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Abstract: We address the barrier of infinite regress associated to the study of mind and
consciousness by using set theoretic methods that include transfinite aspects. Information
processing in neural networks (as modeled by McCulloch-Pitts equation dynamics, for
example) is abstracted to construct various other dynamical systems on sets and classes.
To these is applied a transfinite form of the Renormalization Group theory of physics.
This novel form of the renormalization methodology is used to develop a framework and
theory of limit points (in both the countable realm and the transfinite) of the constructed
dynamical systems as well as to develop the related notions of fixed point, basin (of
attraction), phase and phase diagram. Such features are set and class theoretic analogs of
correspondents in physics. In previous work, we introduced axioms for what we called
consciousness operators, which generalize the operator arising in the discussion of
Russell’s paradox. In the current work, we take steps toward the construction and
classification of all consciousness operators. We reformulate the classification problem
in the language of an abstract renormalization group flow. These results (whose semantic
equivalents in the study of mind and consciousness were heretofore unknown) are used to
inform and augment the authors’ axiomatic theory of consciousness (experience and
awareness) framed in the language of sets and operators. ’
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1: Introduction ,

Mental processing such as reasoning and perception supervene on interaction of our
senses with the environment. An affirmation of this assertion can be found in Kant,
1781, “All our knowledge begins with the senses, proceeds then to understanding and
ends with reason.. . It is beyond a doubt that all our knowledge begins with experience.”

However, the limitations of our senses bound the capability, both scope and style, of
those mental processes. While we are able to perceive, model and analyze much of our
environment, both physical and mental, there are aspects of nature that confound our
abilities. Our mental processes support an intuitive notion of such fundamental aspects of
our experience as time and space. Yet sensory limitations inhibit development of a deep
understanding of them. Our perception of time and space could very well be a delusory
basis upon which to frame an understanding of nature. The same limitations deprive us of
meaningful understanding of mind and consciousness. The construct of the homunculus
(Watson, Berry, 2003) characterizes a critical shortcoming (stemming from its self
referential nature) that our senses impose on our understanding of consciousness that, in
particular, takes form of an infinite regress.

We use Cantor’s set theory, including its 20™ century refinements (Aczel, 1988,
Devlin, 1993, Hrbacek, Jech, 1999, Moschovakis, 2005 ...) to penetrate the barrier of
infinite regress in the study of mind and consciousness. We exhibit new features and
constructs that transcend this barrier in both the countable realm and in the transfinite, the
latter a highly structured universe. Motivated by the dynamics of mental activity in
Miranker, Zuckerman, 2009b, we use renormalization (Goldenfeld, 1992, Miranker,
2008) to develop such transcendent features. This development exposes existence of
dynamical systems in the transfinite realm. These systems support extension of the
mathematical theory of consciousness developed in MZ 1% and of the applications of that
theory (that include modeling of neural network activity) elaborated in MZ2. (A prior
reading of MZ1 and MZ2 is helpful but not essential in order to access the present text.)
We shall show in analogy with the study of phases of matter that renormalization
uncovers existence of novel set theoretic constructs (including a phase diagram for sets)
in the transfinite. We develop semantic equivalents of such constructs (that were
heretofore unknown) to advance the modeling and analysis of mind and consciousness.

Outline

Section 2. In this section of preliminaries we assemble properties of classes of sets and
operators on sets that we shall require. Emphasis is placed on operators called selectors.
Following that the constructs of metaclasses and metaoperators are described.

Section 3. The notion and properties of a perfect class are developed. The selector

associated to a perfect class is (under an additional hypothesis) a consciousness operator.
The collection of consciousness operators (a metaclass) forms a commutative semigroup.
Then accretion dynamics, a Platonic® dynamics on sets associated to a choice of selector,

' See Remark 4.20 and footnote 13 for an analytic instantiation of these Kantian ideas.
2 The citations Miranker, Zuckerman, 2009a/b will hereafter be referred to as MZ1/MZ2, resp.
3 By Platonic is meant ideal or the virtual as opposed to physical or the palpable.




is introduced. The accretion dynamics forecast a notion of a transfinite limit point to be
introduced in Sect. 4.2. Any consciousness operator is a selector (MZ1). Each step of
accretion dynamics appends to (augments) the set being mapped, this being a critical
feature of the development.

Section 4. We develop a pair of associated Platonic dynamical systems. These are
metadynamics(a) on the metaclass called Classes and metadynamics(a’) on the meta-
class called Selectors. The steps of both of these dynamics are composed of accretive
class operations. This feature enables introduction of a transfinite limit process that
generates the constructs enumerated in the title of Sect. 4. To metadynamics(a’) is
assogiated a transfinite renormalization metaoperator . We study the associated limit
points of " and their basins of attraction. A basin is a set theoretic analog of a phase of
matter in a physical system. To metadynamics(a’) we associate a transfinite sequence of
powers of an operator, these used subsequently to generate transfinite limit points of the
dynamics. This framework is a key feature for our renormalization theory. Connections
between such limit points and consciousness operators are developed. We shall use the
terminology, renormalization (semi-) group (RG) from physics. With this.terminology,
we shall mean the successive stages of a trajectory of an appropriate dynamical system,
including especially its initial point and its transfinite limit point.

Section 5. We introduce a new dynamical system called métadynamics(b) defined on the
_class " of all sets. Its fixed points are called finitely perfect sets. With the latter is
associated the limit point operator ¢, which we employ to characterize the associated
limit points and their basins of attraction. These considerations form a bridge between
the metadynamics(a) of Sect. 4 and metadynamics(c) specified in Sect. 6. (The latter have
_relevance to neural networks.) We introduce & and I, the classes of fixed points and
their basins, generated by metadynamics(b). A decomposition of the class of sets, S in
terms of & and I generates specification of a phase diagram for sets. Properties of
these constructs are developed. Structure of the power set %2(F) of a fixed point F is
conceptualized diagrammatically and cardinal invariants ofaset Fe & are discussed.

Section 6. We mtroduce the set of finitely pictured sets (denoted FP). This set forms a
bridge between our axiomatic developments and neural networks in the brain MZ1,
MZ2), the modeling of the latter being naturally framed in FP. The FP notion motivates
specialization of metadynamics(b) to a metadynamics(c) on the subsets of FP all of
whose elements are normal. Then the notions of fixed point, basin of attraction, phase
and a phase diagram associated to metadynamics(c) are introduced. In this way, aspects
of the theory developed become available for application to neural networks.

Section 7. We introduce special consciousness operators and sets of those consciousness
operators, and then we develop their associated properties. We show how these special
consciousness operators have a fundamental correspondence to the limit points and
phases of both metadynamics(a) and metadynamics(c).

Section 8. The renormalization of a selector, a result of a transfinite process, is defined.
A commutative diagram illustrating this renormalization and the restriction of a_




consciousness operator to FP is given. That diagram illustrates relationships between the -
transfinite limits of metadynamics(a) and ordinary limits of metadynamics(c).

Section 9. A clearer picture of the constructs in this work is developed by application to
the consciousness related notions of experience and awareness elaborated in MZ1 and
MZ2. To do this, we introduce the construct of a quale of a set x, and we show that the
collection of all qualia, -2 ( x), is itself a set. This permits definition of the qualia
operator .2. Properties of .2 ( x) and of 2 are developed, including when restrictions to
FP (made for neural net applicability) are imposed. Several diagrams are given to
conceptualize the theory and semantics of these new constructs.

Section 10. To critique the dynamical systems constructed in this development, we

* assemble them into a hierarchy that includes the McCulloch-Pitts model of neural
network activity (Haykin, 2009, Hertz, Krogh, Palmer, 1991). The expression of
analogies between the mental (set theoretic) and the physical (material), concerning
renormalization and phase diagrams, in particular, gives context to a relationship between
renormalization and consciousness. A table of these analogies along with another called
the Syntax-Semantic Dictionary are employed to supply semantic interpretations for the
syntactic developments of our theory. A semantic discussion of infinite regress in the
context of consciousness is given along with a table of supplementary semantic
interpretations. Finally we comment on future work.

Appendix: We defer presentation of proofs and demonstrations, assembling them in the
appendix. Prior appendix entries are a glossary, a glossary of operators and classes, a
glossary of metaoperators and the list of the consciousness operator axioms of MZ1.

2. Preliminaries; operators and classes, metaoperators and metaclasses

We assemble required properties of classes of sets and operators on sets with emphasis
on operators called selectors®. Then metaclasses and metaoperators are introduced.

2.1 Operators and classes
‘We begin by defining constructs of interest. (See the Glossary of Classes and Operators.)

Definition 2.1 (Order of a pair of operators, lattice): The collection of operators is
partially ordered. In particular, if Vx, @, xc @,x we write @,c @,. Further, with the

notionsU and M, the collection becomes a lattice (Birkhoff, 1967).

Definition 2.2 (Subset of a class): If 4 is a set and G’is a class, then A < & if and only
if VyeA,yeb.

* The Russell operator, denoted 9 is an example of a selector. 92 is also a consciousness operator
(see Sect. 3), taking a fundamental role in the foundations of consciousness developed in MZ1.




Definition 2.3: (Selector (MZ1))): An operator ¢ is a selector if for a fixed class G, we
‘have @x= G x. Equivalently, @ isaselectorif xCcy= Qx=xn@y.

Remark 2.4: The class /" of all sets is referred to as the Aczel universe, which includes

the class J,,. of non-well-founded sets, in order to emphasize that we employ the anti-

Joundation axiom in lieu of Von Neumann's axiom of foundation (MZ1 and Aczel, 1988).

Definition 2.5: (Class associated to a selector; selector associated to a class): If Qis a
~ selector, the class 6’(() associated to it is defined by’ 6(® ={yeS l OBy = By}
Given a class 6, the selector (? (6) associated to it is defined by @ (6) x = Gx.

- Properties of selectors and classes are given in the next four statements. (Recall that all
proofs are given in the appendix.) :

Lemma 2.6: If (@ is a selector, then Vx Gx=6(@nx. If @, and 612 are selectors,
then @, @, is aselector,and @, &, = O, N @,= @, @,. (Compare MZ1, Prop. 3.11.)

Proposition 2.7: Under composition, the collection of selectors is a commutative semi-
group, the identity operator 7 is the identity element, and the elimination operator & is
- the zero element.

Lemma 2.8: Let Zbe a selector, then @ (6°(Z)) = Z. Let & be an arbitrary class, then
G (O (D) =9D.

Remark 2.9: Lemma 2.8 establishes a 1-1 correspondence between classes and selectors.
2.2 Metaoperators and metaclasses

A metaclass is a collection whose elements are classes (MacLane, 1970). We shall be
especially concerned with two metaclasses®, Classes, the collection of classes and
Selectors, the collection of selectors. Metaoperators, two of which (@ - & (®) and
G ((06)) introduced in Sect. 2.1, are mappings between a pair of metaclasses. (See
Aczel, 1988, Chaps. 6 and 7.) Other examples will appear in the development to follow.
Note that the semi-group identified in Prop. 2.6 is a metaclass.

3. Consciousness operators, perfect classes, accretion dynamics

The notion and properties of a perfect class are developed. An operator associated to a
perfect class (under an additional hypothesis) is a consciousness operator. The collection
of all consciousness operators forms a commutative semi-group. We introduce accretion

> 48 is the brace operator. Recall that a glossary of operators and classes is found in the appendix.
8 For clarity, metaclasses are capitalized and italicized.




dynamics, a Platonic dynamics on sets associated to a choice of selector. Accretion
dynamics forecast a notion of a transfinite limit point to be introduced in Sect. 4.2.

3.1 Perfect classes and consciousness operators

The following lemma concerning consciousness operators (recall that any
~ consciousness operator’ is a selector (MZ1)) establishes the framework for specifying a
perfect class. We then define that construct as well as the one of a derived class.

Lemma 3.1: If %7’is a consciousness operator, and A ¢ 6’(97), then A € G(%~ )

Definition 3.2 (Perfect class): A class G’is perfectif AC6G = AeG,

Definition 3.3 (Derived class): The derived class 6’of a class &, is given by
¢’={yeS|VzeyzeC}.

Properties and eXamples of perfect classes are developed in the next several statements.

Lemma 3.4: a)If A€ 6, then Ac G.
b) If 6’ c &, then & is perfect and conversely.
¢) If G is perfect, then so is 6.

. Lemma 3.5: a) A perfect class is a proper class. b) The intersection of two perfect
classes is a perfect class. :

~ Example 3.6 (Perfect classes): (Recall that all demonstrations are in the appendix.)

1. The class J” of all sets.
2. The class A= {x]x ¢ x} of normal sets. o :
3. The class S’ W ( specified in Def. 2.2 in MZ2.) of well-founded sets. S, o 18

referred to as the Von Neumann universe.
4. The derived class A”".

Each of these perfect classes corresponds to an operator (a selector). In particular,
, def ’

Ix=JSx, Rx=Nnx, Wx= Jyx and Ax= N Nx,
where  is the identity operator, 92 is the Russell operator and %/ is the well-founded
operator (see the Glossary of operators and classes). Note that %W c A c R c I

Lemma 3.7: The perfect class /), is a subclass of every other perfect class.

Remark 3.8: The class .2 of abnormal sets and the class of all ﬁmte sets are each proper
but not perfect.

7 The consciousness operator axioms of MZ1 are listed in the appendix.




Next we develop properties of the metaclass of consciousness operators, including, in
particular, a connection to perfect classes.

Lemma 3.9: If %is a consciousness operator, then 97'c 2.

Definition 3.10 (Operator generated by a perfect class): If & c A is a perfect class,
let the operator 97 (6) be specified by 92° (6“)x = 6 Nx,Vx. (Compare Def. 2.6.)

The following Theorem 3.11establishes a one- to -one correspondence between perfect
subclasses of A" and consciousness operators.

Theorem 3.11: Suppose 6’ c A is a perfect class (Def. 3.2). Then %" (&) is a
consciousness operator. Conversely, suppose 9% is a consciousness operator. Then the

class GIH) is perfect, and 6’ (H) < A7 (This theorem is illustrated in Fig. 8.1.)

J

Figure 3.1: The perfect subclasses S’ SO N
illustrating Lemma 3.7 and Theorem 3.11

Theorem 3.11 leads to Cor. 3.12 and Prop. 3.13 in which striking results concerning
the algebra of consciousness operators are given.

Corollary 3.12: If %7 and 97, are consciousness operators, then so is I7,.97,, .
Moreover S H, = K, NI, =92, F,.

Proposition 3.13: The metaclass of consciousness operators is a commutative semi-
group with the Russell operator 92 as the identity element and with the well-founded
operator 7 as the zero element. (Compare Prop. 2.7)

‘Example 3.14: An example of a selector that is not a consciousness operator is (* (&),
where D=’ wfu{{Q Q}} and Q is the Quine atom. Moreover, W c QD) cA.

A schematic illustrating the location of the metaclasses Selectors and Consciousness
Operators within the theory of metaclasses is shown in Fig. 3.2.




Classes

Relations

Functions

Operators

Selectors

Consciousness
Operators

Figure 3.2: Nesting of metaclasses. See Example 3.14
3.2 Accretion dynamics

We now introduce accretion dynamics, a step of which is a generalization of Von
Neumann’s successor operator from the theory of ordinals. Accretion dynamics, the first
of a sequence of Platonic dynamical systems defined on abstract constructs, is associated
to a choice of selector, the latter possibly being a consciousness operator. Each step of
accretion dynamics appends to (augments) the set being mapped. This device forecasts a
notion of a transfinite limit point to be developed subsequently.

Definition 3.15 (Accretion dynamics): The dynamical system8(<f, lu 95’61), where® @
is a selector, is called accretion dynamics. We write the associated evolution equation as -

x(s+1)=(10%BA)x(s),seN.

Since accretion dynamics flow in <’ and so do not model an apparently physical
process, we regard s as a Platonic time variable that we refer to as accretion time.

