A Radix-2 FFT on the
Connection Machine

S. Lennart Johnsson, Robert L. Krawitz
Roger Frye and Douglas MacDonald

YALEU/DCS/TR-734
September 1989

To appear in the Proceedings of Supercomputing 1989

A Radix-2 FFT on the Connection Machine

S. Lennart Johnsson, Robert L. Krawitz, Roger Frye and Douglas MacDonald
Thinking Machines Corp.
245 First Street,
Cambridge, MA 02142

Abstract

We describe a radix-2 FFT implementation on the Con-
nection Machine. The FFT implementation pipelines
successive FFT stages to make full use of the communi-
cation capability of the network interconnecting proces-
sors, when there are multiple elements assigned to each
processor. Of particular interest in distributed mem-
ory architectures such as the Connection Machine is the
allocation of twiddle factors to processors. We show
that with a consecutive data allocation scheme and nor-
mal order input a decimation-in-time FFT results in a
factor of loga N less storage for twiddle factors than a
decimation-in-frequency FFT for N processors. Simi-
larly, with consecutive storage and bit-reversed input a
decimation-in-frequency FFT requires a factor of log, N
less storage than a decimation-in-time FFT. The perfor-
mance of the local FFT has a peak of about 3 Gflops/s.
The “global” FFT has a peak performance of about 1.7
Gflops/s.

1 Introduction

This paper describes the data mapping and control
structures used in the implementation of a radix-2 FFT
on the Connection Machine. Special attention is given
to the effective use of the communication system, and
to computation and storage of the twiddle factors. The
implementation is based on the pipelined algorithm de-
scribed in [13].

The Connection Machine has up to 64k processors.
Each processor has 8k bytes of primary storage using
256 kbit memory chips for a total of 512 Mbytes of stor-
age, and 2 Gbytes using 1 Mbit memory chips. There
are 16 processors on each processor chip, and two such
chips share a floating-point unit. The processor chips
are interconnected as a 12 dimensional Boolean cube.
The floating-point units form an 11 dimensional cube,
with two communication channels between each pair of
processors. The FFT described below is developed for
the Connection Machine with hardware floating-point
processors.

2 Data Allocation

2.1 Configuring the address space

The default data allocation scheme on the Connection
Machine first determines how many data elements need
to be stored in each processor for an equal number of
elements per processor, then stores that many succes-
sive elements in each processor, consecutive storage [10].
Another frequently used address form is cyclic assign-
ment, for which the lowest order address bits determine
the real processor address. In the cyclic assignment all
data elements in a processor have the same n low order
bits. In the consecutive assignment the elements in a
processor have the same n high order bits.

The different Connection Machine languages provide
different means for user controlled data allocation. In
CM-Fortran compiler directives allow a user to specify
an axis as serial, which implies that the axis is allocated
to a single processor. *Lisp provides in-processor arrays.
In PARIS (PARallel Instruction Set), the Connection
Machine native language, a user has full control over
what dimensions of the address space an axis occupies.
But, only consecutive allocation of data to processors is
supported.

If an array has fewer elements than the number of
real processors in the configuration the array is extended
such that there is one element per real processor. The
extension is made by extending the axis length in all
languages, except CM-Fortran. In CM-Fortran a new
first axis is added to the array with a length equal to the
number of instances of the specified array that matches
the number of real processors.

2.2 Encoding of array axes

In the common binary encoding successive integers may
differ in an arbitrary number of bits. For instance, 63
and 64 differs in 6 bits, and hence are at a Hamming
distance of 6 in the Boolean cube. A Gray code by def-
inition has the property that successive integers differ
in precisely one bit. The most frequently used Gray
code for the embedding of arrays in Boolean cubes is a

binary-reflected Gray code [10, 14, 16]. This Gray code
is periodic. For the embedding of multi-dimensional ar-
rays each axis may be encoded by the binary-reflected
Gray code. The embedding of an N; x N3 x ... X Ny
array requires 3¢, [log, N;] bits. The ezpansion, i.e.,
the ratio between the consumed address space, and the
actual array size, is 90 5a [082 N3l JI&_, N;, which may
be as high as ~ 24 [4, 5]. The expansion can be reduced
by allowing some successive array indices to be encoded
at a Hamming distance of two [5, 1, 2, 7].

In CM-Fortran array axes are by default encoded in
a binary-reflected Gray code for the off-chip segment
of the address field. In the other languages the Gray
code encoding is invoked by configuring the Connection
Machine as a lattice of the appropriate number of di-
mensions.

2.3 Data Representation

All basic software on the system allocates the data seri-
-ally to a processor. The bits of a word occupy successive
memory addresses. But, 32 Connection Machine proces-
sors share a floating-point unit that can access the mem-
ories of the 32 processors in bit-slices. Hence, transpos-
‘ing the data of 32 processors from field-wise to slice-wise
allocates each word across the memories of groups of 32
processors, each sharing a floating-point unit. A fully
configured Connection Machine can be viewed as hav-
ing 2048 32-bit wide processors, each with 256 kbytes
to 1 Mbyte of memory. The FFT is developed with this
view of the Connection Machine.

The change from field-wise to slice-wise storage inter-
changes the lowest order off-chip bit and the processor
bits (5 bits) with the memory address field. A 5-shuffle
is performed. For a one-dimensional array the memory
stride for bit k, with the lowest order bit being bit zero,
is 2(k+8)mod(1+chiptmemory bits) The stride for succes-
sive array elements is 32. The stride is increasing for el-
ements at increasing distance up to a point. The stride
for the fifth highest order bit (the lowest order real pro-
cessor bit)is one. In the case of multidimensional arrays
the stride of the different axes becomes fairly complex.
Therefore, a memory reordering is performed such that
the stride of the first array axis is one, the stride for the
second equal to the length of the first axis, etc.

