug])
C,T b (e (i w fia, 1)

If it is the case that when the bound variable v is of type fi; then e is of type fis,
and liability L, associating v with use u;, and the anonymous object (£) to use
U
uy, then the abstraction is of type fi; Iz fl2, and its liability is like L, but does

not contain entries for v and &; i.e., v and £ are abstracted from the liability.
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4. Applications

U

C,T Fe: (ﬂ1 7;) fla, Ll)
C,T I‘ €9 . (ﬂl,LZ)
C,T F (er €5) : (fizy (In O (us - L2)) U Lpigs[€>us))

The type of the argument must match the type of the domain of the function; the
function’s use of the bound variable is projected onto the argument’s liability,
and then combined to the function’s own liability. Since there is no temporal
constraint on the function and argument evaluation, this combination is done

par

using ©.

There are uses for the anonymous object derived from the evaluation of the
function, the evaluation of the argument, and from the application itself (u.,
the use of the anonymous object, retrieved from the function’s type). The first
two are embedded in the liabilities of the function and argument, and as such as
combined as the corresponding liabities are. However, its use from the function
application as such has to be explicitly combined: a liability that only contains
a use for the anonymous variable is created (L{{—u,]), and that liability is
combined by means of the upper-bound operator to the rest of the computed

liabilities.

. Strict Application

U

C,T Fep: (ﬁl ::) ﬁz,Ll)
C,T F € © (ﬁl,LZ)
C,T F (ex €2) : {fiz, ((un - L3) O L1) U Lpas[6i—us))

The liability of strict application differs from the normal one in that the ar-
gument is assumed to be evaluated before the body; thus the use of 351. Note
the restriction on the argument to not be a function (i.e. its type must be in

1%). This is to ensure that the argument can indeed be completely evaluated
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before the application is made. Finally, the use u, to the anonymous object is

accounted for in a manner analogous to Rule 4.

6. If-then-else
C,T V+ e,:(Bool,L,)
C,T Fe.: (L)
C,T Feq: (fi,Ls;)

seq alt

C,T + (if e ec €a) : ity (Ly O (L O La)))
The liability of the conditional is that of the predicate sequentially combined

with the alternate combination of the then- and else-branches.

7. Let

C,T + €1 : (&,Ll)
C,T[v— 6] Feq: (i, La[v— ug, & — uy))
C,T + (letv=-¢e;1iney): (ﬁ,(Lgp(?)T(ul - L)) U Lpigp[€—ug])

Under the standard semantics, the let construct is a combination of an abstrac-

tion and an application; i.e.,
(letv=-re;in e) = ((Av.eq) €;)

However, according to the Hindley-Milner type system, the “A-bound” v is
monomorphic (a mutable type), while the “le¢-bound” v is polymorphic (a type
scheme). In the liability aspect, this rule just computes the combination of an

abstraction and an application.

8. Letx*

C,T Ve : (g, L)
C,Tlv— 6] Fez:(ft, Lafv = uy, & — ug))

C,T &+ (letr v=c¢e1in e3): (i, ((ug - Ll)s(ng) U L rigs[éug))
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10.

4.5 EXAMPLES OF TYPE RECONSTRUCTION

Similarly to the previous rule, this rule is a combination of a an abstraction,
and a strict application, except that the bound variable of the abstraction has

a polymorphic type.

Fix
C,T Fe: (i L)

C,T b (fiz €): {fi, (ur - L)O LpimfErus))

The fixpoint operator encapsulates the self-application of its argument. As such,
its liability is the liability of its argument (L) projected by its own use of the
bound variable (u;). In addition, the use uz to the anonymous object handled

like in Rule 4.

Coercion

C,T te:{6,L)
C F {acp'}
C,T +e: (5, L)

4.5 Examples of Type Reconstruction

It is instructive to see how these rules can be combined in a type derivation. Figure 4.5

shows the type reconstruction of (swap! a i j). The type derivation resembles a

Hindley-Milner proof, except that, in addition, the liabilities are also constructed. It

can be observed that the liability of the consequent of a proof step can be directly

computed from the liabilities of its premises by just combining them with the binary

operators on uses. However, the converse is not true: the same consequent liability

can be implied by several configurations of the premises.
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T, otk
swap':
< Va.jl, >
[
INST
T, o+ T,ot
swap!: a:
o Array a
() (tarms))
l l I COMB
T,eb T, ok
(swap! a): i
llb Int
[ a—ws ) [ t—es ]
l I l COMB
T, ot
(swap! a 1): T’j?}_
He '
@ ws < In >
( [ ] ) [grmes ]
| T l COMB
T, etk
(swap! a i j):
(Array o)
a—ws
< =TS >
[j.—»rs }

oo

I
(Array o) = Int = Int = (Array o)
Int = Int = (Array o)

Int = (Array o)

|

ao—»SArray o)
t—Int
j=lint

Figure 4.5: Derivation of Extended Type for (swap! a 7 j)
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Consider the function mapa!

mapa! = fiz Amapa.)f.la.An.
if (n=0)
a

(Az.(mapa! f (upd! a n (f z)) (n—1)) (lookup a 7))

This function applies the function f to every element of the array a, updating a in
the process. Figure 4.6 highlights some of the derivation steps, including a strict

application, and a fixpoint, to compute the type
Vo.(a S a) = (Array o) = Int = (Array )

However, the type of f was assumed to be o 3 a, but what would be the type of
mapa! if the type for the higher-order function f was assumed to be a — ? In order
to ease the discussion on types for higher-order functions, it is instructive to study an
example without recursion first. Consider now the type derivation of g = Af.Aa.(f a)
(Figure 4.8). Note that in order to be able to successfully type the program, the
type assumed for f must be of the form « % B, where u; and u, are elements of the

domain of uses. The derivation shown assumes the type of f to be
a> B

and hence, the derived type for the expression is

(@5 8)Za=p

However, if the assumed type for f had been

a—f

then the type of the expression would have been
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T, ok
(Az. ...): T, ok
a > (Array a) (lookup ...):
a—ws @
mapal—cs neTSs
n—Ts
L | COMB
T, o+
T, o+ T, o+ ((Az. ...) (lookup ...)):
(n = 0): a: (Array o)
Bool (Array @) a—=ws
(ractsr) <[Hs]>< S
mapal—cs
| | i
[ IF
T,k
(Gf ...
(Array a)
a—ws
fwm
mapal—cs
TS
:ABS’s
T, o
(Amapal. ...):
g’

[

mapa!

11

(o = a) = (Array o) = Int & (Array a)

a—+{Array a)
rs
fo o
mapali

nr+Int
fiz Amapa.Af.da.An.

if (n=0)

{Az.(mapa! f (upd! a n (f z)) (n — 1)) (lookup a i))

Figure 4.6: Extended Type Derivation of mapa! (part 1 of 2)
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T,z

if ..
(547'7‘0,3/21

a—ws
fPwm
mapal—cs

n—rs

:ABS’s

T, ot
(Amapal. ...):

cs

i

(]

l FIX
T, ok

(fiz (Ama:pa,!. L))
i

IGEN
T,z
(fiz (Amapal. ...)):

Yaj
I

ce wm ws rs
(¢ 7 a) = (Array o) = Int — (Array o)

a o=
a—{Array @)
rs
T = fea~a
mapal—j
n—Int
mapa! = fiz dmapa.Af.ha.An.

if (n=0)

{Az.(mapa! f (upd! a n (f z)) (n—1)) (lookup a 1))

Figure 4.7: Extended Type Derivation of mapa! (part 2 of 2)
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T

[

ar—+ra ]
Frs(a = B)

Figure 4.8: Derivation of Extended Type for (Af.Aa.(f a))
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or, in general,

1 cs =
(ew B> awp
where u;,us € AbsUse. Given that there are these many choices, which one is better?
Is there any type that ‘subsumes’ the other? The answer is no! Neither of these types
can be termed principal, since they cannot be compared. A principal type is one such

that is more general than any other type that can be proven for the expression.
In order to obtain a principal type property, variables need to be introduced to
represent undetermined uses. Intuitively, if we let v to be a variable ranging on the

domain of Abstract Uses, a type that more precisely describes the behavior of g is
e cs n,
(a 72) ,3) - a v ,3

This specification can be instantiated by substituting the use variable to any of the

types given above.

Although the need for use variables seems reasonable, at least as an analogy to
type variables, principal first order types (the types of functions whose arguments are
not functions) do not contain type variables, so a first-order language would not need
them. It is no wonder why this working example contains a higher-order function.

One complication use variables add to the language of types, and to the inferencing
process as a whole is how to solve operations on uses when either operator contains
a variable. The value of v - cs corresponds to v in the specific domain of abstract
uses presented in this dissertation, but z/pg)rcm cannot be computed. Such unresolved
operations would need to be left specified in the type. Upon instantiation of v—to
rs, for example—the operation would be solved—to cm.

The use variables were deliberately left out of the initial description of extended
types because of these non-trivial complications they add to the language of types.

Now consider how the problem that arises when use variables are involved in a

fixpoint computation. We could use the function mapa! defined above, but a simpler
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function, many is considered:

many = Af (fiz Am.An)a.
if (n=0)
a

(m (n—1) (f )))

This function applies the function f n times to a. Figure 4.9 highlights some of

the derivation steps to compute the type

(aﬁ’a)ﬁn’]ntr—s’ais’a
However, by the above discussion, it should be clear that the assumption that f be
of type « S ais over-restrictive, and that a type for many should exist if f’s type
was assumed to be just « = a.2 Such a type must satisfy the condition imposed by
the fixpoint—the type reconstructed for (Aa.An. ...) must have the same as the type
assumed for m.

If we assume the types of f and m to be
fa 3o
m:nt = a > a

then the type inferred for (Aa.An. ...) would be

alt
]nt cs @_V;_:,‘V] o u5_-1;s o
The only way to guarantee that the two last types be the same is by solving the set

of equations

Vs = V3-T8
alt
Vs = ¢cs®OUs-1n

The equation for v3 can be solved (v3 = rs), but the one for v cannot, with the added

complication that it is recursive. How can recursive equations be expressed in a type?

2For clarity of exposition, the use of the anonymous object will be ignored.
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T, ot
T, ot T, ot (m (n —;) (f a)):

() (o) <[£EE§]>

ne>rs

B

cs cm T8 cs
(@7 a)7 Int~ a2 a

a—~(Array a)

mi

=1
1]

N
]

n—Int
A (fiz dm.dna.
if (n=0)

(m (n—1) (f a)))

many

Figure 4.9: Extended Type Derivation of many
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Just as any recursive equation. As can be seen from this example, there can be more

than one recursive equation. The type of many, under the assumpions would be

(aﬂ’a)in’lntz’aﬂ’a

alt
where vs = csOvs - 1)

Types are operated upon restrictions on their structure. In the rule for application,
it can be seen that if e; is of type [ % ft2 and e; is of type [i; (exactly the type
of the argument), then the rule can be applied (the type of the application is ;).
As a result, inference on types can proceed whenever there is enough information on
the structure of types without requiring that types be completely instantiated (i.e.,

without type variables).