Example 3.16: If @ =1, then 1U 98¢ is the Von Neumann successor operator (generator
of the ordinals). The only fixed point of 1 93 is the Quine atom Q.

We conclude Sect. 3 with the following remark that specifies when fixed points of
accretion dynamics are absent.

8 Throughout a dynamical system will be denoted by an ordered pair, such as (¢, ). The first
member of the pair is the domain of the system and the second is the propagator.

’ For clarity we shall hereafter use 1 in place of 7 to denote the identity operator. The relevant
meaning of the symbol 1, so commonly overloaded, is clear from context.




Remark 3.17: If 6 ¢ A is a perfect class, the accretion dynamics associated to the
-consciousness operator J (6), a selector, has no fixed points.

4. Metadynamics(a), metadynamics(a’), transfinite iterations, fixed point, limit
point, renormalization group (RG), metaoperator, phase and basin of attraction

We develop a pair of associated Platonic dynamical systems, namely, metadynamics(a)
on the metaclass called Classes (in Sect. 4.1) and metadynamics(a’) on the metaclass
called Selectors (in Sect. 4.2). The steps of both of these systems are composed of
augmenting class operations (as with accretion dynamics). This feature enables
introduction of a transfinite limit process that generates the constructs enumerated in the
title of this section. Metadynamics(a’) is associated with a transfinite renormalization
metaoperator . We study the associated limit points of 2 and their basins of
attraction. Such a basin is a set theoretic analog of a phase of matter in a physical system.

4.1 Metadynamics(a), transfinite limit and transfinite limit points

We specify metadynamics(a) and then introduce a transfinite sequence of powers of
an operator, these used subsequently to generate transfinite limit points of the dynamics.
Connections between such fixed points and consciousness operators are developed. We
begin with two definitions used in the specification of metadynamics(a) that follows.

Definition 4.1 (Power class transformation): The power class transformation is given
' @PAa= 0= {A eS|Ac A}={Ae S|VxeA xe A}. (See Def.3.3.)Note
that 42 is an isotonic metaoperator

Definition 4.2 (Transformation 1UV): The transformatlon lu.@ A (1u £)

A is deﬁned as follows.
A+ A U class of subsets of A,

Definition 4.3 (Metadynamics(a), evolution equation, metatime): The transformation
1.2 generates the dynamical system, (Classes, 1 U &2), called metadynam1cs(a) whose
associated equation of evolution is

Ar+1)= (lu.@) )L/Z(r)

We see that metadynamics(a) are accretive (1U.% )€ D .£). Since these dynamics
flow in Classes, r is a non-physical Platonic time that we refer to as metatime.

Remark 4.4: G’is a perfect class if and only if (1 U.92)6 = G, that is, if and only if Gis a
fixed point of 1 UZ2.

" The & used in Def. 4.1is a metaoperator since it acts on a class. Context should eliminate
confusion between the two uses of & Note that 1. applied to a set/class delivers a set/class.




The following Theorem 4.5 shows a critical role played by the fixed points of
metadynamics(a) in the theory of consciousness operators.

Theorem 4.5: A selector (}is a consciousness operator if and only if @ < 9% and

(1u LYB(O)=6(®). (See Def. 2.5.)

We shall be concerned with the transfinite powers of operators, and so we review the
following axioms of transfinite induction (for operators), wherein J°, , denotes the class of

ord
ordinals (finite and infinite) (Hrbacek, Jeéch,1999, Chap. 6).

l. VaeJ,,, O ==1= A(O"), equivalently O*'x= HO°x), Vxe S

2. If B is a limit ordinal (a limit ordinal is an ordinal that is not a successor of an
ordinal), @*= U/s O *, equivalently @°x= U @%x, Vxe JS

a<f

Using these axioms, we now develop properties of transfinite sequences of powers of
operators, including, in particular, transfinite limit points (of metadynamics(a)). We also
develop properties of these constructs and give examples. We begin with Theorem 4.6,
concerning transfinite sequences of powers of an operator.

Theorem 4.6: Any operator (% J’ =2 J’ leads to a transfinite sequence of its powers.

Next using the transfinite powers of the operator1U .42, we shall show how to
construct the powers of the metaoperator 11U 2.

Definition 4.7 (Transfinite sequence of metaoperators): Vo €, and V class 4 let

@aa{dg U (ue)w

weLA
(See Footnote 10.)
‘Lemma 4.8: Va e J, ,, then
a) ®,is an isotonic metaoperator, c)if B isa limit ordinal, ®, = Uﬁ P,
b)if xed, @ x=(1UPL) x, d)(1uP)D, =D, .

Definition 4.9 (Transfinite powers of the metaoperator 1U °): YVa e J ,, let

def

v ) =0,




We shall call {(1 v )a loe S, } the sequence of transfinite powers of the
metaoperator1U 2.

Definition 4.10 (Transfinite limit of iterations of 1 U.%° , “notation): If ¢ ié a class,

let A *= U (1 v L )a(/Z denote the transfinite limit point of the iteration

xe Jord
of 1 V.42 with initial point.£. For any operator ¢, we define & *(®) = (6’ ())*.

Proposition 4.11: _Z* is a class.

Next we give several results, showing that a transfinite limit point has a fixed point
property, and then that there is a critical connection of a transfinite limit point to a
consciousness operator.

Lemma 4.12: Let 6 and & be classes. Then CcCcYP = 6*c D* Inparticular,
&* < 6* for any class 6. Moreover, 6 < 6 "

Example 4.13:2) J" =J,,. b)J", ,=J . Recall that /. is a proper class.
Theorem 4.14: Corresponding to any class 7, the class ¢ *is a fixed point of 1.,

That is, a limit point is a fixed point. Conversely, a fixed point of 1\ is a limit point
thereof. Moreover, ¢ is perfect if and only if £ *=_¢ (Remark 4.4).

Corollary 4.15: A selector (?is a consciousness operatof if and only if @ c 9 and
6 is a limit point of metadynamics(a). '

Corollary 4.16: If (s a selector, I~ ( C*(D) n N ) (Def3.10)is a

consciousness operator. The metaoperator @ > H(G* (D) N N)isa
projection of Selectors onto Consciousness operators. (See Def. 8.1.)

Now we specialize the notion of transfinite limit to sets, and along with that we
introduce the notions of the phase of a set and then of the transfinite trajectory of a set.

Definition 4.17 (Limit point of a set, phase of a set): The limit point of a set x is the

“perfect (and proper; see Lemma 3.5) class x" (Def. 4.10). We shall call x"the phase of x
relative to metadynamics(a). For C € oJ, the metaclass associated to Cis called the

Phase(C), where Phase(C) = {x* |xeC } .

Definition 4.18 (Transfinite trajectory of a set): Let x, =(1U.% )a x where xe J
and o e J,. The transfinite trajectory of metadynamics(a) that emanates from - x is

-the transfinite sequence of sets {xa lee S M} .

10




Aspects of metadynamics(a) are conceptualized in Fig. 4.1.

x*
J": class of sets <

(Aczel universe)

.,
B e

Figure 4.1: Illustration of aspects of metadynamics(a). The limit point x
resulting from a set x is a class lying outside of the class J". We refer to the

class X" as the illusion’’ generated from the set x (experience) by metadynamics(a).

As a reminder of the semantic goals of our study, we 1ntroduce a particular
consciousness operator arising from experience.

Definition 4.19 (Particular consciousness operator): Z(y)=0(y" N N)isa
consciousness operator depending on a set y (i.e., arising from an experience y (Def 9.1)).

Remark 4.20: JZ(y)x=y" NN Nx. Note that “y = (y)” is a metaoperator.
Note that (x,y) — JZ{y)x is an operator , say #, from ordered pairs of sets to sets'”.

Now we define the notion of a basin of attraction, and along with that, a representation
of Classes as a union of basins. :

Definition 4.21 (Basin of attraction of a fixed point class): The basin of attraction of a
fixed point class &, namely Basin(5") of metadynamics(a) is a metaclass, i.e., the
collection of all classes 6’such that 6*= &,

Corollary 4.22: Classes = U Basin of attraction of the fixed point. Moreover, the
fixed point s

union is disjoint.

Next we specify the basin of attraction operator, %/, corresponding to metadynmics(a)).

! The syntax and semantics of the notion of illusion will be elaborated in forthcoming work.
12 An interpretation of the action of # may be derived from Kant, 1781 (see Sect. 1). In

particular, that experience, namely (x, y) leads to knowledge, namely 97" ( y)x .

11




Definition 4.23 (Basin of attraction metaoperator 7’ for metadynmics(a)): The basin
of attraction metaoperator %’ (constructed from metadynamics(a)) that takes Classes to
Classes is given by

P(@)={ze S|'= &}.
9/(6) representing all sets attracted to z* = & by metadynamics(a).

Question 4.24: We leave open the question: When is 2/(6’) nonempty? Note that a
necessary condition for /(6) to be nonempty is that & be a fixed point of 1+ 2.2,

We now develop properties of ¢/ that connect basins, phases and equlvalence classes
of limit points.

Lemma 4.25: Let W € J. Then 7/( ) c W' and W(W*) is a proper class.

Definition 4.26 (The equivalence relation =,): z, =, z, & z; =z,. Thatis, z;and z,
belong to the same phase. (See Def. 4.1.)

Remark 4.27: 1.If W, # W; , then tw( Noav(w)=0. 2. 9(&")=2" 3.1f
& W, then V(W) W".
Proposition 4.28: 7/ (W*) = Basin(W*) N Jis the =, equivalence class of WindJ’,

4.2 Metadynamics(a’), RG metaoperator L, basin, phase, phase diagram

. Metadynamics(a’) arises from metadynam1cs(a) by re-expressing the dynamics on
Classes as a dynamics on Selectors’®. We shall use the terminology renormalization
(semi-)group (RG) from physics, meaning the steps of a trajectory of a dynamical system,
including its initial and transfinite limit points. We introduce metadynamics(a’) denoted
by (Selectors, L ). The metaoperator & yields a characterization of consciousness
operators and the notion of the phase of a selector. (In the terminology of the RG theory
of physics, the term phase denotes the phase of physical matter.) Physical (semantic)
interpretations of this section are assembled in Table 10.2.

Definition 4.29 (Metadynamics(a’), RG metaoperator &' ): Referring to Remark 2.8,
we see that corresponding to metadynamics(a) on Classes, there is a metadynamics(a’) on
Selectors denoted by (Selectors, L), where L denotes the RG metaoperator (Def. 2.4.)

X(2)=0(1v®e(2)).

The associated evolution equation (described by the commutative diagram in Fig. 4.2) is
@ (r+1)= { or)).

" The developments of Sect. 4.2, which shall be discussed in greater detail in future work are not
referred to again until the Sect. 10 on semantics.
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G
Selectors ———p Classes

X luee
Selectors 4——— Classes
B o
Figure 4.2: A commutative diagram illustrating metadynamics(a’)

Lemma 4.30: Let @ be a selector. Thena) @ ¢ X(@) andb) UP) =0 <
(1uP) (D=6 (D.

EXample 4.31: From Lemma 4.28 and referring to Example 3.6, we see that the distinct
selectors ¥, M, 9% and I are fixed points of X"

Employing 9% and &, Cor. 4.32 establishes a key characterization of a consciousness
operator, a first step toward the construction and classification of such operators.

Corollary 4.32: 97’is a consciousness operator if and only if a) 9 is a selector,
b) F'cHhRand ¢) X(F) =K. '

We now introduce the constructs of a transfinite trajectory of a selector (relevant
to metadynamics(a’)) and the transfinite limit of a trajectory. Properties of such limits
are developed and examples given. We begin with the following definition.

Definition 4.33 (Transfinite powers of X): Let & be a selector. Then
def Ot‘
X (2)= 0 (1vP) 6 (2)).

_ Definition 4.34 (Transfinite trajectory, transfinite limit): Given an initial selector ¢,
the transfinite trajectory of (?is the transfinite sequence{ L (D]oe S O,d} . We call the.

def
selector @** = U (@) = lim XL*( @ ) the transfinite limit of this trajectory.
(1 E“'f'ord o EJ‘ord

Lemma 4.35: Let @and Zbe selectors. If @ < Z, then @¥c 2 and @ **= @ (67 (D).
Example 4.36: If the selector ¢ %, then ™= 9. (See Example 3.6.)
The following definition of phase and basin of attraction of a selector are motivated by

RG physics.
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Definition 4.37 (Phase and basin of attraction of a selectér): Let @ be a selector. The
phase of @ is the limit selector @ **. If Z(@) = @, then the basin of attraction of (is
the metaclass of those selectors 2 such that Z** = .

| Properties of basins and limit points, including especially their connection to
consciousness operators are now developed.

Proposition 4.38: Let Zbe a selector. Thena) X(Z ™) =2 ™ b)if () = 2, then
Z**=Z andc)if Be S, (X (2 )** = Z** and the entire transfinite trajectory of
Z lies in the basin of the limit point Z **,

Corollary 4.39: The transfinite trajectory of a selector does not pass through every
operator in the metaclass Selectors.

We connect limits points of metadynamics(a’) to consciousness operators by
reformulating Cor. 4.16 as Cor. 4.40, which delivers a second step towards the transfinite
construction of consciousness operators.

Corollary 4.40: If (is a selector, then (3 N 92 )** is a consciousness operator.

A decomposition (representation) of the metaclass Selectors given in Prop. 4.41 leads
to the specification of a phase diagram.

Proposition 4.41: The metaclass, Selectors = U Basin of attraction of (%
' O: X(O)= 0
Moreover the union is disjoint.
Definition 4.42 (Phase diagram): The decomposmon displayed in Prop. 4.41 is called
the phase diagram of Metadynamics(a’).

S. Finitely perfect sets, metadynamics(b), trajectories, limit points, fixed points,
phase diagrams

We introduce a new dynamical system called metadynamics(b) defined on the class J°
of all sets. Its fixed points, called finitely perfect sets, are located in the countable realm.
Properties of the constructs associated to metadynamics(a) are developed. These include
limit points, basins, phase and a phase diagram. Recall that a basin is a set theoretic
analog of a phase of matter in a physical system. These considerations form a
mathematical bridge between the metadynamics(a) of Sect. 4 and metadynamics(c) (the
latter supplying a link to neural nets) to be specified in Sect. 6.

5.1. Metadynamics(b)

We begin with the introduction of finitely perfect sets and metadynamics(b), an
augmenting dynamics on such sets. Then we study the associated limit points and their
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basins of attraction. Metadyanamics(a) differs from metadynamics(b), since the former
generates transfinite limit points while the latter generates ordinary limit points (what we
shall call limit points in the countable realm). A notion of a phase diagram for sets
emerges from these considerations.

Definition 5.1 (Set of finite subsets): For any set A €JJ, _@fA will denote the set of-
finite subsets of A. Note that &, is isotone.

Definition 5.2 (Finitely perfect set): Set D is finitely perfect if 2, D < D . Equivalently
if Vn e N and for every mapping g:nt> D, {g(m[m < n)} e D . (See Remark 5.8.)

Remark 5.3: a) No finite set can be finitely perfect. Hence a finitely perfect set is
infinite. b) Moreover the operator %, is one to one.

Definition 5.4 (Metadynamics(b) and trajectories): The pair (J’,l U f) specifies
metadynamics(b). Given an initial point x € S, the trajectory of x is the ordered set

{(l v, )n xln e N}. Taking r as metatime, the associated equation of evolution is
A(r+1)=(1U 2, )A(r).

(Compare Def. 4.3.) We note that metadynamics(b) are accretive.

Next we introduce the notion of a limit point of metdynamics(b) and an associated
limit point operator £. Properties of these constructs are developed and examples given.

Definition 5.5 (Limit point of metadynamics(b), limit point operator_~, ~ notation ):
Let A be a set. The set A denotes a limit point of metadynamics(b): ( JS1u L f). Ais

givenby A= U (lu_@f)"A,equivaIenﬂy, f{:sup(lu_@f)"A =(1u _@f)wA. Ais
neN n—oo :

a set. The limit point operatorf is specified by £(A)= A .

