©Copyright by Elizabeth Redding Jessup, 1990
ALL RIGHTS RESERVED

Parallel Solution of the Symmetric
Tridiagonal Eigenproblem

Elizabeth R. Jessup

Research Report YALEU/DCS/RR-728
October 1989

The author was supported in part by an IBM Fellowship and in part by the Office of Naval Research
under contracts N000014-82-K-0184 and N00014-85-K-0461.

ABSTRACT
Parallel Solution of the Symmetric Tridiagonal Eigenproblem
Elizabeth Redding Jessup
Yale University

1989

This thesis discusses methods for computing all eigenvalues and eigenvectors of
a symmetric tridiagonal matrix on a distributed-memory MIMD multiprocessor.
Only those techniques having the potential for both high numerical accuracy
and significant large-grained parallelism are investigated. These include the QL
method or Cuppen’s divide and conquer method based on rank-one updating to
compute both eigenvalues and eigenvectors, bisection to determine eigenvalues,
and inverse iteration to compute eigenvectors.

To begin, the methods are compared with respect to computation time, com-
munication time, parallel speedup, and accuracy. Experiments on an iPSC hyper-
cube multiprocessor reveal that Cuppen’s method is the most accurate approach,
but bisection with inverse iteration is the fastest and most parallel. Because the
accuracy of the latter combination is determined by the quality of the computed
eigenvectors, the factors influencing the accuracy of inverse iteration are exam-
ined. This includes, in part, statistical analysis of the effects of a starting vector
with random components. These results are used to develop an implementation
of inverse iteration producing eigenvectors with lower residual error and better or-
thogonality than those generated by the EISPACK routine TINVIT. This thesis
concludes with adaptations of methods for the symmetric tridiagonal eigenprob-
lem to the related problem of computing the singular value decomposition (SVD)

of a bidiagonal matrix.

Contents

Introduction

1.1 Background

1.2 Outlineof the Thesis

Preliminaries

2.1 Notation and Assumptions

2.2 Measures of the Quality of a Method

23 TestMatrices
2.3.1 Tridiagonal Test Matrices
2.3.2 Bidiagonal Test Matrices

The Hypercube Multiprocessor

3.1 Characterization of the Hypercube
3.2 The Multiprocessor
3.3 Some Hypercube Algorithms
3.3.1 Data Transmission on the Hypercube
3.3.2 Matrix Multiplication on the Hypercube
3.3.3 Modified Gram-Schmidt Orthogonalization

Methods for the Symmetric Tridiagonal Eigenproblem

4.1 Introduction
4.2 The Divide and Conquer Method
4.3 Bisection and Inverse Iteration
44 The QL Method.

12
13
14

16
16
17
18
19
20
22

5 Solving the Symmetric Tridiagonal Eigenproblem on the Hyper-

4.4.1 The Perfect-Shift QL Method
4.4.2 An Experimental Comparison of Some QL Methods . . .

cube

5.1 Cuppen’s Divide and Conquer Method
5.1.1 The Algorithm
5.1.2 Experimental Results

5.2 Bisection with Inverse Iteration
5.2.1 The Algorithm
5.2.2 Analytical and Experimental Results
523 A Model Problem
5.2.4 Distribution of eigenvectors oL

53 Comparisont

54 The QL Method,

6 Improving the Accuracy of Inverse Iteration

6.1

6.2
6.3

Experimental Results,
6.1.1 Starting Vectors
6.1.2 Stopping Criterion
6.1.3 Reorthogonalization
A New Implementation of Inverse Iteration

A Serial Comparison of TREEQL, TQL2, and B/IIT

7 A Statistical Analysis of Inverse Iteration

7.1
7.2
7.3
7.4
7.5
7.6

Assumptions L. e
The Quality of an Approximate Vector
An Analytic Approximation for the Incomplete Beta Function
The Quality of the Starting Vectors
Application of Statistics to Iterates without Reorthogonalization

The Quality of Iterates After Reorthogonalization

34

38
39
41
43
47
47
49
52
55
59
60

64
65
67
73
78
82
86

96
97
97

. 100

108
113

7.7 Practical Considerations 118

7.8 Appendix: Statistical Basics 119
7.8.1 Definitions 119
782 Lemmas e 120

The Bidiagonal SVD 122

8.1 Solving the Bidiagonal Problem as a Tridiagonal One 123

8.2 A Divide and Conquer Method for the Bidiagonal Singular Value
Problem 125

8.3 The Golub-Reinsch QR Algorithm 129

8.4 Serial Experiments, 129

85 Parallelism 140

List of Figures

3.1

5.1

5.2

5.3

5.4

5.5

6.1

6.2

6.3

7.1

A 3-cube with numbered nodes

Cuppen’s method on a 5-cube: speedup & = %12— for [1,2,1] (squares)
and [1,u,1] (circles) versus matrix order. Points for matrix orders
that are multiples of 32 are connected with solid lines. Other
points are connected with dotted lines.
Cuppen’s method on a 5-cube: fraction of total time spent in
communication versus matrix order for matrix [1,2,1].
Bisection and inverse iteration on an iPSC/d5M: speedup for [1,2,1]
(circles) and random matrices (squares) versus matrix order. . . .
Bisection on an iPSC/d5M: communication overhead as a fraction
of the total time versus Matrix Order.
Bisection on a 5-cube: Fraction of total time spent in eigenvalue
computation (B), eigenvector computation (I), and orthogonaliza-

tion (O) versus matrix order.

Times for TQL2, TREEQL, and B/III versus matrix order for
matrix [1,2,1].
Times for TQL2, TREEQL, and B/III versus matrix order for the
glued Wilkinson matrix Wit.
Times for TQL2, TREEQL, and B/III versus matrix order for

matrix [Lu,l]. « . . o

Vectors on the Unit 3-Sphere withp2 >1—¢2

viil

49

7.2
7.3

7.4

8.1

8.2

8.3

8.4

8.5

Vectors on the Unit 3-Sphere withpf +nZ >1—-€¢ 100
The integrand f(s) for n = 20 and d = 1 versus s. The inflection
point is oy = 0.25, and f(6)=0.1.. 104
The integrand f(s) for n = 10 and d = 3 versus s. There is no
inflection point, and f(6) =0.1. 105

Times for computation of the SVD by B/III, PSVD, and DSVDC
versus matrix order for matrix [21]).. . . oo 133
Times for computation of the SVD by B/III, PSVD, and DSVDC
versus matrix order for random matrices. 134
Times for computation of the SVD by B/III, PSVD, and DSVDC
versus matrix order for matrix [2,u]/n. Lo 135
Times for computation of the SVD by B/III, PSVD, and DSVDC
versus matrix order for matrix Bw. 136
Times for computation of the SVD by B/III, PSVD, and DSVDC

versus matrix order for the modified matrix [2,1]. 137

List of Tables

2.1

4.1

5.1

5.2

5.3

5.4

5.5

5.6
5.7

6.1

Characteristics of the test matrices with clustered eigenvalues. . .

Relative times for PSQL, TQL2, and IMTQL2, average number of
QL iterations, and accuracy for matrix [1,2, 1], random matrices,
and the modified [1,2,1] matrix of order 100. The order index A

is the scaled sum of matrix orders used at each iteration.

Assignment of submatrices to the processors of a 3-cube for the
divide and conquer method.
Cuppen’s method on a 5-cube: speedup & = %’; for matrices [1,2,1]
and [1,4,1] for several matrix orders.
Cuppen’s method on a 5-cube: fraction of total time spent in
communication for matrix [1,2,1] of several orders.
Bisection and inverse iteration on a 5-cube: speedup S = %;1; for
matrix [1,2,1] and a random matrix for several orders.
Bisection on an iPSC/d5M: communication overhead as a fraction
of the total time for several matrix orders.
Comparison of methods for matrix [1,2,1] on a 5-Cube.

Comparison of methods for random matrices on a 5-Cube.

Number of inverse iterations per accurate eigenvector for matrix
[1,2,1] of order n. Starting vector c is the correct computed eigen-
vector, and w = 4, The same number of iterations is performed

for each eigenvector. Lo L

14

6.2 Minimum, average, and maximum numbers of inverse iterations to
compute accurate eigenvectors for fifty random matrices of order
100 and five random matrices of order 500. The matrices have
minimum eigenvalue spacing 107*. The starting vector c is a dif-
ferent random vector for each computed eigenvector, and w = ..
The same number of iterations was performed for each eigenvector
ofagivenmatrix.

6.3 Number of inverse iterations required for high accuracy when the
given starting vectors are used for the glued Wilkinson matrix W,.
Starting vector ¢ is the correct computed eigenvector, and w = 1.
The same number of iterations was performed for all eigenvectors
ofagiventest matrix.

6.4 Norm of the orthogonalized iterate after one and two iterations
for the glued Wilkinson matrix W of order 525 for four starting
vector selections. The smallest singular value of the matrix of
first iterates before reorthogonalization is also given. The starting

VECLOT 18 W = Thn. v v v v v v v e e e e e e e e e e e e e e e

75

6.5 The smallest singular value of the matrix of random starting vectors. 75

6.6 Minimum, average, and maximum numbers of inverse iterations
required for high accuracy when the given starting vectors are used
for fifty random matrices of order 100 and five random matrices
of order 500. All matrices have some clustered eigenvalues. The
starting vector ¢ is a different random vector for each computed
eigenvector,and W ="Tp.o .. i .

6.7 Iterate norm, residual, and orthogonality for matrices [1,2,1] and
Wg+ after one and two iterations. A different random starting
vector is used for each eigenvector computation.

6.8 Maximum residual and orthogonality for 50 test matrices of order
100 with clustered eigenvalues. Results are given for the first iter-
ation at which all iterate norms are greater than one and for the
subsequent iteration. A different random starting vector is used

for each eigenvector computation.

79

6.9 Maximum residual and orthogonality for 5 test matrices of order

500 with clustered eigenvalues. Results are given for the first iter-

ation at which all iterate norms are greater than one and for the

subsequent iteration. A different random starting vector is used

for each eigenvector computation. 80
6.10 Variation of accuracy and reorthogonalization time with reorthog-

onalization criterion for matrix [1,2,1] when n =100. 81
6.11 Variation of accuracy and time after two inverse iterations with

reorthogonalization criterion for matrix Wi when n = 100 and

n = 525. The last column shows the fraction of inverse iteration

time spent in reorthogonalization. 83
6.12 Average variation of accuracy and reorthogonalization time with

reorthogonalization criterion for fifty matrices of order 100 with

some clustered eigenvalues after two iterations. 84
6.13 Times, residuals, and orthogonalities for eigensystems computed

by TSTURM and by BISECT with III for matrix [1,2,1].. 85
6.14 Times, residuals, and orthogonalities for eigensystems computed

by TSTURM and by BISECT with III for matrix Who oo 85
6.15 The number of roots computed by TREEQL divided by the matrix

order, the order index for TQL2, and the fraction of time spent in

BISECT by B/III for matrices [1,2,1], W}, and [1,u,1]. 87
6.16 Maximum residual and orthogonalities of eigendecompositions com-

puted by B/III, TREEQL, and TQL2 for the three test matrices. 88
6.17 Number of singular values with spacing less than 107%4|| T ||,

maximum cluster size, and fractions of B/III times spent in BI-

SECTand MGS. 89
6.18 Times for TQL2, TREEQL, and B/III for [1,2,1], Wi, and [1,u,1]. 95

7.1 Comparison of theoretical bounds for « from Theorem 7.3.1 with

computed valuesford=1. 108

7.2

7.3

7.4

7.5

7.6

7.7

7.8

8.1

8.2

8.3

8.4

8.5

8.6

Xiil

Comparison of theoretical bounds from Theorem 7.3.2 and from

the mean value theorem with computed values for d = 1 and
d=1.d—2. . . . e 108
Comparison of theoretical bounds from Theorem 7.3.2 and from
the mean value theorem with computed values for d = 1 and
d=1.d—8. . . . e e 109

Comparison of theoretical bounds from Theorem 7.3.2 and from
the mean value theorem with computed values for d = 3 and § = .01.109
Lower bounds on probability that |;| > 7. Numbers in parenthe-
ses equal the number of zero decimal places. 110

The number of times d a starting vector can be used with proba-

bility p that |p|>7,i=1,...,d. 112
Lower Bounds on probability that |7;] > 7. Numbers in parenthe-

ses equal the number of zero decimal places. 118
Properties of some distributions. 121

The number of roots computed by PSVD divided by the matrix
order, the order index for DSVDC, and the fraction of time spent
in BISECT by B/III (with implicit conversion to tridiagonal form)
for five bidiagonal matrices. 130
Number of singular values with spacing less than 10| B ||,

maximum cluster size, and fractions of B/III times spent in BI-

SECT and MGS. 132
Times for computation of the SVD by B/III, PSVD, and DSVDC
for matrix [2,1], random matrices, and matrix [2,u]/n. 138
Times for computation of the SVD by B/III, PSVD, and DSVDC
for matrix By and the modified matrix [2,1].. 139

Maximum residual and orthogonalities of singular value decompo-
sitions computed by B/III, PSVD, and DSVDC for the five test

matrices. e e e e e e e e e e e e 140

Chapter 1

Introduction

This thesis discusses efficient serial and parallel methods for computing all eigen-
values and eigenvectors of a real symmetric tridiagonal matrix T' = UAUT to
high numerical accuracy. These methods are also applied to the related problem
of computing the singular value decomposition (SVD) of a real bidiagonal matrix
B=YLXT,

The methods examined exhibit large-grained parallelism on the order of vector-
vector, matrix-vector, or small-scale matrix-matrix operations suitable for imple-
mentation on a distributed-memory MIMD (multiple instruction, multiple data)
multiprocessor with scalar processors. The algorithms employ static processor

scheduling.

1.1 Background

Singular value decompositions and symmetric eigenproblems occur in a wide va-
riety of applications. In many cases, the problems are of very large order. For
example, properties of certain quantum dynamical systems can be determined
through statistical analysis of quantities computed from the eigenvalues or eigen-
vectors of symmetric matrices associated with those systems [44, 45]. In order
to discern structure in the distributions of these quantities, it is often necessary
to determine to high accuracy the full eigensystems of matrices of order 1000

or more [43]. Because these computations constitute a time-consuming process

1

demanding extensive memory, they illustrate the need for parallel eigensolvers.
Large order problems in real-time signal processing [69], among other applica-
tions, motivate parallel methods for the SVD.

Matrices arising in such applications are sometimes tridiagonal [53] and often
banded [44]. In addition, tridiagonal and bidiagonal matrices arise in the solution
of more general problems. That is, full eigendecompositions of dense matrices
are usually computed by Jacobi methods [33] or by direct reduction of A to
symmetric tridiagonal form T by Givens rotations or Householder reflections
followed by computation of the eigendecomposition of T' [78]. When the latter
is implemented in exact arithmetic, the eigenvalues of A equal the eigenvalues of
T, and the eigenvectors of A can be determined directly from those of T'. Sparse
eigenproblems are often handled by the Lanczos method [59] which itself produces
symmetric tridiagonal eigenproblems. The SVD of a matrix can be computed by
the Jacobi method [33] or by reducing the matrix to bidiagonal form and solving
the bidiagonal problem [78]. The remainder of this thesis concerns only methods
for the reduced bandwidth problems.

Methods for the symmetric tridiagonal eigenproblem include the QL and QR
methods [9], divide and conquer strategies [13, 52], Toda flow [16, 74|, Rayleigh
quotient iteration [76], and bisection with inverse iteration [4, 8, 55, 59, 76].
Multisection [5, 55] may be used in place of bisection and subspace iteration [7, 59]
in place of inverse iteration. Methods for the bidiagonal singular value problem
include the Golub-Reinsch QR algorithm [34], divide and conquer techniques
[2, 46], and methods that convert the n X n singular value problem to a 2n x 2n
symmetric tridiagonal eigenproblem.

All of these methods have been implemented in parallel. Implementations of
Givens’ and Householder’s methods for bandwidth reduction are presented for
systolic arrays in [37, 39] and for shared-memory multiprocessors and processor
arrays in [23, 49, 50, 66]. Toda flow techniques, Cuppen’s divide and conquer
method, bisection, multisection, and inverse iteration have been implemented

for shared-memory multiprocessors and their simulators [8, 18, 24, 55, 74], for

the ICL DAP [4, 5], and for the Illiac IV [38]. A parallel QR algorithm for
the symmetric tridiagonal eigenproblem is presented in [65]. Hybrid parallel
methods involving Rayleigh quotient iteration and inverse iteration [67, 73] have
been implemented for shared-memory multiprocessors [57, 56].

Methods for the symmetric tridiagonal eigenproblem to be considered in this
thesis are the QL method with Wilkinson’s shift or the perfect shift, Cuppen’s
divide and conquer technique, and bisection with inverse iteration. The methods
for the bidiagonal singular value problem are the Golub-Reinsch QR method
[35], the new divide and conquer technique from [46], and bisection with inverse
iteration [76].

The remaining methods are not accurate or are variations of the ones studied.
Toda flow methods give only approximate solutions [74]. The divide and conquer
techniques presented in [2, 52] are not studied specifically, but they possess the
same recursive structure as divide and conquer techniques to be examined. Hy-
brid Rayleigh quotient iteration methods, multisection, and subspace iteration
are also not treated although many of the results about bisection and multisec-
tion apply, and the hybrid and generalized methods might be used in place of

bisection and inverse iteration.

1.2 Outline of the Thesis

This thesis shows that bisection with inverse iteration is generally the fastest
and most parallel accurate approach to the symmetric tridiagonal eigenproblem
and the bidiagonal singular value problem on a statically scheduled, distributed-
memory multiprocessor. In addition, bisection with inverse iteration competes
with the divide and conquer techniques for the fastest accurate serial method for
both problems. The dissertation proceeds as follows:

Chapter 2 outlines assumptions, notation, and criteria for evaluating the nu-
merical methods. Chapter 3 describes the hypercube multiprocessor used in the

experiments.

Chapter 4 reviews the QL method, the divide and conquer method, and bisec-
tion with inverse iteration for the symmetric tridiagonal eigenproblem. Chapter
5 compares their accuracies and parallel efficiencies on the iPSC/1-d5M hyper-
cube multiprocessor. The experiments show that the parallel implementation
of inverse iteration, which is based on the EISPACK routine TINVIT, does not
produce highly accurate eigenvectors.

Chapter 6 identifies the factors influencing accuracy of inverse iteration and
develops a more accurate implementation. Chapter 7 presents a statistical justi-
fication of some features of the new implementation.

Chapter 8 addresses the computation of the SVD of a bidiagonal matrix.

Portions of this thesis have been previously published in [40, 41, 46, 47].

Chapter 2

Preliminaries

This thesis compares methods for the symmetric tridiagonal eigenproblem and
the bidiagonal singular value problem in terms of runtime, parallel efficiency,
and accuracy. This chapter describes the test problems and measures of quality
employed in the experiments and their analysis.

Notation is introduced in Section 2.1 along with assumptions about the ma-
trices used. Definitions of and theoretical results about the measures of quality
employed are presented in Section 2.2. The symmetric tridiagonal matrices actu-
ally used to test the eigensolvers and the bidiagonal ones used to test the methods

for computing the singular value decomposition are given in Section 2.3.

2.1 Notation and Assumptions

Unless otherwise specified, matrices are represented by upper case Roman letters,
column vectors by lower case Roman letters, and scalars by lower case Greek
letters. A superscript T denotes transpose. A circumflex denotes a computed
quantity. All quantities are assumed to be real.

T denotes an n x n symmetric tridiagonal matrix having the eigendecompo-
sition T = UAUY, where A is an n x n diagonal matrix with the eigenvalues
A 2 ... 2 A, as its diagonal elements. The n x n matrix U is orthogonal and
has as its columns the eigenvectors uy,...,u,. The matrix T = [, a, 8] has all

diagonal elements equal to a and all off-diagonal elements equal to 8. The matrix

5

T = [B,u, B] has the vector u on its diagonal and all off-diagonal elements equal
to B.

The eigenvalue of largest magnitude max(|A1],|An]) is written |A|maz. The
computed value [/A\Imax approximates || T' ||2-

B denotes an n x n upper bidiagonal matrix having the singular value de-
composition B = YXXT. The matrix ¥ is diagonal with the singular values
oy 2 ... 2 0, 2 0 as its diagonal elements. The columns of Y = (y1,...,yn)
are the left singular vectors of B; the columns of X = (zy,...,z,) are the right
singular vectors of B. Y and X are both n X n orthogonal matrices. The upper
bidiagonal matrix B = [a, 3] has all diagonal elements equal to o and all ele-
ments on the first superdiagonal equal to 8. The bidiagonal matrix B = [, u]
has the vector u on its first super-diagonal and all diagonal elements equal to .

The computed quantity 64 approximates || B ||z.

The methods derived for a square bidiagonal matrix can be applied to an

m X n bidiagonal matrix B. When m > n, B is factored into

with m X n (é) If B=YSXT, then B = VEXT with £ = £, X = X, and

Y = <£)Y When m < n,
B=(I 0)B=(I 0)YrXx”

withmxn (I 0),(I 0)S=%,¥=(I O)Y(I>,andX'=X.

It is assumed that each tridiagonal matrix T' or b?dia,gonal matrix B is unre-
duced, meaning that none of the immediate sub- or superdiagonal elements of T
is zero and none of the immediate superdiagonal elements of B is zero. If not, the
matrix would consist of a direct product of disjoint, lower order matrices whose
eigendecompositions or SVD’s could be computed independently. Note that while

an unreduced tridiagonal matrix has distinct eigenvalues in exact arithmetic, it

may still have computationally coincident ones in finite precision.

2.2 Measures of the Quality of a Method

In this thesis, methods are compared experimentally in terms of runtime (includ-
ing communication, if any), parallel efficiency, and accuracy.

The parallel speedup is determined in two ways. First, the time 77 to solve the
problem by a sequential implementation of the method on one processor is divided
by the time T, to solve the same problem by the same method on p processors.
This speedup, denoted S = %, quantifies the degree of parallelism inherent in
a method. A speedup near the number of processors (§ = p) indicates that
all processors are kept largely busy during the parallel solution of the problem
and that little additional overhead (communication or redundant computation)
is incurred.

The second speedup measure is s = % where t; is the time to solve the
problem by the fastest serial method. The speedup s reveals the maximum gain
in speed possible by using the parallel method in place of a serial one on a single
processor. Note that & can never be larger than s.

The accuracy of a method is determined by the residual error in the computed
solutions and by the orthogonality of the computed eigenvectors or singular vec-
tors. For the symmetric tridiagonal matrix 7' with computed eigendecomposition

U AUT, the errors are given by

1 N SN
R = lj\lmaz rnzax ” Tu,-—)\,-u,- lz
= U070 - I ||oo,

The residual error is thus determined by the largest residual error for any single
computed eigenpair. The norm used to measure the orthogonality is fast to
compute.

For the bidiagonal singular value problem B = Y$XT, the errors are given

by

1 . .
Rx = —max|| B#; —&:4; |2
o1 t

1

Ry = zmax| 4B - &t |z
a1 1

Ox = [[XTX -1l

Oy = || YTV -1

Theorems 2.2.1 and 2.2.2 below show that if residuals and orthogonality mea-
sures are small, then the computed eigendecomposition or singular value de-
composition has high absolute accuracy. The proofs of these theorems depend
on Lemmas 2.2.1 and 2.2.2 which establish necessary properties of the matrix

norms.

Lemma 2.2.1 [33]
I Allz < v/nmax|| Ae; |z,
1
=l Alle Al < Vn [l Al

7

Lemma 2.2.2 (See Theorem 2.10 in Chapter 4 of [71].)

I AAT [l = A"

Lemma 2.2.3 Suppose V is a square matriz such that E = VIV — I with
| Ells <& then E=VVT — [with || E ||; < &.
Proof: Let V = YEXT be the singular value decomposition of V, then

VIV - 1= X92XT - 1 = Xx22XT - xXT = X(2? - DXT.
Similarly,

Vv —1=Y(Z*-1Y".
Because X and Y are orthogonal matrices,
FEL=VV=Tla=|VVT =1 |2=| E ||z

|

Theorem 2.2.1 below shows that if the residual R and orthogonality O are
small, then UAUT is the exact eigendecomposition of a matrix 7'+ E nearly equal

to T. E is neither symmetric nor tridiagonal in general.

Theorem 2.2.1 Let UAUT be the computed eigendecomposition of a symmetric
tridiagonal matriz T. If R < €1, and O < ¢y, then there exists a matriz E such
that

T + E = fjA[AjT, and ” E “2 S \/7—71“/\[ma.:1:62 + I/A\Imaa:el V 1+ \/7—7:62]3

where [Almaz = max(|i;], | An]).

Proof: Let
B = !ill (Tir - OA), (2.1)
E, = UTU -1, and (2.2)

By Lemma 2.2.1,

I Ex ll2 £ vVnmax || Exe; [l2 = vaR < v/ney,
| Exllz < v || B2 |loo = VRO < Ve,

The second inequality bounds || U7 ”22 as follows. By Lemmas 2.2.1 and 2.2.2,
vne > || E; |2
= | 00T -1,
> OO0 o= 1 |l2
= 107 2" - 1.
Therefore, || UT ||, < 1+ \/ne;. From equation (2.1),
TOOT - UADT = A mas B30,
so that
UAUT = TUUT — |\ masE1UT
= T + Ey) = | M mao E1UT
= T+E,

10
where £ = TFE, — |:\|mazE10T, and

FEf2 < [Mmaz Il B2 llz+ Rlmacll By ll2 1| U7 |2]
\/ﬁ[I’\]ma:cfz + l:\lmaz-f] Vl + \/’562].

IA

Note that if the bounds

| TU-UA < &
| 0T0—1|:< e

are satisfied, the error matrix is bounded above by

“ E ”2 < ‘Almasz + I:\]mag;ﬁl\/ 1 + e,

which is independent of the matrix order. The infinity norm and the maximum
column 2-norm are used in practice because they are less expensive to compute.

The result of Theorem 2.2.1 is extended to the SVD of B in Theorem 2.2.2
which also shows that if Rx, Ry, Ox, and Oy are small, Y5 X7 is the exact SVD
of a matrix nearly equal to B. Theorem 2.2.2 shows that it suffices to compute

one residual when determining the accuracy of the residual.

Theorem 2.2.2 Let YSXT be the computed singular value decomposition of a
bidiagonal matriz B. If Rx < €1, Ry < €3, Ox < €3, and Oy < €4, then

B=V3XT +E,

where || E |2 < +/n] min(o163 + 61611/1 + 1/nes, o164 + €611/1 +/neg |. In

addition, up to first order

” YTB - 2)2]1 ”2 S \/ﬁ(&lel + g1€3 + 6'4)

Proof: Let

E,

E,
E;
E;
E,
E,

By Lemmas 2.2.1 - 2.2.2,

\/;l- €3

v

v

I Es o
I XXT 1,
| XXT Yo~ | T
I XT)" - 1.

Therefore, || XT “22 <1+ y/nes. From equation (2.3),

BXXT - V5XT = 6,E, X7,

so that, by equation (2.6),

YEXT =

where E = BE; — 6, E, XT

I E |2

<
<

[01“ Es ll2 + 61

\/’;L-[0'163 + &161\/ 1 + \/7_';63].