Unlike types, the domain of abstract uses has no structure. Uses are operated
exclusively by the binary operations presented in Chapter 3. These operations act
on uses and, in general, cannot be performed if any of its arguments is unkown—the
value of the operation Vpc?)rcs can range from cs to wm, depending on the actual use
v represents. So in order for the system to properly handle use variables, it must
also handle operations on use variables,‘and fixpoint equations on them to deal with

recursive constraints.

Although the types computed by this system are simple, the existence of ex-
pressions without principal type suggests that the system is not powerful enough to

provide concise specifications on functions.

The existence of recursive equations raise serious issues on the soundness of the
type model (what is precisely the meaning of a fixpoint equation? Are the type
rules complete?), as well as computational issues (Can these fixpoints be solved effec-
tively?), and pragmatic issues (Is such a type system too complex for practical use?).
These issues will be discussed in the remainder of the dissertation. In the remainder
of this chapter, I revise the definition of the language of extended types, and prove

the soundness of the inference rules.
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4.6 Extended Type Expressions (Revised)

The revised syntax of abstract use expressions and extended type expressions is given
in Figure 4.10. For ease of presentation, the names of all syntactic structures are
preserved, except the sub language abstract uses (AbsUse), which now is AbsUseg,,
to indicate the fact that use expressions are also permitted. Note the introduction of
the infrastructure on uses to deal with use variables, as well as the set of recursive

equations on uses.

Conventions
e Thesyntax {v1,...,v,}7 is used to stress the fact that there are free occurrences
of use variables v,...,v, in 7. Further, by using this notation, it is also implied

that only those use variables are free in 7

o The notation Vuy,...,v,.(7,C) is shorthand for the type expression

V... . Vu,.T.

o The group of fixpoint equations will be collectively denoted by P, as in
g where P. Further P will be manipulated like a set: if

P = <V117°-'3V1m> = (Uu,---,ulm)
and
P2 = <V21,---3V2n> = (u21,...,u2n)
then
P1 UP2 = (Vlla---’V1m7V21,-'~,V2n> = (’U,n,...,Ulm,U21,...,U2n>
The type
{Vl,..,l/n}ﬂ

denotes all types

{}(ﬂ[ul/l/h .oy un/V-n])
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u € AbsUsegy, ::=

o € TypeSchg

fr € MutTypegs:

7 € Typega:

p

¢ € Coercion

CeCSet
v € Idyse
a € IdType

Lirs|rm|cs|em | ws|wsVem | wm Abstract uses

alt seq par
| v @ ug | ug © ug | ur © ug

lul'uz

| v

= (f1,C) where P

| Vao
| Vv
n= 7

| Array 7

uw= Int| Bool| ...

[Pair 7‘\'1 7‘\'2
uy
- .

| 4w fi

| @

Binary operators

Projections

Use Variables

Arrays

Basic Types

Pairs

Functions

Type Variables

Use Recursive Equations

Coercion on uses
Coercion on types
Coercion Sets

Use Variables
Type Variables

Figure 4.10: Abstract Use and Extended Type Expressions (Revised)
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g€ TﬁggchExt = (F,C) where P
| Vao
| Vvé

NS MmpeEu n= F
| Array 7 Arrays

T € %Eu C Typegys = Int| Bool | ... Basic Types

| Pair 7y 7 Pairs
| & Type Variables

Figure 4.11: Extended Type Expressions not Containing Functions (Revised)

where u; € AbsUse for i = 1...n. Also, the type

{v1, ., v} (g where (Vng1y. . Vm)=(Unt1,. -y Unm))
means the type
S i
where
S = [uy/vay. . uy [Vny g [Unga, o UL, VU]
and

(& Svi) = (€ Sw)

As before, I make the distinction of the sublanguage of types which does not in-
volve functions, defined in Figure 4.11. Note that & ranges over T'ypeSchg,:, whereas
0 ranges over Typ?:?c/hEu; i.e., the former can be instantiated to any type, while the

latter can only be instantiated to types that do not contain functions.
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Note that the language is also shallow on use variables—quantification of these
can only appear affecting the whole type expression. However, use variables are very
different in nature from type variables, and are accordingly manipulated in a different

way.

4.7 Extended Type Instantiation/ Coercion Rules
(Revised)

Since the revised language allows for use variables, the instantiation and coercion
rules must be expanded acordingly. Type specialization occurs by the instantiation
of either a type variable, or a use variable. The type of the substitution function now
changes to reflect the fact that use variables can be substituted. The definition of

extended substitution is shown in Figure 4.12, and has type

-[-/-]: (Typegs: — Typegs: — 1dgs: — Typegs:)
+(TypeE,;t — AbsUse — Idyse — Typegst)
+(AbsUse — Typegr: — Idgz — AbsUse)
+(AbsUse — AbsUse — Idyge — AbsUse)

As before, the abstraction of the first operand from a substitution operation is refered
to by S.

Coercion Rules do not change significantly from the rules introduced in Section 4.3.
Only additional rules are added, each of them as a direct consequence of a revised

feature. Only the additional rules are listed.

1’ Instantiation

SU] = U9

C F {UIEU2}

If u, is an instance of u; then u; can be coerced to u,
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viufv] =

vi[u/vs]

v[f/a] =

aff/a]

o[f /o]
afu/v]
(VvR)[u/v]
(Verx)[7/va]
(Vex)[u/v]
(Vas)[/e]
(Ve 6)[7 /]
(Vad)[u/v]

ST
S (Array 7)
S (Pair %1 ’;'2)

ul

S(Rw )
S (%,C)

S{cl,...,cn} =
S(U1>u2) =

S (f1>72)
S (u1 @ u2)
)

S (ug - u2

= Vrx

= Yvy

151

<>

(23]

A

= VV1>2[7A'/V2]

~

= Vao

= Val&[f'/ag]

A

Yao

(Array (S 7))
(PGZT (S 7:1) (S %2))

Zf 141 7é Vs

if o # oy

Zf 141 7é Vg

if 74 27

if T is a basic type

Figure 4.12: Substitution on Extended Types
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8’ Type Schemes
C F {61262}
C {VV.&]P_VV.&g}

If two types are coercible, then quantifying them by the same variable retains

the property.
9’ Fixpoint Types

C t {i > s}
C ¥+ {(p1 where P)>(ps where P)}

If two types are coercible, then restricting them by fixpoint does not alter their

relation.

4.8 Type/Liability Inference Rules (Revised)

The inference rules do not vary significantly from the ones presented in 4.4. The only
differences are that the type of each subexpression is allowed to have a set of fixpoint

restrictions, which are unioned to produce the set of restrictions of the result.

1. Constants

C,T Fk:K(k)

2. Identifiers
C,T Fv:(T(v),LLigpv cs])

3. Lambda Abstractions

C,Tlv— fi1 where P]te:
C,T + (hv.e): (i1

2 where Py, L{v — uy, £ — u))

el

2 flo where Py U Py, L¥)

3

If there is any occurrence of v inside e, then P, C P,. However, P, is not

guaranteed to contain P if threre is no occurrence of v in e. Since ji; becomes
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part of the type being concluded by the rule, all fixpoint restrictions P; must
appear in the qualifying the type. Thus the explicit union.

4. Applications
C,T + ey : (i o fiz where Py, Ly)
C,T Fey:{i; where Py, Ls)
C,T F (e1 €): {jiz where PLU Py, (L1® (u1 - L)) U Lpia[€u3))
5. Strict Application
. C,T Fe: (i i o where Py, Ly)
C,T F ey: (i1 where Py, Ly)
C,T b (e e3) : {jiz where PyU Py, ((u1 - L2)® L1) U Liial€—us))
6. If-then-else
C,T F e,: (Bool where Py, Ly)
C,T Fe.: (i where P, L.)
C,T Fe,: (it where P,,L,)
C,T F (if e, e €a) : (it where P,U P, U Po, (L, ®(Le®La)))
Note that the fixpoint restrictions are collected even in the case that the type
of one of the premises is discarded, therefore P, participates in the resulting
restrictions.
7. Let
C,T e :(6,L)
C,Tlvw 6] & ez: (& where P, Ly[v — ug, € — uy])
C,T + (let v=-e in e3): (i where P, (Lgpc‘f)r(u1 - L1)) U Liigs[é—u2])
8. Letx

C,T + (S <&>L1)
C,Tlv— &) & ey: (i where P, Ly[v — ug, € — uy))
C,T + (lete v =e; in €y) : (i where P,((ug - L1)® L) U Lyiap[€—us))
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9. Fix

u

C,T Fe:{i :} f where P, L)
al
C,T + (fiz e): (it where P,(u;- L)@t_LL,-ab[fo—)uz])

Interestingly enough, the rule for fixpoint expressions is not affected much by
the language revision. However, it is precisely this revision that allows P to be
a non-trivial fixpoint restriction necessary to satisfy the recursive constraints

on the type.

10. Coercion
C,T te:(6,L)
C v {opd'}
C,T +e: {6 L)

Figure 4.13 shows an extended type derivation for many. This derivation does not
assume as known the uses of the bound variable and the anonymous object., e.g. f
is assumed to be of type

2
fa v, a

4.9 Soundness of the Inference Rules

In this section a proof is given that guarantees that the extended type system for
Asi-calculus is sound—the rules only infer valid extended types. This implies that the
inferred abstract uses are always conservative with respect to the way the graph is
actually used in reduction to normal form.

In Chapter 3, the concept of abstract liability as a mapping from free variables to
abstract uses was introduced. The purpose of that environment was to account for

how the expressions manipulated their free variables upon evaluation.
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T, o+
T ot ror  (m@-D( o)

(nBzoo?): ((l; ,‘;:z?n 121
_<[n»—>rs]> <[“"’03]> < mcs >

n—=TSs
I l §rs - 1y

b IR

T, ot
(Gf ...):
(Array o

alt

a—cs@Ous - 1y
mlcs
=TS
E-rs vy

l :ABS’s

T, ok
(Am. ...):

()
[ froem |
|F1X

T, ot
(fiz (Aml. S)
i
[ foem |
| ABS
T, ok
(. (fiz ..)):
(@=a)=

[

n em rs Y3
P —_
(v ) 2 Int~ vy

alt
where vy = cs@uy - 1g
Vg =Ts8-13

|: a—(Array a)

h 33
1]

V1

T = fa :; o
mrii
n—Int
many = Af (fiz Am.Ana.

if (n=0)
(m (n-1) (f a)))

Figure 4.13: Extended Type Derivation of many Using Fixpoints
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Intuitively, free variables represent undetermined graphs in the calculus. As such,
free variables may be replaced by any A,-graph provided that all occurrences of the
same variable share the same graph. Further, in A, the type of a variable must
coerce to the type of the graph that is being substituted for the variable.