Rgmark 5.6: Ao B> A D B , from which it follows that A - %) , VA € J. Note that

&= H, where H is the set of hereditarily finite sets (Hrbacek, Jech, 1999, Chap.6).
Moreover, A C A. :

Lemma 5.7: @fﬁ Cc A. Thatis, any finite subset of A is an element of A. (Compare

Def. 5.2.) Thus A isa finitely perfect set.

Remark5.8: O=Hc JS . 1s an example of a finitely perfect set.
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We now show that fixed points of metadynamics(b) are its limit points.
Definition 5.9 (Fixed point of 1 U.%2,): We say that D e’ is a fixed point of 1U %2, if

(1u®;)D=D. |
Lemma 5.10: If (1U &, )A=A, then A=A.
Example 5.11: Examples of fixed points of 1 .42, are a) H, b) FP (see Def. 6.1) and
c)FP N A ’
‘Now we develop a collection of properties of trajectories of metadynamics(b). These

include the interrelationship of various associated constructs, such as finitely perfect sets,
fixed points, phase of a set, basins of attraction and the basin operator Z (Def 5.16).

Proposition 5.12: a) The set A is finitely perfect for any set (any initial condition) A € S.
b) Moreover A is a fixed point of 102, . c) Conversely, any fixed point of 1V, is

finitely perfect. d) Moreover, for any set 4, A=A.
Interpretation 5.13: For any initial condition A €; a fixed point A of the dynamical

system (S, lu® f) is reached in a countable (possibly finite) number of steps.

Definition 5.14 (Basin of attraction of a fixed point; phase of a set): Let the set Fbe a
fixed point of 1 u.@f. The basin of attraction of F'is the class {A‘A =F } ;if B is a set,

B is called the phase of B relative to metadynamics(b).

Proposition 5.15: Let the set /' be a fixed point of 11U .%2,. Then the class of sets
{AIA =F } is also a set. Moreover, there exists a set B such that B=F,but B#F. That

is, the basin of F contains a set that is not a fixed point.

Definition 5.16 (Basin of attraction of a set and associated basin operator ¥ ): For
any set ¥, let Z(Y), the basin of attraction of ¥, be the set given by Z (Y )= {A|;1 =Y } :

(Contrast this with ¢’ in Def. 4.23.)
Remark 5.17: a) Z(Y) # @ < Y is a fixed point of 1. Moreover, b) Z(Y)c #Y,

and ¢) if F is a fixed point of 1.2, then Z(F) contains a set 4 that is not a fixed point.

Summary 5.18 (Properties of metadynamics(b)):

1. Every initial point (set) has a unique limit point (set) that is reached in a countable
(possibly finite) number of steps. (Def 5.5)

2. No fixed point is universally repelling. (Prop. 5.15)

3. Each fixed point is a limit point. (Lemma 5.10)

4. Every limit point is a fixed point. (Lemma 5.10)

5. No trajectory passes through every point in .

6. There is no initial point such that its trajectory fills the basin of attraction of the limit
point of that trajectory. (The proof of this property will be presented in later work.)
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5.2. Classes of fixed points, classes of basins, phase diagram

We introduce & and 97, the classes of fixed points and of their basins, respectively,
generated by metadynamics(b). A decomposition of J” in terms of & and A generates
- specification of a phase diagram for sets. Properties of these constructs are developed.

Definition 5.19 (Class of fixed points): Let F = {F |{1 X7 f)F = F} denote the class of
fixed points of 1L &Z,, that is, of metadynamics(b).

Definition 5.20 (Class of basins): Let A = { JF|lFe F } denote the class of basins of
fixed points F € & ‘

Regarding # as an operator with domain & and range S motivates Prop. 5.21.

Proposition 5.21: 7 is an invertible operator. Moreover ¥ = % @ (9) where 7/is
the monadic set union operator.

Corollary 5.22: F={AlAe S }.

. The decompositions described in the following proposition are key for spec1fy1ng the
notion of a phase diagram for metadynamics(b). (Compare Prop. 4.41.)

Proposmon 523: = U j{F ) Moreover this union is disjoint. Equlvalently,
Fe&F

J = U B=%I (Def. 5.20), where % is the monadic union metaoperator.
Be &

Definition 5.24 (Phase diagram): The decomposition displayed in Prop. 5.23 is called
the phase diagram of metadynamics(b). (Compare Def. 4.42.)

Corollary 5.25: The following three classes are identical and proper.
1.F

2. {F|F is finitely perfect }
3. {AlAes}

5.3 Properties and relationships

We develop results that demonstrate properties and relationships among the constructs
F. L LB, S, L., ~ and H. The structure of F(F) for a typical fixed point F € F

is conceptualized diagrammatically and cardinal invariants of F € & are specified. We
begin with the following two propositions. The first assembles properties of # and .
The second gives an optimization property of a limit point of metadynamics(b).
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Proposition 5.26:
i) L=sup(lu _@f)”. vi) Z(Y)={4|£(4)=Y}.

i) 1UZ,) £ =7 vii) £(A) e Z( £(4)).

i) £(10E,)= 7. vii) B.L¢ I,

iv) AcB= FAc ¥B. ix) If Be Z(F),then #(B)=
v) 1 C’f and F'= £

Proposition 5.27: For any set A, A= N F . (Restating: A is the least fixed
» {Fe #, AcF}
point G such thatA c G ).

Next we describe the cardinal invariants of F € &.

Proposition 5.28: The following is a list of six cardinal invariants of F € F along with
associated properties. (Recall that #,(F) c F .)

a) | AF)|=2", d) | j J<2m
b) | 2, (F)|<|F| e) | 2 (F) —j(F)ISZ'F',
olF-Z(FsIFl, 0| Fne(F)<| #Ap).

Fig. 5.1 shows the structure of a fixed point F' of metadynamics(b), wherem a triangle
whose vertex is labeled F is a representation of & (F).

Figure 5.1: Structure of a fixed point F. Each of the shaded triangles

ord

is the power set of the associated fixed point F, € L F-{F}, aeJ
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We introduce a structure operator 7/ associated to metadynamics(b), using it with the
basin operator & (Def. 5.16) to develop the structure of fixed points of those dynamics.

Definition 5.29 (Structure operator 7/associated to metadynamics(b)): Let
Y S = PF be specified by /A ={F e F|F c A}. (%/4 is a set by the axiom of

comprehension.)
Remark 5.30: a) /A c 9PA and b) /= O(F) (£ - B).

Lemma531:If Fe & ,then U ¥ (G) isaset.
{Ge & F}
Theorem 5.32: Let F € &. Then
' a) Z(F)= ¥F- U Z(G). (Thisis arecursion relation'* for Z)
{Ge YF}
b) Z(F)=F- U AG).
{Ge YF} .
Remark 5.33: Theorem 5.32,b shows that ]} {F )is the unshaded portion of Fig. 5.1.

Rémark 5.34:Since H is the least fixed point of ;10U .42, ), the interior of its associated
triangle is empty (see Fig. 5.2).

H .
- AH)= 7(H)

Figure 5.2: Illustration of H as the least fixed point of (S51U.%,)
Lemma 5.35:If Fe & and £, F c AC F ,whereAeJ". Then Ae &.

We conclude Sect. 5. with Lemma 5.36 and Prop. 5.37, which show that dynamics on
the class J" may be analyzed in terms of dynamics on the sets & G where G € # These
results also provide a bridge between developments in Sect. 5 and those in Sect. 6 that
deal with metadynamics(c), the latter providing a bridge to neural net circuitry.

Lemma 5.36: If G e &, then (L G,1U%,)isa sub dynamical system of (S, UL)).

Proposition 5.37: If G e #,then X G= U F(H). Moreover the union (the
HeF MNEG _
phase diagram of the sub dynamical system (£ G,1U.2))) is disjoint.

" This recursion is reminiscent of a Volterra integral equation.
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6. Finitely pictured sets (the bridge to neural networks), metadynamics(c)

We introduce the set of finitely pictured sets (denoted FP). This set forms a bridge
between our axiomatic developments and the modeling of neural networks in the brain
(MZ1, MZ2), modeling of the latter being naturally framed in FP. The FP notion
motivates specialization of metadynamics(b) (developed in Sect. 5) to Z(FP N A”)

where it becomes metadynamics(c). The notions of fixed point, basin of attraction, phase
and a phase diagram associated to metadynamics(c) are introduced. Thus aspects of the
theory developed are available for application to neural network modeling.

6.1 Finitely pictured sets (FP)

We begin by recalling the theory of finitely pictured sets (Aczel, 1988).

Definition 6.1 (FP, finitely pictured sets): A set x is finitely pictured (x € FP) if x is the

decoration of the point of an accessible pointed graph (see the notion of a DLAPG in
MZ1) with finitely many nodes. (Compare the notion of hereditarily finite non-well-
founded sets (Aczel, 1988, page 7)).

The remainder of Sect. 6.1 consists of the development of constructs and their
properties (associated to FP). The main result is Theorem 6.14 where a fundamental
property of a mapping onto the set of finitely perfect subsets of FP is established.
Theorem 6.14 establishes a connection between Sect. 4 and Sect. 6. We begin with the
following Prop. 6.2 that specifies the cardinality of FP.

Proposition 6.2: The collection FP of finitely pictured sets is a counfably infinite set.

Remark 6.3: If x € FP, then &, x € FP (De\f.’ 5.1). Hence FP e & (See Def. 5.17.)

Proposition 6.4: (a) If y e FP, then y is a finite subset of FP, and (b)y (Def. 5.5) isa
countably infinite subset of FP. (c) Moreover, y is a fixed point of 1 V2, Thatis,

y=(lue, )? )
Remark 6.5 (Phase of a set): Recall that ¥ specifies the phase of y, relative to
metadynamics(b) (Def. 5.14). '

Definition 6.6 (Selector type mapping): Given a set D ¢ FP, the map f(D)is de_ﬁned
by f(D)z=Dnz, VzeFP. (Compare Def.2.5.) Then define the function

R: % (FP)— FP™ where R(D)= f(D),VD e & (FP).

Remark 6.7: Since any subset of an FP set is itself an FP set, f(D) is a self map,
(f(D): FP— FP). In particular, if y € FP then f() is a self map. Moreover,

f(F)x=5nx.
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The observations made in Remark 6.7 are illustrated in Fig.' 6.1.
FP —» %(FP) —» FP™
y B § o= f(5)

Figure 6.1: Tllustration of the phase § of y and the associated self map f(3)

Definition 6.8 (Set induced by a mapping): If f: FP —s FP, let C(f) < FP be the set
given by C(f)= {y € FPIf( Q)’y) =39y} . (Compare Def. 2.5 and see Fig. 8.1.)

Note that C(f(D))=D. (Compare Lemma 2.4.)

Remark 6.9: If y € FP, then 98y € FP. Moreover, if (?is a selector and y € FP, then
(1u Be ) y € FP. Note that (FP,1U % @ ) is a specialization of accretion dynamics
(Def. 3.5). ' '

Remark 6.10: Let 6’ be a class. Then N FP isa subset of FP (axiom of
comprehension).

Lemma 6.11: Let & be a class. Then Vx eFP, (6G)x=f(GCNFP)x.
Leinma 6.12: If G’is a perfect class, then &~ FP is a finitely perfect set.

Lemma 6.13: If D c FP is finitely perfect, thén (a) D" (see Def. 4.10) is a perfect class
and (b)) D"NFP =D

Finally we state Theorem 6.14, the main result of Sect. 6.1.

Theorem 6.14: The map &'+ G N FP is a surjection of the collection of.perfect classes
onto the set of finitely perfect subsets of FP.

Remark 6.15: H is a proper subset of FP N A

A diagram conceptualizing the structure of FP is shown in Fig. 6.2. The disposition
of other constructs (H, J[H], N, Q, and {&,Q} ) in their relationship to the normal and

abnormal parts of FP s also shown. Here" & [H]={ @& y|y e H}, where & is the
“duality operator. :

- 5 We use the notation OlK]= { &yl yek } , for any operator @ and any set K .
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JH]

2.9}

H N fFP AN

Figure 6.2: Conceptual representation of the normal and abnormal (shaded)
portion of FP, illustrating Remark 6.15, the set {&,Q} of Example 6.16,1) -

and other structural features

Example 6.16: 1) Take the set x={2,Q} e FPn A A picture of x, shown in Fig 6.3, ’
illustrates its non well-founded character. Note that x € H, since x € ;.

X

%, Q
Figure 6.3: A picture of the non Well—founded set x = {@,Q} .
2) A general example is y = {xl , -,xn} € FP n V), where the x; are distinct, and
vj, Ile <n, x; €FP, but atleast one x; ¢ H.
6.2 Metadynamics(c)

Employing the set FP and its associated constructs, metadynamics(c) are introduced.
The associated notions of a region of subsets of FPry A, of a limit point of a region and
of the associated phase diagram along with their properties are developed. The main
result of Sect. 6.2 is Theorem 6.27, concerning cardinal invariants. We begin by

interpolating Lemma 6.17 and Def. 6.18.

- Lemma 6.17: FP N A€ F (Def. 5.19).
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Definition 6.18 (A special power set): L= & (FP N V).

Metadynamics(c) are now specified in the following Def. 619.

Remark and Definition 6.19 (Metadynamics(c)): Lemma 5.36 and Lemma 6.17 show
that (L,1u & f)metadynamics(c) to be a sub dynamical system of (S, 1LV ;) (that is,
of metadynamics(b)) on sets. This sub dynamical system (L, 1u@),) is called

metadynamics(c)). The associated equation of evolution is

A(r+1)=A(r)u .@fA(r),

where A(r) < (FP A~ A”) and 7 is metatime. (Compare Def. 5.5.) We note that
metadynamics(c) are accretive. If A € L, then the phase of A relative to
metadynanmics(c) is A (Def. 5.5), the latter also an element of L (see Lemma 6.20).

The following Lemma 6.20 establishes a connection between the power set L and the
limit points of metadynamics(c).

Lemma 6.20: #[L]c L. (See footnote 13 and Def. 5.5.)

Next we introduce special regions of L, which play a central role in specifying a phase
diagram for metadynamics(c). '

Definition 6.21 (Regions of L ):
I. LetS={DcFPnN|1UL,)D=D} =L F
2. Regionl =L (FPNN).
3. RegionIl ={DcFPN A|D|=N and D¢S}.
4. S, = [ 2,(FPn AN)]. (SeeDef.5.5)

Note that 1. FP ~ A€ S (Lemma 6.17), 3. N € RegionIl, and 4. HeS,,
respectively. (Refer to Fig. 6.4.)

Prop. 6.22 and the succeeding remark specify the phase diagram of metadynamics(c).
(See Remark 6.5.) '

Proposition 6.22: L= U Z{D). Moreover this union is disjoint.

DeS

Question: If D €S, whatis | Z(D)|?

Remark and Definition 6.23 (Phase diagram of metadynamics(c)): The
decomposition in Prop. 6.22 specifies the phase diagram of metadynamics(c) as a sub
partition of metadynamics(b). (See Prop. 5.23 and Def. 5.24.)
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The limit point of a region of L is introduced in the following Def. 6.24.

Definition 6.24 (Limit point of a region of L): D is a limit point of a region of L if
there exists a set 4, which is an element of that region, such that D = A (Def. 5.5).

The following Prop. 6.25 relates the region S and the set of Region II limit points.
Proposition 6.25: S= { Region II limit points } .

We now state Lemma 6.26 (a special case of Lemma 5.35), which we will use to
- specify cardinal invariants of regions of L, the result of Theorem 6.27 that follows.

Lemma 6.26: If DeS, EcCFP and_@ngEgD,then EeS.