BXXT - 5,E, XT
B(I + E3) - 6, E, XT
B+ E,

. Because || B ||; = o1,

| Byl | X7 |2 |

In the same way, equations (2.4) and (2.7) show that

IE 1l2

<
<

KAl

Eylla+ &1l B2 2 | Y7 |l2 }

Vnloies + G162\ 1 + /ney).

11

12

Postmultiplying equation (2.3) by ;X7 then premultiplying it by Y7 gives
YTBXXT - YTYSXT = 6, YTE XT.
Because || XTX — I ||l = || XXT — I ||,
XXT — 1= FE; with || Bs ||2 < €3,
and
YTB(I + E3) — (I + E)SXT = 6,YTE XT.
Rearranging the terms,
YTB - $XT = 6:YTE XT — YT BEs + ESXT.
Because || ¥ |2 = 61,

| YTB — £XT ||z < Va(rel| Y7 ol X7 2 + ovea]l Y7 |2 + ead]| X7 |2).

As in the proof of Theorem 2.2.1, || X7 ||, < /1 + nesand || Y7 || < /1 + /neq,

so that
| YTB — X7 ||, < \/n(6161 + o163 + 61€4) + higher order terms.

When /ne; << 1forj =1,...,4, the higher order terms are a small contribution
to the total bound, and for accurately computed singular values §; & 0.

Only the above norm-based quality measures are used in this thesis. Other
quality measures used when T and B are known to very high accuracy are dis-

cussed in [3, 15, 18, 19].

2.3 Test Matrices

The serial and parallel eigensolvers were tested on the collection of matrices given
in this section. The matrices with clustered eigenvalues or singular values or small
singular values present difficult problems. A pair of computed eigenvalues i, 5\,-+1

belong to a clusterif \; — 5\i+1 < 10‘14|5\|mu.

13

2.3.1 Tridiagonal Test Matrices

1. Matrix [1,2,1]: The Toeplitz matrix, T = [1,2,1] has eigenvalues given by

Jw
)\j=2(1+cosn+1>,

for j = 1,...,n [36]. The eigenvalues are more closely spaced at the ends of

the spectrum than in the center, and the spacing decreases with increasing
matrix order. For the matrix orders tested, all eigenvalues are computa-
tionally distinct. Matrices of this form arise, for example, in the solution

of boundary value problems by difference methods [72].

2. Modified matrix [1,2,1]: This matrix is formed from matrix {1,2,1] by setting
the fifth through eighth off-diagonal elements fSs,...,3s equal to 10714,
This contrived example has several clustered eigenvalues and so presents a

difficult eigenproblem.

3. Matrix [1,u,1]): The matrix [1,u,1] has the value 1 in each off-diagonal posi-
tion and the value 7 x 107 in the sth diagonal position. This matrix under-
goes little deflation when its eigendecomposition is computed by Cuppen’s

divide and conquer method [13].

4. W}F: The Wilkinson matrix of odd order n [76] has diagonal elements
13],--+,1,0,1,...,]|%] and all off-diagonal elements equal to 1 [76]. The
spacing of the eigenvalues decreases with increasing eigenvalues until the
largest pairs (computed in double precision) are computationally coincident

for orders of about 13 and larger.

5. W;t: The glued Wilkinson matrix of order 215 is formed by placing j copies
of W along the diagonal of the matrix and setting off-diagonal elements
equal to 107'* at the positions Bs;, By2, . . . where the submatrices join. For
matrix orders greater than about 200, Wi}t has clusters of eigenvalues near

the integers 1,2,..., 2] [58].

14

order | largest cluster number of number of
size clustered eigenvalues | test matrices
100 5 0—26 49
100 51 51 1
500 8 35-83 5

Table 2.1: Characteristics of the test matrices with clustered eigenvalues.

6. Random: These matrices have uniformly distributed pseudorandom entries
between -1 and 1 as both diagonal and off-diagonal elements. The ran-
dom elements are generated using the linear congruential random number
generator RAND available from NETLIB. It turns out that the matrices
generated for the experiments have minimum eigenvalue spacing 10™* for

orders through 525.

7. Matrices with clustered eigenvalues: These matrices are formed from diago-
nal matrices with some repeated eigenvalues by applying nearly orthogonal
transformations. Specifically, the matrices are generated by multiplying
UDUT where D is a diagonal matrix and U is the matrix of eigenvectors of
matrix (1,2, 1] computed using the EISPACK QL routine TQL2 [68]. The
product UDUT was reduced to tridiagonal form by the EISPACK routine
TRED?2. Table 2.1 categorizes the test matrices by the number of eigenval-
ues in the largest cluster. All of the test matrices have norms || T ||2 = 1

except for six of order 500 which have || T' ||, & 50.

Matrix [1,2,1] and the modified matrix [1,2,1] are positive definite; the rest

are indefinite.

2.3.2 Bidiagonal Test Matrices

1. Matrix [2,1]: All singular values lie within the interval [1,3]. For the matrix

orders tested, all singular values are computationally distinct.

15

. Random: These matrices have uniformly distributed random entries be-
tween -1 and 1 generated by RAND on both diagonal and off-diagonal
elements. The matrices tested turn out to have well-separated singular

values with minimum magnitude O(1075).

. Bw: Inspired by the Wilkinson matrix W7, this matrix of even order

has diagonal elements %,...,1,1,. and all off-diagonal elements equal

.
to 1. Its smallest singular value is O(1073), and its largest ones appear
in computationally coincident pairs for orders of about ten and larger in

double precision.

. Matrix [2,u]/n: The matrix [2,u]/n of order n has the value 2/n in each
diagonal position and the value i/n in the ith off-diagonal position. This

matrix has one singular value less than 10~!* for orders greater than eighty.

. Modified matrix [2,1]: This matrix is formed from matrix [2,1] by set-
ting the sixth through ninth diagonal elements as, . . ., a9 and fifth through
eighth off-diagonal elements s, ..., Bs equal to 10714, This matrix is ill-
conditioned, having between four and eight singular values less than 1078
and between two and four singular values less than 107* for all tested

orders.

Chapter 3

The Hypercube Multiprocessor

This chapter describes the distributed-memory hypercube multiprocessor used
for the parallel experiments presented in this thesis. Section 3.1 introduces the
hypercube graph defining the architecture of the multiprocessor, and Section 3.2
describes the Intel iPSC/1-d5M used for the parallel experiments. Section 3.3
gives the algorithms for data transmission, matrix multiplication, and orthogo-

nalization of vectors used in the eigensolvers examined in Chapter 5.

3.1 Characterization of the Hypercube

A hypercube of dimension d > 0, or d-cube, is a graph consisting of p = 2¢ nodes
and is defined recursively as follows. A 0-cube is composed of a single node, while
for d > 0, a d-cube is obtained by adding edges between corresponding nodes
of two (d — 1)-cubes. (See Figure 3.1.) This construction shows that a 3-cube
is formed of two 2-cubes, four 1-cubes, or eight 0-cubes. In general, a d-cube is
made up of 2¢77 j-cubes, for 0 < j < d. Alternatively, a d-cube may be defined
by associating with each of the 2¢ nodes a binary label of length d so that every
edge connects two nodes whose labels differ in exactly one bit. In a d-cube, every
node is connected to d others making a total of d2¢-! edges.

The nodes of a hypercube may be ordered according to a binary reflected
Gray code [29, 61] so that successive nodes in the ordering are physically ad-

jacent. Because a Gray code sequence is cyclic, it defines a ring of physically

16

17

110 L S 111

010 011

"100 R . ' 1014'

. 000 | 001

Figure 3.1: A 3-cube with numbered nodes

interconnected processors within the hypercube. Within the ring, node j has two
neighbors whose binary identifiers differ from its own in a single bit. For example,
a ring is embedded in the hypercube of Figure 3.1 by passing from one node to
the next in the order 000, 001, 011, 010, 110, 111, 101, 100, 000. Embeddings
into the hypercube of toroids or one- and two-dimensional arrays are also based

on Gray codes [63].

3.2 The Multiprocessor

A hypercube multiprocessor of dimension d is made up of p = 2¢ processors
located at the nodes of a d-dimensional hypercube graph and d2¢-! processor
interconnections corresponding to the edges of the graph. Thé term Aypercube
refers to both graph and multiprocessor.

The parallel eigenvalue codes were implemented on an Intel iPSC/1-d5M hy-

percube multiprocessor. This machine consists of 32 identical node processors,

18

each capable of communicating directly with five neighboring processors. Each
processor has direct access to its own local memory only and exchanges data
with other processors through message passing. A node can communicate with
only one of its neighbors at a time and does so by issuing a send communication
primitive to initiate a message transfer or a receive primitive to accept a message
sent to it by another processor. Messages arriving at a node are held in a queue
until selected via a receive command. Each processor has 4.5 Mbytes of local
memory.

A separate processor serves as the cube manager or host machine. It can
communicate with all nodes via a global bus. For the implementations discussed
in this thesis, the host is used for downloading code onto, passing initial data
to, and accumulating final results from the node processors but does not enter
into the computation in any other way. In the remainder of this thesis, a node
processor is named by the decimal value of its binary identifier, while the cube
manager is known as the host.

For purposes of estimating computation times on the hypercube, it is assumed
that time B + k7 is required to send a double precision vector of length k& from
one processor to a neighbor, where 3 is the communication startup time and 7 is
the time to transfer one vector element. Using the terminology of [33], the time

required to perform a floating point operation (flop) of the form

Cij = €j + aikby;
is denoted by wj; it includes the time for a floating point multiplication and
addition as well as for some pointer manipulation. If the array elements are
real double precision floating point numbers, then -g ~ 10 and g ~ 125 on the
iPSC/1-d5M running operating system release R3.0. These values were derived
by timing the double precision LINPACK benchmark on a single processor (for

w) and by timing messages sent around a ring of 32 processors (for 3 and 7).

3.3 Some Hypercube Algorithms

In general, an algorithm is implemented in parallel by dividing the work required

into parts or tasks, some or all of which can be executed simultaneously. In the

19

implementations to be discussed, tasks are assigned statically to the processors
without the use of a task queue. That is, tasks are assigned to processors a priori
as a function of the matrix order and the number of processors. The details of
these assignments differ for each method and are discussed in Chapter 5. This
strategy permits simplicity of programming and reduction of scheduling overhead,
although it does not necessarily provide the best processor load balance.

In the implementations of hypercube algorithms described in this thesis, ma-
trices are stored by assigning an entire column or an entire row to one processor.
For simplicity, it is assumed that the number of processors p divides the order n
of the matrix. In the actual implementation, the rows or columns are assigned
to processors in such a way that no processor contains more than [n/p| of them.
In all descriptions, the processors are labelled P;, 0 < j < p — 1. The processor

indices should always be taken modulo p.

3.3.1 Data Transmission on the Hypercube

The Alternate Direction Exchange Algorithm (ADE) [64] uses the recursive struc-
ture of the hypercube to carry out a total exchange of the data held by the pro-
cessors of a cube. A vector of length % is broadcast from each processor to all
others in a d-cube in d data transmission steps where the amount of data doubles
during each step. At step [, processors separate into two (d — 1)-cubes So and
Sy according to the value of bit [in their binary labels. The binary identifier of

processor P; is denoted 3;, and P; begins with a vector vj(:_)l of length k.

Algorithm 3.3.1 (Alternate Direction Exchange)
In parallel, do on all processors P; with binary labels B;, 0 < 7 <24 —1:
Forl=1,...,d:

1. Pair with processor P whose binary label differs from B; only in bit
[

2. Send vector vj(-:)_l of length 2'=1k to processor Pj.

20

3. Receive vector UJ(-Z_I of length 2'=*k from processor P;:.

4. Concatenate vﬁ)_l with vﬁ_l to form the vector vj(lfll) of length 2'k.

The time to perform Algorithm 3.3.1 (ADE) on a d-cube is

Tipe = 2[(B+kr) 4+ (B+2k7) + -+ (B+ 29 kr)]
= 2[dB+ (2% — 1)k7].

The factor of two reflects the fact that messages can only be sent in one direction
at a time on a node-to-node link.

The above algorithm can also be used when data are broadcast within a
subcube S of dimension j < d. S is then made up of all processors of the d-
cube whose binary labels agree in exactly the same d — j bit positions. The

corresponding communication time is
mhpp = 2jf + (2 = 1)k7].

The 2¢~7 subcubes of dimension j comprising a d-cube can simultaneously per-

form an alternate direction exchange without interference.

3.3.2 Matrix Multiplication on the Hypercube

In this section, the processors in a d-cube are ordered according to a binary
reflected Gray code sequence [29, 61], and the processor labelled P; is the jth
member in this sequence, 0 < j < 2¢ — 1.

When using an embedded ring, a matrix may be stored in the hypercube
by situating blocks of adjacent columns in neighboring processors. Ring Matrix
Multiplication (RMM) described in Algorithm 3.3.2 multiplies two n X n matrices
A and B both distributed by block columns among the prdcessors of a d-cube,
where n = k24,

Initially, processor P;, 0 < j < 2% — 1, contains columns jk +1,...,(j + 1)k
of A and of B and, upon completion, columns jk +1,...,(j + 1)k of C. During

21

the formation of C, the columns of B remain in their original places while the
columns of A are passed around the ring from processor to processor, overwriting
the previously-held columns of A in each processor.

Let B;; denote the k x k block matrix with its first element in position (ik, jk)
of B,1<1,7 <29 and let the block vectors

B;=[BEL...BL,)"

be the k columns jk +1,...,(j + 1)k of B. Similarly, the block vectors /L- and
C~’j comprise the k columns jk +1,...,(7 + 1)k of A and C, respectively. S'j is

the k& column block vector used to accumulate the sum.

Algorithm 3.3.2 (Ring Matrix Multiplication)
In parallel, do on all processors P;, 0 < j < 2¢ —1:

Sjt1 =10

Fori=1,...,2%:
1. C’ompute §j+1 = §j+1 + z‘ij_;+2Bj_,'+2,j+1
2. Send A;_iy, to processor Pjy,

3. Receive A;_;y, from processor Pj_y

Cir1 = Sin

The arithmetic time for each iteration is 2¢k%w, and the communication time

is 2(B + 2%k?7), giving a total time of
Thaar = 22 k3w + 2471 (B + 2%k?7).

The algorithm was designed to take advantage of the large memory of the
iPSC/1-d5M. That is, it assumes buffers large enough to accommodate the

incoming block columns. Alternative algorithms are described in [28].

22

3.3.3 Modified Gram-Schmidt Orthogonalization

The Modified Gram-Schmidt (MGS) procedure transforms a set of linearly inde-
pendent vectors into a set of orthonormal vectors. This is necessary, for example,
when inverse iteration is applied to poorly separated eigenvalues and produces
eigenvectors that, while linearly independent, are not orthogonal [76].
Algorithm 3.3.3 overwrites a set of m linearly independent vectors {vy, ..., vm}
of length n with an orthonormal set {?y,..., 9, } spanning the same space. It is
assumed that 1 < m < p and that v;y; resides in processor P;, the jth processor
in an embedded linear array. The kth orthonormalized vector is computed during
the kth step of MGS. The orthonormalized vectors are passed from processor to

processor to effect the orthonormalization of the remaining vectors.

Algorithm 3.3.3 (Modified Gram-Schmidt Orthogonalization (m < p))

In parallel, do on all processors P;, 0 < j <m —1: 5
1. Fork=1,...,m

(a) if j > k, receive kth vector ¥, = (D1, ..., 0nk)T from processor P;_;
(b) if j <m —1, send ¥y to processor Pj1y

(c) compute ri ;41 = 0fv;pa

(d) compute Vi1 = V541 — ’lAJka,j+1

2. Normalize jth vector: ¥;41 = vip1 /| vi41 |2

3. If j <m—1, send ¥;4y to processor Pj4y

Steps l.a, 1.b, and 1.d can be pipelined, but when m < p each processor
can spend some idle waiting time during the computation. In general, P; is idle

for the time required to normalize ¢, and pass it through the j communication

23

links from FP,, and the total time for Algorithm 3.3.3 is the time needed by the
processor {P,_1) holding the last vector (vy,). As P,—; need forward neither
Um—1 NOT Dy, this total is the time needed for 9,,-1 to arrive at P,_; plus the
cost of orthogonalizing v,, with respect to 9,,—; and normalizing v,.

The time for 0,,_, to arrive at P,_; is determined by the relative costs of
computation and communication. When + n7 (the cost to send a vector from
one processor to its neighbor) is large in comparison to 2nw (the cost of orthogo-
nalizing one vector with respect to another or of normalizing one vector), P; can
be ready to use v;_1 as soon as it arrives. In this case, Py normalizes and sends
¥y in time 2nw + (8 + n7). For 2 < j < m — 1, P; forwards 9; to Pj41, orthog-
onalizes v;41 with respect to v;, and normalizes and forwards v;+; in total time
4nw + 2(8 + n1). P, orthogonalizes v,, with respect to ¥,,—y and normalizes

the result. An upper bound on the total time is then
TIE/})GS = (2m —1)2nw + (2m — 3)(B + n7).

Note that P; can be idle while awaiting 0,,...,0;.

When communication is much faster than computation, processor Pp,_5 stays
busy once it has begun computation. Because it requires oy,...,0mn_o for its
computation, P,_; requires more time than processors Pi,..., P,_3. Assuming
that time 8 + n7 is needed to receive a vector, P,_, takes time (m — 2)(8 + n7)
to receive 0y, time S + nt to forward it to P,_;, and time 2nw to use v;. For
1<j3<m-—1, P,_; takes time 2nw + 2(8 + n7) to receive and forward vector
v;. Upon receipt of vp—1, Pnr_1 orthogonalizes v,, with respect to that vector

and normalizes the result. An upper bound on the total time is
T]E;)GS = (m + 2)2nw + (3m — 6)(8 + n1).
An upper bound on the time for Algorithm 3.3.3 is thus

ma,x('r]S)GS, 2GSs).

Chapter 4

Methods for the Symmetric
Tridiagonal Eigenproblem

4.1 Introduction

Cuppen’s divide and conquer method, bisection with inverse iteration, and the
QL method are the most promising candidates for accurate and efficient parallel
solution of the symmetric tridiagonal eigenproblem. This chapter reviews existing
algorithms for these methods. The divide and conquer method is described in
Section 4.2, bisection with inverse iteration in Section 4.3, and the shifted QL
method in Section 4.4. The latter covers both Wilkinson’s shift and the perfect
shift (i.e., computed eigenvalues used as shifts. Because the perfect shift method
has not been studied extensively, Section 4.4 also includes a brief experimental

comparison of the two shift strategies.

4.2 The Divide and Conquer Method

Cuppen’s divide and conquer method is based on the fact that a symmetric
tridiagonal matrix T of order n = 2m can be divided into a pair of equal-sized

symmetric tridiagonal submatrices plus a rank one correction

_(To €m T g-1,T
r= (") +0s(pon) (e omed), (a.1)
where (3 is the mth off-diagonal element of T, e; is the ith unit vector of length

m, and Ty and T; are symmetric tridiagonal of order m. The sign of 8 is selected

24

25

to ensure that subdivision of the matrix does not result in cancellation [24]. The
original problem has now been split into two eigenproblems of half its order.

If the solutions to the two smaller eigensystems are Ty = XoDoXI and T} =

XD, XT, then

T=Q[D+80(, 2.) (& o) Q7

0=(%) o=(™).

lg = e?nXo is the last row of Xy, and flT = ele is the first row of X;. To solve

where

the eigenproblem for T', it is necessary to find the eigenvalues and eigenvectors

of the diagonal plus rank-one matrix
D+ pzz" = QTTQ,

where 2T = \/-'877 (T 07'fT), and p is selected so that || z ||, = 1.

The eigensystem of T' is computed via the rank-one updating technique de-
scribed in [31]. Namely, if all elements of 2 are non-zero and if the diagonal
elements of D are distinct, then the eigenvalues of D + pzzT are the roots

A1 > ... >), of the secular equation [31]
w(A) =1+ pzT(D — X))z (4.2)

If 3 > 0 and the diagonal elements of D are given by é6; > ... > 6,, the
eigenvalue is bracketed by adjacent diagonal elements of D (§;_; > A; > §;) and
61 + pzTz > A\ > 6. This property means that the roots of w()) may be found

efficiently using rational interpolation [11]. The secular equation is the sum

A) =1 :
where z = ({1,...,(n)T. To compute the root A; in exact arithmetic, the sum is

split into
w(A) =1+ ¢(A) +9(A),

26

with

ORI s SRR Do

i=1 1=y
Because A; € (§;-1,9;), all terms of ¢()) are positive, and all terms of 1()) are
negative. Given an initial guess vy € (§;,};), ¥()\) and ¢()) are approximated
by the the rational interpolants

P s
g—X

where 6 = ;4 and

P S
-) r+ -)
L= w0, v = d)
p Y 3 Y
(q . ’70)2 - ¢ (’70)’ (6 _ ,70)2 ¢ (’70)
The first iterate is the solution A = v, to
- = _ 4.3
s S R (4.3)

The iteration proceeds by replacing yo with 4; above and solving equation (4.3)
for A = 7,, then replacing vy; with 7, and solving for A = 43, and so on. The
sequence Yo, 71, - - - converges to A; quadratically and monotonically from one side
of the root, thus ensuring that A; can be extracted from the interval (6;,6,41)
without need for safeguarding [11]. When 8 < 0, a change of variables allows a
similar derivation.

Once A; has been found, its corresponding eigenvector is computed from

(D =)=

ST =)= 44

U = (u,...,u,) and A = diag(\y, ..., \,), then the eigendecomposition of the

original matrix may be expressed as the product

T = QUAUTQT.

27

The columns of QU are the eigenvectors of T, and the diagonal elements of A
are its eigenvalues.
The above description depends on having distinct elements along the diagonal

of D. In many instances, however, multiplicities do occur. For example, if

21 00
1 3 10
T= 01 3 1})°
0 0 1 2
then =1,and Ty =T} = (f ;) . Both Tp and T; have eigenvalues 1 and 3,
3 0 0O
0 3 0 0
so D= 00 1 0 , and 6; = 87, 63 = é4.
0 0 0 1
When the diagonal elements of D are not distinct, i.e., § = 41 = ... = 814k,

the eigenproblem of order n is reduced to one of order n — k by a process known
as deflation. The eigenvector basis is first rotated to zero out the elements
G415 - - -, G4k corresponding to the multiple elements 8,47 = -- - = &;44: a product

of plane rotations G is applied so that

GI(CIa Cl+17 e 7Cl+k)T = (Clla Cl,+17 T CI,-{-k)T = (Clla 0,--- 70)T°

For I+1 < j <1+k, the jth eigenvalue in exact arithmetic is the jth element of
D (A; = 6;) and its corresponding eigenvector may be chosen as the appropriate
unit vector (u; = e;) [11]. Therefore, multiple values along the diagonal of D
result in a significant reduction in the work required to compute the eigensystem
of D + pzzT. Zero elements of z corresponding to distinct elements of D lead to
similar savings and no rotations need be applied.

The divide and conquer technique thus proceeds by deflating the problem and
computing the remaining eigenpairs. Representing the product of all rotations

by the matrix G, the matrix T is expressed as

T = QGTUAUTGQT = XAXT, (4.5)

28

where UAUT is the eigendecomposition of G(D + pzzT)GT. The eigenvalues of
T are the diagonal elements of A, and the eigenvectors of T are the columns of
X =QG"U.

The above derivation assumes exact arithmetic. Deflation rules have also
been developed for finite precision in [24]: rotations are applied when diagonal
elements of D are close, and deflation occurs when elements of z are small. Let

8; — ;41 = €, then consider the 2 x 2 submatrix of D + pzzT

(& 6i+1) + (Cil) (Gir Git1)-

As in the finite precison case, a Givens rotation is devised to reduce (;;; to zero

(e D s+ () w0 7)

(3 £)+(@)a o

with v2 + 0% = 1, (/)2 = (? + (4, and |¢i| = [yo(6i41 — &)|. The problem is
deflated whenever the first matrix on the righthand side of equation (4.6) is diago-
nal, i.e., whenever |¢;| is no larger than an error tolerance which is roughly a unit
multiple of exr|| T' ||;. Numerical experiments have confirmed that the increase
in speed due to this deflation is substantial for serial and shared-memory parallel
implementations [24]. Note that no existing implementation of the root finder
has been proven to provide eigenvalues accurate enough to guarantee orthogonal

computed eigenvectors.

4.3 Bisection and Inverse Iteration

Let T be the nxn symmetric tridiagonal matrix with diagonal elements a;, . .., a,
and off-diagonal elements f,, ..., 8,. By Gerschgorin’s Theorem, the n eigenval-

ues of T lie in the union of the n disks

A —a| <16 +1Bisa], 1<i<n.

29

Individual eigenvalues are located in this interval by solving the characteristic
equation det(T — A) = 0. The sequence of leading principal minors of the matrix

T — X is given by the linear recurrence

p1 (/\) = o — A
pi(A) = (ai— A)pi-1 — BLipi-2(N), i =2,...,n. (4.7)

The number of eigenvalues of T less than) is equal to the number of sign changes
in the sequence {p;(A)} [30].
Because the linear recurrence in equation (4.7) is prone to overflow and un-

derflow, it is preferable to use

a(\) = pf’_"f?/)\), i=1,...,n. (4.8)

The number of eigenvalues less than A is equal to the number y()) of negative
terms in {g;(A)} [6], and the number of eigenvalues in the interval [A;, A;) is given
by ¥(Az2) — ¥(A1). (In [51], Kahan shows that this ”overflow-free” sequence can
sometimes overflow.)

Because {p;(A\)} and {g:()\)} are Sturm sequences [42, 76], the eigenvalues
of T' can be computed by repeated bisection of the initial Gerschgorin interval.
Empty intervals are discarded from the search area, and occupied intervals are
further bisected until single eigenvalues have been extracted to a given toler-
ance or until groups of eigenvalues have been confined to within a width smaller
than that tolerance. The groups represent clusters of computationally coincident
eigenvalues. Throughout this thesis, arithmetic is assumed to be monotonic so
that () is monotonic [51].

When a single eigenvalue has been isolated within an interval, computation
can be accelerated by an interpolation scheme [8] or a faster root-finder such as
Zeroin [27]. These enhancements are not considered in this thesis, but they could

be used to further improve the performance of parallel bisection.

30

Once the eigenvalues have been computed by bisection, the corresponding
eigenvectors are found with inverse iteration. Inverse iteration for computing u;
is the power method [42] applied with (T — :\j)‘l, where A; > ... >), are the
computed eigenvalues of T'. Using the initial vector zp, inverse iteration has the

simple form [33]
Forl=1,2,...

1. Solve (T — :\j)vl =211

2. Normalize z; = v;/|| v ||oo-

Ai=Aj
Aj—1,Aj, Aj41 are computationally distinct and |o;| is not too small, z; has its

If 20 = YL, o4u;, the first iterate has the form z; = Y%, —%i—u;. When
largest component in the u; direction, and inverse iteration converges in only a
few iterations. When all of the eigenvalues are well-separated and none of the co-
efficients o] is too small, inverse iteration generates orthogonal eigenvectors [76].
When the eigenvalues are close, the rate of convergence of inverse iteration de-
creases and the resultant eigenvectors, although independent, are not necessarily
orthogonal [76]. Thus, an additional orthogonalization step is needed.

