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CHAPTER 1
INTRODUCTION

Numerous problems in physics and engineering can be formulated in terms of the
biharmonic equation

AAu = f (1.1)

where A is the Laplace operator and u is subject to one of several sets of boundary
conditions. Examples include the study of a clamped or supported plate in
elasticity theory (see for example [14, 22, 23]), and steady Stokes flow, i.e. the
steady motion of an incompressible fluid in the infinite viscosity limit (see for
example [13, 29]).

We will restrict our attention to the homogeneous equation (f = 0 in (1.1)).
The reason for this is twofold. Such problems are of physical interest in their
own right, corresponding essentially to the absence of interior “load” in elasticity
or “force” in Stokes flow. Moreover, the inhomogeneous problem can always
be reduced to a homogeneous equation with different boundary conditions by
standard techniques.

In this dissertation, we develop mathematical tools necessary for the con-
struction of efficient and robust numerical algorithms for the solution of several
boundary value problems for the biharmonic equation (see Section 2.1). We
reduce each of these problems to a second kind integral (or in some cases integro-
differential) equation on the boundary of the region by means of a local analysis

of the singularity of the fundamental solution and its derivatives. The algorithms
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for solving the boundary value problems based on these integral equations are of
order O(N + P), where N is the number of points in the discretization of the
boundary, and P is the number of points in the domain at which the solution is
to be computed. The derivation for all of these equations falls into a single uni-
fying framework. Furthermore, emphasis has been placed on obtaining integral
equations with smooth kernels whenever possible, which allows for much higher
orders of convergeﬁce of the resulting numerical algorithms. ’

Most mathematical literature on the subject is devoted to the clamped plate
problem (see Section 2.1), often referred to as the Dirichlet problem. Classically,
fairly strong regularity conditions have been imposed both on the region and
the boundary values for which the problem is to be solved (see, for example,
[16, 17, 19, 20, 22, 24, 31]), but recently, much work has been devoted to relaxing
~ these conditions (see [1, 4, 5, 7, 11, 12, 32]). However, none of these is suitable
for efficient numerical computations, and they do not suggest any general way of
solving other boundary value problems.

The purpose of this dissertation is to introduce an approach to the derivation
of second kind integral equations for the solution of the biharmonic equation with

the following properties:
1. The kernels and integral equations are suitable for numerical computation,

2. The same heuristic method for choosing the kernels can be applied to many

other boundary value problems,
3. The method of analysis extends to three and higher dimensions.

The regularity conditions which need to be imposed are fairly strong, but they are
natural in the sense that they are needed not only for the proofs of the theorems,
but also for achieving a high order convergence of the numerical algorithms.
Previous numerical approaches fall into one of two categories, namely finite
difference/finite element methods [3, 15, 25], and integral equation methods [6,

21, 26]. There are two serious difficulties associated with the first approach.
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If a grid is laid out over the domain of interest so that there are O(N) points
in the discretization of the boundary and O(N?) points in the discretization of
the interior, then the condition number of the resulting linear system will be
proportional to N* (as opposed to second order partial differential equations,
where the condition number is O(N?)). This results in a catastrophic loss of
precision even for relatively small N. Furthermore, while there exist fast direct
methods for the solution of such linear systems resulting from the discretization
of rectangular regions 3], no such method is applicable in regions of complicated
shape. When such methods are implemented, the resulting computer programs
tend to require excessive amounts of CPU time and to produce results with
unsatisfactory accuracy.

Integral equatibn methods are based on either first or second kind equations.
Second kind equations have long been known to be well-posed (see for exam-
ple [30]) and to result in stable numerical algorithms (see for example [2]). In
particular, the linear systems resulting from their discretization have asymptoti-
cally bounded condition numbers and the boundary integral operators often have
smooth kernels [21, 27].

First kind integral equations, on the other hand, are ill-posed, their analysis
is more difficult, and numerical algorithms for their solution are hard to design.
Historically, first kind equations have been avoided, but recently several papers
have appeared showing that so long as the kernel of such an equation is sufficiently
singular, it is only weakly ill-posed and can be solved numerically. Nonetheless,
the analysis of such problems is detailed, the resulting linear systems have high
condition numbers, and the design of efficient numerical algorithms is difficult.
Therefore, we restrict our attention to second kind equations, imitating the po-
tential theory approach to the solution of the Dirichlet and Neumann problems
for the Laplace equation {9].

In this dissertation, we solve three of the more frequently encountered bound-
ary value problems for the biharmonic equation (problems (C), (F) and (S) of
Section 2.1). While the reduction of problem (C) to second kind integral equa-
tions is discussed in [1, 4, 5, 16, 17, 19, 20, 22, 24, 31], and the reduction of prob-
lem (F) to second kind integral equations is discussed in [5, 21, 22], (although
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the resulting equationsvare different from those obtained here), it appears that
a boundary integral approach to (S) has not been considered previously. The
kernels in the integral equations will be smooth, with the exception of one case,
where the kernel has a logarithmic singularity. This facilitates the construction
of accurate and efficient numerical algorithms for the solution of the problems.

Following is an outline of the dissertation.

Chapter 2 contains the statements of the boundary value problems we solve
and a general description of the solution process.

Chapter 3 contains the definition of the kernels to be used and the proof
of their smoothness. It also contains the computation of the diagonal terms in
the integral equations (the jump conditions of multiple layer potentials), and a
description of the heuristic reasons for choosing the kernels as we do.

Chapter 4 is devoted to a study of the existence and uniqueness of the so-
lutions of the integral (or in some cases integro-differential) equations set up in
Chapter 3. In the last section we return to the boundary value problems stated
in Chapter 2. We discuss the fact that the solutions of the integral equations set
up in Chapter 3 yield solutions of the respective boundary value problems via
the potential formulas.

Chapter 5 has two parts. In the first part we describe the numerical algorithms
which have been implemented based on the theory described in the previous
chapters, and the principal numerical tools needed to implement them. Several
numerical results are presented to illustrate the performance of the algorithms.

In the second part, we close by stating further problems of interest.



CHAPTER 2

THE BOUNDARY VALUE
PROBLEMS

2.1 Statement of the the Problems

Let D be a bounded domain in R? with C*¥ boundary 8D where k > 2. We will
look at the following three problems:
The clamped plate problem (C): given C° functions g, and g, on 9D,

find a continuous function u on D, so that

A%y =0 on D
u=q on 0D (C)
0u/dv =g, on O9D.
The fluid dynamics problem (F): given C° functions ¢g; and g; on 9D,

find a continuous function u on D, so that

A%y =0 on D
JufO0v =g, on 0D (F)
Ju/dr =g, on 0D.
The supported plate problem (S): assume k > 4, let g of class C? and

g2 of class C° be given on 0D, and let 4 € R be a real number. Find a continuous

function u on D, so that

Au=0 on D
u=q on 9D (S)
Au+p-9u/dr* =g, on ID.
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In (C), (F), (S), the partial derivatives with respect to v and T are derivatives
in the normal and tangent direction at the boundary (the precise definitions will
be given in Section 3.1).

Note that problem (C) can be reduced to problem (F) by taking the deriva-
tive of g, in the tangent direction along the boundary, and problem (F) can be
reduced to problem (C) by integrating g; along the boundary. Nevertheless, since
numerical differentiation is unstable, it is worth stating and solving problem (C)
as a problem in itself. Also, it is worth stating and solving problem (F) directly
rather than reducing it to problem (C), since the extra effort in obtaining a direct
solution is minimal, and a direct solution to problem (F) is a useful tool towards
solving related problems.

In the case of problem (S) we will consider two separate cases. First we have
problem (S0) (corresponding to the case y = 0): Assume 9D is of class C* with
k > 2, and let h; and khy be C° functions on dD; find a continuous function u on

D, so that
A’ =0 on D
u=h on 9D (S0)
Au=h, on 08D.

Second, we have the general problem stated before, with g # 0, which will be
denoted (Sp).
From a purely mathematical point of view (not counting computational com-

plexity), problem (S0) is equivalent to the following two Poisson equations:

Au=v on D (P1)
u=h; on 9D

and
Av=0 on D (P2)
v=hy on 0D

A computational approach based on this decomposition, however, is neces-
sarily inefficient. In order to see this, let NV represent the number of points used

in the discretization of the boundary 8D, let P represent the number of points
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in the domain D where the values of the solution u are to be computed, and let
M represent the number of points inside D needed to solve the Poisson equation
(P1) (M is of the order O(N?), while frequently P is constant). An algorithm
solving the two problems (P1) and (P2) is at best of the order O(M) = O(N?)
since the values of v have to be computed at M points inside D. On the other
hand, it will be shown in Section 5.1 that the algorithm based on the tools de-
veloped in this dissertation is of the order O(N + P). Therefore, it is of interest
to solve the problem (S0) directly.

2.2 Outline of the Solution to the Problems

The approach to solving these problems is the following: we try to represent u

as a multiple layer potential

u(P) = [[K:(P,Q)21(Q) + Ka(P, Q)r2(Q)ds(Q), (2.1)

where P € D, and [ f(Q)ds(Q) represents the integral of the function f(Q) along
0D with respect to arclength. If P is in a tubular neighborhood of 8D in D then
d/0v and 3/dt at P are well defined. For each problem, we take the appropriate

derivatives of u. For example, for (F) we obtain

5B = [EHPQn(Q)+ 2 Pm(@s(@)
B = [ERn(@) + Z2(P,0)(@)ds(@)

Take the limit as P — Py € dD. On the left hand side we get ¢;(F) and g2(Fo).

Denote

0K,

Ku(PoQ) = 5 2(RQ)
Ku(PnQ) = 52(P@)
Ku(Po@) = 5-2(PQ)
Ku(PoQ) = 32(PQ)



when Py € dD. Next, we find D;; which satisfies the jump condition

Jim [ Ku(P,@)o1(Q)ds(Q) = Duar(Ro) + [ Ku(Fo,@)o1(@)ds(Q)- (22

Similarly we will obtain D3, D2y and Dyz. This leads to a system in o and o,
(50 52) (5 e
/( K1 (Po,Q) Kiao(Po, Q) ) ( o1(Q) )ds(Q) _ ( 91(Fo) ) ,
Kn(Fo,Q) Kn(Fo,Q) ) \ 02(Q) g2(FP)
where the integral is on 3D and Py is an arbitrary point on 9D.

For each of the. problems stated, the expression of the kernels K and K,
will be given, and Kj;; will be computed; the operators D;; will turn out to be
combinations of multiplication operators, Hilbert transforms and differentiation
operators with respect to arclength. With these choices, almost all the kernels
K;; are smooth and those which are not smooth involve only logarithmic singu-
larities. The latter pose no computational difficulties, since there are methods
for computing integrals with singularities of this type efficiently (details will be
given in Section 5.1).

The resulting integro-differential equations for o1 and o5 are of the second
kind, or can be reduced to equations of the second kind, so they can be solved
using the Fredholm theory. They will be studied in Section 4.2. Finally, we will
discuss how the potential formula (2.1) provides a solution to the boundary value
problem at hand with the charges arising from the integral equation.