Theorem 6.27: a) | 2(FPAAN)|=|L|=2%
b) |RegionI|=N.
o) |S] =2%; |S,|=N. |
d) l Region II [= I{ Region II limit points }l =2N.

Corollary 6.28: Metadynamics(c) generates uncountably many phases (Theorem
6.27,c). '

Fig. 6.4 illustrates aspects of Def. 6.21, Def. 6.24 and Theorem 6.27 concerning the
set L.

Region IT

PL(FPAAN) <
S= { Region II limits }

So ={ Region I <[

limits } Region I

Figure 6.4: Conceptual representation of the set L illustrating aspects of
metadynamics(c), (L,1U.% f). Note the points in Region I denote finite sets,

while all other points denote infinite sets. Recall that A is the phase of A
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7. Restrictions of consciousness operators to FP

Consciousness operators (Sect. 3.1) have a fundamental correspondence to limit points
of both metadynamics(a) and metadynamics(c). By restricting consciousness operators to
FP (recall the relevance of FP to neural network modeling), we shall formulate a study of
this correspondence. '

Choose a consciousness operator 97, and let E =FP NG (%) =97 FP (Lemma 2.6).
Then E is a set (axiom of comprehension). Moreover E € % (FP). Results regarding the
association in question are given in the following Prop. 7.1 and Example 7.2.

Proposition 7.1: %~ IFP = f(E) (see Def. 6.6).

Example 7.2: 1. %/ |[FP = f(H) , since 6 (%) =, and J,,NFP =H.
2. R|FP = f(FP A N), since G'(R)=N"
Let D be a finitely perfect subset of FPry A7 That is, let D be a fixed point of

metadynamics(c) (Def. 6.19). Recall that D is infinite (Remark 5.3). By Remark 6.15,
D=H and D =FPn D =" furnish distinct examples of finitely perfect subsets of FP.

Associations of consciousness operators to metadynamics(c) are the subjects of
following Remark 7.3 and Remark 7.4.

Remark 7.3: For any limit point D of metadynamics(c), we can construct the limit point
D* of metadynamics(a). Moreover, D* "FP = D (Lemma 6.13). Since the class D" is
perfect, it is a proper class (Lemma 3.5). In particular, D" # D, since D is a set.

Remark 7.4: If D e S (Def. 6.1), then D A", Therefore D" is a subclass of A”. Then
from Theorem 3.11, we see that 97" = () D" ) is a particular consciousness operator.

The following Def. 7.5 and Theorem 7.6 deal with operators of the form &( D") .

Definition 7.5 (A pair of particular metasets of consciousness operators):

1.K={ @(D")|Des}.
2. K,={ @(D")|DeS,}.

The cardinal invariants of K and K, are the subject of the following Prop. 7.6.
Proposition 7.6: |K|= 2" and ]K0| =N.

Relationships between consciousness operators and FP are developed in the following
Theorem 7.7. ;
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Theorem 7.7: a) If A FPnAJthen A" c A, and @ (A") is a consciousness operator.
b)If DeS, @(D") (D).
¢)If ye FP, then $nA"eS and (5 AN )*) is

a consciousness operator.
d) If 9%7"is a consciousness operator, and E=FPN & (%) then

EeS and ‘v’xeFP,.Wx=61( )x.

We illustrate aspects of Theorem 7.7 in Fig. 7.1.

@(D y—>#(D

P

p <«— p

Figure 7.1: Illustration of Theorem 7.6

A connection between fixed points of metadynamoics(b) and consciousness operators
is the subject of the following Prop. 7.8.

Proposition 7.8: The set S of subsets of FPr A7 that are fixed points of 1 u@f isin
one-to-one correspondence with the collection,
{( N7 I FP)] I’e Consciousness Operators } . In particular, this collection is a set.

Connections of consciousness operators to 9% %/, S and limit points of metadynamics(a)
is the subject of the following Remark 7.9. :

Remark 7.9: Let D e€S,andlet = D"). If D=H, then %" [ FP = ”7//, FP, and if
D =FP N A then % |FP = 97 | FP. H is the least fixed point in S and FP M A is the
greatest fixed point in S.

8. Transfinite renormalization of a selector, restrictions of a consciousness operator

Recall remarks on the terminology of renormalization in the beginning of Sect. 4.2. We
define the renormalization of a selector that depends on the mapping (@) +» G *(®), a
transfinite process (Def. 4.10). A diagram (in Fig 8.1) illustrating this renormalization
and related constructs is given. Following that a commutative diagram (in Fig. 8.2)
relating metadynamics(a) and metadynamics(c) along with related constructs is given
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~ We begin with the definition of transfinite renormalization.

Definition 8.1 (Transfinite renormalization of a selector): The transfinite
renormalization of a selector (#is given by the following sequence of mappings.

Def .2.5 Def .4.10 Cor.4.16
O B GO B YO P F(EHO)N N

Definition 8.2 (Construction metaoperator I and phase metaoperator X): Let
T:f > F(C(f)), andlet £:D D" |

Fig. 8.1 illustrates constructs used in Def. 8.1 and Def. 8.2 as well as the relationships
of those constructs to consciousness operators. In particular, I;and I, are the inclusion

mappings between the metaclasses indicated in the figure.

O—»C (D)
Selectors Classes Lemma 2.8
A (6)4¢—C -
A A
a : | G
T I, T I, > Metadyn(a)
K (C(DAN G N '
¥ U ¥ U
Consciousness | % F—C (%) Perfect sub-
! operators - classes of N Theorem 3.11
I (D) «——D ,
X y -,
K . D '
I | T T z Theorem 6.14
K| FP ’ ' YDFP
v | \18

Restrictions of f|,——-—->C(f) S=Ln&F
consciousness fixed points of Theorem 7.7

operators to FP f(D) €— D | metadynamic(c)

Figure 8.1: A diagram (which can be shown to be commutative) illustrating the

transfinite renormalization of a selector (upper portion) and the restriction of a
consciousness operator to FP (lower portion). (Recall that S is specified in Def. 6.21.)
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relationships between transfinite limits in metadynamics(a) ( namely the ¢’*) and
ordinary limits in metadynamics(c) (namely, the D).

The diagram in Fig. 8.2 (which can be shown to be commutative) illustrates
Selectors

G+ GNFP N N

N\,

R[L] |

R[S]

/, S

’ b

Y

\\

\\

"l \\\

,II \\‘

Consciousness " Perfect
o V4 s \

operators 7 subclasses of N | \
/ ’/ // “\

I’ y, LY

DD DD’

Y= YNFP

G = 6NN

Figure 8.2: A commutative diagram illustrating transfinite limits in metadynarhics(a)
9. Qualia, the quale set and the quale set operator .2

and ordinary limits in metadynamics(c). Horizontal maps represent bijections

We connect developments of this work into a coherent picture by application to the
notions of experience and awareness of MZ1 and MZ2. This is done by introduction of

the construct of a quale. The collection.2 (x) of all qualia of a set x is shown to be a set.
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Connections of the associated quale operator .2 to FP'® are made along with semantic
observations relating .2 and awareness. We shall see that .2 (x) and .2 are formal and
rigorous realizations of the consciousness thesis enunciated in Def. 3.16 of MZ1.

9.1 The Quale operator.

In this section, we introduce and formalize the constructs of a quale, the collection
2(x) of qualia and the quale set operator.2. Then we derive a number of their
properties, which include associations to many aspects of the preceding developments.

Definition 9.1 (Quale, collection 2 (x) of qualia): An experience is (modeled by) a set
x. A quale of that experience is any set of the form 97 x, Where 9’1s a consciousness

operator'’. The collection of qualia is given by'® “9(x { Fx| H'e Consciousness

operators } - Note that since % is a consciousness operator, %% x € -2 (x) (compare the
consciousness thesis of Def. 3.16 in MZ1).

A semantic comment associated to Def. 9.1 is given in the following Observation 9.2,
while a corresponding syntactical comment is given in Remark 9.3.

Observation 9.2: Referring to Cor. 3.12, we see that an awareness of an awareness is an
awareness of a (primary) experience.

Remark 9.3: For each consciousness operator 97 and for each setx /]

FxeP(x)n N (Def. 3.3).

The following proposition shows a fundamental connection between qualia and
illusions (Fig. 4.1) as well as the relevance of metadynamlcs(a) (Def. 4.3), including
especially its limit points (Def. 4.10), to qualia.

Proposition 9.4: Vxe J,
a) 2(x)= {y c x[3wc Px suchthat w* N x=y}.
b) .2 (x)={ F(w)x|w e PRx}. (See Def. 4.19.)
0) 2 (x)={w" nxlwePRx}.
d).2 (x)={ A Nx| A e Phase( @%x)} . (See Def. 4.17.)
e) 2 (x)={ycRux|y nx=y}.

1 Recall that the set of finitely pictured sets, FP, was introduced in Sect. 6 to establish a bridge
between set theoretic developments and neural network models.
17 In MZ1, an experience is called a primary experience and a quale is called an awareness.

% The quotation marks emphasize that what is given is a meta description of .2 (x). The parity of
consciousness operators in this definition points toward a solution to the issue of the choice of 9’
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Remark 9.5: Lety =xnw", where ye.2 (x) and where we %% x. Then
wCyC Sxc x. From Prop. 9.4 (2), we have analogously that S, c w* € N <"

Remark 9.6: Let A€ J Then { FZ(w)|w € A} (see Def. 4.19) is a metaset'® of

consciousness operators indexed by the set 4.

A formal specification of the operator 2 as well as of .9(x) as a set is provided by the
following Cor. 9.7 and Def. 9.8.

Corollary 9.7: 2 (x) is a set.

Definition 9.8. (Quale set, quale set operator): -2 (x) will be called the quale set of x
(the set of all qualia of x). .2 will be called the quale set operator.

. The following Lemma 9.9 and Remarks 9.10 and 9.12 establish additional properties
of 2 and .2 (x), some demonstrating a relationship of .2 to the operators 9B, &£ 9%,
and 7/ as well as to a generic consciousness operator J7.

Lemma 9.9:
a)lfxe S, ,then2(x)={x}. DH2W = BW = W2,
b) .2 is not an isotonic operator. 2)2 c RP.

0).2( Ry)= 2y),Vyed. h) 2K =2 N LI, where &~
d).2 =295. is any consciousness operator.
)R2 = 9 ) BIH < 2.

Remark 9.10: Suppose y €S, Ry+#y,and Ry e, . Then.2 (y)={ Ry} ={y}.
We see that .2 is a nontrivial variant of the brace operator, 9 (Vx, 9Bx={x}).

Example 9.11: The set y = {@,Q} satisfies the hypotheses of Remark 9.10, and so
validates the remark.

 Remark 9.12: 2(x)nx=. This observation is directly connected to the

consciousness axiom of removal (se¢ the consciousness axioms in the appendix). There
is a connection of it as well to the descriptions of satellites in Def. 9.23 and Fig. 9.3.

The following Cor. 9.13 confirms the semantic quality that the common aspect of two
awarenesses is itself an awareness.

Corollary 9.13: y, and y, being elements of .2 (x) =y, Ny, € 2 (x).

" A metaset is a metaclass that is indexed by a set.
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The next result, Prop. 9.14, connects qualia to basins and phases of metadynamics(a),

Proposition 9.14:
a)If ye 2(x),then yzx=y #x".

b) Let y, and y, are elements of .2 (x). Then y, #y, & VEY,. .
¢) Fix sets A and B . Then for at most one Y € 2 (A4), Y" = B". Moreover, BNACY .

Note that Part a) of Prop. 9.14 asserts that if ye 2 (x) and y # x, then y and x are in

different basins. That is, they have different phases. This forecasts the phenomenon of a
“phase transition” for qualia.

Now we introduce the formal definitions of the supremum and the maximum of a set.

Definition 9.15 (Supremum and maximum of a set): sup X = %X is the least set S
suchthat Vxe X,xc S. If supX e X, maxX =supX .If supX ¢ X, X hasno
maximum. :

Quale are associated to many of the constructs already specified (N, %, ¥, %,
F(B), *). The following Prop. 9.16 identifies a collection of these associations.

Proposition 9.16: Let the sets A < A and B < A be specified. Then
a) 3Y €.2(4) suchthat " = B' & (ANB') =B" & PANV(B)# D (Def. 4.23).
b) Suppose there exists a ¥ € .2 (A) such that Y* = B". Then 4

1. Yis unique, 5. ¥ =max( ZAn 7 (B°)),
2.Y=ANB = (B)A(Def. 4.19), 6. VW ePANV(B'), Y =AnW",
3. Y =sup( LANY(B)), 7. 2(A)n (B )={ ' (B)A}.

4.Y € PAN W(B*), ‘

In the following Def. 9.17 we specify a special quale (awareness) associated to a pair
of experiences. The connection of this quale to the two classes .24 and 9/(98 *) is given

by Prop. 9.16,vii.

Definition 9.17 (Quale associated to a pair of experiences): J7(B) A will be called the

quale associated to the pair of experiences 4 and B. (See Def. 4.19.) (For a semantic
interpretation of this remark, see footnote 9.)

Remark 9.18: Suppose AN 7/ (B) # (J. Then the awareness specified by 97°( B) A

is characterized by the unique point of intersection of the two classes .24 and ¢ (B)
(see Fig. 9.1).
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F(B)A , property (vii) of Prop. 9.16, Remark 9.18, along with other features are
conceptualized in Fig. 9.1.

JJ’ the class of sets

2(4):

Classes: of 4

. B*: attractor of the basin ¢/ (B*)

Figure 9.1: Illustration of constructs occurring in Prop. 9.16,
namely, illusion (#/( B")), quale set (2(4)) and awareness (%7 (B)A)

9.2 Specialization of qualia to FP

In this section we connect qualia and certain related constructs to FP, establishing
thereby their relationship to the modeling of neural network brain circuitry. The notion
that a quale generates a satellite of experience is developed. We begin by interpolating
the following Lemma 9.19 that associates limit points of metadynamics(a) to FP.

Lemma 9.19: Let y, and y, e FP, and let 6= ()  (see Def. 5.5). Then
a) 6NFP=7.
b) 6 =y".
c) ynx=ynx.

quale set
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The following Prop. 9.20 and Remark 9.21 list various relationships of qualia to FP.

Proposition 9.20: Letx € FP; then
1. Ify € FP, and 97 is a consciousness operator, then 9% (y)x € FP and

F(yyx=yNxn N (Def. 5.5).
2..9(x) e FP. »
3.9(x) ={Dnx|De S}= { Fx| FeK}. (See Def. 6.21 and Def. 7.5.)
4..,9(x)={ygx|3wg_:%xsuchthat WwOx=y}.
5.9(x) ={Dnx|De S, } = { x| FeK,}. (See Def. 6.21 and Def. 7.5.)
6. 2(x)={ycRx| ynx=y}.
7.2 (x)={DNx|De #[ PR x]}.

The connection of qualia to FP is further emphasized in the following Remark 9.21.

Remark 9.21: The appearance of S,S,,K and K, in Prop. 9.20 shows the relevance of
metadynamics(c) to qualia. Likewise the appearance of § and _# in the proposition
shows the relevance of metadynamics(b) to qualia.

In future work, we shall address the computation of 2 (A) when Ais given. A
flowchart of the computation for the operator 9|FP is shown in Fig. 9.2.

Neural state(T",v.w,P)

MZ equation

Neural decoration € FP"

Decoration of the point P

Thema Y (T,vw,P) € FP

2

\
2(Thema) € FP

Figure 9.2: Flowchart of the computation of a collection of awarenesses’

20 See MZ2, especially Table 2.2 for the definition of the terms used in Fig. 9.2.
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Remark and question 9.22: Let x € FP. Prop. 9.20,6 implies that
2(x)={yc Bx VneN,xn(1uL) y=y }, which, in principle, shows that
determination of -2 (x) requires an infinite number of computational steps. An element

of FP has a finite picture. So we ask, is there a halting computation that determines
such a picture?