It is then natural to relate the abstract liability of a graph to how any actual
graph that would replace the free variables would be manipulated when the expres-
sion is fully reduced. To that end, the corresponding concepts of concrete uses and
liabilities are introduced and the relation between the abstract and concrete domains
are established.

For a given graph, concrete uses are properties satisfied by subgraphs when the
graph is reduced to normal form. In contrast, abstract uses are properties of free
variables in subgraphs—an abstract use of a variable is a conservative approximation
of the concrete use satisfied by any graph to which that variable may be instantiated
when the graph is reduced to normal form. Note that g : (7, L), indicates that the
type of g is 7, and that there can be a context where the reduction of g to normal
form produces the effects specified by L. In the case that 7 is a functional type, it
may be possible that portions of the liability become effective only when the function

is applied.

Definition 4.9.1 Two graphs g,, and g are disjoint if they do not share any sub-
structure, i.e., when lab(g,) Nlab(g;) = @.

Definition 4.9.2 Given a graph g with subgraphs “1g,,...,%g,, where g; and g; are
disjoint if ¢ # j. Then concrete liability of g with respect to {g;} on reduction path
p=A;1...Ay is an environment M, (5, ..y associating the labels £y, ..., £, with the

concrete use of the graph g; when the reduction path p is performed.

The following lemma just states that S-reductions do not affect the concrete lia-

bility of expressions.
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Lemma 4.9.3 The concrete liability of g1{g2/z] is the same as the concrete liability
of (Az.g1) g2)-

Proof For every reduction path
as
91lg2/2] = §2

there is a corresponding reduction path

NS
(Az.91) g2 — gilg2/2] = 4o
where ¢’ is a copy of g using Wadsworth copy operation. For every reduction path

()‘5'3-91) g2 — ()\37-911)921 — 911[921/1'3] = gs

there is the corresponding

L

A A*
91[92/37] - - 911[921/37] = g3

where ¢y1, and gs; are residuals of g;, and g,.

The extra S-reduction does not contribute at all to the threading and mutability
properties, since these only care about the relative orders of mutators and observers.
With respect to the capturing property, both graphs have the same normal form,

hence they capture the same objects. O

Theorem 4.9.4 Soundness of Extended Type Inference Rules. Given a graph g
with free variables vy,...,v,, type p, and abstract Liability Lp;qs[€ — ug,vy — uq,-
ceeOn > Uy]. Then for all graphs g¢1,...,g, (not necessarily disjoint) labeled
by, ..., 4, the concrete liability of glvy — g1,...,v, — g,] with respect to ¢y,. .., 4,

Lria{ls > Ul .. o > ul] will be such that for all ¢ such that 1 < < n, u! C u;.

Proof By induction on the structure of g:
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Constants

g=c
C,T Fk:K(k)

The theorem trivially holds for g, since it has no variables to be substituted for.

Variables

g=v

C,T Fv:(T(v), LLia[v+ cs])
For all graphs g, the reduction of v[’g/v] is the reduction of ‘g. The actual
use of v[’g/v] is either cs, if part of the graph is captured within the value of
v[tg/v], or rs, otherwise. Note that parts of g may be either multiple-threaded,
or mutated, but that does not affect the use of £. Thus, the theorem holds for
g; i-e, for all ‘g, and p, M, (¢(v[‘g/v]) = L[ — v], and v/ C w.

Abstractions
9= (dv.g)
C,T[U = l}a] F g/ : </2ba -I-Liab[vl = Uy ooy U 2 Uy, U ua7€ = ub]>

Note that v is the only free variable of ¢’ which is not free in g. Therefore ¢’
must actually be of the form {vy,...,v,,v}g’. By the inductive hypothesis, the
theorem holds for ¢’. Therefore, for any path p

My, 2a(g g1 /01, g0 vn]) = Lpias[fy v ul,. .. by > Ul

such that u] C uy,...,u, C u,. By Lemma 4.9.3, the concrete liability of ¢’
with respect to 4y,...,4, is the same as that of (Av.g’). The inferred abstract
liability for (Av.¢’) is Lpis[v1 — u1,..., v, — u,). Therefore the theorem holds

for g.

Applications

9= (92 gv)

C,T F ga: (fia wt fivs L)
C,T g5 (fay Ly)
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Reductions in g, happen independently from reductions in g,. As a consequence,
the only safe way to combine liabilities in g, to liabilities in g, is by using the
pc?)r operator. If g, is a first-order graph, then g, will not be duplicated, but if it
of higher-order type, then parts of it may be duplicated each time it is applied.
A conservative assumption is to estimate that each use of g, within the graph
go would result in g5 being duplicated. This is precisely what u, - Ly does: if
U, is muliple-threaded, then any single-threaded use in Ly is transformed to
the corresponding multiple-threaded use in u, - Ly. In addition, if u, implies

a mutation, then all uses in L, that mean capturing will be transformed as

mutated in u, - L.

Strict Applications
g = (9a 9)
Uqg
C’T F 9o ¢ <ﬁa :‘_l: ﬂbaLa)

CaT F gy . <ﬁa,Lb)
Similar to the previous case, except that 7 is a first-order type, and as such, it is

guaranteed that it can be completely reduced to normal form before evaluation
. . . seq .
on the application begins. Therefore, the operator @ can safely be used instead

pa'r . .
of ® in the inference rule.

If-then-else
9="(f ga 9 gc)
C,T t g,:(Bool,L,)
C)T F gy : <ﬂ’Lb)

C,T +ge: (i, L)
Note that no object within g, or g, can be reduced until the predicate node g,

is reduced. There is no case where both are reduced, because after :f can be
reduced, one of the subgraphs will become inaccessible. The liability assumed is
thus conservative since it assumes one of them will be reduced, after the graph

gq 1s reduced.
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Let
g=(letv=g,in g) C,T + g,:(6,L,)

C7T[U = 0] + g : (ﬁva}
Note that this construction is equivalent (in the untyped Ay-calculus) to

((Az.g1) ga)

As such, their concrete liabilities are the same. With respect to the type aspect,
the difference between the let-construct and its translation is that z type is
allowed to generalize to o in the in the construct, but not in its translation.
(Az.g») would not possess a shallow type if z was assumed a type scheme.

However, the let-construct can still be inferred a shallow type in that case.

Letx
g=(letxv=yg,in ) C,T Fg,:(6,L,)

C,Tlv o] *go: (i1, Ly)
Similar to the previous case, but using a strict application instead of a standard

application.

Fixpoint

g = (fiz g.)

C,T Fga:(p P #, L)
This is just a special case of applications with the function being the fixpoint
operator. The liability of the graph resulting from recursively splicing g in all

instances of the bound variable in g, amounts to projecting u, to L, i.e., u - L.

Coercion
C,T Fe:{(iL)
C + {axp'}

Immediate.
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This theorem states the soundness of the inference rules: any extended type that
can be inferred under the rules makes conservative assumptions on the way objects
are used. There are two places where the abstract liability is more conservative than
the concrete liability: function applications, and conditionals. In the conditionals,
information is lost on which arm of the conditional provides the liability. Data-
dependency information is lost in abstractions. Applications, unable to reconstruct
the lost data dependencies, must infer the most conservative liability—one that can
be satisfied no matter what the data dependency between the formal argument and

its environment within the function.

4.10 Conclusions

The inferred liabilities will be conservative (i.e., the actual use of any object will be
weaker than its abstract use) only if a thread-preserving reduction path is followed.
This was explained in detail in Section 4.9.

Only named objects and anonymous objects are accounted for in the liability
analysis. No consideration is made on substructures. This makes the simplification
that a function abstraction manipulates the use of one object—its bound variable—
regardless of the bound variable’s structure. As a result, composite data structures
are associated with one consolidated abstract use, even though different parts of the
structure are manipulated in a radically different way. A more elaborate extension to
the type system would allow to associate independent uses with different substruc-
tures. Although this seems desirable, the type system becomes much more compli-
cated. A first-order type system where the capturing aspect of objects is isolated is
explored in [Guzmén and Hudak, 1991].

Additionally, a simpler structure of extended types is possible by the way the op-
erations on uses and liabilities are expressed on the inference rules. This will translate
into a simpler type reconstruction algorithm which will be presented in Chapter 6.

Not only type reconstruction is proven feasible for this restricted language, but ex-
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tensions to the language are nonsensical in absence of any behavioral information

provided by the user.






Chapter 5

Examples

5.1 Introduction

In this section, two examples are presented: quicksort and gaussian elimination. They
. were chosen to demonstrate several different issues when dealing with mutation of
state.

In an effort to improve readability, a Haskell-like syntax is adopted:

e Equation groups are used for function definitions in preference to a sequence of

lambda abstractions. A function may be defined by more than one equation.

o Pattern-matching operations are used. These include guards on the left-hand-
side of an equation. The first equation (top to bottom) that results in a suc-
cessful match is selected for evaluation. The semantics of pattern matching
especifies that the guards must be fully evaluated before the evaluation of the
right-hand-side can take place.

e Constructions let and letx. The first one is interpreted as usual, whereas the
second one is interpreted as a strict application. Both constructions allow poly-

morphism.

115
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o Multiple definitions are allowed in a letx. These correspond to nested use (top
to bottom) of this construction. On the other hand, multiple definitions in a

let are mutually recursive.

These constructions form the basis of a high-level functional language. However,
translation from these more convenient constructs to the lower level constructs pro-
vided by the A,:-calculus present no difficulties, and should not affect the semantics
of the programs. For techniques on how these source-to-source translations are made,
the reader is encouraged to read [Peyton Jones, 1987]. The actual code for these

problem in the syntax of the A;-calculus is provided in Appendix A.

5.2 Quicksort

This example shows how an array of immutable objects (integers) can be manipulated

destructively.

Problem

Sort in-place an array of numbers.