When computationally coincident eigenvalues occur, standard inverse itera-
tion cannot be employed to find the eigenspace corresponding to the multiple
eigenvalue because it converges to a single eigenvector [76]. In the EISPACK
routine TINVIT [68], computationally coincident eigenvalues are perturbed to a
separation ¢ on the order of machine precision times a norm of T' as suggested in
[76], i.e., coincident computed eigenvalues M= :\i+1 = /A\,~+2 are replaced by /A\,;,
/A\;_H + €, and :\i+1 + 2¢ during the computation of eigenvectors.

The routine for finding all eigenvalues of a symmetric, tridiagonal matrix us-
ing bisection and the corresponding eigenvectors using inverse iteration is sum-
marized in Algorithm 4.3.1. These steps are the same as used in the EISPACK
routine TSTURM or in the combination of EISPACK’s BISECT or TRIDIB with
TINVIT [68].

31

Algorithm 4.3.1 (Bisection with Inverse Iteration)

1. Determine initial search area:

Find intervals containing all eigenvalues (e.g., from Gerschgorin disks.)

2. Compute etgenvalues:

Use bisection to determine all eigenvalues.

3. Compute eigenvectors:

Compute the eigenvectors by inverse iteration. Treat eigenvectors corre-
sponding to clustered eigenvalues by appropriately perturbing the eigenval-
ues in the cluster. After each iteration, use the modified Gram-Schmidt

procedure to orthogonalize eigenvectors corresponding to close eigenvalues.

4.4 The QL Method

Any square matrix T can be factored into the form
T=QL,

where @ is orthogonal and L is lower triangular. The shifted QL method is
defined by the following iteration for £ =0, 1,... [33]

T, = T (4.9)
Tp—pr = Qely (E>0)
Ter1 = LiQk + px
QF TiQx, (4.10)

where pi is the shift at iteration k. When Tp = T is symmetric and tridiagonal,
each iterate T} is also symmetric and tridiagonal [9]. As k approaches infinity,

the iterates T} converge to a diagonal matrix with the eigenvalues of T along its

32

diagonal. The columns of the accumulated product of orthogonal transformations
Qo . .. Q are the eigenvectors of 7.

In the erplicit QL method, the shift u; is explicitly subtracted from each
diagonal element of T;. When the elements of T} have widely varying orders of
magnitude, this subtraction can lead to loss of accuracy in the eigenvalues with
smallest magnitudes [25]. In that case, it is preferable to use the implicit QL
algorithm which is mathematically equivalent in exact arithmetic and is intended
to prevent loss of accuracy from cancellation. The shift is incorporated into the
rotations, and the subtraction Ty — g is never explicitly performed [25].

Convergence of the implicit and explicit QL algorithms depends on the shifts
used. The EISPACK [68] implementations (TQL2 and IMTQL2, respectively)
use the Wilkinson shift. When the QL method is applied to the iterate Tk, the

Wilkinson shift is defined as the eigenvalue of its leading 2 x 2 submatrix

ol
B0 ol

closest to agk). The QL method with the Wilkinson shift converges quadrati-
cally in exact arithmetic and, in practice, converges cubically in finite precision
arithmetic [9].

In general, the leading off-diagonal element converges most quickly to zero
although other off-diagonal elements also decrease in magnitude at each iteration
[9]. The first diagonal element agk) of T} is accepted as an eigenvalue of T if the
first off-diagonal element ﬂl(k) is negligible. In IMTQL2, the convergence criterion
is [68]

1811 < em(jaf?] + Jod?)).
The computed eigenvalue agk) is usually, but not always, the eigenvalue of T
closest to the shift uj [9].

After convergence of one eigenvalue, iteration continues with the order n — 1
trailing submatrix of Ty. If any other off-diagonal element ﬂ](k), 7 > 1, becomes
negligible, the matrix is split at that point and iteration continued with the

leading unreduced submatrix [68].

33

4.4.1 The Perfect-Shift QL Method

An alternative to the Wilkinson shift is to use accurately computed eigenvalues
A, ... , A, as shifts as suggested in [59, 62]. The resulting method is called the
ultimate-shift or perfect-shift QL method. The only version of the perfect-shift
method considered in this thesis is implemented by altering EISPACK’s IMT QL2
to use computed eigenvalues as shifts.

In exact arithmetic, if the shift y equals an eigenvalue);, the QL method
computes the eigenpair (A;, u;) in one iteration [59]. The experimental results in
Section 4.4.2 show that with finite precision arithmetic, more than one iteration is
generally needed and that the precise number of iterations is strongly dependent
on the ordering of the shifts. If eigenvalues are provided as shifts in increasing
order, for example, convergence of the method can be guaranteed only if no
splitting occurs. If the matrix splits with shift 0= :\j and iteration continues
with g4 = /A\j for the leading unreduced submatrix, then the perfect-shift QL
method converges only if :\j 1s an eigenvalue of that submatrix.

As matrix splittings cannot be predicted, it is necessary to devise a means
of ensuring that the correct shifts are used at each iteration. One option is to
use the QL method using Wilkinson’s shift to compute an eigenvalue and then
use perfect-shift QL immediately to compute its eigenvector [17]. This strategy
works in practice [17] although convergence to the correct eigenvector cannot
generally be guaranteed.

Another option is to compute all eigenvalues at once then to compute all
eigenvectors. An eigenvalue is used as a shift only if Sturm sequence evaluation
shows it to be an eigenvalue of the submatrix at hand. A shift is used until
the QL method converges to an eigenvalue or until the matrix splits. After the
matrix splits for the first time, Sturm sequence evaluations are used to determine
if a computed eigenvalue :\j is a valid shift. Assuming that :\1 > ... > :\n, the
number of negative terms v()) in the overflow-free Sturm sequence of equation

(4.8) is determined at A = %(:\]’_1 +4,). Ify(\) =0, }; is not an eigenvalue of

34

the submatrix. If ¥()) lies between 0 and the order of the submatrix, then };
may be used as a shift. If y()) equals the order of the submatrix, it is necessary
to compute a second Sturm sequence at A = %(/A\J + :\j+1)- If this value is also
equal to the order of the submatrix, then :\j is not an eigenvalue of the submatrix
and should not be used as the shift.

To prevent the use of the shift :\j once the eigenpair (:\j, %;) has been com-
puted, :\j is marked as used when the converged diagonal element &; is closer to
:\j than to any other computed eigenvalue.

The columns of the accumulated matrix of rotations are the eigenvectors of T
corresponding to the eigenvalues in the order that they appear along the diagonal
of the converged diagonal matrix. This order is not always the order in which

the eigenvalues are used as shifts.

4.4.2 An Experimental Comparison of Some QL Meth-
ods

This section offers an experimental comparison of four implementations of the
QL algorithm. TQL2 [68] is an implementation of the explicit QL algorithm
using Wilkinson’s shift. IMTQL2 [68] is the implicit QL algorithm using Wilkin-
son’s shift. The remaining are implementations of the perfect-shift method using
Sturm sequence evaluations. PSQL-B uses eigenvalues computed by BISECT in
increasing order; PSQL-Q uses eigenvalues from IMTQLI in the order they are
produced before sorting. Both perfect-shift codes are modifications of IMTQL?2.
All experiments were run on a single Sequent Symmetry S81 processor using the
Weitek 1167 floating-point accelerator. The test matrices introduced in Chapter
2 are used in the comparison.

Table 4.1 compares the total times (for eigenvalue and eigenvector computa-
tions) and accuracies for PSQL-B, PSQL-Q, TQL2, and IMTQL2 when n = 100.
For all methods and test problems, the residuals are less than 10714, and the
orthogonalities are less than 10713, The average number of iterations in TQL2

is measured by N = % i, n;, where n; is the submatrix order at iteration ¢,

35

and m is the total number of iterations. Because splitting or deflation generally
occurs after 1 to 4 iterations regardless of submatrix order, a small value of A/
reflects that most of the work is doné with small submatrices. A large value of
N corresponds to large submatrices and little splitting.

The differences between TQL2, IMTQLZ2, and PSQL-Q are explained by the
order index and by the amount of time spent in eigenvector calculation. For
matrix {1,2,1], TLQ2 and IMTQL2 take roughly equal time; PSQL-B is slower
than TQL2, and PSQL-Q is faster. For IMTQL2, N' = 112, and for TQL2,
N =114, as compared to N = 86 for PSQL-Q. Thus PSQL-Q is faster because
the matrix splits or deflates more than for IMTQL2 or TQL2. The smaller
subproblems lead to a faster runtime. As PSQL-B and PSQL-Q take roughly the
same time to compute the eigenvectors of this matrix (20.58 seconds and 20.88
seconds, respectively), the time difference for the perfect-shift QL schemes is due
to eigenvalue computation. For both PSQL-B and PSQL-Q and all test problems,
the cost for Sturm sequence evaluations during eigenvector computation is less
than 5% of the total runtime.

For the random matrix, PSQL-B and PSQL-Q both take about one third
again as long as TQL2 or IMTQL2. In this case, much more deflation takes
place in the eigenvector computation by the perfect-shift methods than by the
Wilkinson shift methods. The slowness of both perfect-shift methods can be
attributed to the extra cost of eigenvalue computation.

For the modified matrix [1,2,1], the perfect-shift QL method is no longer an
efficient alternative to the QL method with Wilkinson’s shift. In this case, PSQL-
Q and PSQL-B have order indices A" roughly three halves those of TQL2 and
IMTQL2 meaning that significantly less splitting occurs with the perfect-shift
QL method. As a result, PSQL-Q and PSQL-B take 1.4 and 1.8 times as long
as TQL2, respectively.

These data are representative of those obtained for all test matrices (orders
10-512) given in Chapter 2. At worst, PSQL-Q takes about twice the time of
TQL2 and, at best, ab(;ut 0.8 the time. These results do not prove that PSQL-Q

PSQL | PSQL | TQL2 |IMTQL2
with with
BISECT | IMTQL1
Matrix [1,2,1):
téﬁef‘f’grf%egiozd 1.2 0.9 1.0 1.0
N=1yn q 84 86 114 112
R = max; || Té; — \iti; ||2 | 2.26d-15 | 1.56d-15 | 2.40d-15 | 1.61d-15
O=[UT0 -1 || 4.99d-14 | 3.77d-14 | 3.72d-14 | 3.53d-14
Random matrix:
tgrrlr‘fef‘ggrf%e&ozd 1.3 1.3 1.0 1.0
N=L1ym n 104 105 123 124
R = max; || Ti; — Mty ||z | 3.03d-15 | 3.41d-15 | 7.41d-15 | 2.80d-15
O=||0T0 -1 ||s 2.44d-14 | 2.37d-14 | 8.21d-14 | 5.92d-14
Modified matrix [1,2,1]:
t%ﬁef‘f)grf%egiozd 1.8 1.4 1.0 1.0
N=21ym"n 144 143 97 97
R = max; || Té; — \idl; ||z | 2.78d-15 | 5.95d-14 | 3.33d-15 | 1.81d-15
O=|0T0 -1 || 1.14d-14 | 2.78d-14 | 3.50d-14 | 3.62d-14

36

Table 4.1: Relative times for PSQL, TQL2, and IMTQL2, average number of QL
iterations, and accuracy for matrix [1,2,1], random matrices, and the modified
[1,2,1] matrix of order 100. The order index A is the scaled sum of matrix orders
used at each iteration.

37

and PSQL-B cannot be faster than TQL2 but only indicate that for a variety of
matrices, there is no great advantage to the perfect shift.

Similar results have been observed by the developers of LAPACK for the
variant of the implicit perfect-shift QL method that computes each eigenpair
in turn [17]. In this version, once an eigenvalue has been computed using the
Wilkinson shift, that eigenvalue is immediately used as the shift to compute
its eigenvector. When the eigenpair converges, computation continues with the
remaining unreduced submatrix. In numerical tests, the time for computing the
eigendecomposition of T' by this implementation was generally within about 10%
(slower or faster) than IMTQL2 [17]. The accuracies were comparable. Thus,
for serial computation, no tested implementations of perfect-shift QL provide a

clear advantage over TQL2 or IMTQL2.

Chapter 5

Solving the Symmetric
Tridiagonal Eigenproblem on
the Hypercube

The preceding chapters identify Cuppen’s divide and conquer method, bisection
with inverse iteration, and the QL method as numerically accurate methods
for the symmetric tridiagonal eigenproblem suitable for parallel implementation.
The first two methods have been studied on shared-memory multiprocessors and
their simulators in [8, 24, 55] and on the grid-based, bit-sliced ICL DAP [4]. A
parallel implementation of the QL method for shared-memory multiprocessors
has been described in [65]. This chapter concerns solution of the symmetric
tridiagonal eigenproblem on a hypercube multiprocessor.

Implementations of Cuppen’s method and bisection with inverse iteration
for the hypercube are given in Sections 5.1 and 5.2, respectively. Experimental
results are also presented in those sections. A comparison of the parallel imple-
mentations comprises Section 5.3. The chapter concludes with a discussion of the
parallelism of the QL method in Section 5.4. Time complexity analysis shows
that the QL method theoretically is not competitive with bisection and inverse

iteration on the statically scheduled hypercube.

38

39

5.1 Cuppen’s Divide and Conquer Method

The recursive nature of Cuppen’s method suggests its suitability to implemen-
tation on a hypercube. Following the divide and conquer strategy described in

Chapter 4, the matrix T is written

TETzO

T 0
(80 T,) + Biobiobl, 0
= + 520520550-(5-1)
T 0
0 (82 T03> + 5115115{1

This subdivision or “tearing” process is repeated and rank-one updating proce-

dures applied recursively. At the sth subdivision, a submatrix Tj; is split into
T, = (T2 + BibibL, 0 < j <24 -1
. Ti-12i41 0% V> S .

The number of subdivisions needed to solve the problem is equal to the dimension
of the hypercube. At step j, 2¢77 j-cubes independently solve eigensystems of
order k27. Upon completion of step d, each processor contains k of the n = k2¢
eigenvalues of the original matrix T as well as the k corresponding eigenvectors
(of length n).

The assignment of subcubes to processors during this procedure is illustrated
for the case d = 3 in Table 5.1. The matrix T' = T3¢ of order n = k22 is recursively
divided into eight tridiagonal matrices Ty, Toy, - . - , Tor of order k, and matrix Tp;
is assigned to processor P;. In general, the entries T}; are those matrices whose
eigensystems are computed in step j by subcube 7. The brackets distinguish the

subcubes occupied by each eigensystem.

40

tep0: [T || T 2] T Il T Il T 11 211 o |
stepl: | Ty I . T]-[Tz | [Tis]
step2: | T] ¥ 1
step3: [; " Tp= T N]

Table 5.1: Assignment of submatrices to the processors of a 3-cube for the divide
and conquer method.

41

5.1.1 The Algorithm

More precisely, during step 0 processor P; (a 0-cube) computes the eigensys-
tem (Aoi, Xoi) of the matrix Ty;. Because each rank-one updating step requires
the eigensystems of two smaller matrices, processors must pair up in step 1 and
exchange information within 1-cubes to compute the eigensystems of the four
order-2k matrices Thg,...,T13. After exchanging information about the eigen-
systems of matrices Too and Tpy, processors Py and P, together compute the
eigensystem (Ajo, X10) of Tio. Processor Py holds the leading k eigenvalues and
eigenvectors of Tyq, while P; holds the trailing k. The remaining steps proceed in
a similar fashion until, at the end of step 3, each of the eight processors contains
k eigenvalues and k eigenvectors of length 8% of the original matrix T = T3o. For
0 <1 <7, P, holds eigenvectors indexed ik + 1,..., (¢ + 1)k.

At the start of Cuppen’s method, each node needs a sequence of diagonal
and off-diagonal elements of the matrix T. Finding the eigensystem of Ty in
equation (5.1) on a 2-cube, for instance, requires that the submatrix Ty as well
as the off-diagonal elements 319 and S0 be available in processor Py. Algorithm
5.1.1 details the steps in the determination of all eigenvalues and eigenvectors of
a matrix T of order n = k2¢ on a d-cube. Only steps 2.a and 2.d, involve data
communication.

To begin, the host processor recursively divides the matrix T' = Ty d times
and allocates submatrix Tp; and the d appropriate off-diagonal elements to pro-
cessor P;, 0 <¢ <24 — 1. Then for j steps, 1 < j < d, the cube splits into 2¢-7
j-cubes which independently compute the eigensystems (Aj;, X;;) of the matrices

Tji of order k27 using the eigensystems from step j — 1:
T. ..
T1 = J=1,2¢) Y 1 T
’ (Ti-1,2i41 + ﬁﬂbﬂbﬂ

Xj-1,2i) [(Aj—l 2) T} (Xj—1 2)T
’ ’ + Ay A% 4 .
(Xj-1,2i41 Aj12i41 PiiZ5i%] Xj-1,2i+1

Denote by S a subcube of dimension j and index ¢ which consists of pro-

cessors 27 through (: + 1)2/ — 1. For simplicity, denote these processors by

42

Po, Py,. .., Pyi_; and replace subscripts of the form (j — 1,2¢) with 0 and (j —
1,2¢ + 1) with 1. At step j, with the new notation, processors Py, Pi,. .., P21
compute the eigensystem (A, X) of

T=(T° Tl)+ﬂbbT=(X° Xl)[(A" Al)“’z"T] (XO Xl)T

from (Ao, Xo) and (A1, X1). At the beginning of step j, processor P, for 0 <1 <
29711 contains eigenvalues lk+1,. .., (I4+1)k of Ty and columns Ik + 1,..., (I + 1)k
of X, determined in step j — 1. These 2/~! processors form a subcube of dimen-
sion j — 1. Similarly, processor P, for 271 < [< 2/ — 1 contains eigenvalues
lk+1,...,(14+ 1)k of Ty and columns Ik +1,...,({ + 1)k of X;. These 27!

processors also form a subcube of dimension j — 1.

Algorithm 5.1.1 (Solution of Eigenproblem of Order n = k2¢ on a d-Cube.)
In parallel, do on all processors P;,, 0 <1 <p—1:

1. Compute the eigensystem (Agi, Xoi) of the matriz To; of order k using
TQL2. (The diagonal of Ag; contains the eigenvalues of To; in descend-

ing order, and the columns of Xo; are the corresponding eigenvectors.)
2. Forj,1<3<d:
(a) Join with 29 — 1 other processors to form a subcube of dimension j

called S.

(b) Using Algorithm 3.3.1, exchange the elements of Ag and Ay and the
elements of the last row of Xy and the first row of X;, so that each
processor in S contains Ay, Ay, the last row of Xy, and the first row
of Xi.

(¢c) Compute z and p from the last row of Xo, the first row of X1, and Bj;.

d) Determine a permutation matriz J by merging the sorted sequences
p Y

diag(Ao) and diag(Ay) so that the diagonal elements of

_ Ao)
D_J< WL

are sorted in descending order.

43

(e) Permute the elements of z accordingly: z < JTz.

(f) Apply the product of plane rotations G to zero out the elements in z

that correspond to close elements in D.
(9) Identify small elements of z, and deflate the problem.

() Compute elements ik+1,...,(i+ 1)k of A (eigenvalues of D + pz2T)
by finding the roots of

w(A) =1+ pzT (D = Nz, (5.2)
Compute the associated eigenvectors ujpiq,. .., u@s1)k from
D—)x)1
4y = — J)_l ‘. (5.3)
| (D —X)z ||
When (= €Lz is small, A\, = 6,, and u,, = ep,.
(i) Update the eigenvectors: (vigy1, ..., variyr) = GT (Uikgs - - - U(141)k)-

(j) By means of Algorithm 3.3.2, determine k columns of X via

X
($1k+1,---,$(1+1)k) = [(0 X1) J] (Ulk+1, .o -,U(1+1)k)~

The deflation rules for finite precision arithmetic developed in [24] described
in Chapter 4 were used in this implementation. A hypercube implementation in

which the accumulated vectors are stored by rows is described in [14].

5.1.2 Experimental Results

This section presents an experimental evaluation of deflation. Although deflation
occurs for most matrices [24], the savings in runtime are reduced in the hypercube
implementation. This loss is evident in the speedups S = % measured for two
matrices having different amounts of deflation.

Figure 5.1 and Table 5.2 show speedup on 32 processors as a function of matrix

order for matrices [1,2,1] and [1,4,1]. Because of deflation, TREEQL run on one

44

spoedup ,

h

0 1 ' 1 l L l - ! 1 1
0 200 400 600 800 1000 1200
matrix order

Figure 5.1: Cuppen’s method on a 5-cube: speedup S = —-L for [1,2,1] (squares)
and [1,u,1] (circles) versus matrix order. Points for rna,tnx ‘orders that are multi-
ples of 32 are connected with solid lines. Other points are connected with dotted
lines.

matrix | speedup | speedup
order | [1,2,1] [1,p,1]

32 9.5 9.9
64 9.3 16.6
128 11.3 22.8
256 12.7 26.3
512 14.4 29.2

Table 5.2: Cuppen’s method on a 5-cube: speedup S = %’; for matrices [1,2,1]
and [1,u,1] for several matrix orders.

45

matrix | fraction of time
order | in communication

32 .61
64 .36
128 .25
256 .16
512 .16

Table 5.3: Cuppen’s method on a 5-cube: fraction of total time spent in commu-
nication for matrix [1,2,1] of several orders.

processor is much faster for matrix [1,2,1] than for matrix [1,4,1]. TREEQL
run on more than one processor, however, takes approximately the same time for
both matrices. Thus, although near maximal speedup occurs in the case of little
deflation, speedup of only about one half is seen when deflation is prevalent.

The failure to take advantage of deflation is due largely to the static schedul-
ing of processors. The processors no longer solve identical problems at each step
when the cube dimension is larger than one. Nevertheless, the data exchange
requirements of Algorithm 5.1.1 synchronize the processors. A single processor
may encounter significant savings when deflation occurs, but the gain may not
be shared by the cube as a whole. Unless the effects of deflation are evenly dis-
tributed over the processors of the cube, any time gained during root-finding by
a single processor will be lost as it waits for the slower processors during the data
exchange routines. In addition, Algorithm 3.3.2 synchronizes processors so that
savings in updating the deflated matrix are lost. On a serial machine or on a
shared-memory machine with root-finding tasks dynamically scheduled, the sav-
ings from deflation can be substantial. In the latter case, the processors operate
asynchronously so there is little processor idle time while solving the deflated
problem or multiplying matrices to update vectors. On a hypercube, however,
a dynamic scheduler incurs additional overhead and is can involve potentially
expensive communication of eigenvectors.

The remaining loss of performance is due to communication. At some points

in the algorithm, it is more efficient to allow all processors to perform the same

46

1.0 T T T T T T T T y T

0.8 (— —

o
o
|

|

=}
£
B3
I
!

fraction communtcotion time
T
i

q
[0
<

0 0 1 l H l 1 l 1 ' 1 '
0 200 400 500 800 1000

matrix order

Figure 5.2: Cuppen’s method on a 5-cube: fraction of total time spent in com-
munication versus matrix order for matrix [1,2,1].

47

computation than it is to broadcast the results. (The application of rotations
in step 7.2.(d) of Algorithm 5.1.1 is an example). The communication required
for the hypercube similarly reduces the time savings due to deflation. Figure
5.2 and Table 5.3 show the fraction of time spent in communication on a 5-cube
for various orders of matrix [1,2,1]. Computation time is shown to be greater
than communication time for matrix orders as small as 64. For eight or more
eigenvectors per processor, the communication cost levels off at about 16% of the

total time.

5.2 Bisection with Inverse Iteration

5.2.1 The Algorithm

The hypercube implementation of bisection involves a straightforward partition-
ing of the computing tasks outlined in Algorithm 5.2.1. For a matrix of order
n = kp, each processor computes k eigenvalues and eigenvectors. Eigenvalues
are computed using the EISPACK routine TRIDIB. This implementation of bi-
section allows computation of any number of consecutive eigenvalues specified
by their indices [68]. Processor P; uses TRIDIB to compute eigenvalues ik + 1
through (2 + 1)k.

When all eigenvalues are well-separated, each eigenvector can be computed
with a small number of inverse iterations. An effective load balance is then
achieved by computing » of the vectors in each processor. No communication is
required, and an equal number of eigenvectors is stored in each processor. When
close eigenvalues occur, the rate of convergence of inverse iteration decreases, and
the corresponding eigenvectors must be orthogonalized.

The p = 2¢ hypercube processors are numbered in a ring according to a Gray
code ordering. Each processor examines the complete list of eigenvalues and per-
turbs those too close for inverse iteration. Processor 7 employs the EISPACK
routine TINVIT [68] to compute eigenvectors corresponding to (possibly per-
turbed) eigenvaluesindexed j +1,5+p+1,...,5+ kp+1 < n. The eigenvectors

48

corresponding to close eigenvalues are reorthogonalized using Algorithm 3.3.3 for
the Modified Gram-Schmidt procedure.
Bisection with inverse iteration on the hypercube is given as Algorithm 5.2.1.

To begin, each processor has all diagonal and off-diagonal elements of the matrix.

Algorithm 5.2.1 (Solution of Eigenproblem of Order n = kp on a p-

Processor Hypercube.)

In parallel, do on all processors P,, 0 <i<p—1:

1. Determine initial search area:
Compute all Gerschgorin disks to find the interval containing all n eigen-
values.

2. Compute eigenvalues:

Use bisection to determine the % eigenvalues tk + 1 through (i + 1)k.

3. Communicate eigenvalues:
FEzxchange computed eigenvalues with all other processors using the alternate
direction exchange of Algorithm 3.3.1.

4. Perturb eigenvalues:
Sort the n eigenvalues and perturb any spaced too closely for inverse itera-
tion.

5. Compute eigenvectors:

Compute the % etgenvectors corresponding to eigenvalues indexed 141, 1+p+
1,...,t+kp+1 < n. Employ Algorithm 3.3.3 to orthogonalize eigenvectors

corresponding to close eigenvalues.

49

spoodup

u I l 1 l L I H l 1 I 1 -
o] 200 400 600 800 1000 1200
motrix order

Figure 5.3: Bisection and inverse iteration on an iPSC/d5M: speedup for [1,2,1]
(circles) and random matrices (squares) versus matrix order.

5.2.2 Analytical and Experimental Results

As noted in the preceding sections, both bisection and inverse iteration are readily
implemented on local-memory multiprocessors. The efficiency of this approach
is reflected in the plots given in Figure 5.3. (The same data is also presented in
Table 5.4.) The speedup equals the time for EISPACK’s TRIDIB with TINVIT
run on a single processor divided by the greatest node time for the hypercube
bisection and inverse iteration procedures executed on a 32-node iPSC!. Different
random matrices were generated for each order, so no relation is expected between
random matrix data points.

The speedup for [1,2,1] increases smoothly for matrix orders proportional to

the number of processors. Efficiencies ranging from 77% to 89% are achieved for

!TRIDIB with TINVIT is the fastest method for finding all eigenvalues and eigenvectors
of matrix [1,2,1] and of the random test matrices of orders at least 32 on one processor of the
iPSC/1-d5M. For order 512 and matrix [1,2,1], TRIDIB and TINVIT take a total of 2340.0
seconds.