The semantic notion of the concept of an awareness, a so-called satellite of an
experience, is introduced in the following Discussion 9.23 and Def. 9.24.

Discussion 9.23: Let x € FP be specified. Then_2(x) as a set in FP is also finite. Let
l 2(x )'I =r for some natural number ». Then we may write 2 (x )= {y1 ,---,yr}

=9 y, U---U B y, where the y; are distinct elements of .2 (x ). Now apply.the brace
operator to the y;. Note that Vj, 9By, nx = (Remark 9.12), and, Vj,k, j # k,
By, By, =D, . Recalling our semantics, we have x is a primary experience, y is an

awareness, and 9By is a concept of an awareness (see MZ1, Table 5.1). The awareness
9By is not an element of x, and the 98y, are distinct. 7k being an awareness of x and 98

7% being the concept of the awareness of x motivates the description of 98 9% x as a
satellite of x (follower) a notion formalized in the following Def. 9.24.

Definition 9.24 (Satellite): Given x € FP, a satellite is any set of the form 98 'k for A~
a consciousness operator. Alternatively, z =98y is a satellite of x if y € .2(x). Each

singleton 98y,, j=1,...,r is a satellite of x. The satellite property is conceptualized in
Fig. 9.3.

Figure 9.3: Experience x and its satellites (concepts associated to x)
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Remark 9.25: The relation xU.2 (x)=xU3B y, U---UGB y,,showsthat U2 isa
non trivial variant of Von Neumann’s successor operator. Note also that (1U.2,FP)
defines an accretion dynamics, the study of which we defer to future work.

10. Semantics

To critique the several dynamical systems constructed in this work, we assemble them
into a hierarchy shown in Table 10.1. The expression of analogies between mental (set
theoretic) and physical (material), in particular, those analogies concerning
renormalization and phase diagrams gives context to a relationship between RG flows
and consciousness. These analogies are displayed in Table 10.2. The syntactic
developments of our theory are supplied with semantic interpretations. These are
collected in the Syntax-Semantic Dictionary shown in Table 10.3, as well as in the list of
Supplementary Semantic Interpretatlons of selected syntactical results that is displayed in
Table 10.4. We conclude with a review of some philosophical interpretations of infinite
regress, open questions and comments on future work.

© 10.1 The hierarchy of dynamical systems, comparison of mental and physical
constructs ' '

The McCulloch-Pitts system of equations for the propagation of neuronal information
(modeled as a binary valued voltage) was studied at length in MZ2. That system of
equations was augmented by a hierarchy of auxiliary dynamical systems (for neuronal
activity, intrinsic data and memes) leading to a dynamical system for qualia. We now
refine and extend those ideas by assembling what we call a hierarchy of three layers of
dynamical systems of which those already developed in MZ2 collectively represent
constituants of the first layer. The constructs appearing in the remaining two layers of the
hierarchy are extracted variously from Sects. 3, 4, 5 and 6. In ascending order these three
layers are called 1) mental activity dynamics, 2) accretion dynamics, and 3)
metadynamics(a), (a°), (b) and (c), respectively. Each layer will have an intrinsic concept
of a time-like variable. Since the first layer models physical systems, the time, labeled ¢
in that layer, may be viewed as a representation of real (physical) time, but since the
dynamics of the succeeding layers are not physical (are Platonic), the succeeding time-
like variables are likewise not physical. These Platonic time variables are labeled s and 7
in ascending order in the hierarchy and are denoted as accretion time and metatime,
respectively. The hierarchy is shown in Table 10.1.

A comparison of the mental and physical constructs of dynamics and renormalization
is displayed in Table 10.2. The analogies shown give content to the relationship between
renormalization and consciousness.

Remark 10.1: While RG theory is prominently applied to quaritum mechanics, we stress

that our use of it, as highlighted in Table 10.2, is developed out of classical mechanics, to
which, of course, RG theory is also applied (Goldenfeld, 1992).
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The Hieraréhy of Dynamical Systems

1. Mental activity dynamics: Two examples of mental activity dynamics are
a) voltage dynamics and b) memetic dynamics. The associated evolution
equations are *

a) v(a,t+1)=h, (Z{alf(a)=a}w(oc)v(s((x) ,t)) , (see (7.1) in MZ2),

and ,
b) d(a,t+ 1) = ( AT e Wd(t))(a) , (see(9.17) in MZ2).

Equation a) is an abstraction of McCulloch-Pitts dynamics for a model neuron.

2. Accretion dynamics: These dynamics are specified by the pair (J’, 1 U 9B@)
where (0is a selector (Def. 3.15). With s is as accretion time, the associated
evolution equation is

x(s+1)=(1UB O )x(s), seN.

3. Metadynamics: There are four types of metadynamics, a), a’), b, and c) in each
of which 7 is metatime. These are dynamics on Classes, on Selectors, on the
class JS"and on the set L (Def. 6.18), respectively

a) Metadynamics(a): (Classes,1 u.@) (Def. 4.3). The associated evolution
equation is

Ar+1)=(1u L)AL (r).

a’) Metadynamics(a’): (Selectors, L) (Def. 4.29). The associated
evolution equation, (r+1)= 2 ( A(r)) is

or+1)=0((1u & )6 o(r))).

b) Metadynamics(b): ( J1u £ f) ( Def. 5.4). The associated evolution

equation is

A(r+1)=(10 & ,)A(r).

¢) Metadynamics(c):( &2 (FP N N"),1 U f) (Def. 6.19). The associated

evolution equation is the same as in b), except A(r) = (FP A A”).

Table 10.1: The hierarchy of dynamical and metadynamical systems
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Mental RG Theory

Physical RG Theory

1. Memetic dynamics
See (7.1) and (9.17) in MZ2

2. Accretion dynamics

(S 1u%BO)
x(s+1)=x(s)u{ &x(s)}

Here s is Platonic time.

3. Metadynamics
( Selectors, L)

where Zis the RG metaoperator
O(r+1)= Qf( @(r))

Fixed points of & and, in particular,

those that are consciousness operators.

( Selectors, &) yields a phase diagram

Selectors= |J Basin (®.

O L(O)= 0
a union over RG fixed points (@

1. Differential dynamics, such as
found in classical mechanics

2. Hamiltonian dynamics
(Phase space, Hamiltonian flow)

) (o)

Here s is real time.

3. RG dynamics

(Space of Hamiltonians, T)

where T is the RG transformation
H(r+1)=TH(r)

Fixed points of ' T
(Space of Hamiltonians, T) yields a
phase diagram

{ Hamiltonians }= U Basin(H),
H: H

TH=

a union over RG fixed points A

Table 10.2: Mental and physical constructs of dynamics and the RG flows

10.2 Semantic interpretations

We recall the translations of set theoretic constructs into semantic language that were
exhibited in Tables 3.2, 3.3, 3.4, and 5.1 in MZ1 and in Tables 2.2, 12.1 and 12.2 in MZ2.

We continue this practice with the Syntax — Semantics Dictionary shown in Table 10.3.

The information displayed in all of these syntax-semantic tables connects the
mathematical development both to philosophical issues and to applications pertaining to

the mind and consciousness.

?! See Goldenfeld, 1992 for a discuésion of various examples of RG transformations in physi
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Syntax Semantics

Dynamical system (evolution equation) System expressing change (rule of change)
Fixed point , An element immune to change

Limit point Ultimate target of a developing trajectory
Basin of attraction, phase Collection of elements with a common target
Phase diagram Decomposition of the system into basins

Set Primary experience, information, awareness
Power set All experiences subordinate to a primary exper.
Class of all sets J° , Collection of all experiences

J,,4 (aproper class) Transfinite timeline

. : Transfinite succession of experience
Dynamics of sets

Phase of information
Phase of a set

A selection of experiences
Subclass 6’ < J (Selector A(6))

The collection of all selections of experiences:
Selectors » the preconscious mind

s

RG metaoperator & (metadyn(a’)) Platonic dynamics of the preconscious mind

» . o ‘ .
RG semigroup, { & |OC € J'J’d} Transfinite dynamics of the preconscious mind

lim X% (@ N R), transfinite limit Consciousness induced by a selection of
aed,, experiences

of renormalization yielding a consc. op.

Fx An awareness of a primary experience

2(x) Collection of awareness of a primary experience
‘Metadynamics(b) A canonical dynamics on experiences
Finitely pictured set Neural decoration, theme of a meme

FP v Collection of all neuronal decorations (of all

memetic themes)

Metadynamics(c)
Dynamics of selections of neural decorations

Table 10.3: The Syntax — Semantics Dictionary

38




In Table 10.4 we list supplementary semantic interpretations of a sampling of
syntactical results.

Supplementary Semantic Interpretations

Sect. 2: Applying an operator transforms an experience to a new experience.

Def. 3.15: An accretive dynamical system generates a hierarchy of experience.

Example 3.16: The ordinals form a hierarchy of experience.

Remark 3.18: Experience (instantiated as a set) is unlimited in its growth capacity.

Fig. 4.1: The trajectory generated by metadynamics(a) constitutes a hierarchy of
experience. The corresponding transfinite limit point is an illusion (Fig. 4.1,
footnote 9) which itself is an experience.

Def. 4.3: Metadynamics(a) generates a hierarchy of selections of experience.

Remark 4.20: Experience leads to knowledge. Compare Kant, 1781 and footnote 10.

Def. 4.26: Two illusions are psychically equivalent if they correspond to the same phase.

Sect. 7: An awareness field may be generated from a neural state and a consciousness

» operator.

Def. 8.1: Transfinite renormalization is the syntactic formalization of the semantic
process of infinite regress that is taken to characterize the development of
consciousness from the unconscious.

Observation 9.2 and Lemma 9.9,h: An awareness of an awareness is an awareness.

Lemma 9.9 a): If x is well-founded, then -2(x)is the concept of x.

Remark 9.12: An experience and its associated quale are in different realms.

Cor. 9.13: The common aspect of a pair of awarenesses is an awareness.

Prop. 9.14,b: Distinct awarenesses of a common experience give rise to distinct
Phases. Equivalently, equal phases give rise to a common awareness.

Prop. 9.14 ¢): Fix an experience 4 and a phase B". Then for at most one
awareness Y of 4 is the phase of that awareness equal to the phase B".

Prop. 9.20, parts 1 and 2: The quale of an experience can be reified in a neural net.

Consciousness Axiom c): Awareness is removed from experience.

Fig. 9.3, Discussion 9.23: Experience generates multiple concepts. _

Remark and question 9.22: If x is a thema, can a finite machine compute .2 (x) in finite
time?

Table 10.4: Semantic interpretations of syntactical results
10.3 Concluding comments

The philosophical study of consciousness contains the construct of the homunculus
(Watson, Berry, 2003), a hypothetical mental agency that observes the neuronal activity
in the brain and so provides awareness, intentionality, etc. In fact the homunculus is no
explanation at all of consciousness, since the question, “Who watches the homunculus? ”,
gives rise to an infinite regress. Consider this issue of infinite regress in the context of
the information processing that the metadynamics of transfinite renormalization
manifests. These dynamics produce limit points (fixed points), novel constructs that lead
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to semantic interpretation based on awareness and concepts of awareness, namely, on the
qualia in.2(x). See Fig. 9.3 also.

The transfinite limit points offer both resolution of the issue of infinite regress, and by
producing phases (basins) they offer the view that consciousness is associated to a change
of phase of information, namely the information processed in neural networks as modeled
by the McCulloch-Pitts dynamics, for example. The renormalization dynamics for
metadynamics(b) in the countable realm, with its own limit points and basins, offer a
change of phase of information interpretation of consciousness on the countable level.
From Prop. 9.14 and the ensuing change of phase remark, we see that given an
experience (a set x) and given distinct awarenesses of that experience, the different
awarenesses are in different phases. Also if awareness (a set of the form 97%) is different
from experience, then the phase of awareness is different from the phase of experience.

Do these limit points, basins and phases (of information) have a physical reality or
must we consider them to be Platonic constructs only? To some extent this depends upon
one’s view of consciousness as a physical or as a virtual process. However even in the
latter case, the renormalization dynamics/metadynamics produce a portrayal of
consciousness by means of a model for which we expect to develop computational
addenda in future work (see Remark 9.22). We expect such computation to lead to the
reification of the Platonic aspects of the theory.

Appendix
Glossary

- The Quine atom (specified by Q={Q}) (Example 3.14)
I (y)- A consciousness operator depending on a set (an experience) y (Def. 4.1)

IZ"(y)x - Quale (an awareness) associated to a pair of experiences x and y (Def. 4.19

‘and Def. 9.17)
N - The set of natural numbers
H - The set of hereditarily finite sets (Remark 5.6 and H-J22, Chap. 6)
FP- The set of finitely pictured sets (Def. 6.1)
f(D)~ A selector type self map of FP (Def. 6.6)

R - A standard set theory map (Def. 6.6)

C(f) - A special set induced by the mapping f (Def. 6.8)

L - The power set 2( FP n ") (Def. 6.18)

S- Ln & (Def.5.19 and Def. 6.21)

* and ** - Superscripts indicating a transfinite limit of a class (Def. 4.10) and

of a selector (Def. 4.34), resp.

~ = The superscript ~indicates a limit point (in the countable realm) of

metadynamics(b) (Def. 5.5)

22 Hereafter the citation Hrbacek, Jech, 1999 will be denoted H-J.
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Glossary of operators and classes

A — Class of abnormal sets, also as a generic symbol for a class (Remark 3.8)

9B — Brace operator - 98 x = {x} is the set whose only element is x (Def. 3.5)

G- Generic symbol for a class (Def. 3.2)

9 — Duality operator (& x =-{ ) x,x}) (Fig. 6.2), also a generic symbol for a class
& — Elimination operator - &x =& Prop. 9.3)

F - Class of fixed points of metadynamics(b) (Def. 5.19)

&'~ Class of fixed point of metadynamics(a) (Def. 4.21)

- Class of basins of fixed points in & (Def. 5.19)

& — Identity operator, more usually written as 1 (Def. 3.15)
- Basin of attraction operator for metadynamics(b) (Def. 5.16)

I — Generic symbol of a consciousness operator (Lemma 3.1)

¢ — Limit point operator (Def. 5.5) :

M~ Selector associated to A’ (Example 3.6). Also an awareness map (Remark 4.20)
N"= Class of normal sets - Sets that do not have themselves as an element (Example 3.6)
(@ — Generic symbol for an operator (Def. 2.1)

9P—Power set operator (Def. 4.1 and Footnote 10)

P ,— Set of finite subsets operator (Def. 5.1)

-2— Quale set operator (Def. 9.8)

9 — Russell operator - A ={x € A] X & x} (Example 3.6)

oJ’= Class of sets - Sets satisfying the Zermelo-Frankel-Aczel axioms (Remark 2.4)
J",..— Class of ordinals (finite and infinite) (Theorem 4.6)

J,s— Class.of well-founded sets (Example 3.6) |

S e — Class of non well-founded sets (Aczel, 1988 and Remark 2.4) :

I - Generic dynamics transformation (Footnote 8)

?{— Monadic union operator (Prop. 5.3)

9’— Well-foundedness operator‘ - Takes a set into the subset of its well-founded elements
(Example 3.6)

2/— Structure operator associated to metadynamics(b) (Def. 5.29)

Z— Generic symbol for a selector (Lemma 2.8)

Glossary of metaoperators

% — Power class metsoperator (Def. 4.1)

I — Generic metaoperator on classes (Footnote 6)

7/ — Metaoperator on classes (Prop. 5.21and Aczel, 1988)

9/— Basin of attraction metaoperator for metadynamics(a) (Def. 4.23)
Q- Renormalization group metaoperator - Def. 4.29

I' — Construction metaoperator (Def. 8.2)

@ — Extension metaoperator (Def. 4.7)

2 — Phase metaoperator (Def. 8.2)
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Consciousness Axioms

Axiom Semantic interpretation Name of
of the axiom Axiom
a) | Vx, Experience generates its Generation
Kxcx own awareness
|b)| Vx, Awareness does not generate Irreversibility
xe Kx the primary experience”
c) | Vx, Awareness is removed Removal
Kxex from experience
d) | Vx,y, if Awareness of a sub-experience is Selection
xCy, then defiermmed by ﬂ;eﬂslub-e.xperlence
and awareness of the prima;
Kx=xNXKy . P Ty
experience
Table Al: Axioms for a consciousness operator
Proofs
Sect. 2

Lemma 2.6: First part: Follows from Def. 2.3 and Def. 2.5. Second part: By Def. 2.3,
Jclasses £, and 2, , suchthat Vx, @, x= .4, nx and @, x= A, Nx. Thus

OO ,x= AN A, "x)= (A, o, Jnx= 2, N A, Nx)= 0,0, x.
Next, (@, n@, )x=0,xn @, x= (A, nx)N( A, Nx) =
(A, t, )nx=0,0, x.