Method

By divide and conquer. If the array only has zero, or one element, then it is already
sorted. Otherwise, select a pivot element from the array. Rearrange the elements of
the array so that all elements less than the pivot are contiguous, and so are the ele-
ments that are greater than the pivot (split!). Recursively sort the smaller elements,
and the larger elements (recursive calls to gs!). When both sorts are done, then the

array is completely sorted.
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swap!

split!

quicksort!

swapl a 1 j

splitta i jp {i==j+1}
split! a 2 j p {a[t] < alp}}

{als] > a[p]}

gslaij {t==j+1}
gsta1j {v ==}
gslaij

quicksort! a

(

(

gs! : (Array Int) = Int > Int ;_s; (Array 1)
(Array Int) = (Array Int)

TS
—

Array 1) = Int > Int w (Array )

Array Int) = Int = Int = Int ws ((Array Int), Int)

letx z = (lookup a 1)
y = (lookup a j)
in update! (updatel a i y) j

(a,2)
splitt a (141) 5 p
letx o' =swapl aij

wn splitl @’ 7 (j—1) p

a

a

letx (a',k)=split' ai ji
k' = copy k
a’"=gqsld i k¥

in gs! a” (K'+1) j

letx n=sizea

imgslaln

Figure 5.1: Implementation of Quicksort In-Place
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Program

The program appears in Figure 5.1. It is assumed that arrays always begin on index
1 and cannot be split. Thus, in order to sort sections of the array, the indices for the
beginning and ending of the array must be given. Note that in order to make the
program typable, copy was used within ¢s! to dissociate k from the pair (a’, k). Given
that k is of type Int, the copy operation would be trivial in this case, since integers
are usually copied in most language implementations anyway. The type system has no
knowledge of these pragmatic considerations, however. This copy arises from the fact
that (a’, k) come from the value of split!, and thus are implemented as a single bound
variable of quicksort from which @', and & are retrieved. Therefore, a’, and k share
the same use. Since o’ is mutated, it must do it in a single-threaded environment,

thus, the value of k must be retrieved before o’ is updated.

5.3 (Gaussian Elimination

It can be seen in this example how arrays can be updated single-threadedly in higher-
order contexts. The algorithm presented here is iteratively in nature. Each iteration
is performed by a fold-like operator named folda. The program operates on matri-
ces, i.e., two-dimensional arrays. All elements of the matrix are directly accessible. In
this solution, it is assumed the existence of the creator function mka,, selector func-
tion lookup,, and mutator functions update,! and swap,! that are two-dimentional
versions of mkarray, lookup, update!, and swap!—they behave similarly to their one

dimensional counterparts, but need two indices to operate.

mkarray, : Int @ Int = Int = o = (Array, a)

lookup, : (Array, a) B IntS Int S«
updatey! : (Array; @) =B Int B Int > a > (Array, a)

swapy! : (Arrayy a) = Int 5 Int = Int = Int = (Array, )
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Problem

Solve the equation system Az = b, where A is a non-singular n x n matrix, = is a
vector of n-variables, and b is a vector of n elements. This system is represented as a

matrix of n X (n+1) elements, with the extra elements holding the vector b.

Method

Gaussian Elimination Method. This is done iteratively (and in imperative style!).
There are two passes: forward, and backward. The forward pass has the effect of
transforming the matrix into an equivalent upper triangular one. The backward pass
transforms the upper triangular matrix into a diagonal matrix, thus solving the system

of equations.

Forward Pass. At iteration ¢, the following invariant holds: all elements
Alk,j]1 =0, and Alj,j] =1 for all 1 <k < j <i. At iteration i (forward!), row
is transformed so that A[z,:] becomes 1, and rows ¢+1,...,n are also transformed so
that elements A[j, ], j > ¢ become 0. More specifically, the following takes place at
step 1:

1. (findrow!) Row j is selected, j > 1, such that A[j,7] # 0, and rows ¢ and j are
interchanged (the existence of such a row is guaranteed by the non-singularity

assumption on A).
2. (scalerow!) Row i is divided by A[z, ¢}, thus making A[z,¢] =1, and

3. (addtorow!) Row i is appropriately added to the remaining rows in order to

transform A[j,i], j > ¢ to 0.

After step n, the transformed matrix is upper triangular.

Backward Pass. At iteration ¢, it is true that A is upper triangular (A[k, j] = 0 for
alll < k<j<n,and A[j,j]=1for1 < j<n),and Alk,j]=0foralln > k> j > i.
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. TS
ine :: Int— Int
s
dec :: Int— Int
ws rm s TS rm Tm ws wm
fOld(l o T2 - T2 - (T2 - T2) - (T2 - (&t - 7'1) -7
mezr = z+1
decx = -1
foldavnninef = v

foldavininc f = folda (f ¢v) (inci) ninc f

Figure 5.2: Auxiliary Functions for Gaussian Elimination In-Place

In this iteration, rows i—1,...,1 are transformed so that the elements A[j,1], j <1
become 0. This is just the application of function aeddtorow! with the counters con-
trolling the loop running backwards (i.e., from i to 0). After step n the matrix

Ali,j], 1 <1,j < nis diagonal.

Putting it all together. The function gauss! just iterates forward (1..(n+1)) the
forward pass, and then iterates backward (n..0) the backward pass. The elements

Ali,n+1] have the solutions to the equation system.

Auxiliary Functions

The algorithm just presented performs iterative operations on the matrix. Iterative
constructs are devised in functional languages by abstracting the actual operations
performed in an iteration from the control that guides iterative process. That control
is implemented as a a higher-order function that receives—among its parameters—the

function that implements one iteration. The most common of such constructs is the
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higher-order function map, which receives a list and a fuction f that operates on an
element of the list, and returns the list of results of applying f to each element of the
list. Another such operator is foldl, which successively applies a binary function to
all elements of the list until a result is obtained for the whole data structure. In this
case, the implementation of the gaussian elimination algorithm will be using a version
of foldl targeted for arrays: folda. It receives an array, initial and final indices, an
increment function for the indices, and a function that operates on the array at the
current index and returns a possibly modified array. The implementation of folda,
as well as those of inc, dec (increment, and decrement functions), and their type
signatures appear in Figure 5.2. For pedagogical purposes, the type signature shown
for folda is not its principal type, but an instantiation that is compatible with all uses

of the function within the program. I will present its principal type in Section 5.4.

Program

The program appears in Figure 5.3. The function folda implemented all loops of the
program. Note the nesting of let’s and let*’s in scalerow and addtorow. Two calls to
function copy appear within swap,!, called from findrow!. These could be avoided

with a more elaborate type system. See Chapter 8 for details.

5.4 Higher-Order Types

The higher-order function folda was introduced in the previous section, and, at that

time, was given the type

ws rm TS TS rm rm ws ws
folda :: mom2nm=2(nomn)2(—>n—>n)—2n

which is general enough not to interfere with the inference process of the other func-
tions. However, the type the reconstructor will find for folda—its principal type—
appears in Figure 5.4. This is rather daunting! However, according to Section 6.2,

when full type reconstruction is performed, then the use information of higher-order
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5.4 HIGHER-ORDER TYPES

scalerow!

addtorow!

findrow!

forward!

backward!

gauss!

scalerow' a i n

addtorow! 7 j n

rs

(Arrays Int = Int = Int we (Array; Int)
TS

(Arrays Int 3 Int = Int v (Arrayy Int)
(Array, Int = Int > Int we (Array, Int)

)
)
) rs
(Arrays Int) = Int 5 Int v (Array, Int)
) rs
)

(Array, Int) = Int = Int ws (Array, Int)
(Array, Int = Int w (Array, Int)

letx p = lookup a 11
in let f =Xy a.letx x = lookup a 1 j
in updatey! a it § z/p
in folda a i (n+1) inc f

letk p = (lookup a j 1)
in let f = Ak a.letk x = lookup a 1 k
y = lookup a j k
in updates! a § k (z—pxy)
in folda a i (n+1) inc f

findrow! a ¢ j {(lookup, a j 1) #0} =
let f= (M a.(swap!atkjk))

in if (1 ==7j) then a
else folda a v n inc f

forward! ai n

backward! a i n

gauss! an

findrow! aij = findrow a1 (j+1)

let a” = scalerow! (findrow a 1) i n
in folda a” (141) n inc (Aj a.addtorow! a i j n)

folda a (:—1) 1 dec (Aj a.addtorow! a i j n)

letx @' = folda a 1 (n+1) inc (At a.(forward! a i n))
in folda a' n 0 dec (A: a.(backward! a i n))

Figure 5.3: Implementation of Gaussian Elimination In-Place
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v v3 Ve 151
folda :: m DD (72 7;* 2) 3 (2% T1 % 1) s 11
where
alt
vr = ¢esO(vr (vs ¢s))
seq par
vs = rsO((v7 (v3 ¢s)) O (vs (11 cs)))
par
vg = (vg ¢s)O(vg cs)
pa.'r
vio = (v7 ¢8)©® (v10 €8)

alt alt alt

Vnk = (v7 (1aOVs))O(vs v2) Oy

Figure 5.4: Principal Type of folda

functions cannot have any restrictions whatsoever. In fact, by analyzing the imple-
mentation of folda, there is no clue on the behavior of f—how f uses its arguments,
and global variables—on the call (f ¢ v). Granted that the former type of folda
looks much simpler, and more likely to be understood, but it is just an instance of
its principal type when the instantiations from Figure 5.5 are made.

It is certainly possible to allow the user to (partially) specify the extended types
of the functional arguments. Given those extended types, the system can infer a type
where all uses are completely specified. The user could even be allowed to provide
alternative type signatures for functional types, and the type inferencer could choose

the less restrictive signature in each use of the function. In the extreme, the system

vi = T8 v, = 1
vs = rm vy, = L
Vg = WS vs = L

Figure 5.5: Instantiations of Principal Type of folda
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HIGHER-ORDER TYPES

vy
Vg
Vg

V10

5.4
ws
rm
vy = 1
rm
Ccs

Figure 5.6: Solution to Fixpoint Equations of Type of folda

may find all possible instantiation to the higher order uses that would result in a legal

type (i.e., that does not map any use expression to wm. The number of assignments

to higher-order use variables grows combinatorialy with the number of higher-order

use variables, but the number of “reasonable ” assignments may not grow so rapidly.



Chapter 6

Type/Liability Reconstruction

6.1 Introduction

In this chapter, an algorithm for extended type reconstruction is presented. The
algorithm computes a principal extended type in the absence of any type information
provided by the user. An interesting feature of the reconstruction algorithm is that it
benefits from subtyping, but there is no need to manipulate coercion sets.

Even though the Type/Liability inference rules were presented as a unity (Sec-
tion 4.4), where information on types is used on liabilities, and vice versa, the algo-
rithm presented in this Chapter performs a standard type reconstruction algorithm

followed by an extended type reconstruction algorithm:

Type Reconstruction, a la Hindley-Milner
This part does a straightforward type reconstruction—there is no involvement

with abstract uses or liabilities; and

Extended Type and Liability Reconstruction
This part takes type information collected by the Hindley-Milner algorithm
to reconstruct the extended type of expressions by reconstructing all use and

liability information.
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An interesting result from this chapter is that even though the typing rules make
use of a subtyping model on types, the typing algorithm does not need subtyping
information at all in the case that total type reconstruction is performed. This is
important because the system benefits from the expressiveness of subtyping without
making the type reconstruction algorithm any more complex.