50

matrix | speedup speedup

order | [1,2,1] | random matrix
32 18.7 19.8
64 23.8 22.8
128 25.5 25.0
256 26.6 26.2
512 27.8 26.6

Table 5.4: Bisection and inverse iteration on a 5-cube: speedup & = % for

matrix {1,2,1] and a random matrix for several orders.

matrix orders above 100. Comparable speedups for random matrices of all orders
suggest that the results are not strongly dependent on properties particular to
matrix [1,2,1].

Efficiencies for other matrix orders fall to as much as 12% below the smooth
line of those for multiples of 32 because some processors are required to compute
one more eigenvalue and eigenvector than the others. The alternate direction
exchange of eigenvalues (in step 3 of Algorithm 5.2.1) synchronizes the processors.
Those processors with a smaller workload are idle until the processors with a
greater workload enter the exchange. The orthogonalization of eigenvectors can
be similarly delayed by the uneven distribution of inverse iteration tasks. Hence,
the time to complete the parallel computation is determined by the processor
with the largest assignment of work.

Despite the parallelism inherent in the bisection and inverse iteration proce-
dures, maximum speedup is not achieved because of non-arithmetic tasks and
non-parallel computation. The contribution of this overhead is comparable in
magnitude to the reduction in speedup. Figure 5.4 and Table 5.5 show the aver-
age fraction of the total time spent idle or in communication by one processor.
This time was determined by summing all time spent in arithmetic and sub-
tracting it from the total time. Again, the points for matrix [1,2,1] measured at
orders divisible by 32 define a smooth curve falling from 20% of the total time

at matrix order 32 to about 2% of the total for matrix orders larger than 320.

51

0.3 T T T T T T T T T T T

fraction of total time
o
)

[=]
h

0.0 L | 1 1 : 1 : 1 1 1 1
o 200 400 600 800 1000 1200
motrix order _

Figure 5.4: Bisection on an iPSC/d5M: communication overhead as a fraction of
the total time versus Matrix Order.

The increase in processor idle time when n is not divisible by 32 accounts for
the larger fractions for these orders. As expected, this increase is significant for
order 65 but barely discernible for order 127.

The eigenvalue computation begins with each processor independently com-
puting all Gerschgorin disks and then carrying out an initial bisection to deter-
mine the interval containing its share of the eigenvalues. While this process could
be implemented in parallel, its present contribution to the total time is small.
For a variety of matrices including matrix [1,2,1], the initial bisection time de-
creases smoothly for all matrix orders from a maximum of about 19% of the
total computation time at order 32 to about 4% at order 512 and 1% at order
1024. The grouping of close eigenvalues done in each processor occupies less than
5% of computation time for all matrix orders. The idle time in Algorithm 3.3.3
(MGS) represents an additional loss of efficiency amounting to less than 2% total

time for all orders of matrix {1,2,1]. Thus, at order 32, about 42% of the total

52

matrix | fraction of time fraction of time
order | in communication | in communication
[1,2,1] random matrix
32 .074 .202
64 .059 .091
128 .033 .056
256 .023 .022
512 .019 .019

Table 5.5: Bisection on an iPSC/d5M: communication overhead as a fraction of
the total time for several matrix orders.

time is spent in communication and non-parallel arithmetic. This slowing of the
parallel execution time completely accounts for the observed efficiency of 58%.
Similarly, the 13% of the total time spent in overhead for order 512 approximates
the observed lowering of the speedup curve.

Figure 5.5 shows the average fraction of the total time spent in computing,
exchanging, and grouping eigenvalues, in determining eigenvectors, and in or-
thogonalizing eigenvectors corresponding to closely spaced eigenvalues, for several
orders of matrix [1,2,1]. Finding and distributing the eigenvalues to all proces-
sors occupies more than 80% of the total time, while computing the eigenvectors

occupies most of the remaining time.

5.2.3 A Model Problem

While the exact time distribution among computing tasks is problem dependent,
analysis of a simple model problem sheds light on the expected arithmetic re-
quirements. Consider the symmetric, tridiagonal matrix T},.4e; of order n = kp
having eigenvalues 0,2,... ,ﬁﬁ%lE. The spacing of the eigenvalues is assumed
wide enough that additional orthogonalization of eigenvectors is not required.
Suppose that its n Gerschgorin disks overlap to form a continuous interval from
0 to a. In this way, the spectrum of T},04; approximates that of matrix [1,2,1]
which has n eigenvalues initially confined within an interval of length four for all

values of n.

53

During the initial bisection of Algorithm 5.2.1, each processor finds an interval
of length s containing k eigenvalues. This step takes takes [& log, p iterations
for a total of [+ 1 Sturm sequence evaluations. Computation of the k eigenvalues
takes E;?:l loggg + 1 Sturm sequence evaluations. In subsequent steps, each
processor extracts its k eigenvalues. If the time to complete one Sturm sequence

evaluation is 2nw, then the total time for the eigenvalue computatrion 18

k .
TR ~ [(l +1)+ Z (logg;%lS + 1)] 2nw
=1

R (logzp + 1+ klog, a_l;_ + k) 2nw.
n

The time to perform two inverse iterations for each of k eigenvectors within each
processor is 7 = 10nkw.

The attainable tolerance § is related to both the machine precision and the
eigenvalue of largest magnitude [68]. For the model problem in double precision,
§ ~ 10~ ¥a & 27%%a. Thus, for orders 32 through 1024 on a 5-cube, 72 decreases
from 12 to about 11 indicating that the eigenvalue computation dominates the
total arithmetic time. The eigenvalues of matrix {1,2,1] are more closely spaced
than those of Tyo4e; and so require fewer bisections to extract. Thus, the eigen-
value computation for [1,2,1] takes only about about four times as long as the
eigenvector computation. (As indicated by Figure 5.4, non-arithmetic operations
contribute minimally to the experimental result.)

Figure 5.5 shows that the ratio of eigenvalue to eigenvector computation times
decreases for matrix [1,2,1] as it does for Trmeger- For [1,2,1], 72 falls from 7.1 at
order 32 to 4.3 at order 1024.

The ratios of communication and arithmetic times for both 7T},,4¢; and matrix
[1,2,1] are small and decrease with matrix order. Under the assumption that
B ~ 10w and 7 =~ 1% the communication time is the time for an alternate

1257
direction exchange

¢ = 2[10g2pﬂ+(p—1)gf]

10n
~ 2101 ——) .
(8P+ 755) ¢

54

1.0 T T T T T T T T T T T

=)

f

@
I
l

o
S
I
I

fraction of total time

0.2 - I

1
E N
e
e
o+
o+
4
-~

1

0.0 EWM t —7 T +8 :
4] 200 400 600 800 1000 1200
matrix order

Figure 5.5: Bisection on a 5-cube: Fraction of total time spent in eigenvalue
computation (B), eigenvector computation (I), and orthogonalization (O) versus
matrix order.

55

For the model problem on a 5-cube, the ratio of communication time to compu-
tation time %g falls from .02 at order 32 to 3 x 10~° at 1024. The fraction of
communication time shown for [1,2,1] in Figure 5.4 is greater than the predicted
value for T\,,41 because the eigenvalue computation takes longer for Tioaei. As
shown in Figure 5.5, orthogonalization does not greatly alter the run time for

matrix [1,2,1].

5.2.4 Distribution of eigenvectors

The cyclic distribution of eigenvectors was chosen for its simplicity and systematic
arrangement of eigenvectors across processors. Unless a cluster is very large
(including more than p eigenvalues), no processor is required to handle more than
one vector from any given cluster. Furthermore, the burden of cluster handling
is generally spread across processors.

The main drawback of the cyclic distribution is that processors are synchro-
nized by the alternate direction exchange of eigenvalues. Thus, all processors
must wait until the last processor has computed its eigenvalues before beginning
eigenvector computation. Although this idle time did not significantly degrade
paralle]l efficiency for any of the matrices tested, severe load imbalance could
result if some processors were assigned only the fast computation of clusters of
eigenvalues while others were required to compute well-separated ones. The load
imbalance is exacerbated by an uneven distribution of orthogonalization tasks.
This section examines two alternative static load balancing schemes.

A weighted task scheduling scheme also involves synchronization of processors
and the resultant potential for load imbalance. In this approach, each compu-
tational task is assigned a weight or time value based on its expected comple-
tion time. The weighted tasks are apportioned among processors according to
a scheduling rule designed to give a fast completion time [60]. As noted earlier,
cluster size can be used as a weighting for approximate load balancing. The
eigenvectors associated with a cluster take more iterations and more orthogonal-
ization than the same number of eigenvectors corresponding to well-separated

eigenvalues.

56

The weighted task approach can suffer additional inefficiencies after the syn-
chronization. First, unlike a static allotment of eigenvectors (such as the block
distribution), creation and manipulation of the task queue may introduce some
computational overhead. Second, if assignment of tasks to processors is based
solely on time values, a processor given a cluster by the schedule can be required
to compute many fewer vectors than one assigned only eigenvectors correspond-
ing to single eigenvalues. While such assignment can give a balance of time
requirements, it gives a poor distribution of memory use. A weighting scheme
that takes clustering into account can prevent a storage imbalance, but it leaves
the eigenvectors arranged irregularly across processors. The regularity of the
cyclic (or the following block) distribution scheme is lost, and a rearrangement
of the eigenvectors may be required.

A final scheduling approach maintains the block distribution used for eigen-
value computation, thereby largely avoiding the synchronization of processors. A
processor can start most eigenvector computations without having to wait for all
other processors to finish their eigenvalue computations [26]. When eigenvalues
are close, however, adjacent processors may need to communicate eigenvalues for
the perturbation (step 4) in Algorithm 5.2.1, thereby causing processors to be
synchronized.

To see when the block strategy is advantageous, consider a model eigen-
problem of order n = 4k with & < 10 solved on a four-processor hypercube
multiprocessor. Suppose that processor Py must compute k& computationally co-
incident eigenvalues in an interval of length @ = 1 while processors P, ..., Ps
each compute k equally spaced eigenvalues in intervals of length a.

Py uses bisection to reduce the interval of width a to one of a width § =
107'% ~ 275°, This process requires [log, %] Sturm sequence evaluations for a

total time of
To RS (log —i—;—) 2nw.
At the same time, processors Pi,..., P; compute their eigenvalues. Finding its

largest eigenvalue first, each processor reduces its interval of width o to one

57

of width § in l; ~ log,$ bisections. After this computation, the portion of
the interval following the first eigenvalue computed is discarded, leaving a new

search interval of length o — %. The second eigenvalue is then extracted in

Iy ~ log, =% % bisections. In general, the jth eigenvalue is found in an interval
of width o — (] —1)% in I; ~ log, -:—(1—6——& bisections, a process requiring /; + 1

Sturm sequence evaluations. The total time for this operation is

k
E(log2 ﬁ + 1)2nw

i=1

Q

1

Q

k(log, %]I:—: + 1)2nw

Q

klog, 32nw

= kTo.

If the eigenvalues are sufficiently distant from the endpoints of the original search
intervals, no cluster is spread across processors, and no communication is neces-
sary before the eigenvalue perturbation step.

If £ is large enough that no reorthogonalization of eigenvectors is necessary
for equally-spaced eigenvalues, then the eigenvector computation by processors
P,..., P; takes time

7 & 10knw,

where each of the two inverse iterations takes time 5nw. For the clustered eigen-
values of Py, three iterations might be needed for each eigenvector, and reorthogo-
nalization is required for all k eigenvectors. The time for eigenvector computation
by processor Fy is then

74 ~ 15knw + 2k*nw.

Py finishes its computation of k clustered eigenvalues and their eigenvectors in
time

To+ T R [2log2 + 15k + 2k%]nw

é

58
Py, ..., P3 finish in time
, a
T+ 7 R [2klog23 + 10k]nw.

When ¢ ~ 250, P, is the fastest processor when 1 < k < 10. The time for
cyclic distribution is the time for the block distribution plus the time for the
alternate direction exchange and the modified Gram-Schmidt reorthogonalization
in Algorithm 5.2.1.

Suppose instead that the eigenvalues are distributed so that Py and P, each
have k/2 evenly spaced eigenvalues in an interval of width § and k/2 coincident
eigenvalues in the remaining half. The k coincident eigenvalues form a single
cluster split equally between the two processors. P, and Ps each have k evenly
spaced eigenvalues in intervals of width a.

P, and P; compute their eigenpairs in time 71 + 74. Po and P, both require
time

a ko k?
T, & [2log, ¥ + 15—2— + —2-]nw

to compute the eigenpairs of the cluster and time
T, = [klog =4 5k]nw
for the separated eigenpairs. In addition, communication time of
k
0N (8 + nT)

is needed to pass £ orthogonalized eigenvectors from Py to Pl during the modified

Gram-Schmidt procedure. On the iPSC/1-d5M, 8 = 10w and T & 15w, so that

1o~ k(5 + %)w.

The time for Py and P, to compute all eigenpairs without reorthogonalization
is

5 =~ [(2 + k) log, % + 12.5k]nw.

59

Method Order Time Residual Orthogonality
(seconds) IITX — AX|| I XTX - I
Cuppen’s 32 1.3 9.2e-16 7.0e-16
Bisection 0.6 9.4e-15 3.3e-14
Cuppen’s 100 10.5 1.9¢-15 1.9e-15
Bisection 4.5 3.3e-14 3.1e-14
Cuppen’s 512 611.8 8.4e-15 1.8e-14
Bisection 88.7 8.8e-13 6.0e-13

Table 5.6: Comparison of methods for matrix [1,2,1] on a 5-Cube.

For & ~ 2%, 7¢ 4+ 7} < 7 for all values of k. Therefore, Py can compute the
portion of the eigensystem corresponding to its clustered eigenvectors and trans-
mit the reorthogonalized eigenvectors to P, during the time that P; performs
all computing tasks besides reorthogonalization. The reorthogonalized eigenvec-
tors from P, will have arrived once P; is ready to begin reorthogonalization of
the remaining g eigenvectors. Because there is no idle waiting time, P, and P

complete their tasks in time slightly less than

!
To+ 7y + 7.

For & = 2%,

o+ T+ Tc <T+T|
whenever 1 < k < 10. Therefore, the total time for computation is that required
by processors P, and P3 and is again faster for the block than for the cyclic
computation. If a cluster is spread over more than two processors, a similar
sort of load balance can be achieved at the expense of added communication:
messages must travel in both directions. Block distribution may thus represent

an improvement to the cyclic distribution when clustered eigenvalues occur.

5.3 Comparison

Tables 5.6 and 5.7 show the total time, the residual, and the deviation from

orthogonality for several orders of matrix [1,2,1] and of random matrices for the

60

Method Order Time Residual Orthogonality
(seconds) ITX — AX|| IXTX — I
Cuppen’s 32 1.1 2.7e-15 2.7e-15
Bisection 0.5 2.9e-15 3.0e-14
Cuppen’s 100 10.4 7.4e-15 8.9e-15
Bisection 4.6 3.6e-14 6.5e-14
Cuppen’s 512 623.9 7.9e-15 1.3e-14
Bisection 88.3 5.3e-13 2.1e-13

Table 5.7: Comparison of methods for random matrices on a 5-Cube.

divide and conquer method and for bisection with inverse iteration. The divide
and conquer method gives more accurate results, consistently yielding smaller
residuals and orthogonalities than bisection with inverse iteration.

Bisection is the fastest method for finding all the eigenvalues and eigenvectors
at all orders. The speedups over the fastest sequential method are problem
dependent, but the figures suggest that maximal speedup cannot be expected for
either of the methods. Speedup of the divide and conquer method is especially

small when significant deflation occurs in some but not all subproblems.

5.4 The QL Method

The purpose of this section is to describe a hypercube implementation of the
QL method and to estimate its parallel speedup using complexity analysis. This
result is used to show that the QL method is theoretically slower than bisection
with inverse iteration on the Intel hypercube. The analysis assumes a symmetric
tridiagonal n x n matrix 7" and the shifted QL iteration for k = 0,1, ... described
in Chapter 4:

o = T
To—mI = QuLi (k>0)
Tepn = LiQr+ pil
= QTTiQy = IT} Tylly.

61

When perfect shifts are used, they can be computed efficiently in parallel by
bisection, for example. When the Wilkinson shift is used, computation of the
shift and application of the rotations cannot be overlapped. This suggests that
the critical issue in a hypercube implementation is efficient implementation of the
O(n®) application of rotations for eigenvector computation. One straightforward
scheme is to use one processor Py to carry out the eigenvalue computation by
the QL method without accumulating rotations and the remaining processors to
accumulate the rotations into the eigenvector matrix. After each iteration, P
broadcasts the rotations to the remaining processors.

The time complexity of iteration k is determined as follows. If the iterate

after deflation Tj_; is of order m, Py requires time [33]
10 = 14(m — 1)w
to compute and apply the 2 x 2 rotations Gy, ...,G, -1 to produce
T =GY | ...GTT. 4Gy ...Gpiy = QF_ Ti1Qs1,

where Ty_; is a diagonal block of Tj_; and Tx_; = II{_,Tollz_. If the rotations
G1,...,Gm_y are stored as a vector of length 2(m — 1), they can be transferred
from Py to all other processors by, for example, sending them around the ring of p
processors in time 7y = (p—1)8+2(m —1)7. Assume that the matrix of rotations
Ilx_, is stored by rows in the p — 1 remaining processors. Each processor can

then apply the rotations Gy,...,Gp_1 in turn to its -2 rows of II;_; in time

33 "

p—-1
The effect of this operation is to overwrite II;_; with
1
M, = II,_ (_) .
k k-1 Orr
On the iPSC/1-d5M (32 processors),

2(m) =4(m — 1)

o+ 71 ~ (320 + 15m)w, T2(m) =~ —T%Ew.

62

Let n = 512. In this case, % < 1 for all m > 2. Furthermore, the
computation of rotations for the deflated submatrix (of order m —1 or less) takes
less time than the application of rotations to the order m submatrix, and the QL
method can be pipelined. P, computes and broadcasts the first set of rotations.
Py then computes and broadcasts the second set of rotations while Py, ..., P,y
accumulate the first set. In general, Py can compute the rotations at iteration
k+1 while the remaining processors accumulate the ones from earlier iterations.

The total time for the parallel QL method is then the time for Py to start the

pipeline plus the time for accumulation of rotations or about

!
To+ 71 +Z7'2(ml)a (5.4)

i=1

where [is the total number of QL iterations, and m; is the order of the deflated
matrix at iteration /. This figure assumes that the time spent receiving messages
by procéssors Py,..., P,_ is negligible compared to the time to accumulate ro-
tations. Because the total time in equation (5.4) is dominated by the third term,
the approximate maximum speedup of the QL method on the hypercube is p—1.
The speedup can be improved by assigning accumulation tasks to P once it has
finished computing all rotations.

This pipeline only works consistently when n is very large. When n = 100,
for example, 7o+ 7 > 75(m) for all m < 100 and the computation of rotations for
iteration k is not overlapped by the application of rotations for iteration k£ — 1.
Even if n is large enough to allow pipelining, matrix splitting may lower the
speedup. That is, if the matrix splits into a small submatrix T; and a large
submatrix T3, Py’s computation of rotations for the first iteration with T, may
take longer than the application of rotations for T;. In this case, processors
Py,..., P, are idle while Py computes and broadcasts the rotations. The pipe
must be restarted for T5.

In the best case, however, the parallel QL. method has speedup near the

number of processors. A different implementation, thus, cannot improve the

63

speedup. The expected parallel time for the implicit shift QL method can then be
determined by comparing it with bisection and inverse iteration which has similar
maximal speedup. As noted earlier, BISECT with TINVIT is faster, though less
accurate, than TQL2 for all tested problems on a single hypercube processor.
The serial experiments presented in Chapter 6 confirm that the QL method is
also consistently and substantially slower than a higher accuracy implementation
of bisection and inverse iteration for a variety of problems. Because bisection
with inverse iteration and the QL method both have speedups near the number
of processors, the slowness of the latter on one processor indicates that it would
not be competitive on more than one processor. Bisection with inverse iteration

thus remains the fastest, most parallel method on the hypercube.

Chapter 6

Improving the Accuracy of
Inverse Iteration

Chapters 4 and 5 examine methods for accurate solution of the symmetric tridi-
agonal eigenproblem serially and on a statically-scheduled, distributed-memory
multiprocessor. Experimental results presented in those chapters confirm that
bisection with inverse iteration is usually the fastest and most efficient parallel
eigensolver as well as the fastest serial method for solving large order eigenprob-
lems. As implemented in EISPACK’s TINVIT [68], however, inverse iteration
leads to less accurate computed eigenvectors than do existing implementations
of the QL method [68] or the divide and conquer method [24]. The factors influ-
encing the accuracy of inverse iteration are examined in this chapter.

A basic implementation of inverse iteration for computing the eigenvectors

U = (&u,...,%,) of the unreduced symmetric tridiagonal matrix T = UAUT

from the computed eigenvalues)y, ..., \, may be outlined as follows.
Algorithm 6.0.1 (Basic Inverse Iteration)
Forgj=1,...,n:
1. Choose a starting vector y with || y ||z = 1.

2. Solve the tridiagonal system (T — j\j)z =y.

3. If the reorthogonalization criterion is satisfied, orthogonalize the it-
erate z with respect to those previously computed eigenvectors corre-

sponding to computed eigenvalues close to j\j.

64

65

4. If the stopping criterion is not satisfied, set y = z and go to Step 2.

5. Accept W as the computed eigenvector u;.

Assuming that Steps 2 and 3 are carried out using stable, accurate methods,
the overall accuracy of this algorithm is determined by the choice of starting
vector and the criteria for reorthogonalizing vectors or ending iteration. None
of these items, however, can be firmly established on theoretical grounds. They
are examined experimentally in Section 6.1, and heuristics are selected for each.
An implementation of inverse iteration (III) encompassing these improvements is

presented in Section 6.2. Section 6.3 compares the accuracy and serial runtimes

of TREEQL [24], TQL2 [68], and the combination of BISECT [68] with IIL

6.1 Experimental Results

This section focuses on improving the accuracy of inverse iteration. The goal is
to experimentally identify changes to the EISPACK routine TINVIT [68] that
would allow it to compute eigenvectors as accurately as those produced by the
QL routine TQL2 [68] or the divide and conquer routine TREEQL [24]. The
effects of the suggested changes on the efficiency of the method are addressed in
Section 6.2.

The implementation of TINVIT is described as Algorithm 6.1.1. For a matrix
T with diagonal elements ay,...,a, and off-diagonal elements f,,...,B,, The

norm used in the reorthogonalization criterion is defined by

ITllr= max (le;| +16l), b1 =0.

Note that || T || < || T || for an unreduced matrix 7. Numerical details of

TINVIT such as vector scaling to prevent overflow are not presented in Algorithm

6.1.1.

Algorithm 6.1.1 (Outline of TINVIT)
Forj=1,...,n

66

1. Initialize the set of eigenvalues close to /A\j: C’LUSTER(/A\J-) = 0.

Ifj >1 and [A; — X\j_q| <1073|| T ||, then

CLUSTER(};) CLUSTER(}\;—1) U {}j-1}

= Ao, N hi<i—1.
2. Initialize the iterate norm o =0,

3. Loop until the iterate norm o > 1.0. (Error exit after 5 iterations.)

8.a Factor (T — };) = LU.

3.b If this is the first iteration, solve triangular system Lz; = e, where e

is the vector of all ones.

~

Otherwise, solve tridiagonal system (T — A;)z; = y;.
3.b Reorthogonalize z; with respect to ;,...,0;-1.

3.c Set o= || 2 ||oo-
4. Repeat steps 3.a and 3.b once.

5. Accept ﬁ’”—z) as computed eigenvector ;.

The experiments presented in this section use a version of TINVIT modified
to use different starting vectors for each eigenvalue and to perform a specified
fixed number of iterations for all computed eigenvectors regardless of whether or
not all eigenvectors had converged. A maximum of five iterations was performed
in each experiment. All computations are performed in double precision on a
single Sequent processor using the Weitek 1167 floating-point accelerator. The
experimental results in Chapter 4 show that residuals R = max; || T4; — /A\,'ﬁ,- Il
less than 10~!* can generally be achieved for problem orders up to 525 using
TQL2 or TREEQL on this processor. Orthogonalities O = || UTU — I ||o can
have values less than 10~'* for orders near 32, less than 10712 for orders near

100, and less than 10~'2 for orders near 512.

67

Matrix [1,2,1] of orders 32, 100, and 512 and the glued Wilkinson matrix W
of orders 42, 105, and 525 are used to illustrate the accuracy effects. Matrix
[1,2,1] has computationally distinct eigenvalues for all orders tested, and W has
strongly clustered ones. Conclusions drawn from these two examples are con-
firmed using collections of random matrices with uniformly distributed diagonal
and off-diagonal elements between -1 and 1 and of matrices formed by applying
orthogonal transformations to some diagonal matrices with clustered diagonal el-
ements. The random matrices have well-separated eigenvalues. All test matrices

were introduced in Chapter 2.

6.1.1 Starting Vectors

Using the orthogonal eigenvectors of the matrix T as basis vectors, the starting
vector y may be written y = 3%, ;u;. Suppose A = A is a computationally
distinct eigenvalue, then a good starting vector for computing {x is one with
a significant component in the u; direction. A good starting vector thus has a
large value of [n,| relative to the other components. The largest component of the

iterate z = 3°7_; —-u; derived from this starting vector is then in the direction

J=1 A=)
of up. When A = Ay = ... =), a good starting vector requires large coeficients
in the set {|nk,...,mm|}. This good starting vector produces an iterate with
dominant components in the subspace spanned by uy, ..., un,. Without advance

knowledge of the eigenvectors, it is difficult to ensure the quality of a starting
vector. This section concerns heuristics for starting vectors that work well in
practice.

The difficulty of choosing starting vectors heuristically is demonstrated by a
few simple examples. For instance, the canonical basis vectors e; and e, should
not be used as starting vectors because they are often nearly orthogonal to eigen-
vectors of a symmetric tridiagonal matrix T [75]. The vector of all ones is also
a poor choice of starting vector as it is orthogonal to half of the eigenvectors of
any symmetric tridiagonal Toeplitz matrix [36].

Analytic determination of a good starting vector is complicated by roundoff

error in inverse iteration. As shown in [59, 75, 76, 77], one or two iterations in

68

finite precision arithmetic are generally sufficient to produce a significant iterate

component in the correct direction unless the starting vector is exactly orthogonal

to that direction. In this section, the influence of the starting vector is assessed

experimentally using the following test vectors:

1.

¢ = the “correct” eigenvector: For matrices [1,2,1] and W, accurate
eigenvectors computed by inverse iteration were used. The starting vec-
tors had residuals R < 107* for all orders and orthogonalities @ < 104
forn < 42, O < 10713 for n < 105, and @ < 10~ for n < 525. For
the other test matrices, each correct eigenvector u; is approximated by a

different random vector.

w + 7c: w is the computed eigenvector ,, and so is orthogonal to the
eigenvectors corresponding to A;,..., \,—;. A random starting vector is

used in the computation of ,.

Changing the value of 7 shows how the rate of convergence depends on the
size of the correct component. When random vectors are used instead of c,
the experiments show how the rate of convergence depends on the size of a
random perturbation away from the wrong (orthogonal) direction. These
results give only an upper bound on the size of the correct component

sufficient for rapid convergence.