If the array is encoded by a binary-reflected Gray
code, then the transposition from field-wise storage to
slice-wise storage also needs to convert the lowest order
off-chip bit, which encodes the chip pairs sharing stor-
age, from Gray code to binary code. Algorithms for the
conversion are described in [10, 11].

3 Radix-2 FFT

3.1 One-dimensional FFT

A radix-2 butterfly network for P = 27 inputs and
outputs has P(p + 1) nodes. With the addresses
(Yo—1Yp—2---Yolzt—12¢—2 ... 20), the butterfly network
is defined by connecting node (y|z) to the nodes (y @
2P1%|z + 1) and (y|z+ 1), z € [0,p — 1], where
t = [logy(p + 1)],and @ denotes the bit-wise exclusive-
or operation. For the computation of the radix-2 FFT
the last ¢ bits in the node address can be interpreted
as time. During step z the communication is between
ranks z and z + 1.

By identifying all nodes with the same y value and
different z values node y becomes connected to nodes
y®2*, Vz€|[0,p— 1], which defines a Boolean p-cube.
All nodes participate in every step in computing an FFT
on P elements on a p-cube. In step z all processors com-
municate in dimension 2. This embedding corresponds
to a binary encoding of array indices.

With N < P processors performing —2’-’- butterfly com-
putations concurrently, 1% butterfly computations must
be performed sequentially in each stage. In each of
the first n butterfly stages the lowest order p — n bits
are identical for the pair of data elements in a butter-
fly computation. The first n butterfly stages can be
viewed as consisting of % independent FFTs, each of
size N with one complex data element per processor.
This property was used in [9] for devising sorting algo-
rithms on Boolean cubes. The independent FFTs can
be pipelined. Every FFT performs communication in
processor dimensions n — 1,n — 2,...,0. Each FFT
is delayed by one communication with respect to the
preceding one. After the n butterfly stages with inter-
processor communication, the remaining p—n stages are
entirely local. The high order n bits identify N different
FFTs of size -1{3,- each.

The number of complex data element transfers in se-
quence for the pipelined FFT is n+ -f—,- —1. The commu-
nication efficiency, measured as (the sum of the com-
munication resources used over time)/((total number
of available communication resources)*(time)), for the

stages requiring communication is 1?%1" p > n. The

efficiency is approximately one for % > n.

3.2 Multi-dimensional arrays

Performing an FFT along a single axis of a multi-
dimensional array implies a number of independent one-
dimensional FFTs. The number of FFTs is determined
by the product of the length of the axes on which the
FFT is not performed. But with multiple elements per
processor, even a one-dimensional FFT is equivalent to

performing multiple independent FFTs. The same tech-
niques as have been described above are applicable.

3.3 Multi-dimensional FFT

Multi-dimensional FFTs can be performed as a number
of independent one-dimensional FFTs along one axis
followed by a number of independent one-dimensional
FFTs along the other axes in succession. Pipelining can
be performed over all inter-processor dimensions being
part of any FFT as long as the inter-processor dimen-
sions are not mixed with local FFT computations. Any
axis with local memory address bits breaks the commu-
nication pipeline, if it requires a FFT.

3.4 Twiddle Factors

The total number of twiddle factors needed for a radix-2
FFT of size P = 27 is 1;— — 1. For the computation of an
FFT on a distributed memory machine it is important
to minimize the need either for redundant storage of
twiddle factors, or for communication of twiddle factors
when required in a processor different from the one in
which they are stored.

8.4.1 Decimation-in-frequency

All twiddle factors w}; =e ¥4, j €0, £ 1] are used in
the first rank of a radix-2 DIF FFT. As the computation
proceeds from the input to the output, the number of
distinct twiddle factors needed decreases. For the radix-
2 DIF FFT the exponent of the twiddle factors needed
for the butterfly on elements z(j) and z(j + %), where
j= (jp—ljp—z---jo)’ is (jp—l) X (J'p—sz-s--.jo)- For
the second rank the exponent of the twiddle factor wp
is (Jp-2) X (Jp—8Jp—4...Jo0) for the pairs in locations j
and j+ %. In general, for an in-place DIF radix-2 FFT
[15] the twiddle factor required for the computation of
a butterfly on the elements in position j and j + ﬁ%,
i.e., butterfly stage ¢ € [0, p— 1] (address bit p—g—1) is
wg""“‘)x(]""”"“"""”°)2¢ . The first butterfly stage is
stage zero. The exponent of the twiddle factor is simply
the common address below bit p — ¢ — 1 of the pair
of complex elements in a butterfly computation, shifted
left with an end-off shift g steps.