Section 6.2 presents a more restrictive language of extended types, which can
be used under the assumption that total extended type reconstruction is performed.
Sections 6.3 and 6.4 present a type reconstruction algorithm, and Section 6.5 shows

that the type computed by the algorithm is guaranteed to be principal.

6.2 Reconstructible Extended Types and Type

Schemes

The inference rules presented in the previous chapter make no assumptions on the

form of extended type expressions that can be inferred. In fact, expressions like
Af . Ax. (f x)

may have, among others, any of the following types

All these types are eztended types of the same standard type
(n—7) =n—n

which turns out to be the principal standard type for the expression. As happens in
standard types, it is reasonable to expect for extended types a principal type property,
and that only principal types be computed by the reconstruction algorithm—the first

type from the preceding example.
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However, when full type reconstruction is performed (i.e., all type information is
inferred from the program; the user does not provide any type information) it will
always be the case that use information associated with higher-order functions cannot
have any restriction whatsoever; i.e., all use information associated with higher-order
functions must consist entirely of variables. Intuitively, the use information for a
graph is gathered in the scope where the graph is created. In the definition of a
function, the use of the bound variable to the function becomes apparent, but, in the
case the bound variable is of a functional type, there cannot be any restriction on
how the actual functional uses its arguments. In terms of types, there is a noticeable
distinction between a first-order function type—a function type not inside the ar-
gument type of another function type—and a higher-order function type (otherwise,
corresponing to functional arguments). A higher-order function type must have its
uses uninstantiated—plain use variables. This is formally captured by the language of
reconstructible types and type schemes, shown in Figure 6.1. Further, a use variable
cannot appear more than once in higher-order position within a type.

The following theorem states that if all assumptions made on the types of variables
and constants are from T'ypeSchfss*™e, then a reconstructible type can be found for
any graph that has a standard type. This actually implies that TypeSchfsse™e is a
simpler subset than TypeSchg., and that it is “closed”.

Theorem 6.2.1 For all graphs g, and assumption environments T, if the types of
all constants are in TypeSchis ™ and all the types in the assumption environment
are also in TypeSchE (Figure 6.1), and g can be given standard type o, then it is

possible to infer a reconstructible type for the graph.

Proof The proof is by induction on the structure of g, and following the inference

rules from Section 4.4.

1. Constants
g=c

C, T +k:K(k)
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6 € TypeSchie = [ where P
| Vaé
| Yvo
fi € MutTypeRes := | Array Arrays
| 7
# € Typekes = Int| Bool | ... Basic Types
| Pair 71 7o Pairs
| ¥ :;) f2 First-Order Functions
| @ Type Variables
P e MutTypeBe = Array ¢ Second-Order Mut. Types
| ¢
¢ € Typeli, == Int| Bool| ... Second-Order Types
| Pair ¢; ¢,
L omo
| %1 v 2
| @

Note: use variables cannot appear more than once in

higher-order position within a type.

Figure 6.1: Syntax for Reconstructible Types and Type Schemes
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The theorem trivially holds for g, since the types of all constants are already in

TypeSchgiyme C TypeSchies.

. Variables
g=v
C,T Fo: (T(v), -LLiab[v — CS])
Like in the previous case, trivial, since T'(v) is in TypeSchg‘;’t“me C TypeS chgg‘;.

. Abstractions

9= (Av.g')
C,Tlvw fia] F g (fin, Liiablvs o up,y ..y vn > Un, v o ug, £ — wp))
Note that in order for the inductive hypothesis to be valid, i, € TypeSchassrme,

rt
U

It follows that (i, u_:) fis) € TypeSchEee.

. Applications
9=1(92 9)

. Y
C,T F ga:(fia u fioy La)

C,T - gb : (ﬂadLb)
By inductive hypothesis,

ul

L =3,
C,T F gu: (Yo v iy, Le)
with ¢, = p, (i.e.,the standard types coincide, but the extended may not, due
to differences on uses). Note that 1/302,&,,, since they just differ in their uses, and
12;,1 does not have any instantiation in its uses, since it is a higher-order type.
Then there exists S such that S 12),1 = flo. Take iy = S fij. It must be the case
that 2, € MutTypeR because S cannot bind any use in higher-order position
within 2;. This follows because

ul

» = At Rec
Yo w, [y € MutTypeg;

and, therefore its higher order use variables are different from any use variable

in 12),1.
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5. Strict Applications

Same argument as previous item.

If-then-else
9="(f 9 9 9c)
C,T F g,:(Bool,L,)
C,T t gy : (@, Ly)
C,T +g.: (i, L)

By inductive hypothesis, i € MutTypeBe, and this is precisely the type of the
construction.
Let

g=(letv=g,in g)
C,T ¥ g,:(6,L,)

C,T[’U = 0'] - v : (ﬂaLb)
By inductive hypothesis, & € TypeSch&e, and thus, the environment T can be
extended to map v to such a type. It also follows that i € MutTypeRec. This

last type is the type of the construction.

Let*

Same argument as previous item.

Fixpoint
g9 = (fiz ga)

Ua
C,T F gu: (s w i L)
By inductive hypothesis,

~

C,T +g.: (P i,L)

ul

"3
where (¢ «, fi') € MutTypeRe. Then i is the fixpoint of /i’ where each use

variable of 1) has been replaced by the fixpoint of the corresponding use expres-

sion in A'. i € MutTypeRe since every use variable in higher-order position
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in fi was instantiated to a use variable in higher-order position in ¢, hence, it

continues with no restriction.

Maintaining the inferred types within T'ypeS che is important since it will later

be proved that there exists a principal type property for graphs that can be given a
type in TypeSchEec. Also, reconstruction is possible for this simple language, but the

algorithm presented in Section 6.4 does not generalize for arbitrary extended types.

6.3 Standard Type Reconstruction

The algorithm for type reconstruction is typical of a Hindley-Milner type system.

Therefore, its presentation is omitted.

6.4 Extended Type and Liability Reconstruction

The type inference and coercion rules can be combined with an effective type re-
construction algorithm to yield a decidable type system. As mentioned before, an
outstanding feature of this algorithm is that even though the typing rules were based
on a subtyping structure of the domain, the algorithm is implemented without the
standard techniques for subtyping, like the ones found in [Mitchell, 1984,Fuh and
Mishra, 1989]. This is pessible because a total liability reconstruction is performed,

and thus there is no knowledge of higher-order behavior.

6.4.1 Computation of Abstract Uses and Liabilities

Two operations are performed on abstract uses:

e binary operations specified on Chapter 3, like ul%rug; and
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e fixpoint operations, introduced by fiz-nodes, which impose recursive con-

straints on the uses of their functional argument.

Binary operations are solved by applying the corresponding operator to the argument
uses if they are known. If either of the uses is not known then this computation
is carried out symbolically (i.e., it is left expressed, but not computed), and can
be resolved as soon as the missing value becomes available. Due to a lack of a
better computational model, the solution that has been adopted is to keep a set of
unresolved use expressions along with the liabilities. For that purpose, the domain

Liab is introduced:
L € Liab = Liabx (UseVar — AbsUse)

Operations on liabilities are extended to this domain:

-®_: Liab— Liab— Liab
u: Liab— Liab

(L1,C1) © (L3,C2) = (L1 © L, C1UCY)
u (L,C) = (ulL,C)

Fixpoint constraints are solved by the pumping from bottom technique [Young, 1988].
The current set of constraints is first broken into sets of mutually recursive constraints.
Each set that is closed (the value of the elements of the set depend only on their own
values or on previously computed values) is solved using the previously mentioned
fixpoint iteration tecnique. The specifics on how these operations are eventually

evaluated is discussed in Chapter 7.

6.4.2 Auxiliary Functions

For the algorithm, S € Subst denotes the substitution environment. It binds type
variables to type expressions, and use variables to use expressions (Id is the identity

substitution). The following auxiliary functions are assumed:
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e Extended Type/Use Environment for constants:
K : Kon — (MutTypele, AbsUse)

This is a typical type environment for constants, except that it also contains

the use of the anonymous object implied by the use of the constant.

e Pattern-Matching:
™. Type - Type — Subst
M (MutTypele + Use) — (MutTypeRe + Use) — Subst
This is a standard pattern-matching algorithm, or one-way unification which
provides the most general unifier (a substitution) of two types or two uses,
where no variable occurring in the first argument has been instantiated. The
first argument is called the ezpression, and the second one, the pattern. 2]

acts on extended type, while 7M ignores any information on uses.

e Extended Type Abstraction:

:Type > M utTypeRes

This function is the trivial abstraction function from standard types to extended
types. As such, it makes no assumption on uses, thus mapping to the most

general extended type that can be concretized to the given standard type.
e Generalization:
gen : MutTypeR® — (Var — MutTypeR) — MutTypel

(gen p T) generalizes all use and type variables that occur free in g, but not in

T.
e Specialization:
spec: M utTypegz‘.; - M utTypegict

This function produces the extended type instantiation; i.e., it instantiates all

bound type, and use variables.
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6.4.3 Algorithm
The main algorithm, 7 has as signature

T : Graph gnn — (Var — MutTypeR) — (MutTypegict x Liab x Subst)
with the following inputs

e A ),-graph g, for which the extended type is to be inferred. Graph,,, stands
for any Ay-tree annotated with the (reconstructed) standard type of all constant

nodes (k?) and bound variables (v?); and
e A type environment (T'), which holds the extended types of bound variables.
and outputs
e the extended type of the graph,
o the liability of the graph, and
e a substitution environment.

TgT, = casegof
BODY

To type the program, proceed by cases dispatching on the form of the expression

being typed.

1. Constants

g = k-
let (fiy,ug) = (K k)
Si="M fi ju

Sy =M Siju fi
in (Saft, Lria[€ v Sui), S2)
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Constants do not affect any named object. However, they may capture anony-
mous objects, as the liability Lr:s[é — u;] indicates. Note how the actual

standard type (u) is manipulated to get the extended type (Szp)

2. Identifiers

g=v -
let fi; = spec (T; v)
in (fi1, LLia[v — cs], Id)

This follows directly from the inference rule. The liability of an identifier is
1 r:a[v — cs]. Referencing an identifier does not involve any manipulation to
the anonymous objects. Note that the actual type is instantiated (specialized)

using spec.