. random vectors: These vectors have uniformly distributed pseudorandom

components between -1 and 1 generated using the linear congruential ran-
dom number generator available from NETLIB. For each tested matrix
order n, a single n X n random matrix is generated. Its columns are the

starting vectors.

the TINVIT starting vector: This starting vector y is formed implicitly
as suggested in [76] and shown in Algorithm 6.1.1 by factoring the shifted
matrix T'— A = LU and assuming that Le = y, where e is the vector of all

ones.

69

Matrices with Distinct Eigenvalues

The first experiments use matrices with computationally distinct eigenvalues.
Table 6.1 shows the number of inverse iterations required to compute the eigen-
vectors of the matrix [1,2,1] to the same accuracy achieved by TQL2 or TREEQL
for each of the starting vector choices. The code used for inverse iteration is TIN-
VIT modified to perform a fixed number of iterations. (The starting vectors and
reorthogonalization criterion of TINVIT are retained.) High accuracy is achieved
in one iteration only when accurately computed eigenvectors are used as starting
vectors. More than two iterations are needed only when the starting vector is
orthogonal to or nearly orthogonal to the computed eigenvector. All other tested
starting vectors require two iterations. Thus, for matrix [1,2,1] a starting vector
component 7; of magnitude O(10~®) is sufficient for rapid computation of the
eigenvector when the shift A = ;\j and n < 512. Performing more iterations
than the numbers listed in Table 6.1 does not significantly change the accuracy
of the result. Specifically, as for TQL2 and TREEQL the minimum attainable
orthogonality for all test problems seems strongly dependent on matrix order.

The results for matrix [1,2,1] were confirmed by experiments with fifty random
matrices of order 100 and five random matrices of order 500. These test matrices
have minimum eigenvalue spacing of about 10~%. Only a few pairs of eigenvectors
of [1,2,1] and of the random matrices are reorthogonalized. Table 6.2 shows
the minimum, average, and maximum numbers of iterations required to attain
full accuracy for each order. All of the tested starting vectors except those
orthogonal to or nearly orthogonal to the solution lead to convergence in two
iterations. A correct starting vector component of O(1078) is again sufficient for
rapid convergence.

In summary, when all eigenvalues are distinct, the performance of inverse it-
eration is not strongly dependent on the starting vector unless the eigenvector
is orthogonal to the starting vector. Random starting vectors and the TINVIT
starting vectors provide the requisite component of O(10~8) in the correct direc-

tion.

70

n =32 n = 100 n =512
number of number of number of
starting iterations for | iterations for | iterations for

vector R < 10714 R < 10714 R < 10714

O <1014 O < 10713 O < 10712
c 1 1 1
w 2 2 4
w4+ 10-16¢ 2 2 3
w4+ 10-8¢ 2 2 2
w+ 10"2¢ 2 2 2
same random 2 2 2
different random 2 2 2
TINVIT 2 2 2

Table 6.1: Number of inverse iterations per accurate eigenvector for matrix [1,2,1]
of order n. Starting vector c is the correct computed eigenvector, and w = 4,
The same number of iterations is performed for each eigenvector.

71

n = 100 n = 500
number of number of
starting vector iterations for iterations for
R <1071 R <107
0 <10-13 O < 10712

min avg max | min avg max

w 3 49) >3 >5 >5
w 4 10~1%¢ 2 2.0 2 2 2.2 3
w4 10~3¢ 2 2.0 2 2 2.0 2
w4 10"2%¢ 2 2.0 2 2 2.0 2

same random 2 2.0 2 2 2.0 2

different random | 2 2.0 2 2 2.0 2

TINVIT 2 20 2 2 20 2

Table 6.2: Minimum, average, and maximum numbers of inverse iterations to
compute accurate eigenvectors for fifty random matrices of order 100 and five
random matrices of order 500. The matrices have minimum eigenvalue spacing
107%. The starting vector c is a different random vector for each computed
eigenvector, and w = 4,. The same number of iterations was performed for each
eigenvector of a given matrix.

72

Matrices with Some Coincident Eigenvalues

When the computed eigenvalues 5\]- and 5\j+1 are equal, the eigenvector pro-
duced by the basic inverse iteration algorithm with A = 5‘]. is the same as that
found when A = 5\j+1. To overcome this difficulty, TINVIT employs a procedure
suggested in [76]: the computationally coincident pair 5\]-,3\]-+1 is replaced by
j\j, 5\]- + ¢, where ¢ is on the order of machine precision times a norm of 7. This
substitution is intended to produce linearly independent eigenvectors from the
two shifts without significantly increasing the residual error. Eigenvalue pertur-
bation is used in the experiments described in this section for all starting vectors
except the different random ones. When a different random vector is used for
each eigenvalue, perturbing the eigenvalues does not change the experimental
results.

Table 6.3 shows the results of the starting vector tests for the glued Wilkinson
matrix W} with n = 42, 105, and 525. For the smallest orders, the results are
nearly identical to those for matrix [1,2,1]. Thus, a component of O(1078) is
again sufficient for rapid convergence. When n = 525, a correct component
of O(1078) is still enough for fast convergence, but the number of iterations
needed for accurate solution increases markedly over the n = 42 requirement for
most of the other starting vectors. Specifically, with starting vectors orthogonal
to the solution, a single random vector used for all starting vectors, and the
TINVIT starting vectors, inverse iteration does not converge in the five iterations
performed in this experiment.

Table 6.4 shows the smallest singular value of the matrices of first and second
iterates before reorthogonalization. (The second iterates are computed from the
reorthogonalized first iterates.) Except when different random starting vectors
are used, the first iterates are linearly dependent, the modified Gram-Schmidt
procedure fails, and near-zero vectors result. A second iteration also fails to
produce linearly independent iterates for all but the random starting vectors.

When the same random starting vector is used for all eigenvectors, the second

73

set of iterates is linearly independent (the smallest computed singular value is
not ezactly zero) but of lesser quality than that produced from different random
vectors. (See Table 6.3.)

While the implicitly generated TINVIT starting vectors are difficult to ana-
lyze, the other choices indicate a possible correlation between linearly dependent
starting vectors and iterates: linearly dependent starting vectors lead to linearly
dependent iterates in the case of computationally coincident eigenvalues. When
a different random starting vector is used for each iterate, the results are linearly
independent. Table 6.5 shows that the matrices with the n random starting vec-
tors as columns have smallest singular value much larger than zero except when
n = 512. In that case, the 512th column is linearly dependent on the first 479. As
no test matrix has a cluster including both the 479th and the 512th eigenvalues,
linearly independent starting vectors are used for all clustered eigenvalues for all
tested matrix orders.

The same correlation between linear dependence of starting vectors and num-
ber of iterations can be seen to a lesser degree for other large ordered matrices
with clustered eigenvalues. Table 6.6 shows the average number of iterations
required to achieve high accuracy for fifty matrices of order 100 and for five ma-
trices of order 500. When n = 500, using starting vector w leads to an average
of over five iterations. The TINVIT starting vectors and a single random start-
ing vector perform better for these matrices than for Wi, which has more and
larger clusters than any of the other test matrices, but lead to as many as four
iterations. Different random starting vectors are still the best heuristic choice

with an average of 2.0 inverse iterations needed.

6.1.2 Stopping Criterion

In [75], Wilkinson shows that when the computed eigenvector z corresponding
to the computed eigenvalue A has a large norm before reorthogonalization, the
eigenpair (A, z) has a small residual. Specifically, if || z ||z > em/x+/n, with
em = machine epsilon, and y = %=, then || (T'— M)y ||2 £ 2x+/nerr, where &

ll=ll2 >

n =42 n = 105 n =525
starting number of number of number of
vector iterations for | iterations for | iterations for
R < 10714 R < 10714 R < 10714
O <1074 O <1013 O < 10712
c 1 1 1
w 3 3 >5
w + 10716¢ 3 3 >5
w+ 10"8¢ 2 2 2
w+10"2%¢ 2 2 2
same random 2 3 3
different random 2 2 2
TINVIT 2 3 >5

74

Table 6.3: Number of inverse iterations required for high accuracy when the given
starting vectors are used for the glued Wilkinson matrix W;. Starting vector c is
the correct computed eigenvector, and w = #,. The same number of iterations
was performed for all eigenvectors of a given test matrix.

75

smallest minimum smallest minimum
starting vector singular | iterate norm | singular | iterate norm
value of after value of after
first one iteration | second | two iterations
1terates with iterates with
min; || 2; [Joo min; || z; ||oo
w 0 0 0 1.24d — 13
same random vector 0 4.69d — 12 1018 7.04d — 04
different random vector 0.02 4.94d — 04 0.08 > 1.00
TINVIT 0 4.94d — 12 0 1.06d — 12

Table 6.4: Norm of the orthogonalized iterate after one and two iterations for the
glued Wilkinson matrix W of order 525 for four starting vector selections. The
smallest singular value of the matrix of first iterates before reorthogonalization

is also given. The starting vector is

w = U,.

matrix order

smallest singular value

42
100
105
512
925

.0362
.0341
.0198
1.d-229
.0128

Table 6.5: The smallest singular value of the matrix of random starting vectors.

n = 100 n = 500
number of number of
starting vector iterations for iterations for
R <1074 R <107
0<10713 O < 10712
min avg max | min avg max
w 2 3.2 4 4 >5 >95
w+ 10716¢ 2 3.1 4 2 2.2 3
w+1078¢ 2 2.2 3 2 2.0 2
w+ 107%¢ 2 2.1 3 2 2.0 2
same random 2 21 3 2 28 4
different random | 2 2.0 2 2 20 2
TINVIT 2 2.8 4 2 3.0 4

76

Table 6.6: Minimum, average, and maximum numbers of inverse iterations re-
quired for high accuracy when the given starting vectors are used for fifty random
matrices of order 100 and five random matrices of order 500. All matrices have
some clustered eigenvalues. The starting vector c is a different random vector for
each computed eigenvector, and w = 4.

77

is a constant of order unity depending on the type of arithmetic used. When
A is a good approximation to a distinct eigenvalue A; of T, a large norm || z ||;
signals a large component in the u; direction. When A approximates a cluster
of eigenvalues Ai,..., A\, a large norm means that the iterate approximates a
linear combination of the eigenvectors uy, ..., u,. In the latter case, the iterates
corresponding to the clustered eigenvalues are reorthogonalized to produce an
orthogonal basis for the subspace spanned by ug,...,u,. The meaning of a
small norm for a reorthogonalized iterate was discussed in Section 6.1.1. The
inequality || z []2 > || # || shows that the less expensive infinity norm can be
used as stopping criterion in the implementation of inverse iteration: when Ay is
distinct from A\p_y and Mgy, || 2 lo > €ar/5+/7 signals a small residual.

As noted in [75], the norm is probably the vector property most closely cor-
related with iterate quality. The difficulty lies in quantifying that correlation.
For example, in TINVIT, iteration stops when the iterate (scaled by a factor
of O(ear) to prevent overflow) has infinity norm larger than one. If reorthogo-
nalization is needed, the norm is calculated after the iterate is reorthogonalized
(that is, after step 3.b in Algorithm 6.1.1 and before the iterate is normalized).
The experimental results given in this section show that TINVIT’s choice causes
inverse iteration to stop before highest accuracy is attained. An alternative is
suggested that consistently improves the accuracy of inverse iteration.

Table 6.7 shows how the accuracy of the computed eigendecomposition de-
pends on the norm of the computed iterates (after reorthogonalization, if per-
formed, and before normalization) for matrices [1,2,1] and W;. The TINVIT
stopping criterion works correctly for both orders of the glued Wilkinson matrix
W: unit iterate norm and full accuracy are both attained on the second itera-
tion. It fails, however, on the matrix [1,2,1] where all iterates have greater than
unit norm but less than full accuracy on the first iteration. These results suggest
that at least two iterations should always be performed regardless of iterate norm
when different random starting vectors are used.

Similar tests for 50 matrices of order 100 and five matrices of order 500 with

some clustered eigenvalues indicate that a somewhat stronger criterion is, in fact,

78

in order. Tables 6.8 and 6.9 show maximum residuals R and orthogonalities O
taken over the tested matrices. The first values of R and O were measured after
the first iteration where all iterates have norm greater than one; the second values
of R and O were measured after the second iteration where all iterates have norm
greater than one. For all tested matrices, these were consecutive iterations. For
some of the matrices, they were the first and second iterations performed. As full
accuracy is not achieved, on average, until two iterations with unit norms have
been completed, these data suggest that at least that many iterations should be
performed. There does not appear to be any simple correlation between cluster

size and iterate norm.

6.1.3 Reorthogonalization

The reorthogonalization step is necessary whenever close eigenvalues occur. It
remains only to determine when eigenvalues should be considered close. Suppose
that the matrix T has diagonal elements ay,...,a, and off-diagonal elements
B2y -+, Bn. TINVIT uses a reorthogonalization criterion of 1073|| T" ||5. That is,
if a computed eigenvalue }; is separated by a distance less than 1073|| T || g from
the next largest eigenvalue :\j_l, the computed eigenvector #; is reorthogonalized
against 4;_; and all eigenvectors against which @;_, was orthogonalized.

Table 6.10 shows the residuals R and orthogonalities O for the matrix [1,2,1]
of order 100 as the reorthogonalization criterion is varied from 0 to 10| T ||,
after one and two inverse iterations. A different random starting vector is used
for each eigenvector computation. Reorthogonalization takes place for the same
eigenvectors at both iterations. This table shows that additional orthogonal-
ization is not a substitute for extra iterations because small residuals are not
attained until the second iteration.

Table 6.11 shows the same data after two iterations for W when n = 105
and n = 525. In addition, the fraction of inverse iteration time spent in the
modified Gram-Schmidt procedure is shown. For these matrices, increasing the

grouping tolerance beyond that of TINVIT does not improve the accuracy of the

matrix | iteration | minimum residual | orthogonality
iterate norm R @
ming || 2; o
[1,2,1] 1 > 1.00 3.18d — 14| 3.05d — 12
n =100
2 > 1.00 1.584 — 16 | 3.20d — 14
Wg+ 1 0.14 1.47d — 13 1.68d — 11
n =105
2 > 1.00 8.70d — 16 | 3.85d — 15
[1,2,1] 1 > 1.00 1.60d — 11 4.62d — 09
n = 512
2 > 1.00 3.93d — 16 1.57d — 13
Wg+ 1 4.94d - 04 | 3.42d —-09 | 6.02d — 07
n = 525
2 > 1.00 5.99d — 15 1.984 — 14

79

Table 6.7: Iterate norm, residual, and orthogonality for matrices [1,2,1] and W
after one and two iterations. A different random starting vector is used for each
eigenvector computation.

80

maximum | maximum
iteration residual | orthogonality

R @

first iteration 2.47d — 12 5.14d — 11
with || z; [|eo > 1
for y =1,...,100.

second iteration | 3.35d — 16 1.10d — 14
with || z; [|eo > 1
for y =1,...,100.

Table 6.8: Maximum residual and orthogonality for 50 test matrices of order 100
with clustered eigenvalues. Results are given for the first iteration at which all
iterate norms are greater than one and for the subsequent iteration. A different
random starting vector is used for each eigenvector computation.

maximum | maximum
iteration residual | orthogonality

R @

first iteration 1.19d — 12 7.01d — 11
with || z; [|eo > 1
for y =1,...,500.

second iteration | 8.70d — 16 7.10d — 14
with || z; [|eo > 1
for y =1,...,500.

Table 6.9: Maximum residual and orthogonality for 5 test matrices of order 500
with clustered eigenvalues. Results are given for the first iteration at which all
iterate norms are greater than one and for the subsequent iteration. A different
random starting vector is used for each eigenvector computation.

81

number one iteration two iterations
criterion of

vectors R @ R @)

orthog-

onalized

109 Tl | 99 |6.09d-13 | 6.41d-15 | 2.12d-16 | 5.75d-15
(all)

10°Y Tzl 97 |1.87d-12 7.40d-15 | 2.13d-16 | 6.12d-15
102 T ||| 33 |7.69d-14 | 4.97d-12 | 1.67d-16 | 1.82d-15
1073 T |5 2 3.18d-13 | 3.05d-12 | 1.58d-16 | 3.20d-14
10-%)| T || 1 1.10d-13 | 2.75d-11 | 1.90d-16 | 4.28d-14

0 0 2.28d-13 | 2.68d-11 | 1.61d-16 | 4.68d-14

Table 6.10: Variation of accuracy and reorthogonalization time with reorthogo-
nalization criterion for matrix [1,2,1] when n = 100.

82

result. It does, however, substantially increase the time required for the solution.
When the TINVIT criterion is used, most of the eigenvectors are reorthogonalized
(80% when n = 105 and 96% when n = 525), but reorthogonalization occurs in
many small clusters. Thus, when all eigenvectors are reorthogonalized as one
group, the cost rises markedly although the accuracy is little changed. The same
sort of increase is seen, on the average for the fifty matrices of order 100 with
clustered eigenvalues. Table 6.12 shows that the TINVIT criterion provides the
desired accuracy. Reorthogonalizing all vectors improves the accuracy slightly
with a large increase in computing time. Performing more iterations does not
significantly change the accuracy of the results in Tables 6.10-6.12.

These experiments show that the best possible orthogonality can be guar-
anteed in general only by the time-consuming process of reorthogonalizing all
eigenvectors. The desired high accuracy, however, can usually be achieved us-
ing the TINVIT reorthogonalization criterion along with random starting vectors

and the improved stopping criterion derived in Section 6.1.3.

6.2 A New Implementation of Inverse Itera-
tion

The improvements to inverse iteration developed in this chapter are incorporated
into the following algorithm. Note that the heuristics chosen are based on exper-
iments with matrix orders up to about 500 and may not apply to much larger

matrix orders.

Algorithm 6.2.1 (Improved Inverse Iteration Algorithm (III))
Forj=1,...,n
1. Initialize the set of eigenvalues close to \;: CLUSTER(};) = 0.
If j > 1 and |\ — \joy| < 1073|| T ||, then
CLUSTER(\;) = CLUSTER(};_;) J {Aj_1}
= (M. y N}, i<i-1

order criterion R (@ number | time | fraction
of for MGS
vectors | MGS time
n=105| 10°|| T ||, | 1.97d-16 | 4.57d-15| 104 | 30.6 67
(all)
107! T ||, | 1.60d-16 | 3.14d-15 | 88 27.7 | .10
1073|| T ||, | 8.70d-16 | 3.85d-15 | 84 1.4 07
1075)| T ||, | 2.09d-16 | 2.52d-13 | 78 1.4 05
0 1.85d-16 2.05 0 0 0
n =525 IOIOHTHR 7.58d-15 | 1.53d-14 524 5807.1 .98
(all)
1071)| T ||, | 4.69d-15 | 3.51d-14 | 523 | 5287.6| .73
1073 T ||, | 5.99d-15 | 1.98d-14 | 504 | 338.1 | .15
107°|| T || | 3.46d-15 | 6.24d-13 | 498 | 253.1 | .12
0 2.044-16 6.38 0 0 0

83

Table 6.11: Variation of accuracy and time after two inverse iterations with
reorthogonalization criterion for matrix W;F when n = 100 and n = 525. The last
column shows the fraction of inverse iteration time spent in reorthogonalization.

84

reorthogonalization | average | average average fraction
criterion R o fraction of MGS
eigenvectors | time

10| T || 4.98d-16 | 7.42d-15 49.4 0.70

1073 T || 4.184-16 | 4.13d-15 5.7 0.02

Table 6.12: Average variation of accuracy and reorthogonalization time with
reorthogonalization criterion for fifty matrices of order 100 with some clustered
eigenvalues after two iterations.

2. Generate a random vector x; with uniformly distributed components in the

interval [-1,1], and form the starting vector y; = r:fll_z
3. Seta =0.
4. Loop until the iterate norm o > 1.0. (Error exit after 5 iterations.)

4.a Solve tridiagonal system (T — :\j)zj = y;.
4.b Reorthogonalize z; with respect to U;,...,U;_1.

4.¢ Set 0= 2 |-
5. Repeat steps 3.a and 3.b once.

6. Accept TZ?IILz as computed eigenvector u;.

In Algorithm III, the number of iterations performed is determined indepen-
dently for each eigenvector. Because convergence cannot be guaranteed, iteration
is discontinued and an error signalled if five iterations are performed. In the im-
plementation tested in this section, the iterates are scaled to prevent overflow as
in TINVIT. The storage requirements are the same for this implementation as
for TINVIT, and parallel implementation proceeds as described for TINVIT in
Chapter 4.

85

TSTURM BISECT / III
n time to time to time to
compute | compute R O compute R @
eigen- eigen- eigen-
values vectors vectors
(seconds) | (seconds) (seconds)
32 1.1 0.3 4.15d-15 | 4.00d-13 0.4 1.30d-16 | 4.27d-15
100 11.3 2.0 2.46d-14 | 8.48d-12 3.2 1.56d-16 | 3.15d-14
512 276.7 72.2 1.26d-13 | 4.48d-11 125.8 4.11d-16 | 1.78d-13

Table 6.13: Times, residuals, and orthogonalities for eigensystems computed by
TSTURM and by BISECT with III for matrix [1,2,1].

TSTURM BISECT / III
n time to time to time to
compute | compute R @ compute R o
eigen- eigen- eigen-
values vectors vectors
(seconds) | (seconds) (seconds)
42 1.6 0.4 4.25d-15 | 2.3d-13 0.6 1.61d-16 | 2.61d-15
105 4.72 3.0 5.11d-14 | 2.36d-12 4.8 6.98d-16 | 4.43d-15
525 23.3 171.1 1.14d-13 | 4.08d-11 333.4 5.55d-15 | 1.69d-14

Table 6.14: Times, residuals, and orthogonalities for eigensystems computed by

TSTURM and by BISECT with III for matrix Wi.

86

Tables 6.13 and 6.14 compare the costs for eigenvector computation by the
improved algorithm and TSTURM. Because additional iterations are performed
in the new implementation, its cost is substantially higher than that of the eigen-
vector computation in TSTURM. For matrix [1,2,1}, where eigenvector compu-
tation is cheap compared to eigenvalue computation, however, the longer time
represents only a 13% increase in total computation time when n = 512.

In Algorithm III, the time for generation of random starting vectors is small
compared to the total computation time. A total of 10® random vector elements
(2 1000 x 1000 matrix) can be generated in 14.00 seconds on a Sequent Symmetry
S81 processor with an 1167 floating point accelerator. The time to generate ran-
dom starting vectors comprises less than 4% of the total eigenvector computation

time for matrix [1,2,1] of orders up to 512 and for W for orders up to 525.

6.3 A Serial Comparison of TREEQL, TQL2,
and B/III

This section offers an experimental comparison of Cuppen’s divide and conquer
method, the QL method, and bisection with inverse iteration. The respective
implementations are TREEQL [24], TQL2 [68], and BISECT with III (B/III).
All experiments were performed in double precision on a single Sequent processor
using the Weitek 1167 floating-point accelerator. The results show that all three
codes produce highly accurate eigendecompositions. Data are presented for test
matrices [1,2,1], W}, and [1,u,1] as they illustrate the range of results for all test
matrices from Chapter 2.

Table 6.16 shows the maximum residual R = max; || Tu; — Aju; || and or-
thogonality @ = || UTU — I || of eigenvalues and eigenvectors computed by
B/III, TREEQL, and TQL2 for the test problems. All methods solve the prob-
lems to roughly the same high degree of accuracy.

The relative speeds of the methoas for a given problem are determined by

the degree of deflation in TREEQL, the amount of matrix splitting in TQL2,

87

TREEQL: TQL2: B/III:
matrix | order
n roots fraction of
computed | N'= 23" n; | BISECT time
(scaled)
[1,2,1] | 32 22 39 76
100 2.4 114 .75
512 2.2 502 .66
WF 12 2.4 15 76
105 1.3 111 .60
512 0.3 504 .08
M1 | 32 3.0 40 78
100 3.0 112 .76
512 3.0 455 .74

Table 6.15: The number of roots computed by TREEQL divided by the matrix
order, the order index for TQL2, and the fraction of time spent in BISECT by
B/III for matrices [1,2,1], W, and [1,u,1].

and the clustering of eigenvalues. The first of these quantities is measured by
the total number of roots computed by TREEQL divided by the matrix order
n. For the problems solved, the TREEQL computational tree has four levels,
and n eigenpairs are determined at each level. The problems at the lowest level
are solved by TQL2 and are not included in the count. Thus, when no deflation
occurs, the scaled number of roots is 3n/n = 3.

The amount of matrix splitting in TQL2 is measured by N' = 1357 n,
where n; is the submatrix order at iteration z, and m is the total number of
iterations. Table 6.15 suggests that eigenvalue clustering (with cluster size much
less than matrix order) reduces both the total runtime of B/III and the ratio of
BISECT to III time. These results are confirmed by the data in Table 6.17 which
shows the total number of clustered eigenvalues, the maximum cluster size, the
total time for B/III, and the fractions of that total contributed by BISECT and
by reorthogonalization by the modified Gram-Schmidt process. An eigenvalue is
counted as part of a cluster if A; — X;41 < 1074]| T ||z, so a single cluster of two

eigenvalues is listed as one clustered eigenvalue.

matrix method | maximum | maximum
order residual | orthogonality
R @
n = 32 or 42
TREEQL | 3.26d-15 | 5.59d-15
TQL2 | 1.52d-15 1.30d-14
B/III 1.80d-16 6.20d-15
n = 100 or 105
TREEQL | 6.07d-14 2.75d-15
TQL2 | 2.39d-15 1.06d-14
B/III 3.67d-15 8.52d-14
n = 512 or 525
TREEQL | 3.96d-15 1.67d-13
TQL2 1.66d-14 2.50d-13
B/HI 6.05d-15 7.92d-13

88

Table 6.16: Maximum residual and orthogonalities of eigendecompositions com-
puted by B/III, TREEQL, and TQL2 for the three test matrices.

89

.74

matrix order | number of | maximum | time for time ratios
clustered cluster B/III %I g gjg Thgg j 7
eigenvalues size (seconds)
1,2 1] 32 0 0 1.48 76 0
100 0 0 13.38 .75 0
200 0 0 52.19 .75 0
512 0 0 372.70 .66 A1
w+ 33 5 2 1.30 .69 .04
101 32 2 9.41 .66 .03
201 73 2 35.24 .63 .03
513 82 2 215.61 .62 .03
random 32 0 0 1.46 7 0
100 0 0 13.27 77 0
200 0 0 51.68 .76 0
512 0 0 329.83 .75 .01
WF 12 z 2 1.43 76 0
105 53 5 9.83 .60 .09
210 158 10 34.09 .32 .32
525 473 25 334.68 .08 .68
modified [1,2,1] | 32 1 2 1.43 75 0
100 3 2 12.96 .75 0
200 1 2 51.87 .75 .01
512 1 2 369.20 .67 11
1,4, 1] 32 0 0 1.50 78 0
100 0 0 13.55 .78 0
200 0 0 52.82 .76 0
512 0 0 340.02 .01

Table 6.17: Number of singular values with spacing less than 10714|| T' ||,, maxi-
“mum cluster size, and fractions of B/III times spent in BISECT and MGS.