If the FFT of size P = 2?7 is computed on a Boolean
p-cube, then node P — 1 requires p — 1 distinct twiddle
factors. If the FFT is computed on an n-cube, n < p,
and the allocation of data to processors is cyclic, then
the set of twiddle factor indices required for the stages
local to a processor is ({Jp—2Jp—3---Jn}|In-1--.J0)
({jp—&jp-—4 e jn}'ju—l s jo)z,

......... y (Jn-1---J0)2P"™ 1, or a maximum total of
= 7‘3— — 1 for any processor. The nota-

tion {jp—2Jp—3...Jn} denotes the set of all values that
can be assumed by the number of bits within the braces.
After the first p — n stages the remaining n stages con-
sist of % independent FFTs of size N, each with one
element per processor. All % FFTs have the same twid-
dle factor for a given butterfly stage. A total of n —1
twiddle factors are needed for the inter-processor com-
munication stages, one for each butterfly stage, except
the last. Hence, for cyclic data allocation and a radix-2
DIF FFT of size 2° computed on N processors, n < p,
the maximum number of distinct twiddle factors needed
in a processor is 7‘3- + n — 2. Allocating twiddle fac-
tor storage uniformly across all processors yield a total
twiddle factor storage of P+ (n—2)N, which for P > N
is about twice the storage required on a sequential com-
puter. For P = N uniform twiddle factor storage across
processors yields a total storage of (n — 1) N, which ex-

ceeds the sequential storage by a factor of approximately
2(n—1).

With a consecutive data allocation % twiddle factors
are needed in at least one processor for every stage of
the first n — 1 stages. The sets of twiddle factors for
different stages are disjoint. For instance, consider the
processor with address (jp—1Jp-2..-Jp-n) Jk = 0,k €
{p—n+1,p—n+2,...p—1} and j, = 1. This processor
contains the data indices (00...01|{jp—n—1Jn-2-.. Jo})-
Shifting this set of addresses left by one step yields a
completely new set of addresses, since the leading one
defines a new range disjoint from the previous range.
This observation is true for every inter-processor but-
terfly stage. The twiddle factor index for the remaining
stages form subsets of the set of twiddle factors for the
last inter-processor communication stage.

8.4.2 Decimation-in-time

For a DIT radix-2 FFT, the exponent of the twiddle fac-
tors can also be computed from the addresses of the ele-
ments of an in-place algorithm. The twiddle factors for
stage q are w(jp—q—1)(jr—¢jr—¢+1---5p—1)2p—1-’ € [0 — 1]

P » 4 yP— 1.
Note, that the address is bit-reversed and shifted for the
proper exponent. For the radix-2 DIT FFT the twiddle
factors for stage 0 are all w$. With a consecutive data
allocation to processors the processor address bits form
the high order bits of the element index. The first stage
does not require any twiddle factors. The following n—1
stages require one twiddle factor per stage. All % dif-
ferent FFTs of size N require the same twiddle factors,
since the local addresses do not enter into the index
computation. The last p — n stages are local, and the
maximum total number of twiddle factors required per
processor is % —1, as in the case of cyclic allocation and
decimation-in-frequency FFT.

With cyclic allocation the local addresses enter into
the twiddle factor index computation immediately. The

need for twiddle factors is the same as in the consec-
utive allocation of data and computing the FFT by a
decimation-in-frequency algorithm.

3.4.3 Bit-reversed input

With the input in normal order the FFT computation
proceeds from the highest order bit to the lowest or-
der bit with respect to data being paired for a butter-
fly computation. With the input in bit-reversed order
the traversal of the bits in the address field is from the
lowest order to the highest order bit. With the data in-
dices being bit-reversed with respect to the addresses the
decimation-in-frequency FFT requires addresses in bit-
reversed order instead of normal order for the twiddle
index computation. Similarly, the decimation-in-time
FFT requires addresses in normal order instead of in bit-
reversed order for normal order inputs. With these dif-
ferences the consecutive ordering yields the smallest re-
quirements for twiddle factor storage for the decimation-
in-frequency FFT, and cyclic storage for the decimation-
in-time FFT. The preferred combinations of data alloca-
tion and FFT type are opposite to those preferred with
normal order input.

3.4.4 Inverse FFT

The Inverse Discrete Fourier Transform (IDFT) is de-
fined by

P-1

&j)=) wp’X(l), Vie[o,P-1),
=0

3x3

wp=¢e F.

It is easy to show that #(j) = Pz(j). For the com-
putation of the IDFT we notice that w;lj = wg_l)’ .
Hence, the IDFT can be computed by either using P —1
as the index of the twiddle factors used for the DFT, or
by using the conjugates of those twiddle factors. The
scaling can either be made by v/P during both the DFT
and the IDFT, or by P during either the DFT, or the
IDFT. With exception of the twiddle factor index the
computations are identical.

3.4.5 Multi-dimensional FFT

In general, each axis has its own set of twiddle fac-
tors. The twiddle factors are a function of the axis
length. The twiddle factor for an axis is a subset of
the twiddles for the longest axis. With axes of length
Py X Py X ... P the minimum number of twiddle factors
is J—lmax; P1). With separate storage of the twiddle factors

P
for each axis the total storage is Z; 2, which is less
than the required storage for a one-dimensional FFT of
size 11, P,.

83.4.6 Reduced twiddle factor storage

A reduction in the twiddle factor storage in a proces-
sor is possible by the following observation. For the
consecutive data allocation, normal order input, and
decimation-in-time radix-2 FFT, the set of twiddle fac-
tor indices in the last stage is {jij2... Jn—1}|dn ... Jp-1.
The highest order bit j; corresponds to bit posi-
tion p — 2. Hence, {1j2...Ja-1}|jn...Jp-1 = % +
{szjn_1}|jn ««+Jp—1. But, wi,+% = w’P e T =
—i - wp. Half of the twiddle factors can be obtained
from the other half without any arithmetic. It is easy to
see that this property is true for all on-processor stages.
For P >> N this observation effectively reduces the need
for twiddle factor storage by a factor of two. The same
property is true for

e decimation-in-frequency FFT, cyclic data alloca-
tion, and normal input order,

o decimation-in-time FFT, cyclic data allocation, and
bit-reversed input order,

o decimation-in-frequency FFT, consecutive data al-
location, and bit-reversed input order.