From the analysis of the integral or integro-differential equations we will see
that, based on the theory developed in this dissertation, we can construct efficient
and stable algorithrrls for solving problems (C), (F) and (S0). The corresponding
algorithm for solving problem (Sg), while still preferable to algorithms based on
finite difference or finite element methods, is not satisfactory. Indeed, it will be
shown that the condition number of the linear system arising from the integro-

differential equation which yields the charges for the potential formula has the

condition number increasing as a fourth power of the number of points /N in the
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discretization of the boundary 8D. From that point on, because of the limited
usefulness of this approach for problem (Su), we will skip some of the details of
the proofs for problem (Sy), and we will give all the necessary proofs for solving

problems (C), (F) and (S0).






CHAPTER 3

SETUP OF THE INTEGRAL
EQUATIONS

This chapter is devoted to setting up the integral equations for each of the three

problems listed in Section 2.1.

3.1 Notation

Given two vectors v = (a, b) and w = (z,y) in R?, their dot product az + by will
be denoted v - w. Let D represent a bounded domain in R? with C* boundary,
where £ > 2. Let 0D be its boundary. The boundary is a closed curve, and
Q = Q(s) = (z(s),y(s)) will usually denote a point on the curve, where s is the
arclength parameterization of the curve. The unit tangent vector to the curve is
given by (z'(s),y'(s)) and it will be denoted by 7. A function f on the curve,
will also be written as f(Q) or f(z(s),y(s)) or simply f(s). The derivative f'(s)
will also be denoted as df /ds or df /dr. The unit normal vector to the curve will
be denoted v, and the orientation of the curve will be chosen so that the normal
vector points outward. In terms of = and y we have v = (y’, —z'). We define the

curvature as k = —z"y’ + y"z’.

The boundary 8D of D has a tubular neighborhood T in D. T is homeomor-
phic to dD x (—¢, 0] (for suitable ¢€) via (Q,t) — Q +tv(Q). For a function u

defined on T, differentiation with respect to v and T make sense in T', namely

_g_'f:(Q +tv(Q)) = v(Q) - gradu(Q + tv(Q))
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2@ +(Q)) = 7(Q) - gradul(@ + tv(Q).

We will also use the notation du/dv = d,u = u, and du/dT = O,u = u,, and
0 u = u,,, etc., for higher order derivatives.

The derivatives u,, u., etc., on the boundary 9D are defined as

Ou . Ou '

5@ = Im 5@+ Q)
and

0 0

5 (Q) = im @+ 1(Q)

etc.. The derivative of u on the boundary exists if the limit is uniform. This is -
the meaning of the various derivatives in the statements of the boundary value
problems in Section 2.1.

Note that if u is a function defined on the tubular neighborhood T of D in D,
then taking the derivative Ou/07 in the sense of the uniform limit from the interior
of T to 8D is the same as taking the derivative of du/ds = u'(s) of the restriction
of u to dD. Indeed, they are both equal to z'(s)(0u/dz) + y'(s)(du/dy). This is
not true however of the second derivatives u,, = 8%u/d7? and u”(s) = d*u/ds?
(the difference is z"7u, + y"uy).

Given two points P = (a,b) and @ = (z,y) in the plane, denote r =
\/(a: ~a)? 4+ (y — b)? and denote

G(P,Q) = —;7;7‘2 log 7

The function G is the Green’s function for the biharmonic operator in the plane in
the sense that A?G = —§, where § is the Dirac delta function, or more precisely,
AG(P,Q) = —6(P).

In what follows we will use integrals of the form [ K(P, Q)o(Q)ds(@). This
will be an integral with respect to arclength along the boundary 8D of D. The
point Q is the point “moving” along the curve, while P will be thought of as
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a point in D. Often P will be thought of as being in a neighborhood of 9D,
and Py € 8D will be a limiting position of P. We will simply write P instead
of P when there will be no danger of confusion. The kernel K(P, Q) under the
integral will be some differential operator applied to G(P,Q). The derivatives
in the differential operator will be taken with respect to the normal and tangent
directions at @ and P. These derivatives will be denoted by 8,,, 079, Oup, Orp.

In order to simplify the notation we will always drop the index @, so 8, = 9,
and 0, = O,,.
Given two points P € D and Q € 8D, denote v = the vector from P to Q.

G can be written also as

G(P,Q) = r—(v-v)log(o-v)

We give now a simple proposition which will be useful in the computations

of Section 3.2.

Proposition 3.1 With the notation set in this section we have
(v-v)+(w-1)=v-v

and
(v-vp)(v-vp)+ (v- TP)(VI/ -Tp) =V

Proof: The proof is straightforward and it will be omitted.

3.2 The Kernels

We define the kernels K; and K> in the potential formula (2.1) for the three
problems (C), (F), (S) in Section 2.1 as follows: '
For problem (C) take K; = G,,, + 3G,,, and K; = —G,, + G--.
For problem (F) take 4 = -G, + G, and K; = G,,, + 3Gy
(S

For problem (S) take K3 = (6 + 1)G,.,, + 3(2 + p)Gorr = 6AG, + p(Gouy +
3G,;7) and K, = G,,.
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The heuristic reasoning for choosing these particular expressions as the kernels

in the potential formulas will be explained in Section 3.5. Since G(P,Q) =

(1/167)(v - v) log(v - v), all these kernels can be expressed in terms of v - v and

v - v. Using proposition 3.1 we obtain the following éxpressions:

For (C):
K,
K,

For (F):
K
K,

For (S):
K, =
K, =

il

1
7r1 1
< (v v)(log(v+v) + 1)

gV v (v-v)?

v +u(v-v)2)

We will give now the explicit expressions of the kernels Ky, K2, K21, Koo

in the integral equation (2.3) for each of the three problems (C), (F), (S). Using

proposition 3.1 again, we obtain the following expressions:

For (C):
Ky = K =2U
7 (v
1.1
K, = K, = —(=
12 2 27r(2
1
1{21 = (I{l)uP =;
1
1{22 = (I(z)up =;

<
~—

e
(v-v)*(v-vp) (v-v)(v-vp),
I I Coe
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For (F):

Kn = (K., =2dbore) Lo oov),
oo vev (v-v)2
Ky = (K2 = %(‘3(1) : 82.(:).2”}:) + o Ejj(:);sup))
[{21 _ ([{1)‘,-}, — %((U . Vv)(lfv Tp) _ (v (1/1))2(:)2 TP))
_ _ 1 wev)vere) (0 v)P(v-Te)
Kpn = (Ki)r, =—(=3 o o)? +4 CIL )
For (S):
_ l v-v)?
Ky o= K1—ﬂ_( +'u(v-v)2)
Ky = K= %( - v)(log(v - v) + 1)
Ko = ApKi+ p(Ki)rprp = . \
%uzw-”iz:':szw-vw+6u2——————<v'z’3(.:;zp> :
( v-v)*(v-vp)(v-vp) 2
4(u® +2p ( -+ 2400 (v_._fi)3 o /
.

~.

K = APKQW(KQ)TPTP: R —
Gyt - L), Jooll ol

27

Note that these formulas define two different sets of kernels. On the one hand,
one has the kernels defined for (P, Q) € T x 8D, where T C D is the intersection
of a tubular neighborhood of D in R? with D; on the other hand one has the
kernels defined for (P,Q) € 8D x dD. There are two questions which héwe to be
answered:

1) how smooth are the kernels on 0D x 9D? 7

2) what is limp_p, [ Ki;(P,Q)o(Q)ds(Q) — [ Kij(Po,Q)o(Q)ds(Q) (where
o(Q) is a function on 8D, P € T C D, and Py € 9D)?

These questions will be answered in the next two sections. Then we will

explain the heuristics of choosing the kernels; the choice is such that the answers

to these questions should be as “nice” as possible.
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3.3 Smoothness

In this section we will discuss the smoothness properties of the kernels K;; com-
puted in the previous section. Let us think of them as functions of two variables
K;;(P,Q) defined on 9D x 9D. Strictly speaking, they are defined only for
P # Q; but the result of this section is exactly the fact that the kernels (with
the possible exception of some terms for which we will have explicit elementary
formulas) extend to smooth functions on dD x 8D. Therefore, one can afford
the slight abuse of terminology of saying that they are defined on 9D x 9D.
| The main result of this section is contained in theorem 3.9. Before giving the

theorem, we need some definitions and propositions.

Definition 3.2 In this section we will denote by f, fp, g, h1, ha, | the following

eTPTeSSIONS:
v-v
;=2
vev
vy
fr= —=
X
2
vV-Tp
, o )
Vv
B = veT
v-v
b - vev+(v-vp)(v-vp) — 26 (P)(v-7)(v-v)
. =

(v-v)?
I = (v-v)log(v-v).

The following propositions refer to the smoothness of these functions. Before
giving the statements,we will set some notation. Assume that the boundary
0D is parameterized with respect to arclength. Let @ = (z(s),y(s)) and P =
(z(t),y(t)) be two points on the curve. Then

v =(y'(s), —<'(s))
T = ('(s),9'(s))
vp = (y'(t), —='(2))
7p = (¢'(t),y'(2))



Proposition 3.3 Assume that 3D is real analytic. Then for t fized we have:
a) f, g and hy are analytic functions in s.
b) hy is the product of an analytic function in s with 1/(s —t).

c)l=1l+1-(s—t)log(s—t)?, wherel, and l; are analytic functions in s.

Proof: At points where s # ¢ we have v - v # 0, so the kernels are analytic.
The difficulty is to prove analyticity at s = ¢t. At these points the obstruction to
analyticity comes from a possible zero in the denominator of a fraction.

Let us assume that ¢ = 0 in order to simplify the notation. We can assume

z(0) = y(0) = 0. Let us expand z(s) and y(s) in power series around O0:

(oo}
z(s) =Y ans"
n=1

and

y(s) = Z b,s™

n=1
where we denoted for simplicity a, = (1/n!)z(®(0) and b, = (1/n!)y(™(0). We
can now compute z’ and y’ and all the dot products appearing in f, g, hy, h2
and /. We can compute £’ and we can easily see that «'(0) = 6(—asb; + a1b3).
We can also see immediately that the power series expansion of v - v is of order

2, and the leading coefficient is 1. More precisely
’ [e o]
vov=s? + Z[ Z (aiaj + b,-b]-)]s".
n=3 itj=n
i1

o0

°0 4 because the coeflicient of the

In fact the sum in the expression of v-v is ¥

term s3

is ajay + bib, = 0. We are not writing it out explicitly because we will
not need this fact. Whenever necessary, we will use without specifically pointing
it out that a? +b? =1 and aja, + b6, = 0. Now we will prove the statements of
the proposition.

a) In order to prove that f and g are analytic, we have to prove that
order(v-v) > 2

16



and

order(v - 7p) > 1.

This follows immediately because the coefficient of s in the expansion of v - v
turns out to be 1 and the constant term in the expansion of v - 7p turns out to

be 0. The situation is essentially the same for
1,
v-v+(v-vp)(v-vp)— s (P)(v-7)(v-v).