90

As the number of clustered eigenvalues grows, the fraction of time spent in
BISECT shrinks while the fraction spent in reorthogonalization grows. This
happens because clustered eigenvalues are computed quickly by bisection but
their eigenvectors must be reorthogonalized. For small clusters (W), the total
is lowered because the cost for reorthogonalization does not outweigh the savings
in bisection. For large clusters (W), the significant cost of reorthogonalization
brings the total cost to that of nonclustered problems.

Table 6.15 compares the other measures for the test matrices. The root counts
for TREEQL show that, for large orders, matrix [1,2,1] undergoes a moderate
amount of deflation, matrix [1,u,1] very little deflation, and W a great deal of
deflation. The values of N reveal that all matrices of the same order undergo
about the same amount of matrix splitting with TQL2. These properties are
reflected in the runtimes of the three methods.

The top graphs in Figures 6.1-6.3 show the time required to solve the test
eigenproblems of orders up to 60 by B/III, TREEQL, and TQL2. The same data
are given in Table 6.18. At orders less than 20, B/III is slowest and TQL2 fastest
for matrices [1,2,1] and [1,4,1]. For moderate ([1,2,1]) to heavy (W) deflation,
TREEQL is the fastest method for orders 20 to 60. Because of its extremely
high degree of deflation, TREEQL is always the fastest method for W. For
matrices of about order 50 and higher, TQL2 becomes the slowest technique.
(TREEQL switches from divide and conquer to TQL2 to solve subproblems of
order 50 or less.) The bottom graphs in Figures 6.1-6.3 show the time for the
three methods for matrix orders up to 512. For orders larger than about 40, the
speeds are largely dependent on how much deflation occurs during the solution
of the eigenproblem by TREEQL. For orders 512 and 525, TREEQL is about 2
to 40 times faster than TQL2. For these orders, B/III is consistently about eight
times faster than TQL2.

Because the degree of deflation and the clustering of eigenvalues are not read-
ily determined without solution of the problem, it is not generally possible to

determine in advance the fastest serial method for the symmetric tridiagonal

91

eigenproblem. However, for all tested matrices, the combination B/III is much
faster than TQL2 and equally accurate. For large orders and zero to medium de-

flation, B/III is fastest, while for large amounts of deflation, TREEQL is fastest.

92

101 [~ T T [I]
: ‘Q\,Z:
- | ,«%/'
/
T qu\:\)/@h@ e
§) ¥ By ///////
8 o™ ® =
, % J
E Q™ .
-g" B - %\\\\ -
o @ —
. I // &
10'1 ! / l i l |
0 20 40 680
matr!x order
matrix [1,2,1]
10° = T T I T <02 I p——
N <O]
] /‘REEQL B/‘\‘ -
10? k- 2 B/l -
- \‘ —
= / < ’\‘3‘16\'?\/ E
@ - / J
o - 3
§ - Vs -
5 10" SR -
I // :
> -]
10° — —
lo—l I l i l |] ! l 1 l
0 100 200 300 400 500
matrix order
matrix [1,2,11

Figure 6.1: Times for TQL2, TREEQL, and B/III versus matrix order for matrix
[1,2,1].

93

10‘ T T T

_ m
_ . //
0 ~ 'S =
© S5 —]
c 1REEGL
8 \’/
\g ’ 3 | ////////@gﬂ Qﬁg} E
£ - / / -
= - _
> - . -
| ! / « i
1 0-1 1 l ! l 1
0 20 40) 60
matrix order
glued WilKinson matrix
10— A B — — E
E / ‘Q\:L E
N NS e
e — ° b
102 - / o -
- 1 TREEOL —3
_ = Y A — -
@ r Q- TREEGL -
-g fm A\ X\‘ / . / N
s T / ot (e]
[1 Ol L / —
2 T E N aeeGL 3
e FoSS]
‘o
10° = & —
u]
10! | | i l ; | i | : |
0 100 200 300 400 500

matrlx order
glued WilKinson matrix

Figure 6.2: Times for TQL2, TREEQL, and B/III versus matrix order for the
glued Wilkinson matrix W;.

94

10! T s 1 =
K w@//ﬁ}—
_‘. 1)
. i | / ‘-
g //////igg :
o A"
S o | I\\,/////// |
2 10 O / R
g L / & N
> ~ Qﬁ/i::::// 7
- o 4
L Q 4
‘ ~ V///// J/ -
10-1 / , 1 l 1
0 20 40 60
matrix order
matrix [l,mu,1]
10? 3 T T I T ol T T
- 7_‘@66\'/]
L -\Q =
L //,/”LV/ "__'—"__B/XXX""——_——‘—:
10?7 &= K | ,,—’,,,—"‘B/‘X‘ —
- < 3
e - / 6/\“ 3
4] o —
'g : \\/ :
o Y
8 10" o | =
o - 3
E | aud —
> L 4
10° = E
- S N B S R
0 100 200 300 400 500

matrix order
matrix [l,mu,1]

Figure 6.3: Times for TQL2, TREEQL, and B/III versus matrix order for matrix
[1,u,1].

matrix | order | time for time for | time for
TQL2 | TREEQL B/III

(seconds) | (seconds) | (seconds)

[1,2,1] | 10 07 08 17
20 30 .32 .63

32 1.00 .75 1.48

40 2.10 1.12 2.25

50 3.60 1.95 3.43

80 13.73 5.85 8.63

100 25.93 11.20 13.38

140 68.27 27.88 25.80

200 190.40 72.33 52.18

300 615.67 240.05 117.96

512 2965.03 1084.11 372.70

WF 21 48 17 58
42 2.40 1.25 2.13

63 7.23 2.08 4.03

84 5.25 3.65 6.30

105 8.48 4.42 9.13

147 72.42 6.90 17.00

210 87.47 11.87 36.28

315 629.58 35.10 94.32

525 2741.25 75.77 355.92

L 1| 10 07 10 18
20 .30 45 .64

32 1.07 1.27 1.5

40 2.10 2.10 2.30

50 3.65 3.53 3.53

80 13.80 12.10 8.73

100 26.30 22.50 13.55

140 68.90 58.20 26.18

200 191.50 160.40 52.82

300 617.12 520.53 117.47

512 2983.30 2491.85 340.02

95

Table 6.18: Times for TQL2, TREEQL, and B/III for [1,2,1], W, and [1,u,1].

Chapter 7

A Statistical Analysis of Inverse
Iteration

Chapter 6 establishes the design choices needed for an accurate implementation
of inverse iteration. These rely in large part on the use of starting vectors with
randomly distributed components. In this chapter, statistical analysis is used to
explain some of the experimental observations.

The first three sections of this chapter lay the foundations for the analysis.
Section 7.1 states the underlying assumptions. Section 7.2 presents geometric
and analytic definitions of a good eigenvector approximation. The analytic for-
mulation depends on evaluating the incomplete beta function Z,2, and Section
7.3 proves a tight upper bound for Z,-.

The application of statistics is discussed in the remaining sections. Section
7.4 determines the expected quality of a random starting vector. Sections 7.5 and
7.6 discuss why statistical analysis can only be applied in a limited fashion to
the iterates before and after reorthogonalization. Section 7.7 estimates the error
in applying the statistical analysis of starting vectors with normally distributed
components to the starting vectors with uniformly distributed components used
in the experiments. The statistical fundamentals required for the proofs of the

theorems in this chapter are reviewed in Section 7.8.

96

97

7.1 Assumptions

For this analysis of inverse iteration, it is assumed that the starting vector is
created in the following way. A vector z, is first generated with independent
random components each having a normal distribution with mean 0 and vari-
ance 1 (normal (0,1)). This vector is then normalized to give the starting vector
Yo = Zo/|| o ||2 having unit norm. Vectors so formed are uniformly distributed
on the unit n-sphere [20]. Unless otherwise specified, all vectors are represented
in terms of the orthonormal basis of eigenvectors {uy, ug, ..., un} of the symmet-
ric tridiagonal matrix T, i.e., yo = (71,72, ---,7)} means yo = S, niu; and
|| wi|l2 = 1. Use of the basis of eigenvectors is permitted because the distribu-
tion of the components of vectors uniformly distributed on the sphere is invariant
under orthogonal transformations. This is shown algebraically in the following

theorem.

Theorem 7.1.1 Let v = (£,...,£:,)T, where the components {; are independent
random variates with normal (0,1) distributions and denote coordinates with re-
spect to an arbitrary basis. If U = (uy,...,uy) is an n X n orthogonal matriz,
then Uv has components vq,...,v, distributed identically to those of v.

Proof: As a normal (0,1) variate, ¢; has characteristic function ¢;(t) = e~/

for 2 = 1,...,n. According to Lemma 7.8.2, the characteristic function of

 —n . .
v; = Zj:l uijéj’ 1<21<m,is

n n —t2 n
(1) = I] #iwijt) = [[e4¥/2 = €& Lim % =
j=1

i=1

because Y7_; uf; = 1 for an orthogonal matrix. m

7.2 The Quality of an Approximate Vector

To carry out the statistical analysis, it is necessary to first determine what is

meant by a “good” approximation to an eigenvector or to a linear combination

98

of eigenvectors. Equivalent geometric and analytic definitions follow along with
examples in three dimensions.

Let yo = Y7, niu; satisfy || yo ||2 = 1. yo is considered a good approximation
to u; if n; is much larger than any other component, i.e., if 2 > 1 — €2 for some
tiny error tolerance e. Similarly, yo is nearly a linear combination of eigenvectors
Uy , Ug 1f 2,_1 n? > 1 — €. In geometric terms, a good approximation yo to
u; makes an angle §; with u; having cosf; > +/1 — €2. Because random vectors
are uniformly distributed on the sphere, the probability that a random starting
vector 1s a good approximation to such a linear combination is just the fraction
of the surface area of the sphere defined by good vectors.

In analytic terms, the probability that ¥%, 5? > 1 — €* is determined by
integrating the probability density function of the sum Y4, #? between 1 — €?
and 1. The component £ has a normal (0,1) distribution. Therefore, the term

2-"—1_52- has a B(%,251) distribution, and the sum Y%, n? has a B($,254)
dlstrlbutlon [20]. The beta distribution is described in Section 7.8. The prob-
ability that yo closely approximates a linear combination of the eigenvectors
Uy, ..., Uuq 18 then

d
PQ_onfz1-¢) = /1_6 1) dt

1=1

nd2

1 — ¢
= l—a/ 11— 1) (7.1)
0
(%)
Y=z

These geometric and algebraic definitions of a good vector approximation

with a =

are readily illustrated in three dimensions. When n = 3 and d = 1 or d = 2,
a= ﬁ%ﬁ = % Using this value and equation (7.1), the probability that yg is
a good approximation to uz (or —ug3) is

P2>1-¢)>1-= t72(1 — t)°dt.

In this case, P(n? > 1 — €?) is the probability that yo lies inside the double-sided

cone around u3 having vertex at the center of the unit sphere and making interior

99

Figure 7.1: Vectors on the Unit 3-Sphere with n2 > 1 — €2

1 2

angle cos™! n3 with eigenvector u3. Equivalently, the cone has radius /1 — n3.

This situation is depicted in Figure 7.1. '
Figure 7.2 shows the vectors uniformly distributed on the 3-sphere that are

nearly linear combinations of u;, and u,. In this instance, n = 3, d = 2, and the

probability that yo lies in the pictured stripe around the 3-sphere is

1 1—620 1
P(nf+7)§21—62)_>_1—50 21 — t)"2 dt.

A starting vector lying in this stripe makes an angle of at most arcsinn, < arcsin e
with u; or uz. When 1 — ¢ = 2, the probability that yo approximates one
eigenvector is at least 0.29, while the probability that it approximates a linear

combination of two eigenvectors is 0.71.

100

Figure 7.2: Vectors on the Unit 3-Sphere with 2 + 72 > 1 — €2

7.3 An Analytic Approximation for the Incom-
plete Beta Function

The probability that a vector yo = (m1,...,7,) = S, n;u; approximates a linear

combination of the eigenvectors uy, ..., uq is
d ™ 4 n—d
P nmizr)zl-af #7(1-1)% -, (7.2)
=1 0
where a = %1("(%3_-5}‘ The integral in equation (7.2) defines the incomplete beta
2/ \T
function
d - d 7.2 e Toud
5 o [

Except in the case n = 3 or d = 2, T2 generally cannot be evaluated exactly.
In determining probability bounds for the condition number of a matrix, Dixon
[21] employs an asymptotic estimate for the coefficient o when d = 1 and n — oo

and bounds the integral 7 using the mean value theorem for definite integrals

101

[54] to estimate T,2(3,251). The mean value theorem for definite integrals states
that if the integrand g(t) is continuous over [, 73], there exists a number 75 such

that

[9@yt = g(ra)(ra = m).

1

Because the integrand of the incomplete beta function attains a maximum value
of one on [0,1], the mean value theorem implies that Z,» < 1.

In this section, an upper bound is established for Ifz(%, -";—d) foralld > 1 and
n > d+ 2 in two theorems. Theorem 7.3.1 bounds a, and Theorem 7.3.2 bounds
Z. Following the presentation of the theorems and their proofs, the tightness of

the bounds is discussed.

Theorem 7.8.1 Consider a fized integer d and anyn > d. Let

T2
I(d/2)T((n — d)/2)
Then a >0, and
n2ei, ifd=1andn>4;
o S % -]., ifd = 2;

eV =2 (22) 7 AFE, ifd>2 andn> d+3.

Proof: The upper limit is determined by use of Stirling’s formula [1]

T(C+1) =V2r(Hie™ v R, >0, 0<0<1. (7.3)
Thus,
V2r (et < T(¢ +1) < V2r(Hae ¢,
Casel,d=1:

Because I'(3) = /7,

Equation (7.3) gives the upper bound

_ (n—-1)/2
I‘(%) <V2r (n 5 2) o= (n/2-1) o5t 5s
when n > 2 and the lower bound
T((n —1)/2) > Var(——= 5)(n-zw ~(n-3)/2

when n > 3. Thus,

The quantity ¢ = (————%) > is bounded as follows

n—2 n—2
ng = 2 ln<n—3)

n—2 1
- 1 (1)
R G-
< n—2 1
- 2 n—3

1 1
= -1 .
2(+n—3)

The last inequality follows from a Taylor series expansion of In(1 +

fore, ¢ < e%(ﬁ), and

o < [P 2ot (k)

27
For n > 4, emnt3(1+sks) < eh.
Case 2, d = 2:
Because I'(¢ + 1) = (T'({) and T(1) =1,
@
SRS VA
*TTOTED) T 2

Case 3, d > 2:

102

—L5). There-

103

When d > 2 and n — d > 2,
I'(%)

“ T TON(ED)

12 ((n — 2)/2)(n-D/2
V27 (d = 2)]2)d=D72((n — d — 2)/2)—d-D/2 €

1 n—2 (d-1)/2 n—2 (n—d-1)/2 1 1
= —vVn-2 - “ltenots,
PN (d—2) (n-—d—2) ¢

1
_1+6n—u

IA

n—d—1
By an argument similar to that of Case 1, the quantity (n=2

n—d—2

dgn--d—-lg 27
e 2z 28,

is

bounded above by e%(%:—iE%)’ and

1=
[\

Nl

[\

n_

evnmm+8 (52555)-1

a <

QL

2—\17_; n—2(

o,
|
s

RN
.

3

<

-2——1\/_—7-7- n—2(

=W
3

Theorem 7.3.2 improves upon the bound from the mean value theorem by

taking into account the shape of the integrand. Substitute s = t% to obtain

'7'2 -
I = /0 £571(1 —)" dt (7.4)
Td 2 n—
- 3/ (1 — s3)"F*~1ds.
0
2\ n—d

The integrand f(s) = (1 —s2)"2 ~1 has a single point of inflection at s = o7 =
d

(2—(11:4?211)5 when o7 is real and in the interval (0, 1).

Theorem 7.3.2 is based on the following derivation. First consider the case
7 =1and o7 € (0,1). For s < oy, the second derivative %;i < 0, s0 fis a concave
function. For s > o7y, %% > 0, and f is convex. The bound for 7 is determined
by dividing the area surrounding the integrand into three pieces as depicted in
Figure 7.3 for the case n = 20,d = 1. The area under the concave portion of f is
bounded by the area A; of the rectangle of height one and width o;. Let & be a

value in (o7,1). The area under the convex portion is bounded by the sum of the

area A, of the triangle with vertices (o7, f(6)), (o1, f(01)), and (8, f(6)) and the

104

fis)

Figure 7.3: The integrand f(s) for n = 20 and d = 1 versus s. The inflection
point is oy = 0.25, and f(§) = 0.1.

area Ajs of the rectangle of height f(6) and width 1 — o;. The tightness of the
bound is dependent on o; and on the value of § selected. If § is too small, f(§) is
too large, and the area Aj is too large; if § is too large, f(8) is too close to zero,
and the area A, is too large. Regardless of the value of §, the bound is clearly
tighter than that provided by the mean value theorem which bounds the integral
by one. As the order n increases, the integrand f falls more steeply toward zero,
and the improvement over the mean value theorem increases correspondingly.
When there is no point of inflection (o7 is non-positive or complex), the
integrand f(s) is convex on the interval [0,1]. The area under f(s) is bounded as
for the convex portion of the curve when o7 is in (0,1). This situation is depicted
in Figure 7.4 for n=10 and d=3. The area under f is bounded above by the sum
of the area A, of the shown triangle and the area Aj of the shown rectangle.
Theorem 7.3.2 defines the bounds for the case o7 < § < 7 < 1, which means
that area A3 now represents the area of the rectangle of height f(6) and width

105

fis)

Figure 7.4: The integrand f(s) for n = 10 and d = 3 versus s. There is no
inflection point, and f(4) = 0.1.

106

T — or. When 7 < o7, only the convex portion of the curve is included, and the

theorem reduces to the mean value theorem for definite integrals.

Theorem 7.3.2

{ o1+ 3(6 = on)(f(or) = £(8)) + (7 = o) f(6), ifor€(0,1);
361~ £(6)) +71(8), if o1 ¢ (0,1),

where s = o is the point of inflection (if it exists) of the integrand f(s) =
(1- 3%)"_;1‘1 in the interval (0,1), and o1 < § <7< 1.

<

ISl

Proof: Let f(s) = (1 — s%)"_;d“l and o = max(0,07) < 1. If o7 is complex, let

o = 0. The above bound is then derived by writing

I= /: f(s)ds +/j f(s)ds +/: f(s)ds.

Note that f(s) is decreasing for s in [0,1], so

/: f(s)ds <o

by the mean value theorem for definite integrals [54].

For s > o, f is convex. Therefore, all points on the line / drawn between the
points (o, f(o)) and (8, f(6)) are no less than any value of f(s) for s € [0, §], and
the integral is bounded by the trapezoidal rule

[£(6)ds < 56~ 0)(#(0) = F(6) + (6 =) (&),

where the righthand side is the area under the line [.
By the mean value theorem, the remaining portion of the integral is bounded

above by
| 59)ds < 167 - 9).

We first assess the accuracy of the bounds in Theorems 7.3.1 and 7.3.2 for
the case d = 1 and 7 = 1 by comparing the theoretical bounds to the results of

Gauss-Legendre quadrature. The number of quadrature nodes is chosen so that

107

increasing the number of nodes does not alter the eight most significant digits
of the result. Fifty to one hundred nodes suffice for the matrix orders tested.
Because the integrand f(s) falls rapidly toward zero, the results are not strongly
dependent on 7 unless 7 is very small.

The coefficient & bounded in Theorem 7.3.1 is just the reciprocal of the beta

function ﬂ(g, 2=d) and so is equal to

2 [a-sre] (1)

Table 7.1 lists the bounds for o from Theorem 7.3.1 when d = 1 and n = 100,

1000, and 10000 together with the reciprocal of the beta function in equation
(7.5) computed by Gauss-Legendre integration. The last column shows the ratio
of the theoretical and computed bounds. The ratios show that the theorem’s
bounds are very tight for the case d = 1.

The accuracy of Theorem 7.3.2 is demonstrated in Tables 7.2 and 7.3. The
second and third columns of Table 7.2 show, respectively, the bound determined
by Theorem 7.3.2 and the value of the integral Z when 7 = 1 computed by
Gauss-Legendre quadrature for § = .01 and n ranging from 100 to 10000. The
last column shows the ratios of the bounds given by the mean value theorem
(1.0 for all n) and the computed integrals. For all tests, the point of inflection
or lies in the s-interval (0,1). The fourth column shows the ratios of the bounds
and computed integrals. As n grows, the integrand f(s) falls with increasing
steepness so that the tightness of the bound in Theorem 7.3.2 decreases. For the
same reason, however, the improvement over the mean value theorem increases
significantly.

Table 7.3 shows the same results when § = 108, Although the bounds are
not as tight for small values of n as when § = .01, they still provide a marked
improvement over those of the mean value theorem. For the range of orders
shown, 6§ = .01 provides roughly the best accuracy, though the change in accuracy

with é is not very large.

108

n Theorem 7.3.1 Bound | Computed Value Theorem

Computed
100 3.96 3.96 1.0
1000 12.61 12.61 1.0
10000 39.89 39.89 1.0

Table 7.1: Comparison of theoretical bounds for « from Theorem 7.3.1 with
computed values for d = 1.

n | Theorem 7.3.2 Bound | Computed Value (;I(; }Ilgg{ftrgd Co%?ﬂﬁe 3
100 0.3394 0.2525 1.3 4.0
200 0.2459 0.1779 1.4 5.6
500 0.1628 0.1123 1.4 8.9
1000 0.1210 0.0916 1.5 12.6
5000 0.0652 0.0793 1.8 28.2

10000 0.0519 0.0354 2.0 39.8

Table 7.2: Comparison of theoretical bounds from Theorem 7.3.2 and from the
mean value theorem with computed values for d =1 and § = 1.d — 2.

When d = 2, the integral becomes 7 = fOTz(l — s)"T_zds, and it can be in-
tegrated exactly. When d > 2, the integrand f(s) is very steep and difficult to
integrate numerically. For example, when d = 3 and n = 1000, f(s) < 1071°
for all s > .01. Approximate computed values for Z are listed in Table 7.4 for
n = 100 and n = 1000 when d = 3 and § = .01 along with the bounds from
Theorem 7.3.2 and the mean value theorem. The theorem’s bounds are consid-
erably less tight than when d = 1 but nevertheless provide a large improvement
over those of the mean value theorem. As n or d increases and the integrand
steepens, the advantage of Theorem 7.3.2 over the mean value theorem increases

even though the tightness of the theorem’s bounds decreases.

7.4 The Quality of the Starting Vectors

In Chapter 6, it was demonstrated that random vectors make good starting vec-
tors for inverse iteration. Experimentally, a random starting vector is typically
not orthogonal to the eigenvector being computed, and the specific random vec-

tors used turned out to be linearly independent. In this section, the analytic

109

n Theorem 7.3.2 Bound | Computed Value (':I(‘) }Ilggfletrgd Coﬁl\)?;e |
100 0.4838 0.2525 1.9 4.0
1000 0.1597 0.0793 2.0 12.6

10000 0.0507 0.0251 2.0 39.8

Table 7.3: Comparison of theoretical bounds from Theorem 7.3.2 and from the
mean value theorem with computed values for d =1 and 6§ = 1.d — 8.

n | Theorem 7.3.2 Bound | Computed Value (;I(; }Ilgg{ﬁrgd Coly'[ngtr}’;e J
100 1 .08 1.25 12.5
1000 0.005 0.0002 25 5000

Table 7.4: Comparison of theoretical bounds from Theorem 7.3.2 and from the
mean value theorem with computed values for d = 3 and é = .01.

definition of a good starting vector given in equation (7.1) is used to explain
this observation statistically and to establish the number of times a starting
vector can be reused when eigenvalues are well-spaced. In this analysis, it is
assumed that a vector zo = (¢;,...,&,)T has independent, normally distributed
random components. The starting vector is formed by normalizing z¢ to form
Yy = 21 miu;. For rapid computation of @; using A = \i, it is essential that
y have a large enough component in the u; direction. The probability that the
coefficient 7; is bounded below by v/1 — €2 is restated as Theorem 7.4.1:
Theorem 7.4.1 Let zo = (&1,...,&)T, have independent random components
& each with a normal (0,1) distribution and let yo = 2o/ zo ||z = (1, ..., 7).
Given 0 < e <1, the probability that n? > 1 — €? is

1—¢?

Pni>1-€é)>1- a/ £73(1 —)T dt. (7.6)

0

Table 7.5 gives these probabilities for matrix orders 100, 1000, and 10000 for
a range of 1 — €? values. The integral in equation (7.6) was computed by Gauss-
Legendre quadrature using 100 nodes. The probabilities establish that a random
starting vector is expected to have a component of magnitude sufficient for fast

convergence of inverse iteration in any eigenvector direction. For n < 10000, the

110

for n = 100 for n = 1000 for n = 10000
VI=@| Pl 2= VI=&) | Pl 27 =vI—&) | Pml > 7 = vI_&)
<107 1.00 (16) 1.00 (16) 1.00 (16)
10-3 0.99 0.97 0.90
102 0.92 0.76 0.34
10-1 0.34 0 (2) 0 (16)
> .7 0 (16) 0 (16) 0 (16)

Table 7.5: Lower bounds on probability that |7;] > 7. Numbers in parentheses
equal the number of zero decimal places.

probability that any one component is at least 10~* is 1 +10~18. The probability
bounds are still at least 0.9 for /T — €2 = .001 for all three orders. For a given
tolerance 1 — €2, the probability bounds decrease as n increases: as the number of
components in a vector increases, the probability that any one component is large
decreases. The steep drops as /1 — €2 increases correspond to large changes in
the integrand as described in Section 7.3. Note that the unit norm of the starting
vector guarantees that not all components can be very small compared to one.
The sets of n randomly generated starting vectors used in the experiments in
Chapter 6 were also linearly independent. The following theorem supports this
observation statistically. Namely, a set of n vectors {z1,...,2,} is numerically
linearly dependent, if for all sets of nonzero coefficients o, @, . .., @, such that
Y, =1, the norm ||zl = || &k, cizi |2 < 6. Note that exact linear
independence would require || z ||; = 0 and that P(|| z ||; = 0) = 0.
Theorem 7.4.2 (Linear Independence of Starting Vectors) Let the column
vectors x; = (€15, &2, . - -, €ni)T, 1 < i < n, have independent random components
each with a normal (0,1) distribution, and let oq,aq,. .., o, be real numbers such
that Th,0f =1. Let 2z = Y%, iz = ((1, o005 Co)T. For fized € > 0, the
probability that || z ||z < € satisfies

P(|| z ||z < €) < 2n(e/V2n).

P(|l z ||2 £ €) is then the probability that the vectors g,...,z, are linearly

dependent to within a tolerance e.

111

Proof: Each element §;; has a normal (0,1) distribution, and the sum %, a? =
1. By Lemma 7.8.3, (; = Yi.; ;i; has a normal (0,1) distribution and prob-
ability density function f(¢) = #e"‘zﬁ. According to equation (7.10), the
probability

P(l 2l <€) PGl <ei=1,...,n)

PGl <)

=1

nP(|¢] < e).

IA

Dividing both sides by n gives

Pzl <6 € F(O)=-F(=0)

IA

Because || z [loo < || 2 [l2, P([| 2 [loo < €) 2 P(|| 2 ||2 < ¢), and

Pl 2 |l < ©) < 2n(e/v/2m).