The observation can be generalized to bits p— 3, p —
4,...in the twiddle factor index, but complex arithmetic
is required for all of them. Bit p — 3 is associated with
a 45-degree rotation, i.e., —155"-.

4 Implementation

The FFT implementation for which performance mea-
surements are given below is a radix-2 FFT. Radix-4 and
radix-8 FFT on the Connection Machine are described
in [8]. The standard scheme for allocation of multiple
elements to processors on the Connection Machine is the
consecutive scheme. A decimation-in-time radix-2 FFT
is used for data in normal input order, and a decimation-
in-frequency radix-2 FFT for bit-reversed input order.
The twiddle factor storage is %+log2 N—-2ineachof N
processors for a FFT of size P with the data uniformly
distributed across the processors. The inverse Discrete
Fourier Transform is computed by a FFT using the con-
jugated twiddle factors. The inter-processor communi-
cation stages are pipelined. For multi-dimensional FFTs
each axis is treated independently. No sharing of twid-
dle factors between axes takes place.

The FFT routine is a complex-to-complex FFT. The
data is assumed to be mapped into the address space by
a binary encoding. For arrays mapped to the address
space by a binary-reflected Gray code a remapping to
binary encoding is made prior to the computation of the
FFT, or the inverse FFT. The remapping is currently

performed by a call to the Connection Machine router.
Likewise, a reordering to normal order from bit-reversed
order is made by a call to the router. An optimized bit-
reversal routine based on the algorithms in [3, 17, 6, 12]
is under development.

The FFT routines are developed for data stored slice-
wise. The conversion from field-wise to slice-wise stor-
age is performed after a potential remapping to binary
encoding, but before the actual FFT computation. For
programming convenience a reordering of the local mem-
ory is performed after the change of storage form such
that the stride for the first axis is one, the stride for the
second axis is equal to the length of the local part of
the first axis, etc. The strides for each axis are therefore
constant.

Any decimation-in-frequency FFT has unique twiddle
factors for every butterfly computation in the first step.
The second step of a radix-2 FFT consists of two half
size FFTs, and the set of twiddle factors are used twice.
All butterfly computations have the same coefficients in
the last step. The fact that several butterflies in a given
stage have the same twiddle factors is used advanta-
geously in the local FFT kernels. The same property
is true for decimation-in-time FFT. The local loops are
ordered such that the need for loading twiddle factors
into the register of the floating-point unit is minimized.
A total of % —1loadings of twiddle factors is performed.

The local FFT is computed one stage at a time, and
for each stage a stride is determined for butterfly compu-
tations requiring the same twiddle factors, as well as for
butterfly computations requiring successive twiddle fac-
tors. In the event of a multi-dimensional array, a num-
ber of local FFTs are performed, with the number be-
ing determined by the product of the length of the axes
currently not subject to an FFT. The local FFT ker-
nels for decimation-in-time and decimation-in-frequency
FFT are almost identical, with the exception that the
pipelines in the floating-point unit are organized slightly
differently, resulting in a minor performance difference
(of up to ~ 3%).

The part of the FFT requiring inter-processor com-
munication performs an exchange of data across each
inter-processor dimension included in the encoding of an
array axis subject to FFT computations. One processor
performs a complex addition while the other performs a
complex subtraction. The sign change is integrated with
the exchange of data. Only one of the processors per-
forms a useful complex multiplication. Data exchange
in different inter-processor dimensions is pipelined, as
described earlier. For each exchange of a pair of com-
plex elements across a set of inter-processor dimensions
butterfly computations are made on local data and ex-
changed data. The data exchange - butterfly compu-
tation is repeated until all data elements along every
instance of the axis subject to an FFT computation is

treated. The communication pipeline is active for all
array elements in memory.

In the implementation for which timings are reported
here the butterfly computations for the inter-processor
communication phase are organized into groups of size
four, one for each of four inter-processor dimensions.
This detail explains some of the performance data pre-
sented below. If the number of non-local dimensions is
an exact multiple of four, then the data is moved into
and out of the floating point unit from and to the mem-
ory allocated to the array. However, if the number of
dimensions is not an exact multiple of four, a temporary
storage area is used. The size of this storage area cor-
responds to four butterfly computations. Data for each
inter-processor dimension subject to a butterfly compu-
tation is moved to the temporary storage area. Then
four butterfly computations are performed on the data
in the entire temporary storage area, and the result re-
turned to the storage area. The desired results are then
returned to the appropriate memory locations. Hence,
the time for butterfly computations is the smallest when
the use of temporary storage is avoided, and increases
with the number of inter-processor dimensions in the
range one to three.

In the current implementation the decimation-in-
frequency butterfly computation is performed as a sin-
gle floating-point pipeline, but the decimation-in-time
butterfly operation consists of two pipelines. This dif-
ference is the main reason why the performance for the
two FFTs differ (with up to ~ 15%).

4.1 Twiddle factor computation

For the stages requiring communication between differ-
ent floating-point units, the twiddle factors depend only
on the stage and the unit. The twiddle factor index can
be computed by

o Extract the p — 1 highest order bits of the data
element index, i.e., bits 1 through p— 1 into a word
t with bit locations 0 to p — 2.

o Bit-reverse the extracted word t.

o Perform p— q—1 steps of end-off left shifts of ¢ with
bits p— ¢ — 2 to 0 set to zero, ¢ = {0,1,...,n—1}.