It is clear that the order of this expansion is greater than or equal to 2. But it is
easy to check that the coefficients of s? and s are 0.

b) The statement about h; follows immediately from the fact that v - 7 has
an expansion in a power series of order 1 with leading coefficient 1, and v - v has

an expansion in a power series of order 2 with leading coefficient 1.

c) We have
(v-v)log(v-v) = (v-v) log(vs;zv) + (v-v)log(s?) =

(v-v) log(%) + (—agby + a1by)(1 + ...)s*log(s?)

(The dots stand for higher order terms in the power series.)

The proof of the following proposition is very similar and it will be omitted.

Proposition 3.4 Assume that 8D is real analytic. Then for s fired we have:
a) f, g and hy are analytic functions in t.
b) hy is the product of an analytic function in t with 1/(s —t).
¢)l=1+1-(s—t)log(s —t)? wherel, and l; are analytic functions in t.
We can now easily deduce the corresponding statements for these functions

viewed as functions of two variables s and t.

Proposition 3.5 Assume that 8D is real analytic. Then:
a) f, g and hy are analytic functions in s and t.
b) hy is the product of an analytic function in s and t with 1/(s — ).

c)l=101+1-(s—t)log(s —t)? where !, and l; are analytic functions.
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Proof: Each of the functions which was proved to be analytic separately in s
and ¢ in the preceding two propositions, has a complexification, that is, we can '
think of s and ¢ as complex variables. On the other hand it is clear from the proof
that these functions are bounded (in fact one can just as easily deduce that they
are continuous). We can use a well known theorem from complex analysis, to
deduce that these analytic functions are analytic as functions of the two complex
variables s and t. It follows then that they are analytic as real functions of the |
real variables s and t as well.

We have similar results for the case when the boundary 8D is not real analytic
but only C*. In this case the proof is more technical. Before proceeding with the
proposition and the proof for this case, we need a technical lemma which will be

used in the proposition.

Definition 3.6 Define C to be the set of polynomials in the unknowns a,, bn,
n=1, .., c0. Fora polynomial N € C we will say that m dominates N if N is
an element of the set of polynomials in an, by, n =1, ... , m. In other words,
m dominates N if no a, or b, appears in N for n > m. Whenever we will want
to emphasize that m dominates N, and there will be no danger of confusion, we
will write N instead of N. Define P to be the set of power series in s and i

with coefficients in C.

Note that the function f = (v-v)/(v - v) is the quotient of two elements in

P. The following lemma refers to the derivatives of f.

Lemma 3.7 The derivatives of orderp of f are of the form fi/ f2, where fi, f2 €

P have order and domination of their coefficients as specified in the following

formulas:
o0
f1= Z Z Ni[_;+'7~p]Szt'7
n=2p+2 t+j=n
and

f=ls—tP+S Y MES s,

n=3 it+j=n

Moreover, both the denominator and the numerator are divisible by (s — ¢)2(P+1),
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Proof: The proof will be by induction. Expanding in power series and sub-

stituting, immediately yields

Z?:z Ei+j-..n Nt[_;+J] 1tJ
(s = )2 4 22 g jan MEH sits”

f(s,t) =

which gives the desired statement for p = 0.
Assume the statement true for p, and prove it for p + 1. We will differentiate

f1/ f2 with respect to s for example, in the following way:

(fi/fa) _ T2 api2 Dipjan INET TPlsi=14d s
ds [(3 - t) + En—B EH—J—-H (Z + -7 - 1)3%]]“—1

[En—2p+2 Z:z+]_n 1;+J P] 1t1]( - 1)[2(3 - t) + En_S Z:z+_1—n N[H—J 1] 1 ltJ]
(s =)+ Tols Tigjmn Nij(G+7 — 1)s itijp+2
We will add up the two fractions. The denominator is clearly the one expected.

Let us concentrate on the numerator. It is

Z Z ZNH-J p] i— 1t’ +Z Z Mi[;+j—llsitj]__

n=2p+2 i+j=n n=3 i+j=n
p + 1 Z Z 1+J —~p) 1t1][2 § — t + Z Z iMi[;'i-j-—l]Si—ltj].
n=2p+2 i+j=n n=3 i+j=n

Multiply out the terms, regroup them, while keeping track of degrees. We obtain

that this is an expression of the form

Z Z LH’J p—1] iy

n=2p+3 i+j=n
This is exactly of the type we wanted to prove with the exception of the fact
that apparently, the sum starts at 2p + 3 instead of 2p + 4. In reality the sum
starts from 2p + 4. Indeed, we know from lemma 3.5 that f (s,t) is analytic. It
must be the case then that any derivative of f is analytic. Since we know that
the denominator is divisible by (s — ¢)?**%) the numerator must be divisible by
(s — )24 as well. This proves the last statement of the lemma, and it also

implies that the terms of degree 2p + 3 at the numerator must have coefficients

0.
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In the remainder of this section, the boundary 8D of D will be assumed to
be of class C* with k > 2, except in one place, where we will need k¥ > 4 . This

place will be pointed out when this stronger assumption will be needed.

Proposition 3.8 Let Py € 8D be a point on the curve 3D. Then, in a suitable
neighborhood of Py in 0D, we have (s and t are values of the parameter giving
points Q and P in this neighborhood):

a) Assume that dD is C* with k > 2. Then f and g are C*~2.

b) Assume that 8D is C* with k > 4. Then hy is C*%.

c) Assume that 0D is Ck with k > 2. Then hy is the product of a C*?
function with 1/(s —t).

d) Assume that OD is C* with k > 2. Then | =1l + I (s — t)*log(s — t)?

where Iy is C*1 and [, is CF2.

Idea of the proof: Since the proof is long, we will give the idea of the proof
first. In order to prove smoothness of a function f(s) at a given point, say at
0, we would have to prove the following: lim,_o f(s) exists (this defines {(0)),
limy—,0(f(s) — f(0))/s exists (this defines {(0)), lims—o f'(s) = f'(0), and so on.
In our case, f(s) = A(z(s),y(s),z'(s),y'(s))/B(z(s),y(s),z'(s),y’(s)) for some
polynomials A and B. We know that if z and y are analytic then f is analytic.
Denote a, and b,, n = 1,2,3,..., the coeficients in the series expansions of z
and y. The existence of the limits and the equalities written down for f are true
because of certain cancellations and relations concerning the coefficients a, and
b,,. We will prove that the relations a.nd cancellations which give the existence and
continuity of the first £ — 2 derivatives of f, involve only a, and b,,n =1, ..., k.
It follows then that instead of working with the full power series of = and y, we
could work just as well with the truncated power series. In other words, we could
work with the Taylor polynomial expansions of z and y of degree k. This means
that rwe can deduce the existence and continuity of the first £ — 2 derivatives
under the assumption that z and y are C* functions.

Proof: We will start by proving the first part of a), namely, that f is C*¥~2.
The proofs of the other parts of the proposition are very similar, and we will only

point out the changes needed to adapt the proof.
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Use the notation in proposition 3.3. We have

v (@) = al)y(s) = (vl
A i F S B ) EE Ty

-y
-y
We will proceed by induction.

Assume that & = 2. In this case we have to prove that f is continuous. Use

Taylor’s theorem for z, y, 2/, y’. We have that

S) = @18 + (12({1)82

z(
y(s) = bis + by(&2)s”
z'(s) = a1 + 2a9(&s)s

y'(s) = by + 2b3(&4)s,

where a,(¢) = (1/n)z((¢) and b,(¢) = (1/n!)y™(€) (we can assume that z(0) =
y(0) = 0). For the moment we will assume that ¢ is fixed. Assume ¢t = 0 to
simplify the notation. Note that just like in the case of power series expansions,
the denominator is dominated by s? and the numerator (which a-priori has order
1) has no degree one term, in other words is of order 2. Explicitly, we have

(2a1b5(&4) — a1by(€2) — 2a9(€3)by + a2(€1)b1)32 + (--')53
24 (...)s +(...)s? ’

f(s,0) =

We see that lim,—.q f(s,0) = ayby—a2b;. Moreover, we see that the convergence of
f(s,t) toits limit f(0,t) as s — 0 is uniform in ¢ (indeed, it depends only on the
rate at which az(t+¢€) and by(t+¢) approach ay(t) and by(t) as ¢ — 0; but this rate
is uniform in ¢ since z” and y” are continuous, and therefore uniformly continuous
on the compact set D). Similarly, one can see that lims;_q f(s,t) = f(s,0)
uniformly with respect to s. It follows then that f is continuous.

Let us assume the statement true for k —1 (with k > 2). In other words, if z
and y are C*=! then f is C*=3. Assume that z and y are C*. We want to prove
that f is C*~2. We already know that fis C*~3. Let F represent a derivative of
order k—3 of f. We know that F is continuous, and we have to prove that [ has

derivatives with respect to s and ¢, and that these derivatives are continuous.
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If it were possible, we would differentiate £ — 3 times f (s,t) in the form given
n (3.1); then we we would take the Taylor polynomial expansions of z, vy, z’,
Yy oo, %3 y(F-3) "and express F in terms of them; then we would prove the
assertions by working directly on the coefficients a,, b,. It is impossible to do
this explicitly, but it is possible to obtain some information about the way F' can
be expressed in terms of the coefficients a,, b,. First, we need to look at the case
when z and y are analytic.

It follows from the lemma 3.7 that in the analytic case F' is of the form

Lome2k—4 Litj=n IV, Eﬂ 3 sitd
[(S - t)2 + En—3 Ei-{—-j—'n. M1[;+]-1] 2tJ]

All the terms of degree less than 2k — 4 which could have appeared a-priori at

F(s,t) = (3.2)

the numerator, would have had coefficients dominated by k — 1; they cancelled

out. We have then that

D im2k—d Ni[i_k+3]3i
(87 + D2 MEsi)e-2

(we wrote N; and M; for Ny and M;y). The lowest order term s%*~* at the

F(s,0) = (3.3)

numerator has its coeficient N2[’,°c 4] dominated by k£ —1. This coefficient is giving
the value F(0,0). The coefficient of the next term N (] . is dominated by k.

Since we are dealing with analytic functions, we know that

F(s,0) — F(0,0)

lim = Ngk_3 (34)
5—0 S
(i.e. the derivative with respect to s exists), and
oF
lim —(s,0) = Ny 3.5
lim —~(5,0) = Nae-s (3.5)

(i-e. the derivative with respect to s is continuous).

We are finally ready to give one of the key arguments of the proof. Let us
come back to the assumptions of the proposition, namely, that = and y are C*
functions. Let us assume that we differentiated f the right number of times with

respect to s and ¢ to get F. Therefore we have F' expressed as a fraction of two
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polynomials in z, y, ', ¥/, ... , zF=D, y(:=1) Let us take the Taylor polynomial
expansions of degree k for z, y, of degree k — 1 for ', y’, and so on. The Taylor
polynomial expansion of z is identical to the Taylor series expansion of z (if =
were analytic) truncated to degree k, with the exception of the term s* which has
coefficient a;(¢) (with some ¢) instead of ax. The Taylor polynomial expansion
of =’ is identical to the Taylor series expansion of =’ truncated to degree k — 1,
with the exception of the term sx_, which has coefficient kax(§) (with a possibly
different €) instead of kax. And so on.