When the eigenvalues of the matrix are well-separated, linear independence
of the starting vectors seems less essential. In this case, efficiency is improved by
reusing random starting vectors for different eigenvector computations. The same
starting vector can be used for eigenvectors 1 through d as long as n? > 1 — €2
for a given 1 — ¢? and 7 = 1,...,d. The following theorem gives an expression
for the number of times d a starting vector can be reused with probability p.
Theorem 7.4.3 (Reuse of Starting Vectors) Let zo = (£,...,6,)T, n >
2, have independent random components with normal (0,1) distributions, and
Yo = xof|| o |l2 = (Mm,...,ma)T. Then n? > 1 —¢* fori=1,...,d with probabil-
ity at least p if d < | 122].

p | T=+v1—¢|forn =100 | for n = 1000 | for n = 10000
d d d
0.5 <104 100 1000 10000
10-3 50 16 5
10~2 6 2 <1
101 <1 <1 <1
0.9 <104 100 1000 10000
10-3 10 3 1
10~2 1 <1 <1
1071 <1 <1 <1
0.99 <1074 100 1000 10000
10-3 1 <1 <1
1072 <1 <1 <1
101 <1 <1 <1

112

Table 7.6: The number of times d a starting vector can be used with probability
pthat |n;| >7,i=1,...,d.

Proof: According to equation (7.9),

Pi>1-ei=1,...,d) = 1-PipP<(1—-€),i=1,...,d)

2 1= P <(1-€))

i=1

= 1-daZ.
Setting p =1 — daZ and rearranging terms gives the expression d = [122]. m

Table 7.6 shows values of s for several choices of v/1 — €2 when n = 100,
1000, 10000. As matrix order increases with p and /1 — €2 fixed, the number of
times a vector can be reused decreases. This echoes the trend observed in Table
7.5: a long vector of norm one is less likely to have large components and so is
less acceptable for reuse. As a component with norm 10~* appears sufficient for

rapid convergence, the same starting vector may be reused for all eigenvectors

with probability at least 0.99 for matrix orders 100, 1000, and 10000.

113

7.5 Application of Statistics to Iterates with-
out Reorthogonalization

Statistical analysis can be applied to the results of inverse iteration as well. Un-
fortunately, the analysis is considerably less informative than that for the starting
vectors. This section discusses inverse iteration without reorthogonalization. The
kth iterate in the computation of the eigenvector corresponding to the computed

eigenvalue X is defined as follows:

Algorithm 7.5.1 (k Inverse Iterations to Compute One Eigenvector)
Generate a random vector zo = (&1, . ..,&,)T with independent random com-

ponents each having a normal (0,1) distribution.

2. Normalize zo to produce the starting vector

Zo

= = nT= 3 Us.

3. Perform k inverse iterations to produce the unnormalized iterate
z=(T =X y=(G, ..,6)" =D Gu.
=1

The probability that the iterate z approximates a single eigenvector u; of the

matrix 7' is given in Theorem 7.5.1.

Theorem 7.5.1 Let zo = (&1,...,&.)Y, n > 2, have independent random
components §; each with a normal (0,1) distribution, and let y = zo/|| zo ||2 =

(M1 ---,m)T. Let the kth unnormalized, unorthogonalized iterate be defined by

z= (T -)‘)_—ky = (Cla“ '7Cn)T'

Given 0 < € <1, the probability that {(? > 1 — € for some i is

(a2 (1 — €?)
P((,?21-e2)21—a/ t~
0
IF(1-e)(M=XN%*>1, then P((?>1—-¢€)>0

[SIT

(1—)" dt. (7.7)

114

Proof: The jth component of iterate z is

2 _ n} _ 2
S = g = o B

i=1

Thus, the probability that (? > 1 — € is the probability that

2_ 62 2 /\2k
=g 2 (= -)

given by equation (7.6) in Theorem 7.4.1. Invoking Theorem 7.4.1 completes the
proof. W

By the mean value theorem, 7 is bounded above by (1 — €2)(); — X)?*. Hence,
if A is a close approximation to \;, Z is small, and the probability that z approx-
imates u; is close to one. If \; — X = \;4; — A, 2 approximates u; and u;4; with
equal probability.

A potentially more interesting statistic concerns the behavior of the iter-
ates when A; and Ajy; are close but not equal. The results, however, are dif-
ficult to interpret in this case. One of the two eigenvectors u; and ujy; will
be better approximated than the other only if s; = (1 —€?)()\; — /\)2’c and
sji+1 = (1 —€®)(Ajq1 — A)? lie where the integrand f(t) = t=2(1 — t)*% ® has
a large derivative. Only in this case will the change of upper limit from s; to
sj4+1 significantly change the value of the integral. Thus, although the effects of
additional iterations on the accuracy of the solution can be quantified in terms
of the integral Z, a qualitative interpretation of the result is difficult in general.

Just as the statistical analysis falls short in determining the preferred number
of iterations, it fails on other possible stopping criteria. Determining the expected
iterate norm || z || or the residual || Tz — Az ||2 of a computed eigenpair involves

sums of the form

S=;a?<j2_2(i 2k/znl’

=1

where, respectively, a; = 1 for all j or @; = A\; — X\. These sums also arise in the

analysis of the normalized iterate —2— T ”

115

The distribution of the sum S depends on the distribution of both its numer-
ator and denominator. While the distribution of the latter is I'(2, 2), that of the
former generally cannot be expressed in closed form. Moreover, even the simplest
approximation of the distribution of the numerator is unwieldy [12, 48]. Analysis
of the orthogonality of two computed iterates runs into similar problems. Thus,
a probabilistic analysis of the stopping criterion or reorthogonalization criterion

appears inaccessible.

7.6 The Quality of Iterates After Reorthogo-
nalization

Extending the statistical analysis to the iterates after reorthogonalization re-
quires deriving a probability density function for their components. This is done
by expressing the components as functions of random variates having known dis-
tribution. A single inverse iteration using random starting vectors proceeds as
follows. The orthogonal basis U = (u;...u,) of eigenvectors of T = UAUT is

used for all vectors in the following analysis.

Algorithm 7.6.1 (One Inverse Iteration to Compute All Eigenvectors)

1. Generate random vectors z; = (&y4,...,&m)Y, ¢ = 1,...,n, where the com-
ponents Tn; are independent random variables with normal (0,1) distribu-

tions.

2. Normalize the random vectors to produce the unit starting vectors y; =

Ty . NT ;-
i = (Miyer oy Mmi), i=1,...,n.

3. Form
Z,'Z(T—Xi)—-ly,', i=1,...,n.
4. Orthogonalize the unnormalized iterates Z = (z1,...,2,) = QR so that
Q = ZR™ is orthogonal and R is upper triangular.

116

Denote the element ef R~1e; by p;;, then the ith orthogonalized iterate ¢; may

be written
i
G = D Pri%k
k=1
= > pu(T - Ae)
k=1

7

= Y (T - A0)" ankul

k=1
The jth component of orthogonalized iterate ¢; is given by
T d Pki
us; qi = Z = Njk
’ 1A= Ak

This can be written in terms of the normally distributed components of the

random vectors z,,:

“;"rql' = i Pk €/ (Z flk)

k=1 Aj — M I=1
The numerator of this term is a linear combination of normal (0,1) distributed
variables and so has a normal (0, ¥%_, ,\) distribution. Note that the el-
ements py; are themselves derived from random quantities. The square of the
denominator is the sum of squares of normally distributed elements and so has
a I'(3},2) distribution. The probability density function (pdf) of ul ¢; is given in
Lemma 7.6.1.

Lemma 7.6.1 The probability density function of u;‘rqi is

1 >-(1"5—1)

)
f()(%)(«p“

1 (2t
T

9

where ¢ = T4 _, ,\”’“,\k

Proof: The pdf of u;‘-rqi is the pdf of % where

d Pk
r = ‘fk
,;/\ Ve

¥y = Z 5121:-
I=1

117

To derive this pdf, let

S

Then the Jacobian of the inverse transformation is

x Az z
— 132 Bw|_ w3 —
I=1% =% F|=ve
Oz Qw

Thus, (z,w) has the joint density
-1 w22 _w(Z2
[2”’/”7%211/2] wTe ? (—'TH) = kwTe ? ('” +1)
We obtain the marginal density for z by integrating with respect to w.

e
f = &[] we :(34)

For this result to hold, R~! must exist, and 3 must be positive. The first
assumption holds whenever the columns of Z are linearly independent. Because
the Modified Gram-Schmidt procedure fails when columns of Z are linearly de-
pendent, the existence of R™! is established in the course of the iteration. The
second assumption, however, requires determining the differences \; — A for
J,k=1,...,n, where \; for j = 1,...,n are the eract eigenvalues of the matrix
T. It also requires explicit computation of the inverse R~!. Furthermore, there
is no reason to expect that ¢ is positive in general. Thus, the above probability
density function cannot be determined without actually solving the problem and
performing additional and expensive computation, and the necessary assump-
tions may not hold. For these reasons, the statistical analysis does not readily

apply to the orthogonalized iterates.

118

for n =100 for n = 1000 for n = 10000

Vi—e | P(u|>27=v1-¢) | P(m|>27=v1-€) | P(In| 2 7=V1—-¢)
<1079 1.00 (16) 1.00 (16) 1.00 (16)

10-5 1.00 (16) 0.99 0.90

10—4 0.99 0.36 0.34

10-3 0.92 0.33 0 (16)

10-? 0.34 0 (2) 0 (16)
> 101 0 (16) 0 (16) 0 (16)

Table 7.7: Lower Bounds on probability that |n;] > 7. Numbers in parentheses
equal the number of zero decimal places.

7.7 Practical Considerations

The preceding statistical analysis qualitatively confirms the experimental results
of Chapter 6. This analysis, however, assumes generation of independent, nor-
mally distributed variables, while the experiments were performed using uni-
formly distributed variables in [-1,1] having some degree of dependence. Thus,
the experimental starting vectors of length n are uniformly distributed on a hy-
percube of dimension n and height 2 centered at the origin rather than on the
unit n-sphere as assumed in the analysis. Normally distributed pseudorandom
numbers can be generated at a somewhat higher cost than the uniform ones [20],
but this section shows that uniform ones are acceptable substitutes.

The error in applying the analysis to uniformly distributed starting vectors
may be estimated by circumscribing an n-sphere of radius 1/n about the hyper-
™1 Miu; on the sphere is a good approxima-

n(1l — €2). Following the

cube. A vector y = (71,..., nn)T =
tion to a multiple 1/nu; of the eigenvector w; if |n;| >

derivation in Section 7.2, the probability of this occurrence is
Pm?>n(l—e))=1- a/On(Hz) t73(1 —)" dt.
Lower bounds for this probability computed by Gauss-Legendre quadrature are
given in Table 7.7.
The probability of a large component 7; is not as high as in the normally

distributed case, but components with magnitude 10~® can be expected with

119

near certainty. The experiments in Chapter 6, show that this magnitude is suf-
ficient for convergence. This result does not hinge on the linear dependence of
components.

In addition to having large enough components, it is essential that the start-
ing vectors be linearly independent. The possibility of linear independence is
dependent on the random number generator used. For the experiments in Chap-
ter 6, an n X n matrix of random numbers was generated using the routine RAND
available from NETLIB; the columns of this matrix formed the n starting vectors.

The linear independence of the columns was demonstrated in Chapter 6.

7.8 Appendix: Statistical Basics

The proofs of the theorems presented in this chapter depend on a few statistical

fundamentals reviewed in this appendix.

7.8.1 Definitions

A real random variable ¢ is characterized by its distribution function which is
defined as the probability that ¢ < w for some real w. The distribution function
is then denoted F(w) = P({ < w). If F(w) is absolutely continuous and
differentiéble, it may be expressed as the integral F(w) = [“_ f(z) dz. Any
function f for which this integral exists is termed a probability density function
(pdf) of ¢. For most values of w, £ F(w) = f(w).

The quantity E(£%) = ¢ «* f(x) dz is the a-th moment of ¢ about zero. The
first moment FE() is the mean of the distribution; E((é—E(¢))?) = E(£2)—E?(£)
is its variance. The integral ¢(¢t) = E(e) = [¢_ "% f(z) dz is the Fourier
transform of f(z) and is known as the characteristic function of €. A distribution
is uniquely specified by F(w) or by #(¢).

These univariate definitions can be extended for sets of random variables.

Specifically, the real random vector (¢,,¢,,...,&,) has the distribution function

F(wi,wy,y ... wn) = P(& S wr, €y Swayeny by Swy).

120

If F' is absolutely continuous and the integral

F(w,ws,..., /qu wnf (1, -y Tp) dzy - - - dy,

exists, f is a joint probability density function of &1,&,,...,&,. Random variates
&1y..-,&n are independent if and only if F(w,,...,w,) = F(w)) ... F(wy).
The following two probability relations are also used in the proofs in this

chapter:

P(¢ > w) 1-P<w) (7.8)

P&y >2wiand & > wy) = P(& > wi)+ P(ég > wy) — P(€ > wy or & > wo)

< P& 2 w)+ P(&e > wy). (7.10)

Three relevant univariate distributions are the normal (u,o?) distribution
with mean x4 and variance o2, the gamma distribution I'(c, @2), and the beta
distribution B(eu,as). T(3,2) is the chi-square distribution x?, and T'(%,2)is
the chi-square distribution with «; degrees of freedom X2 . Table 7.8 summarizes

some properties of these distributions. The gamma function is defined by

o0
Y(m) = / t1-le~tdy
0
for oy > 0 and the beta function by

al,a2 / tal_l - az—ldt (a1)7(a2)
Yoy +)

for a1, a9 > 0.

7.8.2 Lemmas

Versions of the lemmas given in this section and their proofs may be found, for

example, in [20, 70].

121

distribution pdf characteristic function
Normal(g, o?) me—(z—u)"’/ (207) RITRrLYP
[(a1, a9) Wm“l‘le‘z/"‘?, x>0 (1 —itag)™™
B(au, a2) %o%xal‘l(l —z)2 1 0<z<1 not needed

Table 7.8: Properties of some distributions.

Lemma 7.8.1 If { is random variable with a normal (0,1) distribution, (? has

a T'(3,2) distribution.

Lemma 7.8.2 If 1,...,n, are independent random variables with respective

characteristic functions ¢;(t), j = 1,2,...,n, then the characteristic function

of o= v is ¢(t) = [T}=; ¢i(vjt) for real numbers v;,7 = 1,...,n.

Lemma 7.8.3 If n,n2,...,n, are independent random variables each having a
normal (0,1) distribution, then o = Y7, v;n; has a normal (0,7, v;) distri-

bution.

Lemma 7.8.4 If n1,n2,...,n, are independent random variables each having a

I'(ay, ag) distribution, then o = Y%, n; has a T(aun, ap) distribution.

Lemma 7.8.5 If n; and n, are independent random variables having respec-
tive distributions I'(oq,d) and T'(as, @) then n1/(m + n2) has the distribution
B(ai, a,).

Chapter 8

The Bidiagonal SVD

The singular value decomposition (SVD) of a real n x n bidiagonal matrix B can
be written
B=YZXT,

where Y and X are both orthogonal matrices and ¥ is a diagonal matrix with
non-negative diagonal elements. The columns of Y and X are, respectively, the
left and right singular vectors of B; the diagonal elements of ¥ are its singular
values. This chapter compares ways of computing the SVD of a bidiagonal matrix
serially and on a distributed-memory multiprocessor.

Section 8.1 describes the application of techniques for the symmetric tridi-
agonal eigenproblem including the bisection and inverse iteration routine B/III
developed in Chapter 6 to the bidiagonal singular value problem. Sections 8.2
and 8.3 review methods that use the bidiagonal matrix itself. The first of these
is a divide and conquer method based on rank one updating techniques and im-
plemented as PSVD [46]. This method involves deleting a column from B and
is a special case of the general rank one updates to the singular value decom-
position described in [10]. An alternative method based on deleting a row of B
and implicitly forming the matrix product BT B has been suggested by Arbenz
and Golub [2]. The second method that works with bidiagonal matrices is the
Golub-Reinsch implicit QR algorithm [35] used in the LINPACK code DSVDC
[22].

Section 8.4. gives a serial comparison of B/III, PSVD, and DSVDC. Section

8.5 discusses the parallelism of the methods.

122

123

8.1 Solving the Bidiagonal Problem as a Tridi-
agonal One

While the bidiagonal singular value problem is closely related to the symmetric
tridiagonal eigenvalue problem, care must be taken in applying the results of the
preceding chapters to the computation of B = YX.X7T.

The matrix products Ty = BTB and T; = BBT are symmetric tridiagonal
matrices of order n having as eigenvalues the squares of the singular values of B
and having as eigenvectors, respectively, the right and left singular vectors of B.
Thus, one way to determine the SVD of B is to form T; and T, and compute the
eigendecompositions 7} = X¥2X7 and T, = YX2Y 7,

Multiplication of B and its transpose in finite precision arithmetic, however,
can lead to significant errors in small computed singular values [35]. For example,

suppose that fl(1 + €2) = 1 in finite precision arithmetic. If

1 0
B—<1 €>’

then the computed product T, = BBT is

1l 96 JI=G)

with exact eigenvalues 0 and 2. The computed singular values of B are then 0

1 1
and /2, while the true singular values are (aﬁzﬁ) * and (&@—";——— "‘“"4) *. For
this matrix, the relative error in the smallest computed singular value is one.

One alternative is to embed the order n bidiagonal matrix in an order 2n

symmetric tridiagonal matrix: the eigenvalues of the 2n x 2n matrix

0 BT
M= (B 0)

are the singular values of B and their negatives. If the columns and rows of M,
are permuted to the order 1,n +1,2,n 4+ 2,...,n,2n, the resulting matrix M, is
[32]

0 [83]

a 0 B

Ba 0

a, 0

124

For 1 <1 < n, the eigenvector u; of M, corresponding to eigenvalue A; = o; has

as its odd-numbered components the components of the ith left singular vector
Yi = (V1iy- - -, Vni)T and as its even-numbered components the components of the

ith right singular vector z; = (pyiy ..., pni)*:

Vi i
Hai Hai
Mz = 0y .
Vni Vni
Hni Hni

Bisection with inverse iteration, the QL method, or Cuppen’s method may then
be applied directly to the matrix M.

When bisection and inverse iteration are used, the structure of the resulting
tridiagonal matrix M, leads to a savings in computation time over that gener-
ally required for the order 2n symmetric tridiagonal eigenproblem. The Sturm
sequence used for computing the eigenvalues of M, by bisection has 2n terms,
but because all diagonal elements are zero, its evaluation requires only 2n — 1
divisions and 2n — 1 subtractions when the elements 3%,...,5? are computed
in advance. Thus, each Sturm sequence evaluation requires about % times the
number of floating point operations needed for an order 2n matrix with arbitrary
diagonal elements. Moreover, only the n largest (nonnegative) eigenvalues of M,
need be computed. The n corresponding eigenvectors determine Y and X. To
obtain orthogonal singular vectors, the columns of Y and X should be reorthogo-
nalized separately at each iteration, so the cost of computing the singular vector
matrices is roughly the same as computing 2 n x n eigenvector matrices in the
tridiagonal case.

The structure of M, does not lead to such significant savings for the other
two methods. While the symmetric QL iteration [9] can be stopped after the n
desired eigenpairs are computed, they may not be the first n produced [9]. In
addition, the first factorization step in a shifted QL method fills in all diagonal

elements, so beginning with a zero diagonal in M, leads to a savings of only O(n)

125

operations. Similarly, Cuppen’s divide and conquer method [13] takes advantage
of the zero diagonal only at the leaves of the computational tree. The diagonal
elements used at subsequent levels depend on the eigenvalues and eigenvectors
of the preceding subproblems and are not zero in general. Moreover, computing
n of the 2n eigenpairs represents a savings only at the highest level.

These observations suggest that because bisection and inverse iteration are
efficient for the symmetric tridiagonal eigenproblem, they should remain so for
the bidiagonal singular value problem. Furthermore, the zero diagonal may give
bisection and inverse iteration a further advantage over the QL and divide and

conquer methods.

8.2 A Divide and Conquer Method for the Bidi-
agonal Singular Value Problem

This section presents a divide and conquer technique designed for use with the
matrix B. It is an eflicient alternative to Cuppen’s method applied to a 2n x 2n
tridiagonal matrix. The divide and conquer method presented in this section
avoids the numerical difficulties associated with explicit formation of BBT or
BT B by implicitly converting the order n bidiagonal singular value problem to
an order n symmetric tridiagonal eigenproblem. The algorithm relies on rank

one tearing. Specifically, the rank one modification of B

Pe(B 508 D)o e

where 3 = B, allows implicit formation of BBT as follows:

T _ (B ﬁeke{)(Bf 0>
BB - (0 B2 ﬁele{ B2T

B, BT 0) (ﬁek> S
(0 By(I—eel)BT + Bse, (Bey,e3 By).

Moreover,

B2(I - 616$)B2T = B2B2T,

126

where

A 0 0
Bz:B?(o I)

is the bidiagonal matrix B, with its first column replaced by the zero vector, so

that

B,BT 0
BET — (15 B2Bg)+(§zf)(geg,aef), (8.2)

with ae; = Bae;.
The singular value decompositions B; = U1 ¥, VIT and B2 = 0222175 can be
computed independently and used with equation (8.2) to produce

r _ (UXIUT 0) (ﬁek) T T
BB - (0 U22% 2T + (ﬁekaael)7

aceq
o a6 &) (G)ena] (5§ 5)
(0 Uz) 0 2% + ,&2 (ulau2) 0 Ug‘) (8‘3)

where u; = BUle;, and 4, = al/Te;. The eigendecomposition of the diagonal
plus rank one matrix can be found via the techniques derived in [11, 24] and
summarized in Chapter 4.

As in the tridiagonal case, this computation requires that the diagonal ele-

(% 5)
0 52

be distinct and that the elements of (u?, %) be nonzero. When these assumptions

ments of the matrix

do not hold, the problem deflates. However, because the squares of the singular
values less than one are not as well-separated as the singular values themselves,
the deflation rules of [24] described in Chapter 4 concerning nearly equal singular
values are not appropriate. To develop deflation rules for the SVD, it is necessary
to reformulate the basic step of the updating process and, thereby, provide rules
based on the original data rather than on the squared data appearing in equation
(8.3).
To this end, let the (n — k) x (n — k—1) matrix B, be defined by

(0, Bg) =B,=8, (I - elef) .

127

Now consider the singular value decomposition of B, = [7253217271, and note that

A . 0 O 1 0
b= 0) (g g)(, V;),

where i is a unit vector orthogonal to the columns of U, . Using the tearing of
equation (8.1),
21 (73] 0 ‘/1T 0 0

B:(%l 2 3) 0o p of|fo 1 o], (8.4)
22N0 uy X 0 0 VI

(o & a)lw =)

1 we permute equation (8.4) to obtain

where
Uy

For notational convenience

21 0 U1 ‘/1T 0 0
B:(%l g 2) 0 25 u 0 0 VI}|. (8.5)
2 0 0 pu 0 1 0

Deflation rules are then needed for the interior matrix

g _ 21 ~0 U1
M = (0 u) = 0 22 Ug
K 0 0 u

where ¥ = diag(51,...,0-1) and @ = ({1, ..., fin-1)-

The deflation procedure for M resembles that for tridiagonal matrices. The
rules for exact arithmetic follow. If ji; is zero, ; is a singular value of M with
left and right singular vectors equal to e;. If 3; = &; for some ¢ # j or if ; = 0,
plane rotations are applied to reduce fi; to zero so that Me; = 7,e; [46]. In

particular, when &; = &;, two-sided rotations are applied as in the tridiagonal

(o Do)+ ()] (G 7)
(L) (B o,

1The matrices are not explicitly permuted in the implementation of PSVD.

case:

128

with ¥2 + ¢? = 1 and (4!)? = a? + a?. When &; = 0, a one-sided rotation suffices

when it uses g = eI Me, to zero out f;:

(2 DI o)+ (e 0] =(o)+ (2) o).
with v > 0 [46].

After deflation, one need only compute the singular value decomposition of

M= (2 “) =vYeXT,
0 u

where ¥ has distinct, positive elements and the vector u has only nonzero ele-
ments. The squares of the singular values and the left singular vectors are given
by the eigendecomposition

yeryT = MMT = (202 g) + (Z) (W,). (8.6)
An eigenvalue 02 of MMT is a root of the secular equation, i.e.,

. 2
14+ uT(£2 - o)ty — <ﬁ> =0

o
and can be computed using the root-finder from [11] described in Chapter 4. No

further deflation is needed. If the sorted diagonal elements of diag(f)z,()) are
0 =6} <4 <...< &2 the jth eigenvalue 6? of MMT lies in the interval

(62,62,,) [11] so that all eigenvalues are positive. The jth singular value of B is

oj, and the left singular vector of M associated with o; for j =1,...,n is
%2 —o?) 1y
yj:<(_#/0} >9a
where § is a normalization factor. The corresponding right singular vector is
_ My,
| MTy; [l2”
The singular values of B are those of M. The left and right singular vectors

Zj

of B are those of M premultiplied by, respectively,

(v 0)
0 U; u

and
VI o o*
0 0 Vf
0 1 0

This algorithm has been implemented as PSVD using finite-precision versions of
these deflation rules [46].

129

8.3 The Golub-Reinsch QR Algorithm

The Golub-Reinsch QR algorithm is an iterative method for reducing B to di-
agonal form through orthogonal transformations. The basic step is an algorithm
developed in [32]. If B = YE X7, the orthogonal matrices Y and X are formed
simultaneously by implicitly forming the symmetric tridiagonal matrix BT B and
applying the symmetric QR algorithm [35, 33]. (The QL algorithm for the sym-
metric tridiagonal eigenproblem is described in Chapter 4.)

The kth iterate is a bidiagonal matrix By = Y; By X[, where, as in the sym-
metric case, the orthogonal matrices Yy and X} are products of plane rotations.
As k approaches infinity, the iterates By converge to a diagonal matrix with the
singular values of B on its diagonal. The accumulated product YT ... Y} is the
transposed matrix of left singular vectors of B and X7 ... X7 the right singular
vectors of B.

The Golub-Reinsch QR algorithm has been implemented as the LINPACK
routine DSVDC [22]. DSVDC is based on the implicit-shift QR method but uses
a variant of the Wilkinson shift which is easier to compute than the conventional
eigenvalue of the trailing 2 x 2 submatrix of BT B. The shift is the eigenvalue of
the trailing 2 x 2 submatrix of BBT closer to the last diagonal element of BBT
[22]. An off-diagonal element 3% of iterate By is considered negligible if

18P < ear(|6)4] + [aB))),

where &) and o“zs,’fll are the diagonal elements of By adjacent to B,(,f) If the last

off-diagonal element of By is negligible, its last diagonal element is a computed
singular value of B. If any other off-diagonal element of By is negligible, the
matrix splits at that point, and iteration continues with the leading unreduced

submatrix [22].

8.4 Serial Experiments

The same performance indicators defined for the tridiagonal case apply to the
bidiagonal problem. Values of each for the five test problems are given in Table
8.1.