Each value of ¢ corresponds to a different butterfly stage.
For the first stage ¢ = 0.

The twiddle factors for the first local stage of a
decimation-in-frequency radix-2 FFT forms the first
block in a table. The twiddles for the second local
stage form a second block in the table, etc. For the
decimation-in-frequency FFT the blocks of twiddle fac-
tors are accessed in order. For the decimation-in-time

FFT the blocks are accessed in reverse order. Within a
block the twiddle factors are stored in bit-reversed order.
The computations in a stage of the FFT are organized
such that, regardless of stage, successive butterfly com-
putations in the same reduced size FFT (there are %
FFTs of size two in the first stage of a DIT FFT, and
one FFT of size N in the last stage) accesses the twid-
dle factors within the table with a stride of one complex
number.

The twiddle factors for stages requiring inter-
processor communication are computed separately from
the twiddle factors for stages within the unit. The com-
putation is performed by all floating-point units concur-
rently. The computations are completely uniform.

The twiddle factors for the local stages are also com-
puted concurrently. All floating-point units compute the
same number of twiddle factors, but the indices differ.
The twiddle factors are computed in-place, which re-
quires some care. The conversion from the field-wise
programming model to the slice-wise, 32-bit wide model,
interchanges the memory and on-chip address fields with
the lowest order off-chip address bit appended to the on-
chip field:

(zzxzay| yyyy |222222) — (zezeez | 22222yyYYY)

of f—chip on—chip MeMOTY of f—chip memory

The twiddle factor indices for the local stages are com-
puted in the field-wise representation, assuming a cyclic
storage scheme on each pair of processor chips sharing
a floating-point unit. After transposition to slice-wise
storage the order is consecutive. Moreover, the twid-
dle factors for the largest block is computed by the first
set of - 33 Processors in this ordering, the second largest
block (the second stage in a decimation-in-frequency
FFT) by the next 5 processors, etc. The computa-
tions are:

1. Form a number with the local memory address ap-
pended to the processor address with the mem-
ory address forming the high order part, i.e., form

(zzzz22yyyyy).

2. Let ¢ be the number of leading ones in
(zzzzzzyyyyy). q is the local stage number for a
decimation-in-frequency FFT.

3. Set the leading ones to zero. (00...0 zzyyyyy).

q

4. Bit-reverse (00...0zzyyyyy) to (yyyyyzz00...0).

q g
5. Append n low order bits with value zero.

(vwyyyzz00. .. 0).
q+n

Axis Time | Mflops
length msec /s
2 0.944 347

4 1.050 624

8 1.076 914

16 1.005 1304
32 1.062 1543
64 2.026 1941
128 3.879 2366
256 8.397 2497
512 17.436 2706
1024 | 38.629 2714
2048 79.704 2894
4096 | 169.333 2972
8192 | 353.905 3081

Table 1: Performance for 2048 concurrent local radix-2
DIF FFT.

6. Bit-reverse the floating-point unit address, and shift
it left g steps, and perform a logical-or operation
with (yyyyyzz00. 0)

q+n

Each step can be performed concurrently. The only
processor dependent operation occurs in steps two and
three. The result is the twiddle exponents as described
in section 3.4, in order of stage number, and for each
stage number in bit-reversed order.

4.2 Performance measurements

The performance measurements have been made on
Connection Machine configurations with 32-bit floating-
point hardware. The performance of the local kernel for
different sizes is given in Table 1 and Figure 1. All
reported timings and Mflop rates include the time for
conversion from field-wise storage to slice-wise storage.
This time amounts to about 15% of the total time.
The times for a potential reordering from Gray code
to binary code, or from bit-reversed to normal order if
needed, are not included.

Some performance data for a purely inter-processor,
one-dimensional, radix-2 DIF FFT are given in Table 2
and Figure 2. The behavior of the execution time clearly
reflects the additional memory moves when the number
of inter-processor communication stages is not a power
of four, and the increased effective use of the floating-
point unit as the number of inter-processor dimensions
approaches a multiple of four. As the number of ele-
ments along the sequential axis increases the pipeline
start-up and shut-down phases become less significant,
and the performance measured in Mflops/s increases.

Mflops/s

Mflops/s 1000 ©— Seq. axis length = 8192
3000 L. o0l °” Seq. axis length = 32
' e o o [
. * 800 - °
2000 . 700 o .
. 600 — o ® .
1000 - . 500 °© o, °
. 400 - .
RN . L i .
T T T T length so0-4
0 5 10 200
1004 ¢
Figure 1: The performance of 2048 concurrent local N I N B O B B
radix-2 FFT. 0 5 10 Log(# fpu)
11 6 1 Log(# FFT)