3. Lambda Abstractions

g = (Mvte) —

let <ﬂ1,L1,Sl) =T [ T,[v — ﬂ]
(Lv)

. - v

in ((Sip) €& fu,S1L7%, S1)

The uses of the bound variable v, and anonymous objects are computed recur-
sively by typing the body. Then use of v, and £ must be removed from the
resulting liability, as they become part of the extended type. The type of the
bound variable (u) can be trivially extended since i is a second order type

(appears within the domain of a function type).
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4. Applications

g = (e1e2) —
let (ﬁ],Ll,Sl) =T €1 T,
(ﬁz,Lz,Sz) =T e; 5iT;
Ss= BT Saojis (fiz s @)
where «, v1, vy are new vars

in (Ssa, ((v1 - S3L2)%TS35'2L1) U Lrias[€ — (S5 v2))], S35251)

par
The computation of uses (u; ® (u - uz)) cannot always be solved, at this stage,
since it can be the case that either of these uses is unknown, but the expression
can nevertheless be left expressed, and will be solved at any super-expression

of first-order type. Also note that the correct use for the anonymous objects is

(v1+ (L26)) U (L16) U Lpias[€ — 1]

In the case of a functional argument, the higher-order part of the function’s
extended type does not restrict the argument’s behavior in any way. A pattern
match of the instantiated domain part of the function to the argument type is

powerful enough for the task—no need for full-fleshed unification.

5. Strict Applications

g = (e1e) —
let {(11,L1,51)=T ¢ T;
(ﬁz,Lz,Sz) =T e; 51T;
Ss =M Safty (fi2 % a)
where a, v1, vy are new vars

in (Sza, ((v- S3L2)%(15'35'2L11) U Lrias[€ — (S5 v2)], S35251)

This case is essentially the same as the previous one, with the exception that

the type of the argument is unified to a non-functional term, acording to the
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corresponding rule for strict applications, and the resulting liability is more

seq alt
liberal (use of ©® instead of ©).

6. If-then-else

( €1 €2 63) -
let (i1, L1,u1,5) =T e1 T;
( 2,U2,52) T e; S517T;
(p3,L3,U3,53) T e3 S25T;
Sy =M Ssfiz i3
in (S4Safia U Safls, 545352L1g(5453L2‘$S4L3), S54535551)

Note that the restriction on the types of the expressions of both branches of 7 f
is that they both be coercible to the same type, but their types need not unify.

7. Let

g = (letv=-¢e; in e) —
let (fi1,L1,u1,5) =T e; T;
(fi2, Lo, uq, S2) =T ex SiTi[v — (gen p1 SiT3))
( 2f12, ((Lz U) : SlLl)pérLz, 52)

m

Note the generalization step to transform p; into an extended type scheme.

Otherwise, it is a straightforward implementation of the inference rule for let.

8. Letx
g = (letx v=-1¢; in e3) —
let ( 1,U1,Sl) T €1 T,'
(fiz, La,uz, S2) =T e3 SiTi[v v (gen py SiT5))
in (Saflz, (L2 v) - 51L1)®L2,52)

Note the generalization step to transform g; into an extended type scheme.

Otherwise, it is a straightforward implementation of the inference rule for let.
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9. Fix

g = (fize) —
let (f1,01,51)=T e1 T;
Sy = B Sijs (a5 @)
where a, 11, v, are new vars

iTl (Sga, ((Sgl/l) . Sng) U (-LLiab[f — Sgl/g], SgSl)

The fiz-operator is handled as a constant of type (@ — @) — « in traditional
Hindley-Milner type systems. However, fiz cannot be correctly typed in the
extended type system because in order to do so, the assumption has to be made
on the functional argument it takes that the extended type of its domain be
identical to that of its range, including any higher order behavior that the argu-
ment may have. This is not expressible in the restriction to the extended type
system adopted. Instead, the domain’s and range’s types are matched. From
the restrictions imposed on the extended type language, the type of e; is of
the form % %? ft. The pattern-match then has the effect of matching use vari-

ables of 1) to corresponding uses of x. From this matching, (possibly recursive)

constraints are generated. These capture the intended behavior of fix.

6.5 Principal Extended Types

The algorithm presented in the previous section computes reconstructible types for
graphs under the restrictions of Theorem 6.2.1. Assuming that programs have empty
type assumptions, the results of that theorem will hold for any program provided
that the constants have reconstructible types—a quick glance at Figure 4.4 shows
that constants do satisfy this restriction.

In this section, it will be proven that in case any reconstructible type can be de-
rived for a graph g, then there exists a (reconstructible) type & for g also derivable

from the rules such that any other type that can be deduced for g is a logic conse-
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quence of &; i.e., 6 is a principal type of g. Further, it will be proven that if g has a

reconstructible type, then 7 g L g,, will find a principal type for g.

Lemma 6.5.1 For all contexts C, graphs g, coercion sets C, assumption environ-

ments T and T', and extended types &,, and &3 such that 61>6,, if
C, T’ F U[g] (&4, L4>

by using the fact that
C,T F g: (&2,.[/2)

then there exist 63, L3 such that
C,T' + 6[9]3 (63, L)

by using the fact
C,T F g: (5’1,L1>

and 63>y

Proof The proof is by induction on the structure of C. It will be observed for each

construct that a weaker premise necessarily leads to a weaker conclusion. O

Definition 6.5.2 A canonical derivation is one such that the premises to instantia-

tion rules can only be conclusions of constant rules, or variable rules.

Lemma 6.5.3 If there is a proof for T t g: p, then there exists a canonical deriv::-

tion with the same conclusion.

Proof By induction on the structure of the derivation of the type.

o All substitution nodes can be moved from conclusions to all premises by apply-

ing the substitution to the conclusion.
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e Two instantiation nodes in chain—one being the conclusion of another—can be

collapsed into an instantiation node that does both substitutions.

o After the above two transformations are done, all instantiation nodes will be on

conclusions of constant rules, or on conclusions of variable rules.

Lemma 6.5.4 IfC, T F g: (i, L), then there ezists a canonical derivation with the

same conclusion.

Proof Similar to previous lemma’s. Just separate coercions from instantiations. O
Lemma 6.5.5 IfC, T +g:(i,L), thenT + p.

Proof Just eliminate coercion steps in the derivation. All standard types coincide,
since coercions only deal with use information (relevant to extended type, but with

no counterpart in the standard type system). O

Lemma 6.5.6 IfT + p, then C, T + g: (i, L).

Proof The proof of Theorem 6.2.1 shows how to build the proof of the extended
type. The intuitive idea is to add a coercion step in between any two steps of the

standard type proof. O

Lemma 6.5.7 For all graphs g, and assumption environments T, if
(Tg T)= (i L,S)

then there exists C such that
C,T +g:(p,L)
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Proof By induction, the algorithm is a canonical proof. For identifiers and constants,
the algorithm infers the type of the identifier/constant, and immediately does an
instantiation step. For all other graph structures, the algorithm first does coercion
steps in order to get all conditions required to apply the rule corresponding to the

structure of the graph. O

Lemma 6.5.8 For all graphs g, coercion sets, C, and assumption environments T,

f C,T & g: (i, L1), then (Tg T) = (12, L2, S), and C ¥ {fia>i1 }.

Proof The proof is by induction on the structure of g, and following the inference

rules from Section 4.4.

1. Constants
g=c*
C,T Fk:K(k)=(1,L1)
il iz, and fi>p

(T c* T) = (/ia L’ —LSubst)
Note that in the derivation to find the principal standard type for g, the type

for ¢ was p. Therefore, by Lemma 6.5.3, there exists a canonical derivation, by
Lemma 6.5.6 there exists the corresponding derivation for the extended type.
For that derivation, there also exists a canonical extended derivation. In that

derivation, ¢ is necessarily instantiated to f, with g>fis.

2. Variables
g=uv
C,T Fuv:(T(v),LLiwslv— cs])
(T v* T) = (T(v), LLiab[v — ¢s], Lgupst)

Similar to previous case.

3. Abstractions
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g = (Av*.g1)
C,Tvr— ft] F g’ : (fin, L[v — u,, & — wp))
(T g T) = (ﬁd,L[U = uca€ — ud]75>
Note that the inductive hypothesis implies that fig>fip, u.>u,, and ug>u,. Under

these conditions, it is immediate that

4. Applications

9= (9ga 9b)
C,T Fga: (e bua, a)
CT I-gb (a,Lb>
%5 .,
(T Ja ) ( Uud y’c’LC’S>

(T 9b T) = (”C’Ld’ Sd)

. Uc "
By inductive hypothesis, (¥, ws f0)>(¥a ﬁ Ar), and fi.>fi,. Coercion steps will
be taken to coerce ﬁc to f., and 1&, to fiy. By the coercion rules on function

types, it is implied from the premises that fi.>f,.

5. Strict Applications

6.

Same argument as previous item.

H-then-else

9=(f 9. % 9.)
C,T F g,:(Bool, L,)

C T l‘ a ( ,Lb>
C,T +g.: (g L)
(T go T) = (Bool, Ly, S4)

(T gv T) = (ﬂ' 7LeaSe>

(T 9. T) = (i, Ly, Sy)
By inductive hypothesis, i'>f.
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7. Let
g=(letv=g, in g)
C,T F g,:(6,L,)
C,Tlv o] Fgy: (i, L)
(T 9o T) = (6", L, Se)

(T gb T) = (ﬂl’ Ld’ Sd)
By inductive hypothesis, 6>6', and i>f'. [ is the extended type of the con-

struct.

8. Letx

Same argument as previous item.

9. Fixpoint
9= (fiz ga)
C.T F 4o (o fr )
(T 6 T) = (e v fes Lo, 52
By inductive hypothesis, (zZ:c :—:’ ﬂc)z(zzia ﬁ fia). Since the fixpoint calculation

perfomed on both sides preserves the inequality, it is concluded that the lemma

also holds for this case.

Theorem 6.5.9 1. The language of reconstructible types and type schemes has
the principal type property.

2. For any graph g, and type assumptions T, the algorithm T finds a principal type
for g if g can be given a standard type.

Proof Lemma 6.5.7 ensures that the algorithm 7 only computes valid types. By
Lemma 6.5.8, it is ensured that the type inferred by the algorithm is coercible to any
other type produced by any valid derivation, therefore it must be principal. O






Chapter 7

Implementation

7.1 Introduction

In this chapter I present some experimental results taken from an implementation
of the type inferencer for the Poly-As-calculus. This implementation is faithful to
the type reconstruction algorithm presented in Section 6.4, and is written in the T
language [Rees et al., 1984 ,Slade, 1987]. The concrete syntax for this implementation
is presented, as well as how it relates to A4-calculus, and how the reconstructor
can be run. The syntax of expressions and types are introduced in Sections 7.2,
and 7.3 respectively. Section 7.4 provides some insight on implementation details,

and Section 7.5 shows some actual examples of graphs typed by the implementation.