We have the following conclusions: all the cancellations and relations which
occured in the analytic case and involved only coefficients an, b, n =1, ...
k — 1, will also occur in the C* case. Also, all the cancellations and relations
which occured under lim,_ in the analytic case, and involved only an, by, n =1,
... , k, will also occur in the C* case. Moreover these limits will be uniform with
respect to ¢t because z and y are C* and 8D is compact.

Therefore, in the C* case, F(s,t) can be expressed as a quotient of two poly-
nomials in s and ¢t. The tWo polynomials are of order 2k — 4. The coeflicients of
the terms of degree 2k — 4 are identical to the ones in (3.2) and in (3.3). The
coefficients of the terms of degree 2k — 3 look like the ones in the analytic case,
except that whenever we have a;, or by in the analytic case, we will now have ax(¢)
or by(€) in the CF case (for various values of ). Recall that lim,_o ax(é) = ax
and lim,_q bx(§) = b in all cases where ¢ appears.

In order to prove that F(s,0) is differentiable with respect to s at 0 (and the
derivative is Nox_3) we have to prove equality (3.4). But in this equality, the
coefficients which are of importance are dominated by k — 1 respectively &, and
therefore the equality is true in the C* case, just like it was true in the analytic
case.

Let us now show that this derivative is continuous. From lemma 3.7 it follows

that in the analytic case F/0s is of the form

OF 4,0) = —Zi=zkz L
0s 7 (524 TRy METsiyke
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The lowest order term s2*~2 at the numerator has its coefficient ML , domi-
nated by k. Since the right hand side in (3.5) is also dominated by k, it follows
that (3.5) is also true in the C* case. Clearly setting ¢t = 0 did not alter the
generality of the argument, so we proved that lim,_o(F(s,t) — F(0,t))/s exists,
and lim,_o(8F/8s)(s,t) has the same limit. Also it is clear that this last limit is
uniform with respect to t.

By exactly the same type of argument we can prove that lim;—o(F(s,t) —
F(s,0))/t exists, lim;—o(0F/8t)(s,t) has the same limit, and that this last limit
is uniform with respect to s. Therefore F is of class C!. Therefore f is of class
Ck-2,

We have to prove now the smoothness of the other functions in the statement.
The proof for g is similar to the one for f. The only differences are in the initial
step in the induction (that is the case ¥ = 2) and in the initial step of the
induction in the lemma corresponding to lemma 3.7. The changes are trivial to
make, and we will not do them here.

In order to prove the smoothness statement about k,, write it locally as

ha(s,2) = 1 (s=t)(v-7)

s—1 V.U

The comments made for g apply to (s —¢)(v-7)/(v-v) as well.

The proof for h, is slightly different. Just like in the case of ¢ the differences
occur when proving the initial step in the induction (that is the case k£ = 4) and
the initial step in the lemma corresponding to lemma 3.7. For the case k = 4 we

take the following expansions

TS

( ais + a232 + a333 + (14(51)54
y(s
xl(s) =a + 2(123 + 3(1332 + 4(14(63)33

y'(s) = by + 2by5 + 3b3s? + 4by(£4)5%.

) =
) = bys + bas® + bys® + by(&3)s*

A direct computation will yield that h,(s,0) has a limit as s — 0 and the con-

vergence of hy(s,t) to hy(0,%) is uniform in £. The initial step in the lemma
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corresponding to lemma 3.7 is going to be that h, can be written as

T Citien N,[_;+J] it
[(S - t) + Zn=3 Zi-{-j:n Mz](z + ] - l)S{tj]2 ’
The statement of the lemma has to be changed accordingly, but the proofs of the

h2(s?t) =

lemma and of the smoothness of h; proceed just like the ones for f.
Finally let us remark that the statement about the smoothness of [ is clear

once we write [ as we did in the proof of part c) of proposition 3.3.

Theorem 3.9
a) All K;; are of class C*¥=2 except for K15 and Ko in problem (S).
b) The kernel Ky from problem (S) is of the form
v-v+(v-vp)(v-vp)
(v . U)z
where X is a constant, and ¢ € C*~2(dD x OD). The expression

v-v+(v-vp)(v-vp)
(v-v)?
has a singularity of the type 1/(s — t); more precisely, if k > 4 then

vt () ve) 1 pveT

(v-v)? 6 Vv

.[21—/\

+ ¢(P,Q),

(3.6)

is of class C*~4, where £’ is the derivative of the curvature of the curve considered
as a function of the variable P.

¢) The kernel K15 from problem (S) is of class C', and it has second order
dertvatives, which have a logarithmic singularity.

d) if 0D is real analytic then all terms in all kernels are real analytic, with

the exception of the singularities pointed out in b) and c).

Remark 3.10 Note that the singularity of the type 1/(s — t) from the kernel
K> from problem (S) disappears in two particular cases: one is the case when
p = 0. The other is the case of x being arbitrary and D being a disk (in this case
k' = 0). In fact, the singularity will be “pulled out from under the integral” at
the expense of a term representing a Hilbert transform in the “constant terms”
(or in other words the “diagonal part”). The term in the kernel left under the

integral will be the one from 3.6, so the kernel will be smooth.
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Proof: At points where P # @Q we have v-v # 0, so the kernels are as smooth
as the various dot products appearing in the expressions of K;;. Therefore, if
the boundary 9D is assumed to be C* the kernels are of the class stated in the
theorem at all points (P,Q) where P # @. In a neighborhood of (P, P) the
smoothness statements follow from proposition 3.8. Indeed, the expressions of
K;; are sums of products of f, fp, g, h1, ho, I, and “integral” expressions in v,

v, vp, T, Tp (that is, expressions which are not fractions or logarithms).

3.4 Computation of the Diagonals
of the Potential Formulas

The purpose of this section is to compute explicitly the matrices

Dll D12
D21 D22

appearing in equation (2.3) for each of the three problems (C), (F), (S). More
explicitly, for each K;; from each of the three problems we are trying to solve,

we have to compute D;; which satisfies

Dijo(Py) = Jim [ Ky(P,Q)o(Q)ds(Q) - [ Kis(Po, Q)0(Q)ds(Q)  (3.7)

for any C* function ¢ on 8D.

Let us start by stating the results of the computations in a theorem:

Theorem 3.11 Under the same smoothness assumptions as in the previous sec-

tion, we have the following results:
Dll D12 _ 1/2 0
( D3y Doy ) - ( -k 1/2 ) for problem (C),

Dll D12 _ 1/2 —K
( Da Da ) = ( 0 14 for problem (F),

&

and finally, for problem (S) we have

- O
N

Dy Dy _ %(6 + 1) )
D2y Do —(p?+2u)k? + 1(p? 4+ 8u) L — 2us'H
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where K represents the curvature of 8D (we think of it as a function on 9D),
k' is the derivative of &, d/ds represents the derivative operator with respect to
arclength, and H represents the Hilbert transform of a function on 9D (the precise
definition of the Hilbert transform is given below).

Definition 3.12 Given a function f(Q) on 8D, the Hilbert transform Hf of f

is defined by
Py =~ [

e

v-T

f(@)ds(@),

v-v
where v and T and the notation are the ones set in Section 3.1.

The proof of the theorem will be split in two parts. In Part 1 we will compute
all the entries D;; with the exception of Di; and Dy in problem (S) at points on
8D where the curvature & of 3D is k # 0. In Part 2 we will discuss the remaining
cases.

We will work now towards proving Part 1. First we will prove some proposi-

tions.

Proposition 3.13 If D is the disk of radius r centered at the origin then it
is enough to prove relation (3.7) when the function o is o(Q) = cosn(s/r) or

o(Q) = sinn(s/r), with s € [0,27n7], and Py = (r,0).

Proof: Depending on the kernel we are looking at we have to compute (3.7) for
o € C* with k = 0,1, or 2. In any case linear combinations of trigonometric poly-
nomials are dense in the space of ¢’s, and the operators in (3.7) are continuous, so
we can assume o to be the functions in the statement. If Py = (r cos sp, T sin S0)
we can make s = u+75g in the integrals. Using cosn(s/r) = cos n(u/r) cos nso —
sinn(u/r)sin nsp and the similar relation for sin n(s/r) wesee that we can assume

that the point Py corresponds to the value 0 of the parameter.

Proposition 3.14 The relation (8.7) is true in the case when D is the disk (ths
refers to Part 1, i. e. to all cases except Dy, and Dy of problem (S)).

Proof: Because of the previous proposition we can assume that o(Q) =

cosn(s/r) or o(Q) = sinn(s/r). Verifying (3.7) in this case is a straightforward
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computation. We take

Q = (rcos(s/r),rsin(s/r))
PO = (7‘, O)
P = (a,0)

(where we think of a < r and a — r). We have

v-v =12 — 2arcos(s/r) + a*

v-v=r-—acos(s/r)
v-vp =rcos(s/r) —a
v-vp = cos(s/r)
v-7p = rsin(s/r)

v - 7p =sin(s/r).

The first integral in (3.7) is of the form

[ Elcslr)sins ) couniol),
0 (r? — 2ar cos(s/r) + a?)"

or

/21r F(r,cos(s/r),sin(s/r),a) - sinn(s/r) ds
A (r? — 2ar cos(s/r) + a?)"

where F' is a polynomial, while the second integral is

/% F(r,cos(s/r),sin(s/r),r) - cosn(s/r) ds
b 2r22(1 — cos(s/r)™

or

/% F(r,cos(s/r),sin(s/r),r) - sinn(s/r) ds
A 27 (1 — cos(s/r)" '

(The integrands in the last integrals are not singular as we know from the smooth-

ness theorem in the previous section; the zero which appears at the denominator

is cancelling out with zeros appearing in the numerator.) These integrals can

be computed explicitly. We have to take then lim,_,. The computations are

tedious, but completely straightforward, and we will not reproduce them here.
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Proof of Part 1: K;; will refer to any of the kernels from problems (C), (F)
or (S) (with the exception of Dz and Dy from (S)). We will write K instead of
K;; in order to simplify the notation.

There is no loss of generality in assuming that Py = (z(0),y(0)) and z(0) =
y(0) = 0 (so P, = (0,0)). Let @ = (2(s),y(s)), and P = (ty'(0), —t2'(0)) (think
of t as t < O for now; the case t > 0 is treated exactly the same way). We will

want to compute D from

Do(Py)

= lim [ K(P.Qo(@ds(Q) - [ K(P,Q)o(Qds(@-  (38)
Let us denote C the circle tangent to D at P, of radius 7 = 1/« (where « = &(F)
represents the curvature of D at Py) on the side opposite to vp, (this is the “best
fitting circle” to AD at the point Py). Let (z¢(s),yc(s)) denote the parametric
equations of this circle in terms of arclength, so that s = 0 corresponds to Fo. The
mapping (z(s), y(s)) — (zc(s),yc(s)) establishes a diffeomorphism between a
neighborhood N of P, in 8D and a neighborhood N¢ of PBbin C.