Figure 2: The floating-point rate for inter-processor,

Seq | fpu/ | Number of | Time | Mflops onfa-dimensiona.l, radix-2 DIF FFT with one complex
axis | FFT | conc. FFT | msec /s point per processor.
2 1024 | 2.552 128
4 512 | 2.764 237 The performance for a single one-dimensional radix-2
8 256 | 2.990 328 DIF FFT as a function of Connection Machine system
16 128 1 2.950 444 size, and FFT size for a few fixed ratios of FFT size
32 64 1 3.583 457 to machine size is given in Table 3 and Figure 3 for a
32 64 32 | 3.819 514 few different machine sizes. Tables 4 and 5 and Fig-
128 16 | 4.053 566 ures 4 and 5 shows the performance for fixed size DIF
256 8 | 4.092 641 FFT of size 8k, 128k, and 2048k as a function of the
512 4 [4.816 612 number of floating-point units used for the computa-
1024 2 | 4.870 673 tion. For a given size FFT the efficiency for the local
2048 1] 5.136 702 part decreases as the data set is allocated to more pro-
2 1024 | 39.92 131 cessors. For the inter-processor communication part the
4 512 | 41.18 255 efficiency increases with the number of inter-processor
8 256 | 42.43 371 dimensions, and decreases with a reduced number of
16 128 | 39.32 533 data elements per floating-point unit. The net effect is
32 64 | 49.32 532 that for one to three inter-processor dimensions the ef-
512 64 32 | 51.16 615 ficiency is approximately constant. For four dimensions
128 16 | 52.43 700 the efficiency increases by about 10%, due to the signif-
256 8 [49.30 851 icantly more efficient computation of the butterflies for
512 4 159.29 796 the inter-processor dimensions.
;gi; f g;g g;z S‘ome sample tix'nings. for two- and three-dimensional
) 1024 | 628.9 133 radix-2 FFT are given in Tables 6 and 7.
4 512 | 658.7 255
12 ?gg ggg:g ggi’ 4.3 Optimizing the configuration of the
32 64 | 778.9 | 538 address space
8192 64 32 | 798.7 630 L. .
128 16 | 828.9 708 The execution time for a one-dimensional FFT is min-
256 8 | 758.9 884 imized if the FFT the data set is spread over as many
512 4| 9288 812 floating-point units as possible (but never over two
1024 2 | 948.7 884 units). The efficiency is highest for a single processor.
2048 1| 978.7 043 For FFTs of a size requiring at least two floating-point
units for memory reasons the time decreases monoton-
Table 2: The performance of inter-processor, one- icly with the number of processors used. If an FFT shall
dimensional, radix-2 DIF FFT. be computed along a single axis of a multi-dimensional

array, then effectively several FFTs must be performed.
If the length of that axis is sufficiently short to fit in

[Elements FFT | No. of | Number of | Time | Mfops
per fpu size fpu | conc. FFT | msec /s
32 1 2048 | 1.073 1527

64 2 1024 | 3.038 648

128 4 512 3.270 701

256 8 256 3.500 749

512 16 128 | 3.482 847

32 1024 32 64 4.092 801
2048 64 32 4.325 833

40906 128 16 | 4.557 863

8192 256 8 | 4.592 928

16384 512 4 5.108 898

32768 1024 2 5.381 213

685536 2048 1 5.620 933

512 1 2048 | 18.01 2619

1k 2 1024 | 52.49 2999

2k 4 512 54.31 1062

4k 8 256 | 55.57 1132

8k 16 128 52.42 1300

512 16k 32 64 62.44 1175
32k 64 32 64.19 1225

684k 128 168 | 66.04 1270

128k 256 8 61.82 1442

256k 512 4 72.43 1303

512k 1024 2 | 73.68 1352

1024k 2048 1 74.94 1399

8k 1 2048 | 358.7 3040

16k 2 1024 | 928.8 1277

32k 4 512 948.7 1326

64k 8 256 968.8 1385

128k 16 128 908.8 1569

8192 256k 32 64 1069 1413
512k 64 32 1099 1451

1024k 128 16 1109 1513

2048k 256 8 1059 1664

4096k 512 4 1219 1514

8192k 1024 2 1239 1558

16384k 2048 1 1269 1587

‘Table 3: Performance for a single one-dimensional radix-
2 DIF FFT distributed over a number of floating-point
units.

Mflops/s
‘ o— FFT size: 8192x no. of fpu
3000+ e — FFT size: 32x no.of fpu
2500
2000
1500 ° o, o oo
o © °
o
1000 . .
¢ ® * o o ° ¢
5004 °
T T 1T T 1T 1
0 5 10 Log(# fpu)
11 6 1 Log(# FFT)

Figure 3: The floating-point rate for one-dimensional
radix-2 DIF FFT of a size proportional to the number
of fpu’s per FFT.

Number | Number Size
of fpu’s | of FFT 8k | 128k | 2048k
per FFT
1 2048 | 358.9
2 1024 | 449.4
4 512 | 224.3
8 256 | 114.8
16 128 | 52.39 | 908.7
32 64 | 31.20 | 524.4
64 32 | 16.07 | 264.7
128 16 8.66 | 133.6
256 8 4.63 | 61.80 1059
512 4 36.20 | 604.4
1024 2 18.88 | 302.2
2048 1 10.22 | 153.6
Table 4: Execution time in msec for a fully configured
CM-2.
Number | Number of Size
of fpu’s FFT 8k | 128 k | 2048k
per FFT
1 2048 | 3040
2 1024 | 1213
4 512 | 1215
8 256 | 1187
16 128 | 1301 1569
32 64 | 1092 1360
64 32 | 1061 1347
128 16 984 | 1334
256 8| 919 | 1442 1664
512 4 1231 1457
1024 2 1180 | 1457
2048 1 1090 1434
Table 5: Floating-point rates in Mflops/s for a fully con-
figured CM-2.
FFT Number of fpu
64 128 256 512 1024 2048
128x128 33.77 | 16.53 | 13.17 7.01
256x 256 139.0 | 70.34 | 31.17 | 24.65 | 13.18 7.25
512x512 575.4 | 291.6 | 136.0 | 72.43 | 51.53 | 26.29
1024x1024 2328 1194 | 562.9 | 317.0 | 149.9 | 114.0
2048x2048 2292 1298 | 646.9 | 307.2
4096 x 4096 2686 1343
32x32x 32 96.96 | 49.07 | 23.04 | 13.00 7.29
64X 64x 64 544.4 | 404.4 | 195.5 | 105.8 | 51.53 | 28.22
128x128x128 2319 1589 | 873.9 | 436.7 | 208.8
256x256x 256 3569 1788

Table 6: Execution time in msec for some two and three
dimensional radix-2 DIF FFT.