130

PSVD: DSVDC: B/III:
matrix order
n roots fraction of
computed | A" =137 n; | BISECT time
(scaled)
[2, 1] 32 1.0 40 .75
100 2.7 113 72
200 3.3 210 .71
random 32 1.0 34 .73
100 2.2 111 72
200 3.0 213 .71
[2,u]/n 32 0.9 36 76
100 2.0 103 .74
200 2.1 177 .73
Bw 32 0.6 33 .76
100 1.7 97 .62
200 1.9 180 .58
modified [2,1] | 32 1.0 41 71
100 2.7 107 .71
200 3.3 205 .70

Table 8.1: The number of roots computed by PSVD divided by the matrix order,
the order index for DSVDC, and the fraction of time spent in BISECT by B/III

(with implicit conversion to tridiagonal form) for five bidiagonal matrices.

131

The total number of roots computed by PSVD at all but the lowest level
divided by the matrix order measures the deflation in the problem. PSVD forms
computational trees of height 2 for n = 32, 4 for n = 100, and 5 for n = 200.
At each level, a total of n eigenpairs is computed. Thus, respective scaled root
counts of 1.0, 3.0, and 4.0 for the three orders indicate that no deflation has
occurred. Matrices [2,u]/n and Bw exhibit the most deflation and matrices [2,1]
and modified [2,1] the least.

Matrix splitting in DSVDC is measured by N' = $7, n;, where n; is the
submatrix at iteration ¢ and m is the total number of iterations. Matrices [2, u]/n
and Bw split somewhat more than do the others.

The ratios of BISECT and III times are given in the last column. BISECT
occupies roughly 1—70 of the total time for all matrices except Bw whose clustered
singular values lower the ratio. The correlation between clustering and BISECT
time is given in Table 8.2. None of the test matrices has clusters of more than four
singular values, hence none spends appreciable time in reorthogonalization by the
Modified Gram-Schmidt procedure. Clustered singular values do, however, lower
both the fraction of time spent in BISECT and the total time spent in B/IIL.

The performance measures are reflected in the data given in Figures 8.1-8.5
and Tables 8.3 and 8.4. For orders over about 50, the results resemble those for
the symmetric tridiagonal case. The QR method DSVDC is always the slowest
and the small variations in N for the test problems have little influence on the
runtimes. The relative times for B/IIl and PSVD depend largely on the amount of
deflation in PSVD. PSVD is fastest only for large order problems with significant
deflation (Bw and [2,u]/n). Singular value clustering lowers the time for B/III
for Bw relative to the other matrices.

The low order results depicted in the top graphs of Figures 8.1-8.5 differ from
those for the tridiagonal case. DSVDC is often fastest for problems of order less
than or equal to 20. Divide and conquer is consistently the fastest technique for
all problems of orders between 20 and 60. B/III is the slowest method for all
problem orders up to 50. (This slowness is not caused by any obvious coding

inefficiency, although the runtime is dominated by BISECT in all cases.)

132

|

matrix order | number of | maximum | time for time ratios
n clustered cluster B/III B[.I g :ffg Tl\gch i 7
eigenvalues size (seconds)

[2,1] 32 0 0 73 75 0
100 0 0 6.05 .72 0
200 0 0 22.85 .71 0

random 32 0 0 .13 .73 0
100 0 0 6.06 .72 .01
200 0 0 22.82 .71 .01

2, ul/n 32 0 0 75 76 0
100 0 0 6.07 .74 0
200 1 2 22.81 .73 0

Bw 32 9 2 .62 .76 0
100 43 2 4.45 .62 0
200 94 2 16.35 .58 .03

modified [2,1] | 32 4 4 71 .71 0
100 4 4 6.00 .71 0
200 4 4 22.60 .70 0

Table 8.2: Number of singular values with spacing less than 10~|| B ||,, maxi-
mum cluster size, and fractions of B/III times spent in BISECT and MGS.

10!

10°

time (seconds)

107!

102

10!

time (seconds)

10t

133

r ' I !] B%“BC =
- N O B/t engf
L J i
WO
| Ol —
- & o 3
- /% —
&
/ l 1 l 1
0 20 40 60
matrix order
matrix (2,1]
: T T T ‘ ¥ T T T] i T T T T T i i
- “‘5\10 8/l i]
L & 1 _
é§° Y
3 D E
- K n
- /&éq/c,@]
» ~
e)
= > E
!] ’ L H)] [[i i X ! | 1 ! ! 1
50 100 150 200
matrix order
matrix [(2.1]

Figure 8.1: Times for computation of the SVD by B/III, PSVD, and DSVDC
versus matrix order for matrix [2,1].

134

1
10" ¢ ’ ' l '/asxmc]
L \\\ - —
- e/ @w&
i /Q/Psqa/ .
W
©
P - NS Fes®]
2 ° /
o
2 ///////
© 10° X -3
C o]
N - Xy 3
E o _
” - /2639/ s
S
| S .
////éé
10—1 I H { 1
0 20 40 60
matrix order
random motrlx
102 E T T T 1 I i 1 H { l i [/] 1 HSVB-F——'F t 1
= NN /-v'/_a/uiﬁ
- .
- ?5;\(} B/\\,\ a
&
- 6§° ald -
-~ 10" = —
5 = w 3
S C ‘]
s /5*%“")
. S :
€ @
-+ 100 = ==
= /8 E
- —
10‘1] I i ! i | i I I i } I i L 1 1 ! H
0 50 100 150 200

matrix order
random matrix

Figure 8.2: Times for computation of the SVD by B/III, PSVD, and DSVDC
versus matrix order for random matrices.

135

. :
10 F T Y I T @ﬁwv:
N oA]
- poNG]
" QC}V\X\/‘Z‘JT// .
_ N Qc)\\“/
_8 » ‘\\ ?‘5‘ -
¢
O a - O
|) —
2 10 - ‘\\\\ %"@ 3
- s}
e /]
-+ - -
_ / | |
10-1 | l 1 [{
- 0 20 40 60
motrix order
matrix [2,mul/n
102 S T T T T T T T I T T T T T l/l_qca
- Ogmﬁ /a/n\ Sk
C a/tit ////////// :
I < ‘5‘“ -
O 4
pSVO
v / —]
o e W) 3
2 g]
& - o3 .
hd 5
p— \ -
2 Ry
510 ¢ —
- /& 3
~1 i 1)] H l I} 1 1 1 } 1 i L i I ! 1 ! !
10

0 50 100 150 200
motrix order
matrix [2,mul/n

Figure 8.3: Times for computation of the SVD by B/III, PSVD, and DSVDC
versus matrix order for matrix [2,u]/n.

time (seconds)

time (seconds)

10!

10°

107

102

10!

10°

107!

136

matrix order
matrix B_w

iy T T T T T T -
L ENWC//”
e
A& psvO
- ?5“0 =
: /e‘\/ Sw :
| | | i ! ! ;
10 20 30 40
matrIx order
matrix B_w
= T 1 i 1 i 1 T T 1 1 l T H 7 i
i 05\\9(’ -
~ g/l
e /
- a/\&\
L §§§ Qéﬂo -
AV 14"
A
— ?5\40/ —
= \ o =
- & altd PN 5
- R 3
- $]
- q%ﬂo .
No)
=3 /@ﬁa =
- &3 -
[H 1 1 I i i 1 i I I 1 I] ‘ ! 1 i }
0 50 100 150 200

Figure 8.4: Times for computation of the SVD by B/III, PSVD, and DSVDC
versus matrix order for matrix By .

137

i
10 - T T T T wﬁﬁc/f
_ 7t ps\0 7
) W/i“)
- i /(Sﬁc *0/]
3 . C /
§ 10° — QG’*Q‘?‘;\‘Q]
O - \\\ 3
= L Q) .
-
i / &]
/@
-1 1 / l I } 1
10 0] 20 40 60
matrtix order
modifled matrix (2,1]
10% = | — T T T T l/l T T T %
: R
- / gt i
i E
o - -
S - 3
o — i
o L 1.
o B o
€
510 !
107 7 AN S N S A A WA AN SN N N A N R T S
0 S0 100 150 200

matr{x order

modified matrix (2,1]

Figure 8.5: Times for computation of the SVD by B/III, PSVD, and DSVDC
versus matrix order for the modified matrix [2,1].

matrix | order | time for | time for | time for
B/III PSVD DSVDC
(seconds) | (seconds) | {seconds)
2,1] 10 35 17 10
20 1.13 .58 .67
32 2.60 1.53 2.17
40 3.93 2.63 4.03
80 14.83 15.52 26.63
100 22.85 29.37 50.13
140 44,13 74.27 130.13
200 89.95 255.22 359.15
random | 10 .35 A7 11
20 1.08 .65 .57
32 2.60 1.73 1.97
40 3.93 2.47 3.87
80 14.87 10.53 25.00
100 22.55 21.13 47.83
140 43.77 80.01 129.27
200 87.75 117.83 361.10
2,u]/n | 10 35 13 13
20 1.07 .58 .68
32 2.63 1.77 2.20
40 3.95 2.67 3.95
80 14.43 7.65 27.93
100 22.88 10.30 53.33
140 43.50 16.03 135.80
200 87.27 88.60 366.93

138

Table 8.3: Times for computation of the SVD by B/III, PSVD, and DSVDC for

matrix [2,1], random matrices, and matrix [2,u]/n.

matrix order | time for | time for | time for
B/HI PSVD | DSVDC
(seconds) | (seconds) | (seconds)
Bw 10 33 15 13
20 .93 .52 .62
32 2.05 1.12 2.05
40 3.05 1.58 3.67
80 10.65 5.10 25.55
100 16.35 7.15 47.87
140 30.52 11.60 125.72
200 60.25 48.60 342.28
modified [2,1] | 10 .25 15 .07
20 1.03 .55 .68
32 2.45 1.52 2.28
40 3.83 2.63 3.70
80 14.48 15.52 25.40
100 22.45 29.42 48.65
140 43.50 74.18 126.68
200 88.82 255.62 354.15

139

Table 8.4: Times for computation of the SVD by B/III, PSVD, and DSVDC for
matrix By and the modified matrix [2,1].

140

matrix | method | maximum | maximum maximum
order residual | orthogonality | orthogonality
R (left) (right)
Oy Ox
n = 32
PSVD | 1.66d-14 7.65d-15 7.54d-15
DSVDC | 1.79d-15 1.13d-14 1.13d-14
B/III 9.77d-16 9.76d-15 1.02d-14
n = 100
PSVD | 9.39d-14 2.56d-14 2.37d-14
DSVDC | 4.22d-15 2.68d-14 2.86d-14
B/III 2.38d-15 1.90d-14 1.87d-14
n = 200
PSVD | 4.09d-15 1.13d-14 1.64d-14
DSVDC | 7.60d-15 8.13d-14 8.14d-14
B/III 5.99d-15 5.42d-14 5.53d-14

Table 8.5: Maximum residual and orthogonalities of singular value decomposi-

tions computed by B/III, PSVD, and DSVDC for the five test matrices.

Table 8.5 lists the maximum residual R and orthogonality O recorded for any
of the test problems when n = 32, 100, or 200. All methods produce results to

the same high accuracy when small singular values are computed.

8.5 Parallelism

The implementation of B/III for the bidiagonal SVD on a statically-scheduled,
distributed-memory multiprocessor is essentially the same as for the symmetric
tridiagonal eigenproblem (cf. Chapter 5). The only difference is that the left and

right singular vectors must be reorthogonalized independently. Similarly, parallel

141

implementation of DSVDC proceeds as for TQL2 with rotations accumulated
separately to form the left and right singular vectors. Thus, both B/III for
the SVD and DSVDC have a maximum theoretical speedup of about p on a p-
processor hypercube. For B/III, this maximum can be approached only when
processor workloads are well-balanced.

The parallelism of PSVD can be estimated through a step-by-step comparison
with the divide and conquer code TREEQL for the symmetric tridiagonal eigen-
problem. Table 8.6 outlines the work done in a subcube of dimension j when
solving the order k27 subproblem at updating step 5 by PSVD and by TREEQL.
First, the subproblem is split into two order k27~1 subproblems. These problems
are solved in parallel, one problem per subcube of dimension j — 1.

Second, the elements of D and z or of ¥ and (@7, jz) are distributed among the
processors of the subcube by an alternate direction exchange by Algorithm 3.3.1.
Processors participating in the exchange are thus synchronized at this point.

Third, deflation {(or the absence thereof) is identified by each processor at
entry 3. In both algorithms, this represents a serial bottleneck as all processors
determine and apply the same rotations for deflation.

Fourth, each processor computes its share of the eigenpairs of the deflated
problems. On a statically-scheduled hypercube, processor loads can be severely
imbalanced at this point. The advantage of deflation is thus lost for both the
symmetric tridiagonal eigenproblem and the bidiagonal SVD.

Fifth, the computed eigenvectors are updated. On the hypercube, this can
be done using Algorithm 3.3.2. For the SVD, the updating matrices, which
are in block form, can be compacted into a single dense matrix thereby saving
some startup costs. The processors are synchronized by the distributed matrix
multiplication.

The times for Algorithms 3.3.1 and 3.3.2 are determined by the matrix order.
The times to form and solve the deflated problem, on the other hand, depend
on the degree of deflation. The experiments of Chapter 5 show that a maximum

speedup of about %p can be achieved for TREEQL for large problems with

142

Updating Step 7 in the
Divide and Conquer Methods

TREEQL:
_ T aerel\ T
T= (aeleg T,) = UAUZ,

T is of order k27.

PSVD:

B:(Bl

ﬂeéce{) — UEVT,
2

B is of order k2.

1. Solve Ty = Uy A\ UT, Ty = U, A UY.

2. Form D + pz2T.

3. Deflate to form D + pz37.

4. Compute D + p3:T = YAYT.

5. Multiply (Ul U)Y.
2

5.

Y
X1
and 1 X.
Xo

. Solve By = V{5, XT, B, = Y, 5, X7,

. Form <E ﬂ) =M.

0 u

. Deflate to form M.

Compute M = YE2XT,

Multiply (Yi .) Y
2

Table 8.6: Solution of a problem of order k2’ on a j-cube.

143

almost no deflation but that the speedup falls to about %p for problems with a
moderate degree of deflation. Even lower speedups can be expected for problems
where significant deflation occurs. A similar result can be anticipated for PSVD.

The experiments of Section 8.4, however, show that deflation is less prevalent
for PSVD than for TREEQL. Thus, a generally higher speedup could be expected
for PSVD. However, PSVD is only competitive with B/III on a single processor
when deflation is significant. This combination of results suggests that bisection
with inverse iteration remains the preferred algorithm on the statically-scheduled,

distributed-memory multiprocessor.

Bibliography

[1]

2]

3]

[4]

[5]

[7]

M. ABRAMOWITZ AND I. STEGUN, Handbook of Mathematical Functions,
Dover Publications, Inc., 1965.

P. ARBENZ AND G. GOLUB, On the spectral decomposition of Hermitian
matrices subjected to indefinite low rank perturbations, Manuscript NA-87-

07, Computer Science Dept, Stanford University, 1987.

J. BARLOW AND J. DEMMEL, Computing accurate eigensystems of scaled
diagonally dominant matrices, report 421, Computer Science Dept, Courant

Institute, 1988.

R. BARLOW AND D. EVANS, A parallel organization of the bisection algo-
rithm, The Computer Journal, 22 (1977), pp. 267-69.

R. BARLOW, D. EVANS, AND J. SHANEHCHI, Parallel multisection applied

to the eigenvalue problem, The Computer Journal, 26 (1983), pp. 6-9.

W. BARTH, R. MARTIN, AND J. WILKINSON, Calculation of the eigenval-
ues of a symmetric tridiagonal matriz by the method of bisection, in Hand-
book for Automatic Computation: Linear Algebra, Springer Verlag, 1971,
pp- 249-256.

K.-J. BATHE AND E.L.WILSON, Numerical Methods in Finite Element
Analysis, Prentice Hall, 1976.

H. BERNSTEIN AND M. GOLDSTEIN, Parallel implementation of bisection
for the calculation of eigenvalues of tridiagonal symmetric matrices, Com-

puting, 37 (1986), pp. 85-91.

144

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

145

H. BOWDLER, R. MARTIN, AND J. WILKINSON, The QR and QL algo-
rithms for symmetric matrices, Numer. Math., 11 (1968), pp. 227-240.

J. BUNCH AND C. NIELSEN, Updating the singular value decomposition,
Numer. Math., 31 (1978), pp. 111-129.

J. BuncH, C. NIELSEN, AND D. SORENSEN, Rank-one modification of the

symmetric eigenproblem, Numer. Math., 31 (1978), pp. 31-48.

S. CRUMP, The estimation of variance components in analysis of variance,

Biometrics, 2 (1946), pp. 7-11.

J. CUPPEN, A divide and conquer method for the symmetric tridiagonal
eigenproblem, Numer. Math., 36 (1981), pp. 177-95.

E. DE DONCKER, J. KAPENGA, AND P. DEWILDE, The symmetric tridi-
agonal eigenproblem on a custom linear array and hypercubes, Technical

Report, Western Michigan University, 1988.

P. DErrr, J. DEMMEL, L.-C. Li, AND C. ToME1l, LAPACK working
note #11: The bidiagonal singular value decomposition and Hamiltonian
mechanics, Computer Science Dept. Technical Report, Courant Institute,

1989.

P. DEIFT, T. NANDA, AND C. TOMEL, Ordinary differential equations
and the symmetric eigenvalue problem, SIAM J. Numer. Anal., 20 (1983),
pp- 1-22.

J. DEMMEL AND A. GREENBAUM. Personal Communication, 1989.

J. DEMMEL AND W. KAHAN, LAPACK working note #3: Computing
small singular values of bidiagonal matrices with guaranteed relative accu-
racy, Mathematics and Computer Science Division, Argonne National Lab-

oratory, 1988.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

146

J. DEMMEL AND K. VESELIC, LAPACK working note #15: Jacobi’s
method is more accurate than qr, Computer Science Dept. Technical Re-

port, Courant Institute, 1989.

L. DEVROYE, Non-Uniform Random Variate Generation, Springer-Verlag,
1986.

J. DIXON, Estimating extremal eigenvalues and condition numbers of ma-

trices, SIAM J. Numer. Anal., 20 (1983), pp. 812-814.

J. DONGARRA, J. BUNCH, C. MOLER, AND G. STEWART, LINPACK
Users’ Guide, STAM Publications, 1979.

J. DONGARRA, S. HAMMARLING, AND D. SORENSEN, LAPACK work-
ing note #2: Block reduction to tridiagonal and Hessenberg form for the
etgenvalue problem, Mathematics and Computer Science Division, Argonne

National Laboratory, 1987.

J. DONGARRA AND D. SORENSEN, A fully parallel algorithm for the sym-
metric eigenvalue problem, SIAM J. Sci. Stat. Comput., 8 (1987), pp. s139-
s154.

A. DUBRULLE, R. MARTIN, AND J. WILKINSON, The implicit QL algo-
rithm, in Handbook for Automatic Computation: Linear Algebra, Springer

Verlag, 1971, pp. 241-248.
S. EISENSTAT. Personal Communication, June, 1989.

G. FOrsYTHE, M. MALcOLM, AND C. MOLER, Computer Methods for

Mathematical Computations, Prentice Hall, 1977.

G. Fox, A. HEY, AND S. OTTO, Matriz algorithms on the hypercube I:
Matriz multiplication, Technical Report, California Institute of Technology,
1985.

[29]

[30]

[31]

[32]

[33]

(34]

[35]

[36]

[37]

[38]

[39]

147

E. GILBERT, Gray codes and paths on the n-cube, The Bell System Technical
Journal, (May 1958).

W. GIVENS, Numerical computation of the characteristic values of a real
symmetric matriz, Tech. Report ORNL-1574, Oak Ridge National Labora-
tory, 1954.

G. GOLUB, Some modified matriz eigenvalue problems, SIAM Review, 15
(1973), pp. 318-34.

G. GoLuB AND W. KAHAN, Calculating the singular values and pseudo-
inverse of a matriz, J. STAM Numer. Anal., Ser. B, Vol. 2 (1965), pp. 205—
224,

G. GoLuB AND C. V. LoOAN, Matriz Computations, The Johns Hopkins
Press, Baltimore, MD, 1983.

G. GOLUB AND C. REINSCH, Singular value decomposition and least squares
solutions, Numer. Math., 14 (1970), pp. 403-20.

G. GoLuB AND C. REINSCH, Singular value decomposition and least
squares solutions, in Handbook for Automatic Computation: Linear Alge-

bra, Springer Verlag, 1971, pp. 134-151.

R. GREGORY AND D. KARNEY, A Collection of Matrices for Testing Com-

putational Algorithms, John Wiley and Sons, Inc., 1969.

D. HELLER AND I. IPSEN, Systolic networks for orthogonal decompositions,
SIAM J. Sci. Stat. Comp., 4 (1983), pp. 261-9.

H. HUANG, A parallel algorithm for symmetric tridiagonal eigenvalue prob-
lems, CAC Document No. 109, Center for Advanced Computation, Univer-
sity of Illinois, 1974.

I. IPSEN, Singular value decomposition with systolic arrays, in Proc. SPIE
Symp. 549 (Real Time Signal Processing VII), 1984, pp. 13-21.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

148

L. IPSEN AND E. JESSUP, Solving the symmetric tridiagonal eigenvalue prob-
lem on the hypercube, Research Report 548, Dept. Computer Science, Yale
University, 1987. To appear in SIAM J. Sci. Stat. Comput.

——, Two methods for solving the symmetric tridiagonal eigenvalue problem
on the hypercube, in Hypercube Multiprocessors 1987, SIAM, 1987, pp. 627—
638.

E. ISAACSON AND H. KELLER, Analysis of Numerical Methods, John Wiley
and Sons, 1966.

R. JENSEN. Personal Communication, January, 1985.

——, Chaos in atomic physics, in Proceedings of the Xth International Con-

ference on Atomic Physics ICAP-X, 1987.

R. JENSEN AND R. SHANKAR, Statistical behavior in deterministic quantum
systems with few degrees of freedom, Phys. Rev. Lett., 54 (1985), pp. 1879
1882.

E. JESSUP AND D. SORENSEN, A parallel algorithm for computing the singu-
lar value decomposition of a matriz, Technical Report ANL/MCS-TM-102,
Argonne National Laboratory, 1987.

——, A multiprocessor scheme for the singular value decomposition, in Par-
allel Processing for Scientific Computing, G. Rodrigue, ed., SIAM, 1989,
pp. 61-66.

N. JoHNSON AND S. KoTz, Continuous Univariate Distributions,
Houghton Mifflin Company, 1970.

S. JOHNSSON, A note on Householder’s method, sparse matrices and con-
currency, Memo 4089, Dept. Computer Science, California Institute of Tech-

nology, 1980.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

149

S. JOHNSSON, A computational array for the QR-method, in Proc. Confer-
ence on Advanced Research in VLSI, 1982, P. Penfield, ed., Artech House,
Inc., 1982, pp. 123-9.

V. KAHAN, Accurate eigenvalue of a symmetric tridiagonal matriz, Tech-
nical Report CS41, Dept. Computer Science, Stanford University, 1966 (re-
vised June 1968).

A. KRISHNAKUMAR AND M. MORF, Eigenvalues of a symmetric tridiagonal
matriz: A divide-and-conquer approach, Numer. Math., 48 (1986), pp. 349-
368.

J. KUTTLER AND V. SIGILLITO, Eigenvalues of the Laplacian in two di-
menstons, SIAM Review, 26 (1984), pp. 163-193.

L. LEITHOLD, The Calculus with Analytic Geometry, Harper and Row, 1976.

S. Lo, B. PHILLIPE, AND A. SAMEH, A multiprocessor algorithm for the

symmetric tridiagonal eigenvalue problem, SIAM J. Sci. Stat. Comput., 8
(1987), pp. s155-s165.

S. MA, M. PATRICK, AND D. SZYLD, A parallel, hybrid algorithm for small
bandwidth generalized eigenproblems, Tech. Report CS-1988-28, Department
of Computer Science, Duke University, 1988.

[57) ——, A parallel, hybrid algorithm for the generalized eigenproblem, in Par-

[58]

[59]

allel Processing for Scientific Computing, G. Rodrigue, ed., SIAM, 1989,
pp. 82-86.

C. MOLER. Personal Communication, 1987.

B. PARLETT, The Symmetric Figenvalue Problem, Prentice Hall, Englewood
Cliffs, NJ, 1980.

J. PETERSON AND A. SILBERSCHATZ, Operating System Concepts,
Addison-Wesley Publishing Company, 1983.

[61]

[62]

[63]

150

E. REINGOLD, J. NIEVERGELT, AND N. DEO, Combinatorial Algorithms,
Prentice Hall, Englewood Cliffs, NJ, 1977.

Y. SAAD, Shifts of origin for the QR algorithm, in Proc. of the IFIP
Congress, 1974.

Y. SAAD AND M. SCHULTZ, Some topological properties of the hypercube

multiprocessor, Research Report 389, Dept Computer Science, Yale Univer-

sity, 1984.

[64] ——, Data communication in hypercubes, Research Report 428, Dept Com-

[65]

[66]

[67]

[68]

[69]

[70]

[71]

puter Science, Yale University, 1985.

A. SAMEH AND D. Kuck, A parallel QR algorithm for symmetric tridiag-
onal matrices, IEEE Trans. Computers, C-26 (1977), pp. 147-53.

R. SCHREIBER, Bidiagonalization and symmetric tridiagonalization, Tech-

nical Report, Saxpy Computer Corporation, 1985.

D. Scott, Computing a few eigenvalues and eigenvectors of a symmetric

band matriz, SIAM J. Sci. Stat. Comput., 5 (1984), pp. 658-666.

B. SmitH, J. BoYLE, J. DONGARRA, B. GARBoOw, Y. IKEBE,
V. KLEMA, AND C. MOLER, Matriz Eigensystem Routines-EISPACK

Guide, Lecture Notes in Computer Science, Vol. 6, 2nd edition, Springer-
Verlag, 1976.

J. SPEISER AND H. WHITEHOUSE, Parallel processing algorithms and ar-
chitectures for real-time signal processing, in Proc. SPIE Real Time Signal

Processing IV, 1981, pp. 2-9.

M. SPRINGER, The Algebra of Random Variables, John Wiley and Sons,
1979.

G. STEWART, Introduction to Matriz Computations, Academic Press, New
York, 1973.

151

[72] J. STOER AND R. BULIRSCH, Introduction to Numerical Analysis, Springer-
Verlag, 1980.

[73] D. SzYLD, Criteria for combining inverse and Rayleigh quotient iteration,
SIAM J. Num. Anal., 25 (1988), pp. 1369-1375.

[74] D. WATKINS, Ezperience with the toda flow method of calculating eigenval-
ues, Tech. Report TR-82-1, Dept. of Mathematics, Washington State Uni-
versity, 1982.

[75] J. WILKINSON, Rounding Errors in Algebraic Processes, Prentice-Hall, Inc.,
1963.

[76] ——, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

[77] , Inverse iteration in theory and practice, Symposia Mathematica Vol.X
of the Institute Nationale di Alta Mathematica Monograf, Bologna, 19

(1972), pp. 361-379.

[78] J. WILKINSON AND C. REINSCH, Handbook for Automatic Computation:

Linear Algebra, Springer-Verlag, 1971.

	1
	2
	3
	5