Proposition 2.7: Lemma 2.6 establishes the semi-group property and the commutativity.
The rest is straight-forward.

Lemma 2.8: First part: Since Z'is a selector, Zx= 6¢(Z) Nnx (Lemma 2.6). This gives
Zy=6(2)ny= 62( G(2) )y, the last by Def. 2.5. Therefore £'= N6 (2)).
Second part: Vx, @(D) x=D nx (Def. 2.5). Then

GO D)= {H (DB y= B y}= D

%3 This axiom characterizes the feature of the mind, that for example, one can think about music
but can not hear it without that music being presented by an external source. That is, music can
not be heard without music as an experience being present.
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Sect. 3

Lemma 3.1: Suppose to the contrary that A € G (H) such that A ¢ G (%K). Then by
definition of & (%), we have Z B A # BA={A}. Then (i) FBA =D, since H'is a

selector. Nowlet B= AU YBA. ThenFH ' B= AU IZUWBA, also since HKis a
selector. Then using (i), %' B= % A. Nowsince AC G (%K), we have H'A=A.
Combining we conclude that (ii) %7°B = A. Combining (ii) with A € B the latter
following from the definition of B, we conclude that "B € B. This contradicts the
property, Vx, 9% °x ¢ x, of the consciousness operator 9.

Lemma 3.4: Part a follows frpm Def. 3.3. Part b follows from Def. 3.2 and Def. 3.3.
Part ¢) If Y &, then D’ 6” by Def. 3.3. If Gis perfect, then ¢ < &, and hence

(6°)’ < 6. Therefore G’’is perfect.

Lemma 3.5: Part a): Suppose & = D for some non empty set D. Since &’is perfect by
hypothesis, 2D c D. This contradicts Cantor’s theorem, which asserts that| 92D|>|D]| .
Part b): Given A ¢ C; " C,, we have that 4 is a subset of both C;and C,. The latter two
sets being perfect implies that 4 is an element of each of them and so also of C,NG,.

‘Examples 3.6: 1. See Def. 2.2. 2. Suppose A < A" To show that A €A/ suppose to the
contrary that A € A. Then A4 is an abnormal element of 4, hence Az A” Thus Ag¢ A,
and soAe N 3.Let Ac J,, and suppose to the contrary that A ¢ J,, Then there

exists an infinite descent A3 x, 3 x, 3---3 x, 3---, where each x; € J". Butthen x, is
non-well-founded. However, x, e Ac JJ, o 8 contradiction. 4. A"’ is perfect by

Lemma 3.4,c. Next we note that S}, ¢ A’ c A’c J. We exhibit specific sets that
demonstrate these proper inclusions. {J,Q} e AJbut {&,Q} e A", So N/ N
Qe Sbut Qe N So Ne J! {{@.Q}}e A7, but {{@,Q}} ¢ . S0, = N,

Lemma 3.7: Let G be a perfect class. Then with @ < &, we have & € 6. Then &" C 6.

Theorem 4.14 implies that & *= G’since & is perfect. Then & € 6. Then appealing to
Example 4.13,a, we conclude that S’ S G.

Remark 3.8: First part: A specific set w where we €, but wegw,isw = { P0,D1}.
Second part: N ¢ N, since N is finite but N itself is not finite.

Lemma 3.9: Suppose y e F'x. Then (1) KBy = 9By (using Def. 2.5, namely,

i) Vx, % x= {y € x| 9B y= 9By} along with Lemma 2.6). Now suppose to the
contrary that ye y. Then 98y y. This gives H By Ky, since H is a selector.
Combining this with (i) gives By C Iy, from which we get y e 9"y . This

43




contradicts consciousness operators axiom b). Then we have y ¢ y, which when
combined with y € x (the latter following from (ii)) gives y € %x.

Theorem 3.11: First part: To show %Z{6) is a consciousness operator, we check the
consciousness axioms a, b, ¢ and d.

Axiom d: (Note axiom d implies axiom a.) 9Z{6’) is a selector by construction.

Axiom b):C ¢ V= () F(6) < FN) = R, the last since Bx = N Nx (Def. 2.5).
Now x ¢ 9Bx (MZ1).  Then using (i), we conclude thatx ¢ FZ(6)x.

Axiom c: To show: Vx, #{(G')x ¢ x, equivalently (Def. 2.5) that Gnx ¢ x. (Note that
‘GNx is a set by the Axiom of Comprehension.) Since @’is perfect, (ii) Cnx € 6. Now
suppose to the contrary that for some set A, (iii) GNA € A. Then combining (ii) and (iii)
gives (6’ NA)e 6 NA. However G NA c V), since we have assumed that & c A
Then 6 NA € N, since AN is perfect (Example 3.6, 2). Then from the definition of A
we obtain 6’ NA ¢ 6 NA, a contradiction.

Second part: Since %is a consciousness operator, &’ (9%) is perfect (Lemma 3.1).
Moreover, #'C 9% (Lemma 3.9). Hence G(F) < C(R) = N

Corollary 3.12: Since each 9], i =1,2 is a consciousness operator, each G’(K,), i =1,2
is a perfect class (Lemma 3.5). Moreover, (i) (%)< AN i=1,2. Now

F6I= (6 (I C(I7) x = C(IF)A G (F) ) Ax . Now

G (F)N C(9, ) is a perfect class (Lemma 3.5). Moreover (i) implies

C(IF)N G (I, )< N. Then H| 97, is a consciousness operator (Theorem 3.11).

Proposition 3.13: If %is a consciousness operator, %’ ¢ ' 9% (Example 3.6,
Lemma 3.7 and Lemma 3.9). This and Cor. 3.12 g1ve%% FR=F R =95
and WIH = KW= FZW = W

Example 3.14: Note that {&,Q} € A~ , so that S, € & = A". Then

6{({}’ ) O(D)c @ (AN). From this W O(D) < R follows (Example 3.6 f5).

We shall show that & is not perfect, demonstrating that (} (&) is not a consciousness
operator. Then take w = {{@ Q}} w is neither an element of S}, nor of itself. Then
we 9. Howeverw ¢ 9.

Remark 3.16: Suppose 4 is a fixed point of 11U 98. Thatis (1U9)A=A. Then
A=AUYBA, which implies that Ac 98A. Then either A= 9B A, in which case
A=Q . or A=0. However (1098 )J #J, so that the only fixed point of 1U B is Q

Sect. 4

Remark 4.4: From Lemma 3.4, Def. 4.1 and Def. 4.2, we have G’is perfect & 6°c &
S CUE=60=(1VP) =0
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Theorem 4.5: Referring to Remark 4.4, Theorem 4.5 is a restatement of Theorem 3.11.
Theorem 4.6: See Moschovakis, 2005.

Lemma 4.8: Part a: Since s a class, ®,€is a union of a class of sets (Def. 4.7) and
hence is a class. Thus @, is a metaoperator. Since A c B = LA LI, we have
O, A D, (Def. 4.7).

Part b: Note Va e f,,, (1U4?) isisotone. Then Vxe S, ®x= U (1u® )'w
A ' wePx
= U (1 u_@)a w=(1 u.@)u x . The first equality following from Def. 4.7 and the
wCx
second from the isotonicity of 1.2 *.
Partc: ;= U (lu_@)ﬁw = U U (1u® )'w=
wePbA ' weRA a«<ﬂ
U U (1u?)'w = U ®,. The first equality follows from Def. 4.7, the second -

a<f a<f
wePrA
from Thm. 4.6 and the second axiom of transfinite induction and the last from Def. 4.7.
Part d: Using Def. 4.7 and part b) of Lemma 4.8, we have ®, = U @, (w). Next

, wePA
(lu®)o,. = U (1lu@)ow= U (1uP)1u®)w= U (1uL ) w
wePA wedAl wePRAL

=&, A. The first equality follows from a result of Aczel, 1988, Chap. 6, the second
from Part b) of Lemma 4.8, the third from Theorem 4.6 and the last from Def. 4.7.

Proposition 4.11: () "= U U (lu@)w= U 1uZ)w.
aed,, WE P2 (rw)e Sy X PA

The first equality follows from Def. 4.7, Def. 4.9 and Def. 4.10, and the second by taking

the Cartesian product of classes. The last term in (i) is a union of classes, hence a class.

Lemma 4.12: Follows from Def. 4.9, Def. 4.10 and Lemma 4.8,a.

Example 4.13: Part a: H-J, Chap.14. Part b: Follows from Part a: since & ¢ J,, € .

Theorem 4.14: Part 1:It suffices to show that (£ *)c.A*. Suppose y€ L(A*),
thatis, yc .4 * Then Vxey, xe A& * Then by definition of % 3 such that

xe(1u? )’ A. Let B(x)be the least ordinal ¢ such that x &(1 UP)* A. Then
xe(1UP)Y 1. Let y=UB(x), so y =supf(x) €S,,. NowVx e y,xe(lUL) A
xey

xey

soyc(1UL) A. Hence ye Z(1u ) Ac(1VP ) (1VL ) A
=(lu® )" A A.
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Part 2: Follows from Def. 4.10, since if 1 U % fixes A, any power of 1 U fixes A .
Part 3: See Remark 4.4.

Corollary 4.15: This follows from Part 1 of Theorem 4.14.

Corollary 4.16: First part: If (is any selector, then &’(() is a class and by

Theorem 4.14, 6 *(@) is a perfect class. From Example 3.6, 2, we know that A”is a
perfect class. So by Lemma 3.5b, 6’ *(®) NV is a perfect subclass of A”. Then
(G (D N AN") is consciousness operator by Theorem 3.11.

Second part: Suppose (is a consciousness operator, then by Lemma 3.1, 6 (®) is a

perfect class, and by Lemma 3.8, @ c92. Then by Theorem 4.14, & * () = 6’ (D), and
Def. 2.5, G(®) <N Then (G *(D) NN =" (G (D N"N)=F"(6(D) = Oby

Lemma 2.8.

Corollary 4.22: If _7is a class, then £ * is a fixed point of metadynamics(a) (Theorem

4.14), and s in the basin of attraction of ¢ *(Def. 4.21). Since 4 — A " is a well
defined metaoperator, the union is disjoint.

Question 4.24: The necessary condition follows from Theorem 4.14, since 7’ ) QD
implies there exists a z€ J” such that 7" = 6.

Lemma 4.25:If z e W(W*) ,then z" =W"by Def. 4.23 of 7. Hence zc W".
However W" is perfect, hence ze€ W*. Then W(W*) cW'. If ze W(W*) , then the

transfinite trajectory ofz is a subclass of ¢/ (W*) , and this subclass being indexed by
., 1s proper.

Ol

Remark 4.27: Part 1: Follows from the Def. 4.23 for ¢’ and Def. 4.10 for *. Part 2: See
Example 4.23,a. Part 3: If @" c W, then “7/(@*) N W(W) = . Hence V/(W*) cW".

Proposition 4.28: Use Def. 4.21 and Def. 4.23.
Lemma 4.30: Part a: Follows from Fig. 4.2. b) follows from Def. 4.29 and Lemma 2.8.
Corollary 4.32: Follows from Theorem 4.5 and Lemma 4.30. |

Lemma 4.35: Firstnote that 6 ¢ & = (1U LB 6 < (1UL) D. Then use transfinite
induction to establish that (1U 2)* 6'c (1VL)* D, VYo e JS,,. Finally take the
transfinite union to complete the proof.

Example 4.36: O ¢ % = O ¢ #** (Lemma 4.35). (i) GC*(#) =J‘;f=wa
(Example 3.6). (i) #/** = A (GC*(W)) = O (S, ) = W (the first by Lemma 4.35 and
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the last by Example 3.6). Then (i) and (i) give (iil) @** c 7. Then @ ** = @ (G*())
(Lemma 4.35). However 6’ *(() is perfect (Theorem 4.14). Hence J,, < 6*(&)
(Lemma 3.7). Therefore (iv) @ (/) < O(G*( B) by the isotonicity of O (Def 2.5).
Using Example 3.6 and Lemma 4.35, we can write (iv) as (V) 9 < @**. Finally (iii)
and (v) yield @ ** = 9.

Proposition 4.38: Parta: (i) Z**= @ (6™ (2)) (from Lemma 4. 35), and from Def. 4.29,

(i) X(Z*) = (1VL)G(Z™)). Applying 6 to (i) gives

(iil) G(Z**) = 6 (O (6 *(2))) = 6 *(2)), the latter by Lemma 2.8. Now combining

(ii) and (iii) gives (iv) X(Z *) = A (1VL)C *(2)) = A(67(Z)), the last by

Theorem 4.14. Finally (i) and (iv) give X(Z ™) =2 ™.

~ Part b: Combining the hypothesis and Def. 4.29, we have (i) 2= @ (1 U L)6 (2)).

Now applying to (i) and using Lemma 2.8, we get 6'(Z) = (1V )6 (Z)). Hence by

Theorem 4.14, 6 (2)* = 6 *(Z) = 6(Z). Then @ (6 *(Z2)) = Z by Lemma 2.8.

Finally we conclude that £**= Z by Lemma 4.35.

Part ¢: From Def. 4.34, (X?(2)** = U X*@*(2) = U X7 (2),

ae Sy ae S,

the last from axiom 1 of transfinite induction (Sect. 4.1). Then

XPzyx*= U X'(Z2)= U Q7(Z)=Z**, the penultimate equality
Y2B, v€ Sou Y€ S '

follows from a generalization of Lemma 4.30,a.

Corollary 4.39: Referring to Example 4.31, we see that there is more than one fixed
point, and so, there is more than one basin. The result follows since a transfinite
trajectory is limited to one basin (Prop. 4.28,¢).

Corollary 4.40: Usmg Prop. 438, (@ N R)™)=(O N .%) * Now using
Lemma 4.35, we have @ € BB = (O N RB)* < G**=39R, the last by Example 4.31
and Prop. 4.38. Then (@ N 92)* is a consciousness operator, by Cor. 4.32.

Proposition 4.41: Part a: If Zis a selector, then Z** is a fixed point of X" (Prop. 4.38).
Thus £ is in the basin of attraction if a fixed point @ = Z *~

- Part b: Suppose (?,and (2, are fixed points of X, and suppose 3 Z'such that Zis in the
basins of both ¢, and (@,. Then Z** =@, and Z**=(,. Hence &, =0, .

Sect. S

Remark 5.3: Part a: If D is finite, then | @fDI > |D| in which case 2 DcD.
Part b: Follows from the equation Z.%,=1.

Remark 5.6: A;B:(lu@f)AQ(lu_@f)B,using Def. 5.1. Then Van,
(1u,) A2(1UL,) B, sothat AD B by Def. 5.5.
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Lemma 5.7:Let we _@f A. Then for some r € N , W= {x1 ) -,'x,} , where each x, € A.
From Def. 5.5 for A, we see that Vi, k(i) N such that x, e (1U _@f)k(i) A. Setting

j=supk(i), we have Vi, x, e(lu@fyA. Hence wg(lu@f)jA. Then since w is
I<i<r
j+l

finite, we have w € &, (1U_@f)jA. Then we(lu@f) AcC A. Thereforewe A.