Time (msec)

1000 -
900
800
700
600
500
400 -
300+
200 d
100

o — FFT size: 2048k
*— FFT size: 128k
e — FFT size: 8°k

*

>*
o

Log(# fpu)
1 Log(# FFT)

Figure 4: The execution time of one-dimensional radix-
2 DIF FFT of size 8k, 128k, and 2048k as a function of
the number of fpu’s.

Mflops/s
o — FFT size: 2048k
3000+ *— FFT size: 128k
e — FFT size: 8k
2500 -
2000
* o
1500 -] .****100
o o *
1000 - e ., . *
500
P I I I I
0 5 10 Log(# fpu)
11 6 1 Log(# FFT)

Figure 5: The floating-point rate for one-dimensional
radix-2 DIF FFT of size 8k, 128k, and 2048k as a func-
tion of the number of fpu’s/FFT for a fully configured

CM-2.
FFT Number of fpu
64 128 256 512 | 1024 | 2048
128%x128 1089 | 1110 698 656

256X 256 1207 | 1193 | 1346 851 796 723
512x512 1312 | 1295 | 1388 | 1303 916 897
1024x1024 1441 | 1405 | 1490 | 1323 | 1399 920
2048x2048 1610 | 1421 | 1426 | 1502
4096 x 4096 1499 | 1499

32%x32x 32 811 801 853 756 674
64X 64X 64 1387 933 965 892 916 836
128x128x128 1519 | 1108 | 1008 | 1008 | 1055
256x256x 256 1128 | 1126

Table 7: Floating-point rates in Mflop/s for some two
and three dimensional radix-2 DIF FFT.

Time (msec)

1000
900 —
800 —
700
600 —
500 —
400 —
300
200 —

100 o — FFT size: 4096x 4096

10 Log(No)

Figure 6: Total execution time for a one-dimensional
FFT on a square array as a function of the configuration
of 2048 fpu’s.

the storage of a single floating-point unit, and the num-
ber of instances of this axis is greater or equal to half
the number of floating-point units in the system, then
the optimum allocation is with the axis entirely in local
memory. This allocation makes the computations “em-
barrassingly” parallel. No communication is required.
If an axis is allocated to more than a single processor,
then in order to minimize the time the array shall be al-
located to all processors as indicated by Tables 4 and 5,
because the efficiency is sufficiently uniform. Preferably
four or eight inter-processor dimensions shall be used
for the axis subject to FFT computation. An example
of the dependence of the total performance on the con-
figuration of the address space is given in Table 8 and
Figure 6. The data array is assumed to be square of size
M x M, and the set of floating-point units is configured
as No x N; processors.

The optimum machine configuration for multi-
dimensional FFT can be found in much the same way
as in the one-dimensional multi-axes FFT case. An ex-
ample of the dependence of the performance upon the
configuration of the address space is given in Table 9
and Figure 7. The array is assumed to be square of size
M x M, and the set of floating-point units is configured
as No x N; processors.

5 Summary

We have presented a radix-2 FFT for the Connection
Machine that efficiently uses the communication system
of the Connection Machine. With the combination of
consecutive storage, normal order input, decimation-
in-time FFT, and bit-reversed input, decimation-in-

Number M No
of fpu 1 2 4 8 16 32 64 128 256 512 1024 | 2048
128 256 | 16.20 | 50.57 | 50.57 | 51.11 | 45.86 | 56.82 | 58.94 | 59.01
1024 | 308.9 | 838.9 | 838.8 | 848.7 | 748.7 | 905.6 | 923.7 | 950.9
512 512 17.45 | 51.73 | 51.82 | 52.43 | 47.34 | 56.48 | 58.86 | 60.80 | 55.563 59.28
2048 | 318.8 | 858.8 | 858.7 | 857.9 | 776.4 | 928.8 | 937.1 | 942.8 | 894.3 | 1053.3
2048 | 1024 53.06 | 53.08 | 53.06 | 48.68 | 57.43 | 57.94 | 60.59 | 56.37 64.37 | 61.18
4096 | 339.0 | 868.9 | 878.9 | 879.0 | 799.0 | 949.0 | 949.0 | 959.0 | 877.7 1076 1072 | 1066

Table 8: Execution time (msec) for a one-dimensional FFT on a square array as a function of processor configuration.

Number M No
of fpu 1 2 4 8 16 32 64 128 256 512 | 1024 | 2048
128 256 | 69.79 | 103.8 | 102.4 | 92.45 | 92.71 | 103.1 | 104.2 | 71.20
1024 1183 1697 1679 1539 1539 1689 1712 1178
512 512 | 72.39 | 101.5 | 107.3 | 105.6 | 99.16 | 99.87 | 106.8 | 107.7 | 102.3 | 72.45
2048 1304 1691 1739 1739 1639 1637 1737 1743 1694 1313
2048 | 1024 108.7 | 114.1 | 105.0 | 104.2 | 111.7 | 111.0 | 104.2 | 105.5 | 113.1
4096 1874 1707 1688 1829 1829 1697 1697 1866 | 1890 | 1338

Table 9: Execution time (msec) for a two-dimensional FFT on a square array as a function processor configuration.

Time (msec)

2000 —
1900 —
1800
1700 S . s °
1600 - e .