Given a function o on 8D, one can define o¢ on C, by defining it on N¢

through this diffeomorphism, and extending it smoothly to C (we can always

change o¢ near the boundary of N¢ in C if necessary). We consider the difference

Doo(Ps) = Jim [ K(P.Qo)oo(Qo)ds(@e) = [, K(Ps,Qc)oe(@e)ds(Qc)
(3.9)
In order to prove Part 1, we will prove that D = Dc.

We will split all integrals into integrals on N or N¢ (whichever is appropriate)
and the complement of N and N¢. Let us take the difference of the expressions in
(3.8) and (3.9) and regroup the terms. We want to show that all the differences
obtained in this way are zero in the limit. We have to look at the following
differences:

/aD\NK(P,ma(Q)ds(Q)— [ KP,@o(@ds(Q)  (310)

8D\N

Joon. K(P.Qe)oc(Qc)ds(Qe) = [ K(Po,Qe)oc(Qe)ds(Qe) - (3:11)

C
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[ KB @(Q)ds(@)— [, K(PoQo)oc(@c)ds(Qe)  (3.12)
/N K(P,Q)a(Q)ds(Q) — /N _K(P,Qc)oc(Qo)ds(Qo). (3.13)

It is clear that once N and Ng are fixed, the differences (3.10) and (3.11) tend to 0
in the limit as P — F,. It is easy to see that (3.12) can be made smaller than any
given € by choosing N and N¢ small enough (indeed, one can argue for example
that since K and K¢ are continuous on 8D and C, |K (P, Q) — K(F, P)| and
|Kc(Po, Q) — Kc(Po, Py)| can be made as small as we want).

The non-trivial part of this proposition is showing that (3.13) can be made
small by choosing N and N¢ small enough (independently of P). We will show
this by proving that, with the proper choice of N and N¢ (and independently on
P approaching P, along the normal direction to the boundary),

L(P,Q) L(P,Qc)
/. HE o QR@~ [ o

can be made small for any of the fractions L/M appearing in any of the kernels K

oc(Q)ds(Q)

under consideration. (One can work directly on K or on the individual fractions;
we chose to work on the individual fractions here.) The various possibilities for M
are (v-v)", n = 1,2,3. Notice that the various possibilities for L are monomials
in (v-v), (v-vp), (v-vp), (v-7p) and (v - 7p).

Let us recall that we took Q = (z(s),y(s)), Po = (0,0), P = (ty'(0), —tz'(0))
(t < 0), and let Q¢ = zc(s),yc(s)). Let us start by studying L(P,Q)/M(P, Q).
We have:

v = (z(s) — t5/(0),y(s) + tz'(0)
v =(y'(s), ~7'(s))

vp = (y'(0), —<'(0))

7= (2'(s),9'(s))

p = (2'(0),4(0)).
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Just like we did in the previous section, let us take the Taylor expansions for z,

¥, ', y'. We have:

z(s) = a1s + az(é1)s’
y(s) = bis + by(é2)s”
'(s) = a1 + 2a2(&3)s
s) = by + 2by(é4)s.

!

Y

(
(
In this notation a; = z’(0) and b; = y/(0). It follows that

vov = (82 + %) + 20128° + K125%t + ms*

v-u=—t—%s + K482 —2034st+725
K12 4
vovp = —f— -5
d 2

v-vp =1+ 2034s
— 2
V-Tp = S+ 0128

V- -Tp = K348,

where

- k12 = 2(a1b2(2) — a2(61)b1)
K31 = 2(a1b2(€s) — a2(£3)b1)
o12 = a1a2(§1) + b1b2(&2))
034 = a1a2(3) + b1b2(&4))

)2+ ba(€2)?

12 = a2(61)02(6a) — a2(€3)b2(&2)-

4! =a2( 1

Note that by taking N small enough, oy and o034 can be made as small as we
want. Since this is all we need in this proof, we will drop the indexes and write
simply o. Also, the values of k15 and ka4 are close to the curvature k at £, so

we will drop the indexes and write s + o instead. We will use rules like 040 = o,
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g - 0 = o for any bounded function g, etc.. With this notation we have

v-v=(s?+1?) + 05 + (x + 0)s’t + 1 s*

v-yz—t+(§+0)s2+ost+7253
v~1/p=—t—(—g—{-o)s2
v-vp=1++o0s (3.14)

vV-Tp =38+ 0s?
v-1p = (kK +0)s.
In order to make things easier let us introduce some notation.

Definition 3.15 Let P denote the set of polynomials of the form f = fi + f2 +
f3 where fy is a homogenebus polyhomial of degree n in s and t with constant
coefficients, f, is a homogeneous polynomial of degree n + 1 in s and t with
coefficients of the type ak + Bo+ v, and f3 is a polynomial of order n 4 2 in s
and t with coefficients which are themselves polynomials in ay, b, a2(&:), b2(&)-

The number n will be called the order of f.

Remark that if f and g are two elements in P of orders p and ¢, then the
product fg is an element in P of order p + ¢q. Also note that all the entries in
(3.14) are elements of P.

Let us turn our attention back to the fractions L/M. It is clear that both L
and M are elements of P. Since M = (v - v)" the order of M is 2n. By looking
at the explicit expressions which are the possible values for L, we see that the
order p of L satisfies p > 2n — 2; (p can be 2n — 2, 2n — 1, or 2n; the worse case
for the estimates which follow is p = 2n — 2). Explicitly,

L(P,Q) _ ht+fitfs
M(P,Q) g1tg+gs
All this has been written for Q € 8D. We will now look at the changes which

need to be made when we replace 8D by C. Since everything we did is expressed
in terms of the coefficients of the Taylor expansions of z, y, 2/, ¥, the only items
which are different are the values of az(&;), b2(&;). Therefore

L(P’QC) — f1+f2+f3
M(P,Qc) g1+3g2+3ds’

32



where the coefficients of f, and f, differ by a quantity of o, the coefficients of g,
and §, differ by a quantity of o, and we have similar statements for fs and fa
and g3 and gs.

We are trying to see that

Iy

can be made arbitrarily small by choosing N small enough. Subtracting the two

fi+fo+1fs _ f1+{2+]f3 Ia(s)lds
g1+g2+93 gi1+9g2+9s

fractions under the absolute value we get F/G, where F = (F\ + F; + F3) € P is

of order p+2n, and G = (G + G2 + G3) € P is of order 4n. Clearly F; =0, the

coefficients of F, and Fj are all equal to some o quantities, and Gy = (s +t2)*".

The o quantities can be made smaller than any given é if N is small enough.
Using this and some obvious upper bounds, we get

/ fi+ fa+ f3 _ f1+f2+f3

Nigi+92+9s G1+32+3Gs

© ([, ot e o)

for suitable C. Since p > 2n —2, we have that the degree of F; is at least 4n. It is

|o(s)lds <

easy to see that for any polynomial H of degree > 4n, the fraction H/(s? 4 t%)®"
is bounded for s and t varying in finite intervals. Since in addition the coefficients
of F3 are o quantities, it follows that
/. (;‘zlfst—lz)hds <C§
with suitable C.
The degree of F, (which is p + 2n + 1) is at least 4n — 1. The case which is
not proven by the preceding arguments, is p = 2n — 2. In this case the degree of

F; is 4n — 1. To get the estimate in this case we need a lemma.

Lemma 3.16 The polynomial F; has no term in s*~1, or in other words, all

terms in Fy contain the factor t.
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Proof of the lemma: Let us look at (fy + f2+ f3)/(g1 + 92 +93). We know from
the smoothness theorem in the preceding section that this has to be a smooth
function when ¢ = 0. It follows from the proof of the smoothness theorem that
since the denominator is of order 2n, the numerator has to have order at least
2n when we set ¢ = 0. It follows that f; (which, as we know, is a homogeneous
polynomial of degree 2rn — 2 in s and t) has no term in s**~2 (that is, all terms
have to contain t). Also, f, has no term in s*"~1. |
On the other hand, Fy = f1(§2 — g2) + 91(f2 — f2): It is clear then that all the

terms in the homogeneous polynomial F; will contain ¢.

Let us finish the proof of Part 1 now. We have

L%dsﬁ/j‘vloy s2l_i.lt2 .
where H; is a polynomial of degree 4n —2. Therefore this last integral is bounded
by C8 [y t/(s* + t*)ds for suitable C. But [t/(s? + t?)ds = arctan(s/t) which is
a bounded function. This finishes the proof of Part 1.

H,
(82 4 2)2n-1

S,

Proof of Part 2: The proof for the entry Dy, from problem (S) is very simple.
In this case one can move the limit under the integral, and it follows that Dy = 0.

The proof for the entry Dy, is more complicated. The general idea is the same,
namely, we will reduce the problem to a particular case, and do the computations
on that particular case. But the particular case can not be taken to be a circle
any more; instead, we will take it to be an ellipse. Let C represent an ellipse
tangent to the curve 8D at P, so that the curvatures, and the derivatives of
the curvatures at P for-C and 8D are equal. We define the operator D¢ by
the formula (3.9), and we have to prove that D = D¢. We split the integrals
into various pieces, and show that the differences (3.10), (3.11), (3.12), (3.13)
are small in the limit when the neighborhoods of P, are small enough. The
non-trivial part is (3.13).

Like in the smoothness theorem, we assume that the boundary 8D is C* with

k > 4. We expand z, y, 2/, y’ as follows:
z(s) = a5 + az8% + azs® + aq(€1)s*
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y(S) = b13 + b252 + b333 + b4(§2)54
2'(s) = aj + 2aqs + 3azs® + 4aq(&3)s°
y'(s) = by + 2bgs + 3bas® + 4by(&4)s°.

The fractions L/M in the expression of K5 have M = (v-v)* with n =2, 3, 4,
and L can be v-v 4+ (v-vp)(v-vp) — (£/6)(v-T)(v-v), (v-v)(v-7p)?, (v- V)3,
(v-v)*(v-vp)(v-vp), (v-v)(v-vp)?, (v-v)3(v-vp)?. A straightforward computation
shows that all these are polynomials in s and t of the form f = f1 + fa + f3 + fa,
where f; is a homogeneous polynomial in s and ¢ of some degree n with constant
coefficients, f, is a homogeneous polynomial of degree n + 1 in s and ¢ with
coeflicients of the type ax + 3, f3 is a homogeneous polynomial of degree n + 2
in s and t with coefficients which are polynomial expressions in « and «’, and f4
is a polynomial of order n + 3 with coefficients which are polynomials in all the
coefficients of the expansions of z, y, z/, y'. From this point on, the proof of the
fact that that (3.13) is small, is exactly the same as the proof given before, and
we will skip the details.

We can assume therefore, that 8D is an ellipse, given by ¢ = acost, y = bsint,
and that o is one of 0(Q) = cosnt and o(Q) = sinnt, t € [0,27]. (We can not
assume though that P, is some previously chosen point on the ellipse.) The
computation of the integrals on the ellipse can be done explicitly, and we will not
give the details here.

We conclude this proof by pointing out that if 8D has points where the
curvature is 0, then a continuity argument proves (3.8) in the case Fy is isolated,
or in the case when Py has arbitrarily close points P, where the curvature is not
0. If the curvature is identically 0 in a neighborhood of P, then one can use a

straight line instead of a circle (with the obvious modifications in the proof).