7.2 Implementation

The type reconstruction program follows the guidelines set forth by the algorithm

presented in section 6.4.

145
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7.2.1 Concrete Syntax

The input language for the type-checker is an enhanced version of the Ay -calculus

with Lisp-like format. Its concrete syntax is

frv
k

?

Ide identifiers (T symbols)

Kon constants

Mm Mm v

Int C Kon integers (T numbers)
e € FEzpr eTPTesstons

wheree = n

| v

| ( lambda vy ... vo e )

| (ife1ee3)

| (letvese)

| (let*ves e )

| ( fize)

| (&1 ... €n)

Note that unlike the abstract syntax for Ay-calculus, labels are not associated to
expressions in the concrete syntax. A consequence is that no sharing is expressed
for arbitrary expressions. The only sharing mechanism provided is through the let-,
and let*-bound variables. Both versions of let allow type polymorphism. The
distinction between them is that let translates to a function application while let*
translates to a strict application. The fixpoint operator is implemented by £ix. There

are also constants, A-abstractions, and (uncurried) applications.

This language is translated to the Ay-calculus in a straight-forward way, with the

exception of abstractions and applications which need to be curried.
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7.3 Types

Compared to the Abstract Syntax, the concrete syntax of types has the usual sim-
plification, inherited from the Hindley-Milner type system, that quantifiers on type
variables are not used. Instead, a sophisticated method is used to determine whether
or not any specific type variable is quantified. Similarly, there are no quantifiers for
use variables either.

The concrete syntax for types is:

v € {"}++Ide Use Variables'
a € {?}++Ide Type Variables

u € AbsUse = u-bot| u-rs | u-rm| u-cs

| u~cm | u-ws | u-we | u-um Abstract uses

alt seq par .
|u; © uz | uy © uz | ug ® uz Binary operators

| uy - up Projections
| v Use Variables
o,%, 7 € Typegss = Number | Bool| ... Basic Types
| ( Array 7 ) Arrays
| (List 7 ) Lists
| (Pair iy 7 ) Pairs

| (71 (uy uz2 ) 72 ) Functions
| o Type Variables
Where u-bot, u-rs, u-rm, u-cs, u-cm, u-ws, u-wc, and u-wm correspond to L, rs, rm,
cs, em, ws, wsVem, and wm, respectively; Number corresponds to the Int domain;
u
(71 (uy uy ) 7, )is the concrete syntax for y Z_:} 7; and type, and use variables are

just any T symbol prefixed with ?, and ~ (caret character) respectively.

1The operator _++. has signature
(Set a) — (Set a) — (Set a)

Elements of A4+ B are formed from the concatenation of one element of A to one element of B
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7.4 Issues on Implementation

The type reconstructor is implemented in the T language [Rees et al., 1984,Slade,
1987]. The novel part of the implementation is the manipulation of uses and liabilities,

and therefore, are the only issues discussed.

As pointed out in the previous Chapter, the extended type reconstructor has
the information on the standard type of expressions available. In this particular
implementation, the standard type reconstructor actually builds an extended type
template with the characteristic that its mapping to the standard type domain is the
principal standard type for the expression. In particular, no restrictions are placed
on uses. The extended type inferencer then specifies the restrictions that the uses

embedded in the type have to satisfy.

Binary operations are sometimes applied to uses that are not yet known, as when
an object that involves a functional argument. It is enough for the reconstruction
algorithm to specify the operation to be performed. In the actual implementation,
however, it is important that all operations that can be computed eventually be
done. In this way, these operations share the same principle of a logical variable:
their existence is first specified, but their value may not be given until much later.
The implementation computes all binary operations which can be reduced. It is
guaranteed that a first-order expression will have enough restrictions in its use facet
that all restrictions on uses will be solved. In expressions yielding higher-order types,
however, not all use variables are given enough restrictions to be able to be evaluated
to an abstract use. This variables are given an equation dependent on other unknowns
which precisely state their value. For expressions that also involve fixpoints, recursive
constraints may arise. On solving fixpoint operations, standard graph techniques were
used to recognize data dependencies among equations, and to classify them into sets

of mutually recursive constraints.
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7.5 Sample Runs

The type reconstruction routines are loaded into the T environment by loading the file
reconstructor.t. The extended type reconstructor function is bound to function
etr. It receives a A,-program, and returns its extended type with the corresponding
fixpoint constraints on uses, and its liability. Also, there is the possibility of run-
ning only the standard type reconstructor, bound to the function tr. The following

examples were run on the reconstructor:

Example 7.5.1 This ezample types the identity function: Az.z:
> (etr ’(lambda = z))

;smultiple values:
[o] (-> 2?0 (¢S BOT) ?0)
[11 O
21 O
The answer is, as expected, the extended type 20> 20, Its has empty liability and no

unresolved fixpoint constraints.

Example 7.5.2 Af.Ag.Az.(f (g 2))
> (etr ’(lambda f (lambda g (lambda = (f (g9 z))))))

smultiple values:
[ol] (-> (-> 23 (°4 °5) 26)
(¢S BOT)
(-> (-> 20 ("1 "2) 23)
((4 ¢S) BOT)
(-> 20 (("4 ("1 CS)) (ALT ~5 (4 "2))) 26)))
[1] O
21 O
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As expected, the answer has empty liability, and no recursive constraints. In a more
familiar syntaz, the type is
4 d e 4Gk
(23 =5 26) = (20 “2 23) — 20 "5%("4"2) ?6

or, by doing a-renaming:
(8 é 7) = (a ?i) B) 5 a 68wt v

which is the principal extended type for the expression. Note how different the recon-
structor manipulates the use of the bound variable, from the use of the anonymous
objects. Further simplification on the type (not afecting its principal property) can be
done if (v ¢s) are replaced by v. Although these are easy simplifications, and would
highly improve readability, they are dependent on the particular structure of the do-
main of uses, and the operations defined among them. Therefore I restrain from

performing such simplifications in this chapter.

Example 7.5.3 iterate
This example involves the fixpoint operator. The function iter takes a functional
f:a— a, an object x : o and a number n, and iterates the function f on  n times.
In order to show better the effect of the fizpoint operator,
(define iter-fn '
’(lambda iter
(lambda f z n
(if (=2 0)
z

(iter f (f 2) (- n 1))))))

(define iterate

‘(fiz ,iter-fn))
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> (etr iter—fn)

smultiple values:
o] (-> (> (-> 29 ("2 ~3) 24)
("0 "1)
(-> 24 (°5 “6) (-> NUMBER ("7 "8) 29)))
(¢S BOT) .
(-> (-> 29 (2 ~3) 24)
((PAR ("0 ¢s) (°5 CS)) BOT)
(-> 29
((PAR ¢S (°5 ("2 €S))) BOT)
(-> NUMBER
((SEQ ¢S (~7 CS))
(ALT BOT (ALT (ALT (ALT (ALT ~1 °6)
(~5 °3)) ~8) ("7 B0T))))
29))))
11 O
21 O

It can observed that the uses of the functional argument (lambda iter ...) do
not correspond to the uses of the range of the function. The firpoint operator creates

these restrictions, namely, that

"0 = (PAR (‘O‘CS) (°5 €s))

“1 = BOT

"5 = (PAR CS ("5 ("2 ¢5))
"6 = BOT

~7 = (SEQ ¢S ("7 CS))

“8 = (ALT BOT

(ALT (ALT (ALT (ALT "1 °6) ("5 ~3)) ~8) ("7 BOT)))
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> (etr iterate)

[ol] (-> (-> 29 ("2 ~3) 29)
((PAR ("0 CS) ("5 CS)) BOT)
(-> 2?9
((PAR ¢S ("5 ("2 ¢S))) BOT)
(-> NUMBER
(CM (ALT BOT (ALT (ALT (ALT BOT ("5 ~3)) ~8) BOT)))
29)))

[1] O
[2] ((8 (ALT BOT (ALT (ALT (ALT BOT (5 °3)) -8) BOT)))

("5 (PAR CS (°5 ("2 C5))))

(0 (PAR ("0 CS) (5 CS))))
These fizpoint equations cannot be solved at this stage because they depend on values
"2 and ~3, which are not known. When this function is applied to a functional argu-
ment, (+ 1), for ezample, then all its fizpoint equations can be solved:

> (etr ‘(,iterate (+ 1)))

smultiple values:
[o] (-> NUMBER (CM BOT) (-> NUMBER (CM BOT) NUMBER))

(1] O
2] O

Many other examples have been run with the type reconstructor, including all

those presented in Chapter 5.



Chapter 8

Conclusions

As this dissertation shows, the expressiveness of functional languages can be extended
with the ability to destructively manipulate state without losing referential trans-
parency. The degree to which the state can be destructively manipulated depends
on many factors involved in the design of the system as a whole. Many trade-offs
have been resolved in favor of a simpler type system, rather than a more expressive
one. Exceptions were made in cases where added complexity would mean theoretical
robustness, like in the case of reconstructible extended types—their introduction was
instrumental for proving the principal type property for extended types. The expe-
rience gained here proves the feasibility of such extended type systems. Section 8.1
surveys several trade-offs that were resolved, and hints how the system changes when
other choices are taken. Finally, Section 8.2 provides some concluding remarks on

this dissertation.

8.1 Complexity vs. Expressiveness

The degree to which the state can be destructively manipulated depends on

o the actual structure of the domain of abstract uses—the operational properties

that are analyzed, and
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e the objects on which these properties are analyzed.

In this work, the domain of abstract uses contains 8 elements, resulting from the con-
junctive evaluation of 3 operational properties; and the properties are controlled only
on free variables and arguments to functions. The resulting system is very primitive,
yet powerful enough to demonstrate the validity of this approach. In fact, although
I have shown several programs that satisfy the type requirements, and as such, are
guaranteed confluence under Ay-calculus, limitations of the system are responsible for
the fact that many programs that are indeed single-threaded, as per Definition 3.4.7,
do not possess a valid type. Some of these programs can indeed be given a type if
the system is suitably extended.

One limiting characteristic of the system (due to its simplicity) is the fact that the
extended part of the type (i.e., all the use information) is structured homomorphically
to the function constructor on types, i.e., the extension only deals with the usage of

function arguments. For example, the extended type of update! is
update! : ((Array 7) = Int = 1 = (Array 1), Liio)

where the actual extension to the Hindley-Milner type system is just the annotations

above the arrows:

which indicate that the first argument is mutated, etc. The notation adopted in
this thesis stresses the point of view that the functions are the entities that manipulate
their arguments, and as such, the extension is to control on how the functions use
their arguments.