1500
1400
1300 .
1200 -

1000] e — FFT size: 2048x2048

10 Log(No)

Figure 7: Total execution time for a two-dimensional
FFT on a square array as a function of the configuration
of 512 fpu’s.

frequency FFT, the requirements for twiddle factor stor-
age is 7}\’,— + log, N — 2 twiddle factors per processor for
a data set of P elements uniformly distributed across N
processors. By computing half of the twiddle factors by
performing 90-degree rotations “on-the-fly” a reduction
in twiddle factor storage by a factor of two is possible.

Increased performance of the radix-2 FFT compared
to the current implementation is possible by some loop
reordering. The number of twiddle factor loadings dur-
ing the local FFT can be reduced by computing the same
butterfly stage for all independent FFTs in succession,
instead of complete FFTs in succession. Furthermore,
for the inter-processor communication phase, perform-
ing individual butterflies instead of sets of four, or four
butterflies for the same communications channel instead
of different channels, is likely to enhance performance.

Performance can also be enhanced by higher radix
FFT. For the local FFT a performance enhancement by
a factor of about three is possible with the register set
on the currently used floating-point unit. For the inter-
processor communication the performance can also be
enhanced by a higher radix FFT by improving the load
balance. The performance enhancement compared to a
radix-2 FFT will not be as significant as for the local
FFT.

If the data is encoded by Gray code, then an explicit
reordering to binary order is performed before the FFT
computation. The Connection Machine router is cur-
rently used for this reordering. An optimum reordering
is given in [10].

Acknowledgement

Many people have contributed in many ways to the
radix-2 FFT routines in the Connection Machine Scien-
tific Software Library. Alex Vasilevsky wrote the rou-
tines for the local butterfly computations. Alan Rut-
tenberg wrote the first version of the complete radix-2
FFT. Mike McKenna wrote the current version of the lo-
cal memory reordering routine. Tom Kraay of MRJ has
independently implemented the reduced storage twiddle
factor scheme in a FFT (proprietary to MRJ) based on
cyclic data allocation.

References

[1] M.Y. Chan. Dilation-2 embeddings of grids into
hypercubes. Technical Report UTDCS 1-88, Com-
puter Science Dept., University of Texas at Dallas,
1988.

[2] M.Y. Chan. Embeddings of 3-dimensional grids
into optimal hypercubes. Technical report, Com-
puter Science Dept., University of Texas at Dallas,
1988. To appear in the Proceedings of the Fourth
Conference on Hypercubes, Concurrent Comput-
ers, and Applications, March, 1989.

[3] Peter M. Flanders. A unified approach to a class
of data movements on an array processor. IEEFE
Trans. Computers, 31(9):809-819, September 1982.

[4] 1. Havel and J. Méravek. B-valuations of graphs.
Czech. Math. J., 22:338-351, 1972.

[5] Ching-Tien Ho and S. Lennart Johnsson. On the
embedding of arbitrary meshes in Boolean cubes
with expansion two dilation two. In 1987 Interna-
tional Conf. on Parallel Processing, pages 188—191.
IEEE Computer Society, 1987.

[6] Ching-Tien Ho and S. Lennart Johnsson. Stable di-
mension permutations on Boolean cubes. Techni-
cal Report YALEU/DCS/RR-617, Department of
Computer Science, Yale University, October 1988.

[7] Ching-Tien Ho and S. Lennart Johnsson. Embed-
ding meshes in boolean cubes by graph decom-
position. Technical Report YALEU/DCS/RR-689,
Department of Computer Science, Yale University,
March 1989.

[8] Michel Jacquemin and S. Lennart Johnsson. Radix-
4 and radix-8 fit on the connection machine. Tech-
nical report, Thinking Machines Corp., 1989. in
Preparation.

[9] S. Lennart Johnsson. Combining parallel and se-
quential sorting on a Boolean n-cube. In 1984 Inter-
national Conference on Parallel Processing, pages
444-448. IEEE Computer Society, 1984.

[10] S. Lennart Johnsson. Communication efficient ba-
sic linear algebra computations on hypercube archi-
tectures. J. Parallel Distributed Comput., 4(2):133-
172, April 1987.

[11] S. Lennart Johnsson. Optimal Communication in
Distributed and Shared Memory Models of Compu-
tation on Network Architectures. Morgan Kaufman,
1989.

[12] S. Lennart Johnsson and Ching-Tien Ho. Shuffle
permutations on Boolean cubes. Technical Report
YALEU/DCS/RR-653, Department of Computer
Science, Yale University, October 1988.

[13] S. Lennart Johnsson, Ching-Tien Ho, Michel
Jacquemin, and Alan Ruttenberg. Computing fast
Fourier transforms on Boolean cubes and related
networks. In Advanced Algorithms and Architec-
tures for Signal Processing II, volume 826, pages
223-231. Society of Photo-Optical Instrumentation
Engineers, 1987.

[14] S. Lennart Johnsson and Peggy Li. Solutionset for
ama/cs 146. Technical Report 5085:DF:83, Califor-
nia Institute of Technology, May 1983.

[15] Alan V. Oppenheimer and Ronald W. Schafer. Dig-
ital Signal Processing. Prentice-Hall, Englewood
Cliffs. NJ, 1975.

[16] E M. Reingold, J Nievergelt, and N Deo. Combina-
torial Algorithms. Prentice-Hall, Englewood Cliffs.
NJ, 1977.

[17] Paul N. Swarztrauber. Multiprocessor FFTs. Par-
allel Computing, 5:197-210, 1987.