Corollary 3.17 Let u be given by

u(P) = [ [K:(P,Q)1(@) + Ka(P,Q)rx(Q)]ds(Q)

where K; = G,,, + 3Gy,» and Ky = —G,, + G, are the kernels for the problem
(C). Let w and u, be defined in a tubular neighborhood of R?. Let u_ and uy be
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the limits of u as P — 8D from inside and from outside, respectively, and (u, )-

and (u,)+ be defined in a similar way. Then u_—uy = o1 and (u,)-—(u, )4 = 02.

Proof: In theorem 3.11 we computed the values of u_ and (u,)- in terms of
the matrix (D;;), (01,02), and a boundary integral. Clearly a similar statement
holds for u; and (u,)+ except that the sign in front of the non-integral term is
opposite, and the curvature k is computed from the outside, so it has opposite

sign. Subtracting the two relations leads to the desired result.

3.5 Heuristic Reasons for
Choosing the Kernels

This section contains a brief description of the heuristic reasoning underlying the
choice of kernels in the potential formulas for the various problems.

As a starting point consider Green’s function G = (1/87)r?logr. Written in
terms of P and @ this is G(P,Q) = (1/167)(v - v) log(v - v) where v is the vector
frorﬁ P to Q. By analogy with the solutions to boundary value problems for the

Laplace equation, we seek a potential formula for u in the form

u(P) = [ [Ki(P,@)ox(@) + Ka( P, Q)oa(Qlds(Q),

where K, and K; are of the form ¥ @,,0,70-?G, where 9, and 9. represent
differentiation in the normal and tangent directions to D at @, p and ¢ are non-
negative integers, and «,, are real numbers. One would like to choose expressions
for K; and K, that would achieve two goals:

1) K; and K, should be as smooth as possible when both P and @ are on
the boundary 9D of the domain D.

2) The resulting integral equation should be as close to a second kind equa-
tion as possible. In other words, the diagonal terms should contain only “nice”
operators, like multiplications with constants or intrinsic functions, Hilbert trans-

forms, derivatives with respect to arclength, and the matrix of diagonal terms
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should be close to being non-singular in the sense that its kernel should have low
dimension.

Analysis of the special cases where the domain D is the upper half plane or a
disk of variable radius is nearly sufficient for finding the kernels. The procedure
is as follows:

1) Compute all the partial derivatives K,, = 9,70.G of G up to order six
(less might be enough, depending on the order of differentiation in the boundary
conditions).

2) For each partial derivative K,,, compute

| Enl(P.Q)o(@)ds(Q)

and

[ EonlPo,Q)o(@)ds(Q),

where P is in a tubular neighborhood of 8D in D and P, is on 0D, using the test
functions o = cosns and ¢ = sinns. This can be done explicitly for the special
cases singled out above.

If K, represents a linear combination of the form K; = ¥ a,,9,70,?G, then

denote by D; = D(K)) the operator

D)o = Jimy [ Ki(P.Q)o(Q)ds(@) — [ Ki(Ro, Q)(Q)ds(Q)

The computations performed thus far, enable us to write down explicit results
for Dyo in the cases 0 = cosn(s—sg) and o = sinn(s— so), when the limits exist.
Therefore, when the limits exist, we can “guess” the expression of the operator
D, for given K.

3) Let 8, and 9, be the differential operators appearing in the boundary
conditions of the given boundary value problem. If K; and K, represent two
linear combinations of partial derivatives of G, let M denote the 2 x 2 matrix of

operators computed in the previous step

D(8,K,) D8, K>)
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Choose the linear combinations giving the kernels K; and K, in such a way that
M is as close to being non-singular as possible. If several choices are possible, try
to mé,ke 0;K; as smooth as possible.

Note that this work yields more than just the kernels: in the process of trying
to find the kernels one also finds a conjecture as to what the matrix of diagonal
terms is going to be.

The use of computers can be of enormous help in carrying out this guess-
work. One can use a symbolic manipulation package to carry out a large part
of the computations. Computations done on paper (for instance that of a par-
tial derivative of a complicated expression) can also be verifyed by numerical
experimentation. Furthermore, the computations needed to guess and verify the
‘diagonal terms, as well as verification of smoothness, can be done numerically on

some relevant examples.
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CHAPTER 4

THE INTEGRAL EQUATIONS
AND THEIR USE

4.1 Classical Formulas

This section contains some geometric formulas which will be necessary in the

study of the integral equations.

Proposition 4.1 Let k represent the curvature of 8D (think of it as a function
on 8D ) and G represent Green’s function (the notation is the same as in the

previous chapter). Then the clamped plate potential given by the functions
01 =2k and o, =1
is piecewise constant. More precisely if u(P) is given by
u(P)= [ [Gun(P,Q) +3Corr(P,Q)] +25(Q)[~GCun (P, Q) + Gre(P, Q)]d5(Q)
then _
1 ifPeD
u(P)=< 1/2 if PedD
0 if P¢gD.

Proof: The proof is easier if one uses complex plane notation. Let z = z +1y,

P=a,Q=2v=2z—a. Then r = 2’ and v = —iz’. We have
7 = Re[(z — a)7/]
v = —Im[(z — a)Z/]

k = Im(2"2").
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Using the explicit formulas for the kernels G,,, +3G,., and —G,, +G,,, we have

= /[Guuu(P’ Q) + 3GV"""(P7 Q)] + 2K’(Q)[_Guu(P1 Q) + GTT(PaQ)]dS(Q) =

1 / _(Im{(z = a)2])* (_1_ _ (Im[(z — a)a)z) Im(#7)ds.

s |z — alt 2 |z — al?
Denote w = (z — a)2z’. Using the fact that the derivative 2’ is taken with

respect to arclength, a simple computation shows that |z — a|* = |w|? and

2"z = ((w"=T1)w)/|w|?. Substituting in the expression of u(P) and comput-

ing we obtain

1 / Im(w'w)[(Rew)? — (Imw)?] — Imw]wl2 s

Splitting into two fractions and making some obvious computations leads to

u(P) = —%;Re/ I (w'w)w? Im/ lw|2

|w|*

————Re/ (E) ds — —1—Im/éds.
41 w 2w w

The first integral of this last line is always O since it is the integral of an exact

form on a closed curve. In the second integral replace back w = (z — @)z’ to get

w(P) = ——Im - ——Im/

2 z—a z—a

The value of this integral is 1 or 1/2 or 0 depending on the position of a relative
to D.
We will now give two generalizations of Green’s formula associated with the

biharmonic operator. First we need a definition:

Definition 4.2 Let u be a C? function on a domain D in R?. Define the vector
field bigradu relative to the (z,y) coordinates to be

bigradu = (uzz — Uyy)l + 2Uzy]
where 1 and j are the unit tangent vectors in the ¢ and y directions.
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Remark 4.3 This vector field is dependent on the coordinates relative to which
it is defined, and on their orientation. The bilinear form defined by the dot
product bigradu - bigradv is independent on the coordinate system. Also note

that this is a non-negative definite bilinear form.

The proof of these facts is trivial and it will be omitted.

Note that one can also talk of the bigradient as an operator, namely
bigrad = i(0;z — Oyy ) + j204y.

Proposition 4.4 Let u and v two C* functions on D. Then

/ Aulv = —/ [u(Av), — u,,Av]ds—{-/ uA*vdzdy

D 3D D
and
/D bigradu - bigradvdzdy =
—/ [w(Vors + Bvuur) + wu(—Vu + vrr)]ds + / uA’vdzdy
3D D

Proof: The proof of the first formula follows easily from Green’s classical

formula written in the following form:
/ (vw, — wu,)ds = / (uAw — wAu)dzdy.
8D D
Put w = Av to get
/ (ulv, — Avu,)ds = / (uA?y — AvAu)dzdy
aD D

which is exactly the formula we wanted to prove.
The proof of the second formula is not difficult either but requires some com-
putations. Write out the bigrad operator in terms of derivatives with respect to

z and y, and do some obvious computations to get

/ bigradu - bigradvdzdy = /D gradu, - bigradvdzdy+
D

/D graduy - [2vgy1 + (—vgz + vyy)j]dzdy
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where i and j are the unit vectors in the x and y directions. Now use Stokes’

theorem in the form

/Dgradf - pdzdy = /BD fu-vds — /D fdivudzdy

(where f is a function, g is a vector field, and v is the normal vector to D), and

write v = y'i — zj. The right hand side becomes
[ vl = 0)0” = 200y + 20" + (e = )3 1ds—

/D Uz[(Vzz = Vyy)z — (202y)y] + Uy[2(vay )z + (—vzz + vy )y]dady.

In each bracket, let us regroup terms using the fact that 9, = y’0, — 2’9, and

0r = 2'0; + y'0,. We obtain
/BD[gradu - gradv, + gradu - (=19, + jO:)v,]ds — /D gradu - gradAvdzdy.

In the first integral use the fact that 10, — j0, = v0, — 70, (which is easy to
verify) and write grad = v9, + 79;. In the second integral use Stokes’ theorem

mentioned before. We obtain

/ [uy(vyy — vrr) + 2urv,.]ds — / (v + Vrr)ds +/ uA*vdzdy.
aD 8D D

In the second term of the first integral use the fact that fyp, frgds = — [5p fg-ds
(this is just integration by parts). We obtain

A2dd_/ vvv 3uTT"‘uuu_‘er-
/Du vdzdy 8D[u(v + 3v,77) — Uy (v Vrr)|ds

This is exactly the expression we were trying to arrive to.

Definition 4.5 Denote B(D) the vector space of solutions of bigradu = 0 over

a domain D. We will simply write B when there is no danger of confuston.

Proposition 4.6 B is independent of the choice of coordinates. Every element
of B is locally a polynomial of degree at most 2. If D is a connected domain, the

vector space B is of dimension 4, and a basis is given by 1, z, y, % + y°.
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Proof: It follows that Uzzz, Uzzy, Uzyy, Uyyy are all zero. Then u is locally
a polynomial of degree two. It is easy to verify that the only homogeneous

polynomial of degree 2 in B is 22 + y2. The remark is now clear.

Corollary 4.7 Let u € B be a polynomial defined over R?, and let

I(l = Guuu +3Gu‘r‘r
1{2 = —GIIU+GTT

where G is Green’s function from Section 3.1. Then

-u(P) ifPeD
/;D[U(Q)Kl(PsQ) + uu(Q)K2(P, Q))ds = { 0 ( if P¢ D.

Proof: The corollary follows immediately from Green’s second formula.

4.2 The Rank of the
Integral Equations

In this section we will study the rank of the integral equations for the boundary
value problems we set out to solve. The integral equations will be considered on
the appropriate L? spaces. With the use of the formulas in Section 4.1 the proofs
are not too complicated: we will try to imitate some of the classical proofs which
can be found in the mathematical literature (see for example [1, 4, 9]).

We will assume D to be a bounded domain. When D is not simply connected,
we will assume R? \ D to have a finite number of connected components. Let
Eo be the unbounded component of R?\ D, and let Ey, ... , E, be the bounded
components of R?\ D.

We will look at the integral equation corresponding to problem (C).