Remark 5.8: Follows from Lemma 5.7.

Lemma 5.10: (109, )A=A= Vn, (1U%,) A=A.Then A= U (102 ) A=A
neN
(Def. 5.5).

Example 5.11: Part a: Lemma 5.5 implies that D is a fixed point. Part b: Let
w= {xl,- --,x,} , r € N where each x, e FP. Then by Def. 6.1 of FP, w has a finite

picture. ¢) Let w= {xl ) -,xr}, where each x, e FP N A7 ThenweFP. Now
Vi,x; € /" = x € N, because Nis perfect (Example 3.6,2). Therefore x € FP N A

- Proposition 5.12: Part a: follows from Lemma 5.7. Part b: follows from Def. 5.9 and
Lemma 5.7. Part c: follows from Def. 5.2 and Def. 5.9. Part d: Part b gives

1U%2,)A=A. Then by induction we can show that (1U2,) A= A, Vn. Therefore
f f
i=U(ue,)i=A. |

neN

Interpretation 5.13: Follows from Def. 5.5 and Prop. 5.12,b.

Proposition 5.15: First assertion: Suppose A=F. Then A c Fsince Ac A. Moreover
{AIA =F } = {A cF IA =F } , the latter being a set by the axiom of comprehension.

Second assertion: In fact we shall show that 3x € F such that if B= F—{x},then B=F. .
Suppose not, then Vx € F, (F—{x}) =(F-{x}). Then Prop 5.12,a gives Vxe F,
P(F-{x})< (F-{x}). Then (i) ne A(F-{x})c N (F={x}) (H-J, Chap. 2.)

Also (ii) _@f( N (F - {x})) = ﬂF P f(F - {x}) by the definition of &2,. Now inserting

eF

the relation (] 42 A(F—{x})=9 into (i) and (ii) gives PL,B c D, acontradiction.
. xeF

Remark 5.16: Part a: 7 (Y)# @ = 3 aset Asuchthat (i)’ A=Y . Then using Prop.
5.12, we have (i) (1U.%, )Y =(1U,)A = A. Combinig (i) and (ii) gives
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(1ue® f)Y =Y. Partb: Z(Y)c LY follows from Remark 5.6,c. This is a restatement
of Prop. 5.15, since A # A implies that A is not a fixed point.

Proposition 5.21: Let (i) W = Z(F) for some F € &. Then by the definition of
(Def. 5.16), (i)W N F={F}. Then applying % to (ii), we get Z4(W N F )=F, which
we write as (iii) F = % @ (F)W (Def. 2.5). Hence the relation (i) is invertible, and so,
(iii), gives F =% O(F).

Corollary 5.22: Follows directly from Prop. 5.12,b and Lemma 5.10.

Proposition 5.23: If A€, then A e ¥ (A) (Def. 5.16). To show that
F #F, ay(ﬂ)mj(Fz)zg, suppose Aej(lﬂ)my(lg). Then A= F and
A=F,. Since A is well defined, we conclude that F; = F, .

Corollary 5.25: The identity of the classes follows from Prop. 5.12 and Lemma 5.10.
To show that & is a proper class. Suppose to the contrary that & = I for some set /.

Then by Prop. 5.23, = U AF) = U{A GJ’IA = F}. Now by the axiom of
Fel Fel
replacement (H-J, Chap. 6), there exists a function g such that dom g =1 and such that
VFel, g(F)={Ae S|A=F}. Then S'= U g(F), which is a set (H-J, Chap. 2),
Fel

contradiction.

Proposition 5.26: Part i: Follows directly from Def. 5.5. Part ii: Apply Prop. 5.12 to
FA=A. Partiii: £ A=sup(l v, )” A (Def. 5.5). (The supremum over a collection of

neN

sets is specified in Def. 9.15.) Then £(1U%;)A=sup(1uL "AUZ,)A
. f neN 4 4

= sup(lugﬁ’f)n+1 A. Now since (1 u@f)B»; B, VB, then

neN

(1u,)A= AU il:g(lU.@f)HHA:il:g(lu.@f)m/{:f/{.

Part iv: AgB::(lu_@f)Ag (lu@f)B. Then by induction,

Vn,(1U2,) Ac (lu@f)nB. Then itelg(lu_@f)"Ag il:g(lu.@f)nB.

Part v: ‘v‘n,Ag(lu@f)nA. Then Ac #A,and so, 1 ¢ . Now using Prop. 5.12,

we have £A=_F( L£A)= A=A=_F£A. Therefore £’= .

Part vi: Use Def. 5.5 for_ and Def. 5.15 for ‘7. Part vii: (£(A)) = £ A (Prop. 5.12).
Therefore (A) e F( £(A)). Part viii: The last relation in Part vii implies

{ f(A)} c 7( f(A)) =B LAcC L A. Partix: Follows using Defs. 5.5 and 5.15.
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Proposition 5.27: Let A €, and consider the class G’ A/= {Fe F |A c F}. From
Remark 5.6, we see that VF € 6, , we have YA < £ F = F , the inclusion following
from Prop. 5.16,iv and the equality from Lemma 5.10. Hence VF € &, , we have
ACF. Moreover, Ae@ . » since AeF (Prop. 5.12),and A C A (Prop 5.26,v). Thus
A is the least element (relative to inclusion) in &, . Then A= ) F.

Fec,
Proposition 5.28: Part a: H-J, Chap. 6. Part b: H-J, Chap. 8. Part c: Follows from
F-,(F)c F. Partd: Apply (a) to Z (F) = 9 (A). Part e: Follows from Part a,
since #(F)- Z(F)c % (F). Partf: Follows by noting that #n & (F) c % (F).

Remark 5.30: Parta: Ac %PA,but Az /A (Def. 5.29). Part b: Let A €J. Then from
Def. 529, YA= Fn{B|Bc Al= F( PA-BA)= F( £ - B)A
=T L- B )A(Def. 2.4), Therefore /= X(F)( L~ B )

Lemma 5.31: Since 7/F is a set (Def. 5.29) and ¥ is an operator, the restriction of & to
Z/F is a function (axiom of replacement). The result now follows from H-J, Chap. 2.

Theorem 5.32: Part a: If both G €F and G € &F , then (i) ¥ G c 2F |since if

We G, then W=G (Def. 5.16), and hence W < G (Def. 5.5). Since G € £ F, then

G c F. Combining, we conclude that if W € Z(G), then W C F. ‘

We now show (i) - U FZ(G)= GPF. This union is a set (Lemma 5.31).

(GeT |Ge LF} . .

Then from (i), we have U F(G)c PF . Next suppose that V€ £ F and let
 {GeF|Ge ZF} .

H=V. Then H €F (Prop.5.12). Now Ve FF=>VcF=VcF=F=HCF.

Hence H € F and H € %F . Finally, V e (V)= _Z(H )by the definition of ..

We conclude V e U Z (G), since H is one of these G's , demonstrating (2).
(GeTF|Ge LF}
Note that (ii) is a disjoint union (Prop. 5.23), and so, F—- U & (G)= F(F).
Ge YF
Part b: F(G)c LG (Remark 5.16,b), VG € Z/F (Def. 5.29). Then U £(G) isa
’ : GeYF
set by the axiom of replacement. Moreover this set includes

U Z(G). Hence F- U LGc ®F- U F(G)=F (F), the equality
Ge YF Ge JF Ge YF
following from Part a of the theorem.

50




Next we shall show that (iv) Z(F)c®@F- U £G. Suppose W e Z(F).
Ge YF
Then since ¥ | (F ) c 9°F (Remark 5.17), we have W c F,and so W € 9PF . Suppose

now that G € J/F. Thatis, Ge & and G c F. Then using (ii), #£G6= U Z(K).
Ke 2G

If Ke Fand K G,then K # F (since GC F). Also W ¢ Z(K), since

F(F)n Z(K)=2 (Prop. 5.23). ThusW ¢ & G,VG € #/F . This concludes the proof

of (iv), which when combined with (iii) establishes the proof of Part b.

Remark 5.34: Follows from Fig. 5.1.
Remark 5.35: Follows from Remark 5.6 and Fig. 5.1.

Lemma 5.35: &, AC %, F,since &, is isotone. By hypothesis, PAC P FCA.
Therefore %2, A < A, and so, (1U @f)A =A.

Lemma 5.36: G € & means (1U _@f)G=G. VeG=(1u Q?f)Vg (1u @f)G,
since both 1 and 2, are isotone. Thus Ve £ G = (lu _@f)V e®G.

Proposition 5.37: S'= U _Z(F) (Prop. 5.23). Then since & G < J; we have
‘ FeZF .
)L G= U L Gn Z(F). Nowsuppose thatfor Fe & L Gn I (F)2D.
Fe&F
Then AW € & (F ) , so that W < G . Therefore W < G, since the tilda is isotone.

However G =G, since Ge F Also W = F (Def. 5.14). Hence F < G . Therefore
(i) Fe Fn &£ G. Nowsupposethat He F N ¥ G;then HCG.

If We ¥ (H),then W Hsince W=H (Def.5.13)and W W (Prop. 5.26,v).
Thusif W e j(H) ,then W c H ¢ G, and hence W € &2 G. We conclude that if
(i) He F n P G,then ¥ (H) c # G andso, £ Gn ¥ (H)= ¥ (H).
Using (i) and (i), we have (iv) #G= U LG Z(F). Using (iii), we can
FeFgN LG
simplify (iv) further to get £ G = U Z (H ), completing the proof .
HeFN LG

Sect. 6

" Proposition 6.2: See Aczel, 1988, Chap. 3 and Moschovakis, 2005.

Remark 6.3: ¢, FP ¢ FP , hence (1U%, JFP=FP.
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Proposition 6.4: Parta: ye FP = Vz ey, zeFP. Also y € FP implies that y is finite

by definition.
Part b: From Def. 6.1, we conclude thaty € FP = y ¢ FP. We can show by induction

(Remark 6.3) that VneN, (1u% f )n y € FP . Then as a union of FP subsets (Def. 5.5),

y < FP. FP being countable implies that § is countable. Moreover ¥ is infinite, since
it is finitely perfect (Remark 5.3). Thus 7 is countably infinite.
Part c: Prop. 5.11.

Remark 6.7: See the definitions.

Remark 6.9: @ being a selector and y e FP = @y € FP, since %y is a subset of y.

Remark 6.10: Axiom of comprehension.

Lemma 6.11: xeFP=xcFP =>FPnx=x. Also @(6)x= 6 nx (Def. 2.4).
Combining the last two equations gives @ (6)x= 6 N(FPNx) =

( G NFP)Nx = f( G NFP)x (the last using Def. 6.6 and Remark 6.10).

" Lemma 6.12: Suppose 4 is a finite subset of GAFP. Then it is also a subset of each of
G and FP. Since G’is perfect, A € 6. Since FP is finitely perfect, A € FP. Taking these
two observations together gives A € G FP. '

Lemma 6.13: Part a: This follows from Theorem 4.14.
Part b: Using D c FP and D ¢ D* (Lemma 4.12) gives D < D" N FP. We also have

D'= U (1u _@)a D (Def4.10). Now D" NFP =FP N D", the right member being

o ELfnra' ’
a set by the axiom of comprehension. Nextnote FPND" = U (FP n(lu £)" D).

a e‘f‘ord
Then there exists € f},, such that (i) FPN D" =FPn(1u# )/3 D. (Compare with

- the proof of Theorem 4.14.) The right hand side of (i) is equal to FP " (1U %2 f)ﬁ D

(proof by induction on f3). Further, FPN(1U.% p )/3 D =FPnN D, since Dis a fixed |
point of 1U 2, . Finally, FPND =D, since D c FP by hypothesis.

Theorem 6.14: Follows from Lemma 6.12 (which gives the well-definedness) and
Lemma 6.13 (which gives the surjectivity).

Remark 6.15: See Example 6.16,i.
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Lemma 6.17: & ,is isotone implies that P (FPNN)c P,FPE, N

(Def. 5.1). Also &2, N LN by definition. Hence _@f(FP N JV’) c L, FPN LN
c FP NV, since FP is finitely perfect and A" is perfect.

Lemma 6.20: DeL=(1U% f)D e L (Remark 6.19). We can show by induction that
VneN,(1u &, DeL. Now #D= U(1U &,)' D (Def. 5.5). Moreover,
neN

L=Z(FPn N ) , being a power set, is closed under indexed unions (H-J, Chap. 2). |
Therefore "D €L. :

Proposition 6.22: Special case of Prop. 5.37.

Proposition 6.25: Suppose D €S. We know that |[D| =N, since D =D (Remark 5.3).
We claim that 3d e D such that A= D —{d} ¢S (refer to the proof of Prop. 5.15). Now
|A|=|D|=N. Then since A is not a fixed point, A € Region II (Def 6.21,3). Now

Ac D=AcD=AcD. HoweverA# A,since A¢S (thatis, Ais not a fixed
point). We conclude that A Ac D (Prop. 5.26,v). Since A=D—{d}, we have

“A=D. Thatis, D is a limit point of an element of Region II. This completes the proof.

Lemma 6.26: This is a specialization of Lemma 5.35.

Theorem 6.27: Part a: HC FP N A’ FP . Therefore |H| <| %2FP|<|FP|. Then since
|H|=|FP|=N, | #FP|=N, and so | ZRFP|=2".
Partb: | #FP| =N =| &, 9FP|=N (H-J, Chap. 3).

Part c: First part (to showlSI =2%): Let X=FPn A= ZFP, then X €S. (Note that
X is the maximal element of S (Def. 6.21,1).) If EcCFP,and E satisfies

P, XcEc X, then E€S (setting D =X in Lemma 6.26). We claim that |J| =2,
where J is the set J = {E C XI_@f Xc E} Assuming the claim, we have J cSc L,
and so, [J|<[S|<|L|. However, |L|= 2Nand |J]=2". Then by the Cantor-Bernstein
Theorem (H-J, Chap. 4), we conclude that ISI =2, demonstrating the first part.

Proof of claim (IJI =2M): If#,XcEcX,then E-%,Xc X -, X . Conversely, if
Dc X-%, X, then PL,XcD U, X c X.Then J is in one to one correspondence
with (X -, X). Therefore, |J|=2raised to the power |X — %2, X|. Thus we need
only show that |X -2, X|=N. From Part a, we have |X|= N, which implies that

|X —_@fXI <N. Then consider the set C = {{n,QHn € N} . (Cis aset because it is the
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range of the function, n+> {n,Q}.) If ) m#n, then {m,Q}#{n,Q} (so that there are

an infinite number of such pairs). We now demonstrate the auxiliary property that
Vn, {nQleX-% X.

Demonstration: For a fixed 7, (i) {7,Q} € FP . Note that (iii) {n,Q} ¢ {n,Q}, so that
{n,Q} € A" Then combining (ii) and (iii), we have {n,Q} € FPn A"=X. Continuing,
if z e.@f X, then Vw ez, we A" Therefore {n,Q} g%, X (since Qe.1).

Continuing with the proof of the claim: Using (i), we have |C| =H{n,Q}[n € N}l =N.
However C ¢ X~ %, X ¢ X, and therefore |X -, X | =N, completing the proof of

the claim.

Second part (to show ]SO] =N): | .@le =N, since both H c¥, Xc Xand
[H|=|X|=N. Also S, = _#[ &, X] (Def. 6.21). Then |[S,|<N. We shall now
- construct a proper subset Q €S, such that |Q| = N, completing the proof.

Construction: Recall that &° ;X< X. Then Vn, & ;i“X c P X,since _@f is isotone

R def
(Def. 5.1) and one to one (Remark 5.3,b). Let X, =2 X . Then X, c X. Moreover,
(iv)X,,, < X,, Vn. Next Vn,choosea (v)y, € X, - X,,,. Nowset Q= {)7" nz 1}. We
shall show that if m > n, then 3, # J,, which completes the proof that |Q]=N.