In the case of a structured argument to a function, it is usually the case that
the different parts of the structure are manipulated in different ways. In the update!
example, the system cannot distinguish that the structure of the array is mutated, but
the elements are not.

The type hierarchy from which the standard type system is based reflects this

deficiency when it discriminates mutable data structures, e.g., arrays, from immutable
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o € TypeSch == p
| Vao
p € MutType ::= Int| Bool | ... Basic Types
| Array p Arrays
| Pair y; po Pairs
| u1 — po Functions
| @ Type Variables

Figure 8.1: Syntax of Collapsed Type Expressions

ones. There cannot be arrays of arrays, or other more complex data structures. If
the hierarchy is collapsed, as in Figure 8.1, the arrays become “first-class objects”. In
this case, all objects become mutable (since any object can contain an array within

its structure), and the types of primitive rules, like lookup must reflect that generality
lookup : ((Array «) S Int > &, LLiab)

since the assumption that the elements of an array are immutable no longer holds.
Hence a potentially mutable part of the array is returned, and therefore, the array
argument is captured.

A type system resulting from this modification would fail to type swap!

swap! a i j =

let x = lookup a i

y = lookup a j

in update (update a i y) j x

forcing it to be written as
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o € TypeSch == pu
| Vao

p € MutType == | Array! u
| Pair gy po

| 7

7 € ImType == Int| Bool | ...

| Array 7
| Pair 71 72

| p1 — pa

| @

Mutable Arrays
Pairs

Immutable Types

Basic Types
Immutable Arrays
Pairs

Functions

Type Variables

Figure 8.2: Syntax for Mutable and Immutable Arrays

swap’! a i j =

let x = copy (lookup a i)

y = copy (lookup a j)

in update (update a i y) j x

For small data structures, like integers, these copy’s might be avoided, or would

happen anyway. However, for large data structures, these copies would be clearly

unacceptable. Even if swap! could be provided as a primitive with its less constrained

type, the basic deficiency is there, and it will show up in other computations as well

(just try to exchange three elements of the array!)—fixing the type of swap! does not

attack the source of the problem, but only its symptoms.

A more elaborate definition of the type system—one involving mutable and im-

mutable versions of data structures, like the one in Figure 8.2, may ease this prob-
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lem, but such a type system will surely need reasoning about subtyping in order to
allow mutable and immutable versions of the structures behave similar on certain
operations—lookup, and update for instance—but behave differently on mutators
like update!. Although feasible, the resulting type system would certainly be more
complex. In fact, such a type system was introduced in [Guzman and Hudak, 1990].

When distinctions are made on how different parts of the structure of an object
are manipulated by the function, then the important elements are the different sub-
structures of the argument, and how they are manipulated by the function. The
notation would then shift to annotate arguments, rather than functions. The type of

update! would be under this extension
update! : (Array™’ %) — Int™ — 7% — (Array 1)

This signature makes the distinction between the use of the array (ws), and the use
of its elements (¢s). Pragmatically, this kind of knowledge is indeed necessary, as the
examples presented in Chapter 5 show. Without it, the ability to manipulate complex
data structures is impaired.

Annotating each type expression looks simple enough for first-order expressions,
but it becomes unwieldly complicated for higher-order expressions. An attempt to
create a sensible type system appears in [Guzman and Hudak, 1991], where the cap-
turing notion presented in this thesis is studied independently, and is transformed into
a full fledged liveness property. A liveness analyzer for first-order languages based on
extended types that incorporate liveness information is presented there.

Another limitation of the system hereby presented is the absence of “inter-
procedural” information. Information lost at the A-abstraction level, such as rela-
tionship among formal parameters, could be of use in estimating a more precise type.
The if function had to be introduced as a primitive in order to alleviate the inter-

procedural information loss. The function

if’ a b ¢ = if a then b else ¢
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has the reasonable type

if’: Bool & a = a = «
since it reads its boolean argument, and returns either the second, or the third argu-

ment, depending on the result of the test. However,
if’ (lookup a i x) (swap! a i j) (swap! a i k)

will be ill-typed—a being multiple-threaded. Assuming a sequential implementation
of a functional language, this would be distressing. Any strictness analyzer would
recognize if’ as a non-strict function on its second and third arguments. Thus, it is
assumed that their evaluations will not be done until demanded inside if’. Further,
any partial evaluator will replace the former expression by the latter. Then, why
cannot if’ have the same semantics as if in Ay-calculus?. Why is A-abstraction
referentially opaque? Why is if a special type of expression? The answer to these
questions is simplicity! The primitive if cannot be given a reasonable type under the
type system—the system does not know about strictness.

If a non-sequential implementation was provided, then the strictness property
would not be enough to guarantee that the evaluation of if’s second and third ar-
guments are mutually exclusive, because, in fact, they are not. A speculative order
reduction strategy may choose to evaluate b and ¢ simultaneously with a, even though
only one of them would be needed. This would be disastrous in presence of mutation.

The language of types is not expressive enough to provide a type for a nonstrict
function that would exploit its nonstrictness when normal order reduction is fixed.
But even if the expressiveness was available, there are other issues pertaining eval-
uation control in presence of mutation that need to be addressed in order for that
expressiveness to be of practical use.

Additionally, guaranteeing sequentiality between the evaluation of two expressions
is a very complex problem in contexts where functions are manipulated. Even when

a function is in normal form—fully evaluated—its application may trigger further
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reductions within the function. Thus, the use of any object captured by the func-
tion may be latent until the function is fully applied—when it returns an object of
first-order type. In this dissertation, no attempt has been made to study the sequen-
tiality properties of functions. Sequential restrictions have been used only in cases
where objects of first-order type guarantee the feasability of enforcement of such a

restriction.

8.2 Concluding Remarks

There are several achievements in this thesis, all of them contributing to the solution

of the extended type system:

1. the Single-Threaded Lambda-Calculus, a calculus close to the Lambda-
Calculus, but which is a more faithful abstraction of graph-reduction, the de-

facto operational semantics of many functional languages;

2. the notion of Liabilities as a means to accumulate, and operate with the uses

of all free variables.

3. the Extended Type System, which graciously combines the Hindley-Milner type

system, with a special case of subtyping; and

4. the Type Reconstruction Algorithm, designed to be a post-processing to the
standard type reconstruction algorithm, and which only involves pattern-
matching instead of unification, and fixpoints in the finite abstract use domain

for recursive definitions arising from fixpoint expressions.

The first two items were first presented in [Guzman and Hudak, 1990]. The Single-
Threaded Lambda-Calculus is a step forward in reasoning at an abstract level on how
the implementation of a functional language operates. On that respect, and with-

out recurring to the introduction of a store, the model makes provision for structure
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mutation, a concept notably absent from the Lambda-Calculus. This concept, intro-
duced at the abstract level, is available to the user, which translates in a calculus as
powerful as the Lambda Calculus, and yet closer to pragmatic concerns as sharing of
computation, and space reutilization. The calculus is not guaranteed to be confluent
for arbitrary expressions that make use of mutators, but only for those that satisfy
the type discipline. Earlier versions of items 3 and 4 were also introduced in [Guzmén
and Hudak, 1990], but were substantially revised. The versions presented here are
based on the experience gained in [Guzmén and Hudak, 1991]. The interrelation
between liabilities and the extended type system has proven to be a useful one when
analyzing properties that are of a denotational flavor—the property on the expression
is the combination of the properties of the constituent subexpressions. The extension

to the types has been done in such a way that

e the principal type property is satisfied—any well-typed expression will have a
valid type that is more general than any other valid types for the expression,

and

e the extended type system structure is able to absorb the lattice structure of

uses, thereby introducing subtyping.

Restrictions to the richness of the extended type language based on pragmatic reasons,
allowed the type system to benefit from the generality of the above items without
introducing extra machinery in the actual process of type reconstruction. Due to the
nature of the properties controlled by the abstract uses, unification was not required
to actually compute the required uses. However, a delayed computation of uses is
required for functions dependent on higher-order functionals, and fixpoint operations
on the finite domain of uses is required to correctly solve fixpoint operations expressed
in the calculus.

Finally, this thesis was made with the pragmatic intuition that type systems are
widely used because of its simplicity, and theoretical robustness, properties that make

them ideal for specifying program interfaces. Interesting trade-offs arise in extending
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such systems, such as simplicity vs. expressiveness. Throughout the dissertation
the emphasis has been done on simplicity over expressiveness, with the pragmatic

intuition that a less expressive, but simpler type system is more likely to be used at

all than a more powerful, but rather complex system.
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Appendix A

Ast-Calculus Programs

A.1 Quicksort

;35 QuickSort:
;33 All arrays are passed along with lower, and upper bounds.

;>3 swap two elements of the array
(define swap
’(lambda a i j
(let* x (copy (lookup a i))
(let* y (copy (lookup a j))
(update! (update! a i y) j x)))))

;35 rearranges the array according to pivot p,
;33 all elements less than p go to lower indices
333 all elements greater than p go to higher indices

;35 returns the rearranged array and the border index

167



168 A.2 HIGHER-ORDER FUNCTIONS FOR ARRAYS

(define split
‘(let swap ,swap
(fix (lambda split a i j p
Gf O i
(Pair a (copy j))
(if (>= (lookup a p) (lookup a i))
(split a (+ i 1) j p)
(let* a’ (swap a i j)
(split a’ i (- j 1) PN

;33 performs quicksort on the array
(define gs
‘(let split ,split
(let gs (fix (lambda qs a i j
(if =1 )
a
(let* arr-idx-pair (split a i j i)
(let* k (copy (snd arr-idx-pair))
(let* a’ (fst arr-idx-pair)
(let* a’’ (gqs a’ i k)
(gs a’? (+ k 1) §)))INN
(lambda a (lambda n (gs a 0 n))))))

A.2 Higher-Order Functions for Arrays

;53 Higher Order Functions on Arrays.

(define mapa!

’(fix (lambda mapa! v i n inc £
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(if (= i n)
v
(let* x (copy (f i (lookup v i)))

(mapa! (update! v i x) (inc i) n inc £))))))

(define mapafn!
*(fix (lambda mapafn! v i n inc f
(if (= in)
v

(mapafn! (updfn! v i (f i)) (inc i) n inc £)))))

(define folda!
‘(fix (lambda folda! a i n inc f
(if (= i n)
a

(folda! (f i a) (inc i) n inc £)))))

A.3 Gauss Elimination

;33 increment function
(define inc

’(lambda x (+ x 1)))

;3 ; decrement function
(define dec

Y(lambda x (- x 1)))

;5 scales v[i..n] so that v[i] becomes 1

;35 (it is assumed that v[j]=0 for j<i)



172 A.3 GAUSS ELIMINATION

(let backward! ,backward!

,gauss!)))))))))

;33 Perform (etr g!)
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