Theorem 4.8 Let

I{l = Guuu + 3Gu1-1-
1{2 = _Guu + G7'7'~
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Then any solution of the equation
1/2 0 Ul(P)
( —x(P) 1/2 ) ( 72(P) ) T
/ ( Ki(P,Q)  KiP,Q) ) (al(cz) )dS(Q) _ ( 0 )
8D (Kl)UP(P’ Q) (-KZ)VP(Pv Q) UZ(Q) 0
satisfies (01,09) = (0,0) on OEy, and (01,02) = (@i, 0,a;) on OE; for some

elements a; € B(FE;). (B was defined in the previous section.) Conversely, any

such (o1,02) is a solution of this equation.

Proof: Let oy and o2 be solutions of the integral equation. Let

u(P) = [ [K:(P,Q)71(Q) + Ka(P, Q)oa(Q)]ds(Q)

be the potential given by oy and o,, which is defined for P € D and P €
R2\ D. Let P be in a tubular neighborhood of 8D in D, and take limp_5p u and
limp_5p u, (from inside D, non tangentially). Because of the integral equations,
these are zero; because of the uniqueness theorem in the Section 4.1, v = 0 in D.

Now we need information about u on R?\ D. The intermediary aim is to
deduce that fR2\D |bigradu|?dzdy = 0. For this we would like to use lemma 4.9
(immediately following the proof of the theorem) applied to u and a suitably
chosen cutoff of u. The cutoff will be chosen in the following way: let ¢ be a
smooth function so that ¢(P) = 1 for |P| < 1 and ¢(P) = 0 for |P| > 2. Consider
the function v(P) = ¢(P/r)u(P) (where r is some real number). This function is
smooth, with bounded support in R?\ D. It can be approximated by functions
v which are smooth and have compact support in R%. Therefore we can apply

4

lemma 4.9 to » and v and we obtain
/;{2 bigradu - bigradvdzdy = 0.
Replace v by #(P/r)u(P) and take in account that v =0 on D. We have then

bigradul*dedy + [ bigradu - bigrad(¢u)dzdy = 0,
/B,\DI igradu|*dzdy + B, igradu - bigrad(¢u)dzdy
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where B, is the disk of radius r centered at the origin. We want to show that the
second integral goes to zero as r — oo. Keeping in mind the explicit expressions
of K, and K, in the potential formula giving u we see that as |P| — oo, u(P)
is bounded by a constant, the first derivatives of u are bounded by a constant
times 1/|P|, the second derivatives of u are bounded by a constant times 1/|P|?;
also, each differentiation of #(P/r) takes out a constant times 1/r. Therefore the
integrand in the second integral is bounded by a constant times (1/r?)(1/r?) =
1/r%. The integral itself will be bounded then by a constant times 1/r?, so it
goes to zero as r — 00.

From fee, 5 |bigradu|?dzdy = 0 it follows that |bigradu| =0 on R?\ D. This
proves that uz, — uy,, = 0 and uzy = 0 outside D. Therefore u is a locally
polynomial function in the vector space B over R? \ D. Denote 1o = u the
polynomial on Ey, and %; = u the polynomial on E;. Use now the jump relation

from corollary 3.17. It follows that

(o1,02) = = (i, (¥i)v)

on 9F;, fort =0, ... , n.

Let a; = (¢ — %o). Then

(0’1,0'2) + (ai, (ai)u) = (d"oa (1/)0)1’)

everywhere on 8D. Using corollary 4.7 note that for points P ¢ D the potential
given by (o1, o) is equal to the potential given by —(%o, (¢0),) outside D. Using
corollary 4.7 again, we see that the potential given by — (%o, (t0),) is 0 outside D.
Therefore we obtained that u(P) = 0 outside D. Since u = %o on the component
E, of R\ D, it follows that 1o = 0. This proves the first statement of the
theorem.

The second statement follows from the fact that the potential given by a
function which is (a;, (a;),) on 9E; and 0 on the rest of the boupdary of D, is
0 on D according to corollary 4.7 (we simply take E; to be D in the corollary).
Taking the appropriate derivative and the limit as P goes to the boundary proves

the second statement.

45



Lemma 4.9 If u is given by the potential formula

u(P) = [ [Ki(P,Q)n1(Q) + Ka(P, Q)o2(@))ds(Q)

and v is a smooth function with compact support, then
/R2 bigradu - bigradvdzdy = 0.

Proof: Compute:
/R , bigradu - bigradvdzdy =

/ bigradu - bigradvdzdy + / bigradu - bigradvdzdy =
D R*\D
_ /6 = (s + 30,07) + () (=000 + vr)]ds + /D uAPodedy+
-/BD [u+(vuuu + BUUUT) + (uu)+(_vuu + vTT)]d‘S + /RQ\D UAZ'UdiEdy =
- /a (e = ) (s F3000r) + ()= = () ) (=00 - 0r7)]ds + /R ulvdedy =

/ [e1(vois + 3vuur) + 02(—v0y + vrr)]ds + /R2 uA*vdzdy
oD

On the other hand, since u is a potential, the last term becomes

Joo utvdzdy = [ ([ Ku(P,Q)ou(@) + KalP,Q)02(Q)ds(@) ) Avdady =

JI(L Kl(P,Q)Aévdxdy) (@) + ([, Ka(P,Q)A dsdy ) 0:(Q)] ds(@) =
/ [(/Rz(G”"" + 3Gwr)(P,Q)A2vdxdy> o(Q) +
(/re(—GW +Gr)(Py Q)A%da:dy) UQ(Q)] ds(Q) =
— [ (o + 30,2)1(Q) + (=01 + 01 )2 @)]ds(Q).

Substituting this in the expression we were calculating, we get that
/bigradu - bigradvdzdy = 0.

This ends the proof of the lemma.
Next, we look at the integral equation corresponding to problem (F). As
expected, this will turn out to be closely related to the integral equation corre-

sponding to problem (C).
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Theorem 4.10 Assume D is simply connected and let

I{l = "Guu + G-r-r
1{2 = G + 3G,

Let (01, 0,) be a solution of

(8 D) (2 )+
[ (o) (B ) (@) ai@)= (5
Then (01,02) = c(2,1) on 8D, where ¢ is a locally constant function. Con-

versely, any such (01,02) is a solution of this equation.

Proof: Let us prove the first statement. There is no loss of generality in assum-

ing that D is connected. Let (o1,02) be a solution of the equation. Integrating

the second equation with respect to s along 9D gives

1
502 + /[(—‘GW + G.,-.,-)O‘l + (Guw + 3G,,-,--,-)0'2]ds =cC

for some constant ¢. Subtract from this equation

/[(_Guu + G-,--,-)zhl + (Guuu + 3Gu‘r‘r)]d5 = _;'

multiplied by ¢ to get
';-(0’2 —c)+ /[(—Gw + G;r)(01 — 2¢k) + (Guuy + 3Gyrr ) (02 — c)}ds = 0.
Rewrite the first equation as
-;—(0'1 — 2ck) — k(o2 — ¢) + /[(_Guu + Grr)upo1 + (Goy + 3Gurr)upoalds =0

and subtract

/[(_Guu + GTT)UP2"C + (Guuu + 3GUTT)VP]dS =0
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(a consequence of proposition 4.1) to get

1
5(01 — 2¢x) — k(o3 — )+

/ (=G + Grr Yo (01 = 265) + (Goo + 3Gyrs)up (0 — €)]ds = 0.

We obtained that o; — 2kc and o, — ¢ satisfy the system of integra1 equations
from theorem 4.8, so o1 — 2k¢c = 0 and 03 — ¢ =0 on dD. This proves the first
statement of the theorem.

To prove the second statement, remember that according to proposition 4.1

| (G (P.Q) +3Gurr (P, Q)] + 26(Q)[=Cn (P, Q) + Grr (P, Q)JdS(Q)

is locally constant for P ¢ 0D. Assume that P is in a tubular neighborhood
of D in D, differentiate with respect to vp and with respect to 7p, and take
limp_sp. Using theorem 3.11 we obtain that a function which is a constant
multiple of (2x,1) is a solution of the integral equation.

In the context of the previous theorem we make some remarks relevant to the

numerical implementation of algorithms based on the theorem.

Remark 4.11 In the context of appropriately smooth functions, the operator T
defined by ;

P

P

/ ( ([{I)VP(P’ Q) (1{2)VP(P? Q
(K1)7 (P, Q) ( Q

has its kernel equal to the one dimensional space generated by v = (2«,1), and
its range is the subspace orthogonal to the one dimensional subspace generated by

w = (0,1). It follows then that the operator
or—To+ (0-v)w=(T+w)o

is injective and surjective.
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This remark might seem useful in building the numerical algorithm. The
integral equation (4.4) will correspond to a linear system. The linear system
corresponding to equation (4.4) is rank-one deficient, so if the right hand side is
given correctly, it has infinitely many solutions, and any solution is suitable for
solving problem (F). Instead of having to solve such a system, it would be very

convenient to solve the system corresponding to
(T+wv)o=g

which has a unique solution o, which is also suitable for solving problem (F).
There are two drawbacks though: first, because of the term d/ds in the diagonal
part, the condition number of the matrix is increasing linearly with the number
of points on the boundary, and second, the correction (o - v)w might cause even
a matrix with constant condition number to have a condition number which
increases with the number of points.

A much better approach is to deal with the differentiation separately, by

multiplying the whole equation by the “inverse” of

—K
14 )
2ds

2 4k f... ds
0 2f.. ds |

This is not an inverse properly speaking, and it is not unique. Let us just say

O ol

i. e. by the operator matrix

at this point that multiplying by the “inverse” entails computing an indefinite
integral every time the integral with the kernels is computed, and computing one
additional indefinite integral initially, or at the end. This will be made more
precise in Section 5.1. We will also see that it can be done efficiently and it
yields an algorithm with “constant condition nlimber”, without increasing the
complexity of the computation.

We are now considering the integral equation corresponding to problem (SO0).
With the choice of kernels we made, the simplicity of the boundary value problem

carries over to the integral equation.
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Theorem 4.12 Assume that D is simply connected, and let

I(] = 6AG,,
K, = G,.

Then the only solution of the equation
3 0 U](P)
(0 3) (08
/( Ki(P,Q) Ky(P,Q) ) ( o1(Q) )ds(Q) — ( 0 )
ApKi(P,Q) ApKi(P,Q) o2(Q) 0
sy =0 and o9 = 0.

Proof: Let us write out explicitly the expressions of the kernels under the

integral. The system of integral equations is
30 o1(P)
(3 3) (o)
17 (3w-v)/(v-v) 5(v-v)(log(v-v)+1)\ [ o1(@) \ ;.00 = [ ©
w/< 0 1o+ )/ (v ) )<02(Q))d(Q) (o)

This system of integral equations for o; and o, decouples. The second equation

1 I 1
302 + ;/—2-(11 -v)/(v-v)ods =0

is exactly the equation one obtains when trying to solve the interior Dirichlet

problem
Aw=0 on D

w=g¢9; on 0D
by looking for w as a double layer potential (see [9] for example). We know
(from [9] for example) that the only solution of this equation is the trivial one.
Therefore o = 0. Then the first equation becomes the equation of the same
Dirichlet problem, so o, = 0.