Note that (vi) X, = &, X, _, and so from (iv), X,_, is finitely perfect. Therefore

v, €X,=y,cX, ,. Then using (v), we have that v, € X, ,—X, if n=21. Next since
X, is finitely perfect, (v) and (vi) show that X =X, if n>1. Hence ’

Y. €X,, =Y, <X, . Ontheother hand, y, € y,and y, ¢ X, . Therefore j, X, .
Hence, Vn>1, y, < X, , — X,. Now suppose that m >n. Then m—12=n and

(vil) X,,_, € X,,. Moreover, using (vi) and (vii), we have y, ¢ X, _,. Hence J, ¢ £ X, _,.
On the other hand, j, c X,,_,. Hence y, € 9©X, . We conclude that §, # j, . This
completes the proof of Part c. '

Part d: We have H Region II limit points }I =|S| (Prop. 6.25). Now_¥ I RegionIlis a
surjective map of Region [T to S (Prop. 6.25). In fact, . | Region II is a function by the
axiom of replacement. By the axiom of choice, |S| < | Region II l (H-J, Chap. 8)
Moreover, | RegionII | <|LJ, since Region IT L. However, |S| = [L| (Parts a and c).

Then the Cantor-Bernstein Theorem implies that | Region II |=|S| = 2" (using Part c).

Corollary 6.28: Follows from Theorem 6.27.c.
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Sect. 7
Proposition 7.1: Special case of Lemma 6.11.

Proposition 7.6: Both parts follow from Remark 2.8, Lemma 6.13 and Theorem 6.27¢.

Theorem 7.7: Part a: First assertion: A" is perfect (Example 3.6), and so, A= A"
(Theorem 4.14). Now A C N'= A ‘c AN Hence A N The second assertion

~ follows from Theorem 3.11. Part b: Follows from Lemma 6.13 and Prop 7.1.
Part c: Follows from b and thaty € FP = j c FP (Remark 6.4,b). Part d: From Prop. 7.1,

() VxeFP, H'x= f(E)x=Enx,where E=FPNG (%). Since Hisa
consciousness operator, G’ (9%) is perfect, and 6’ (9%) < A" (Theorem 3.11). We
conclude that E is finitely perfect (Lemma 6.12), and we also note that

C(F)c N'=Ec N, since Ec G(97). Then E_C_FP(\JV’, and (1u Qﬁ’f)E=E
(Def. 5.2). Hence E €S (Def. 6.21,1). Hence using Part b, ‘V’x € FP, we have
2 (E*)x = ENnx= 9 x, the last equality following from (i).

Proposition 7.8: First part: If D e S, @(D")is a consciousness operator (Remark 7.4),
and @ (D")|FP = f(D) (Theorem 7.7,b). Moreover, the map D > f(D) is one to one,

since D ¢ FP (see the note following Def. 6.8). Hence the mapping D &(D*) FP is
“one to one. Now let E = & (9%") "FP where 97 is a consciousness operator.
Theorem 7.7,d gives E €S and SZ|FP = @(E *) FP . Hence the map D @(D*) from

Sto“ (%

FP)IW € Consciousness Operators} ” is one-to-one and onto.

Second part: From the first part, we conclude that the collection
“J( W|FP)|W€ Consciousness Operators}”= {f(D)lD €S} =R[S]. (For the last
equality, refer to Def. 6.6 and H-J, Chap. 2.

Remark 7.9: Follows from Theorem 7.7,b and Example 7.2.
Sect. 9

Remark 9.3: Vx eJ’, % x  x (consciousness axioms). Therefore (i) I € Px . Now
FcR (Lemma3.9), and RK = RNIZ = 97" (Cor. 3.12). Therefore RIx =X .
That is, any element y € 97'x isin A" Therefore (ii) 97 °x € N (Def. 3.3).

Combining (i) and (ii) completes the proof.

Proposition 9.4: Parts a, b, ¢ and d follow directly from Parte. Parte: If y e 2(x),
there exists a consciousness operator 97 such thaty = 9% x . That is, there exists a
perfect class & < A such that (i) y = 6~x (Theorem 3.11). Now since y € x and
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y< y then (ii) y € y" mx. Then using (i), we have (iii) y" N x = ( Gnx) Nx.
Observe that ( & hx)* c 6" nx’ (isotonicity of *). However 6’ "= G, since & is
perfect (Theorem 4.14). Therefore (iv) ( G mx)* C 6 Nx". Now combining (iii) and
(iv) givesy' "x < 6 nx" Nnx=6Nx (since x < x"). Then using (i), we get

(v) ' nxcy. Now using (ii) and (v), we conclude that y*nx=y. Using @ c N
and (1), we get y C N °Nx = Ax (Example 3.6,2). We now know that

2Ax)c{y g%x|y* MNx=y}. Next we show thatif y c %x,and y'nx=y, then
ye 2(x). Since yC Rx,then yc AN, Now setting & = y*, we have y* < A, and
by Theorem 4.14, y"is perfect. Therefore (%) is a consciousness operator (Theorem
3.11)and AP )x=y. Hence y €.2(x) (Def. 4.1),.completing the proof of Part e.

Remark 9.5: Combining the hypothesis w < x with wcw", wehave wc xnw' =y
(by hypothesis). y < 92x follows from Prop. 9.4,c. -

Corollary 9.7: Let Z, be the operator defined by w > x " w". 2| #Px is a function
(axiom of replacement). Now Prop 9.4,c may be rewritten as 2 (x) = .2, [ _@%x] (see
footnote 13), showing that.2 (x) is a set.

Lemma 9.9: Parta: If xe J, thenx = JS° s (H-J, Chap. 14), and %x < x. Therefore if
wc PBx,then we J . - Hence w=dJ s (Lemma 3.7, Remark 4.4 and Theorem 4.14).
Now xc Sy and w' = = xnw" =x. Hence 2(x)={x} (Prop. 9.4.c).

Part b: Since 93 is not isotone, Part a implies that .2 is not isotone.

Partc: .2 (y)z{yr\w*|w c Ry} = {ymw*lwg R Ry) }, since R*= R. Now
wC ARy wcyn W=ng:w*gJV’ (since V"= A that is, since AN is
perfect). Hence we Ry = ynw' =ym(w* NN)=(yn N)ow' =R ynw'.
We conclude that 2(y) ={ By nw'|w = R Ry) } = 9( Ry) Prop. 9.4,0).

Part d: Follows from Part c. ,
Parte: (i) ye .2 (x) = yc Rx (Prop. 9.4 e) = Vzey, z€ AN (by definition of )

= (ii) y € A" (Example 3.6,2) = y € A" 2 (x) (combining (i) and (ii))

=ye R(2(x)). '
Part f: The first equality follows from Part a. For the second, we shall show that Vx e,
H.2 (x)= 989 x. Suppose then thaty € %2 (x). Then (i)y e JS,, N 2 (x)

(Example 3.6). Then since y € ', (from (i)), it follows that y < /. s (H=J, Chap. 14).
Hence @ ¢ yc ;. Then the isotonicity of * (Lemma 4.12) yields (i) & < y* < J°,,.
Now using &" =/, (Example 4.13) and S° =, (Example 3.6 and Theorem 4.14)
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in (ii), we conclude that " . € y*C .. Hence (iii) y" = J . Using (i), we have
(iv)y € -2 (x), from which we have (v) y"nx =y (Prop. 9.4,¢). (ii) and (v) imply-

(vi) y=J' ynx= #x (refer to Example 3.6 for the latter equality). Conversely,

(vil) % x € W2 (x) (Def. 9.1 and the well-foundedness of #/x ). Combining (vi) and
(vii) yields #/-2(x) = { YW x } , concluding the proof.

Part g: Prop. 9.4 tells us that Vy €.2 (x), y < %x. Hence y € #%Rx. Thus

Vx, 2 (x)c PR x. Hence 2 c PR

Part h: Def. 9.1= (1).2 ( %) ={ " Fx| H isa consciousness operator } < .9(x),
since H' 97 1s also'a consciousness operator (Cor. 3.12).

Also (i1) .2 ( Fx)c _@( ) (Lemma 9.9,g). Combining (i) and (ii), we have

QI 9N FPFH. Next suppose that (iii) y € .2 (x) N LHx. The first part in the
intersection in (iii) gives (iv) y = 9%, x, for some consciousness operator J7; , while the
second part gives (V) y <€ Fx =6 ( N4 ) Nnxgc 6 ( I ), the equality here following
from Lemma 2.6 since 97 is a selector (consciousness axiom d). Now

Vi) Hy=6 ( I ) Ny (Def. 2.6). Combining (v) and (vi) gives y=9%"y. Then
combining (iv) and (vi) gives y = FH, x= I, Fx € 2 Fx) (Def. 9.1).
Therefore .2 (x) N PI7x 2 ( Fx).

Parti: ye .2 (x) & y= 9Z'x for some consciousness operator 97" (Def. 9.1). Then
V%, Fxe 2(x),and hence B Ik = 2 (x).

Remark 9.10; .9 (y)=-2(Ry)={ Ry} #{y}. The first equality follows from
Lemma 9.9,¢), the second follows from Lemma 9.9,a since Ry € J,, . The inequation

follows from Ry #y.

Corollary 9.13: Let y, = 97", x and let y, = 97, x . Then using Cor. 3.12, we conclude
that y, Ny, =( 9Z,NI7,)xe 2 (x).

Proposition 9.14: Part a: We have (i) y" nx =y (Prop. 9.4,¢). Since x C x*, we have
(ii) x* "x=2x. Applying y # x to (i) and (ii) givesy" # x". Part b: We have y, nx =1y,
and y, "x =y, (Prop. 9.4,e). Therefore y, #y, = yf # y: . Part ¢: Suppose ¥ € .2 (A),
and Y'=B". Then Y = B"n A (Prop. 9.4,¢). Moreover BNACY since BC B".

Proposition 9.16: Part a: First assertion implies second: 3Y € .2 (A) such that
Y'=B"=Y=ANY" and Y' = B" (Prop. 9.4,¢). This in turn implies that Y =AN B’
and (A N B*)* = B"; Second assertion implies third: Suppose (A N B*)* = B’, so that
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ANB e ¥ (B) (Def. 4.23). Hence PANY(B')# D, since ANB € L A;
Third assertion implies first; Suppose %PA N v (B*) # (. Then W < A such that

(i)W* = B" (Def. 4.23). Let Y = AN B". Now (i) implies Y = ANW", and since
W c A c . (using the hypothesies on 4) we have W < 92 A . Then using Prop. 9.4,a,
we have ANW" €.9(A). There remains to show (ii) ¥ = B", which we shall do in two

parts, I and II.
Partl: Wc Aand W cW" =W c ANW" =Y (using (i)). This in turn implies that

W™ C Y~ (isotonicity of *), and so that B* c Y (using (i)).
PartIl: Y" = (A N W*)* c A"NW™ (isotonicity of “(Lemma 4.12)). Thus ye A" nW"
(since W" is a fixed point). However, W ¢ A= W™ < A" (isotonicity of *). Hence,

Y" c W' = B" (the equality coming from (i)). Comparing Part I and Part II, we conclude
that Y =B". :
Part b: (1) Uniqueness of Y follows from Prop. 9.14,c. (2) Y € 2 (A) =SY=ANY"

(Prop. 9.4,¢). Since Y" = B" (by hypothesis), we have ¥ = AN B”, and then from
Def. 4.19, we have that ¥ = 9Z(B)A .

(3), (4), (5): Suppose W & AN ¥ (B"), then W c A and W* = B". Moreover,
W cW*=B",and so, using 2), W cANB" =Y. Note that Y € LAN ‘“W(B*), since
both Y € .2(A) € %PA (Prop. 9.9, g) and ¥ € ¢/ ( B*) ( the latter following from the

hypothesis Y* = B"). (6) Follows from (2) and Def. 4.23. (7) is a restatement of (1) and
(2) combined.

Lemma 9.19: Part a: Since y € FP, then by Remark 6.4, FP and y 1is finitely
perfect (Def. 5.2). Applying Lemma 6.13 to §, we get ( )7)* NFP =73. Hence by
hypothesis on 6’, GNFP = 3. Part b: Since y < FP, we can show by induction that

Vn, (1, )" y=(1ue )" y. Now taking the supremum of both sides of the last

equation gives j=(1U% )w y. Then with o €S’ ,, we have

ord °

(1uP) 5=1uR) (1uL)’y=(1UL)"y (the last equality by transfinite
induction (Theorem 4.6)). Then (iii) sup (1 UZ) 5= sup (1UP )"y. The left
aed, aed

ord ord

member of (iii) equals 6’and because the operator 1.2 is accretive, the right member
of (iii) equals y*, completing the proof of Part b.

Part c: Apply Lemma 6.11 to 6 = ().

Proposition 9.20:Part1:By hypothesisx and y € FP; thus 9%y)x c x, and X y)x e FP.
Moreover, y)x=y" N x N N (Def. 4.19). Theny’ N x =N x(Lemma 9.19,¢).
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Part 2: Since x € FP, then %x € FP. Then since .2(x) c %x (Lemma 9.9,g), We
deduce that .9(x) e FP . Part 3. Follows from the Def. 9.1 of 2 (x), Def 7.5,1 and
Theorem 7.7,d. Part 4. Follows from Prop. 9.4,c and Lemma 9.19,c. Part 5: Follows
from Part 4, Def. 6.21 of S, , and Def. 7.5 of K. Part 6: Follows from Prop. 9.4,¢ and
Lemma 9.19,c. Part 7. This is a restatement of Part 6 (see footnote 13).

Remark 9.22: Since x € FP , we can write 2 (x) as 2 (x)={y g%x|P(x,y)} , Where
the proposition P(x,y) is “yC x and §nx=y”. (See Prop. 9.20,6 and recall that 9 is

aselector.) The claim, P(x,y) & VneN, xn(1u#) y=y, completes the proof of
the remark.
Proof of claim: We have (i) 5= (1 v, )w.y (Def. 5.5), (ii) ycx=xNy=y and

(iii) VneN, yc(1u f )n y (since metadynamics(b) is accretive). (iii) implies
xnyc (1u &) ycxn(lu #,)" y. Now note that (i), (ii) and (iv) give
W)ycxn (1u _@f)n ycxnNy . Hence from (v), we have

P(x,y)e VneN, xn ( lu@f)ny=y. Now both xe FP and yc x= y €FP.
This in turn implies that Vn e N (1U & f)n y=(1u?)y |

References

Aczel, P. 1988 Non-Well-Founded Sets. CSLI Publications, Stanford.

Birkhoff, G. 1967, Lattice Theory, 3" Edition, American Mathematical Society.
Devlin, K. 1993, The Joy of Sets, 2" Edition, Springer.

Goldenfeld, N. 1992, Lectures on Phase Transitions and the Renormalization Group,
Westview.

Haykin, S. 2009, Neural Networks and Learning Machines, Prentice Hall

Hertz, J, Krogh, A, Palmer, R. 1991, Introduction to the Theory of Neural Computation,
Addison-Wesley.

Hrbacek, K, Jech, T. 1999, Introduction to Set Theory, M. Dekker.

Kant, I. 1781, Critique of Pure Reason.

MacLane, S. 1998, Categories for the Working Mathematician, Sprmger

Miranker, W, 2008, The Neural Network as a Renormalzzer of Information, Quarterly of
Applied Mathematics.

Miranker, W, Zuckerman, G. 2009a Math’l Foundations of Consciousness, J. Applied
Logic.

Miranker, W, Zuckerman, G. 2009b, Dynamics of Mental Activity, J. Applied Logic.
Moschovakis, Y. 2005, Notes on Set Theory, Springer.

Watson J, Berry A. 2003, DNA: The Secret of Life, Random House.

59