Now we will look at the integral equation corresponding to problem (Sg).

Remark 4.13 Assume that D is simply connected. Let

K, (6 + 1)Gouy +3(2 + 1)Gorr = 6AG, + p(Guuw + 3Gurr)
K, = G,.
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Denote Kyg = ApKy + (K1) rprp and Ka2a = ApK; + p(K3)rprp. Consider the

system
3(6+u) 0 ( o1(P)
( (4 + 2087 + 20+ 8 — 2unH ) ( o2(P) ) @)
J ( K\(P,Q) Ki(P,Q) ) ( 1(Q) ) 45(Q) = ( 9 )
Kn(P,Q) K2n(P,Q) )\ 02(Q) 92 )
If u # —6, the corresponding homogeneous system has o1 = 0 and o2 = 0 as the

only solution.

In the case g = —6 the integral equation is not of second kind. Numerical
evidence suggests that the equation has a unique solution even in this case. It is
pointless trying to prove it though, since the Fredholm theory would not apply

in this case.

Remark 4.14 Note that if 4 # 0 (and g # —6) the condition number of the
system arising from the integral equation (4.1) increases as fourth power of the
number of points in the discretization of D. Indeed, the diagonal part of the
integral equation dominates the integral part. In the behavior of the condition
number versus the number of points, a power of 2 is coming from the fact that
d?/ds? appears in the operator
( 3(6 + p) 0 )
—(p2 4 2u)R? + (WP 8L —2urH L )

Another power of 2 is coming from the fact that d*/ds* appears in the “inverse”

operator as well. Indeed, the “inverse” operator is

( i y

—g [~ (WP + 2p)R? + (i + 8u) —2unH] 2 )

We conclude that the approach of solving problem (Su) using this integral equa-
tion is not very useful for numerical computations. For this reason, starting with
remark 4.13, we will not spend any effort in giving proofs to the statements about
problem (Su). Strong numerical evidence suggests though that the only solution
of equation (4.1) is the trivial one. Therefore, the equation has a solution for
any right hand side. Numerical evidence also suggests that problem (Su) has a
unique solution, which can be obtained via the potential formula (2.1), using the

kernels given in Section 3.2 and the charges obtained from equation 4.1.
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4.3 Solution to the Problems

In this section we will study the existence of solutions to the problems stated in
Section 2.1.

Let us start by looking at the extent of uniqueness of the solutions of problems
(C), (F) and (S0).
Proposition 4.15 Assume that the boundary data in the three problems (C),
(F) and (S0) are zero, that is, g1 = 0 and g2 = 0. Then the solutions for the
" three problems are:
Problem (C): u = 0.
Problem (F): assuming that D is simply connected, u = ¢, where ¢ is a locally

constant function on D.

Problem (S0): u = 0.

Proof: Problem (C): Take u = v in Green’s first formula. It follows that
Jp(Au)2dzdy = 0. Therefore Au = 0 in D. Using the classical uniqueness
theorem for the solution of Au = 0 with u = 0 on the boundary one gets imme-
diately that « = 0.

Problem (F): The condition u, = 0 on D implies u = ¢ on 0D, where c is
locally constant on dD. The function ¢ extends naturally to D. Let v = u —c.
Problem (F) reduces to problem (C) for v. Therefore v = 0 and so u = c on D.

Problem (S0): Au =0 on 9D, so it follows from the classical uniqueness for
the Laplace equation that Au = 0 on D. Using the uniqueness theorem again,
u=0o0n D.

Now we will state formally the compactness of the integral operators in the

integral equations.

Theorem 4.16 For each of the four problems (C), (F), (S0) and (Su), the op-

o1 K11 Ki2 o1
(0'2)'_)(1{21 K22)(<72)

is a compact operator from L?(8D) x L?(9D) to itself.

erator
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Proof: This is clear because we showed that all entries in Kj; are either
smooth, or, at worst, they contain logarithms.
We are now ready to discuss the existence of the solutions to the boundary

value problems, via the corresponding integral equation and potential formula.

Theorem 4.17 Assume D is simply connected, and let g, and g, be C° functions
on 8D. Let Ky = Gy, + 3G,rr and K3 = =Gy, + G,-. Then the solution u of

Alyu=0 on D
u=q on 0D
Ou/dv =g, on 9D

is given by

u(P) = [ [Ki(P,Q)o1(@) + Ka( P,Q)oo(Q)]ds(Q), (42)

where oy and oy are solutions of

(e 3) (27 ) 4
1( ) K3 (P, o1 1(P)
Lo ( 5By irey ) (543 )@= (55
(k is the curvature of 0D).

Proof: The operator giving the left hand side of the integral equation is the
sum of an invertible operator and a compact operator from L%(dD) x L*(0D) to
itself. Using the Fredholm theory, we see that the integral equation has a unique
solution because of theorem 4.8. Therefore, oy and o, exist and are in L?. Since
g1 and g, are continuous, it follows that o; and o3 are continuous (this follows
for example, from proposition (3.14) in [9]). The function u is defined then on D,
and it can be extended continuously to D. Also, the derivative at the boundary
exists. Because of the integral equation and theorem 3.11 it follows that this

extension satisfies the boundary conditions.

Remark 4.18 If D is not simply connected, the situatioﬁ is more complicated.
Theorem 4.8 gives one main ingredient towards solving problem (C) in this case.
The idea is to split the right hand side g; and g into a part which is in the range
of the integral equation operator, and a part which can be handled explicitly. We

will not pursue the multiply connected case here.
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Theorem 4.19 Assume that D is simply connected and let g; and g, be C°
functions on 8D. Let Ky, = —G,, + G, and K, = G,,, +3G,,». The problem
A?u=0 on D

Jufdv=g¢g, on 0D
Juf0r =g2 on 0D

has solutions if and only if
/ap g2(s)ds = 0.

The solution is unique up to an additive constant (on each component of D). A

solution is given by

u(P) = [ [K:(P,Q)on(Q) + Ka(P,Q)oa(Q))ds(Q),

where o1 and o, are solutions of

(k is the curvature of D).

Proof: 1t is clearly necessary that [, gods = 0 because g is the derivative of
a function on the closed curve 0D.

Assume now that [;, gods = 0. It follows that there is a function G2 on aD
so that its derivative is g2; in other words, we can integrate the second equation
term by term. The system we obtain this way is exactly the system from theorem
4.17, so it has a solution. This solution is the solution we are looking for, since the -
derivatives at the boundary exist and have the values prescribed by the problem.
The details of this proof are the same as in the previous proof and will be omitted.

Finally, let us show how the potential formula given for problem (S) provides
a solution to the boundary value problem in the case 4 = 0 (i. e. we solve

problem (S0) via integral equations and a potential formula).
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Theorem 4.20 Let D be simply connected, and let g, and g, be C° functions on
0D. Let K, = 6AG, and Ky = G,. Then the solution u of |

A =0 on D
u=¢g; on 0D
Au=g; on 0D

is given by

u(P) = [ [Ki(P,@)o1(Q) + Ka(P, Q)o2(Q)lds(Q), (45)

where oy and o, are solutions of

30 o1(P)
(23) ()
/ ( Ki(P,Q)  Ki(P,Q) ) ( 1(Q) ) is(Q) = ( 91(P) )
ap \ ApK1(P,Q) ApK,(P,Q) o2(Q) 92(P) )
The proof is identical to the one for theorem 4.17 and it will be omitted.

We will look at problem (Sy) now.

Remark 4.21 Let D be simply connected, let g, be a C? function and let g, be
a C° function on 8D. Let

Kl = (6 + /-L)Guuu + 3(2 + /-L)Gu‘r‘r = BAGU + /-L(Guuu + 3Gu‘r‘r)
K, G,

where p # —6. Then the solution u of

Alu=0 on D
u=qg on 0D
Au+ p-0%u/dt* =g, on 0D

s given by

u(P)= [ [K:(P,Q)1(Q) + Ka(P,Q)o2(Q)lds(Q), (46)

where o, and o2 are solutions of equation (4.1).
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See remark 4.14 for a discussion relevant to this remark.
Idea of Proof: Let H, be the Sobolev space of functions in L*(dD) whose first

and second derivatives are also in L?(8D). Clearly the operator

is an isomorphism from H, X L%(8D) to itself. The operator

(508 502 (2 )wo

(which is a compact operator from L*(8D) x L*(9D) to itself) induces a compact

36+
— (12 + 2p)K? + 3(u* + 8u) 5z — 2uk’H

o= O

operator from Hy x L*(8D) to itself. Assuming the statement from remark 4.13
the proof proceeds just like the proofs of theorems 4.17 and 4.20.

The preceding remark states a method for solving problem (Sy) for all p # —6.
When p = —6 the integral equation is not of second kind, and we have no formal
statement about it. Numerical evidence suggests that the integral equation has
a unique solution even in this case, and that the solution solves problem (Sg)

through the potential formula.
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CHAPTER 5

NUMERICAL TOOLS AND
RESULTS

5.1 Numerical Tools

In this section we will give an outline of the algorithms which can be written
based on the theorems in the preceding chapter. We will discuss briefly the sta-
bility, convergence rate and complexity of the algorithms as well as the condition
number of the linear systems involved. We will also discuss some of the numerical
tools which are needed in implementing the algorithms. Throughout the discus-
sion, let us keep in mind that the aim is to find an algorithm which is stable, has
a high rate of convergence, and low computational complexity. We will explain
the details for problem (C) and point out the changes to be made for the other
problems (see Sections 2.1 and 4.3).

The clamped plate problem (C): Let us assume that D is a bounded,
connected and simply connected domain in R%. Given g; and g, on 8D, we want
to find u on D like in theorem 4.17. More specifically, given the curve dD as a
set of points in R?, and given the values of g; and g2 at these points, find the
values of u at a given set of points inside D. Clearly there are two major steps

according to theorem 4.17:
Step 1: find o} and o, from equation (4.3).
Step 2: find u from equation (4.2).

57



Let us start by looking at Step 1. Let N represent the number of points in the
discretization of 8D. Mathematically, Step 1 is simply solving a linear system of
size 2N x 2N in which the right hand side is the vector of values of g; and g,
the unknowns are the entries of the vector representing the values of ; and oy,

and the matrix is D + A, where D is the 2 x 2 matrix of N x N blocks

(1)

each block being a diagonal matrix, and A is the matrix corresponding to the

i
= O

linear operator

( s ) — Joo ( o (PO) (K (PD ) ( it )ds(Q)'

Before continuing the discussion, let us point out that both' A and D have con-
dition numbers which are asymptotically bounded as N — co. We continue by

pointing out two substeps:
Step 1.1: Compute the curvature «.
Step 1.2: Solve the linear system.

Step 1.1: This part of the algorithm is “easy” and “cheap”. If it is not
known from the input data, we have to compute the curvature « at all points
where the boundary 0D of D is given. Assuming that the points (z,y) giving
the boundary are equispaced in terms of arclength, we have to compute z’, ¥/,

# and then take x = —z"y’ + y”z’. This can be done using Fast Fourier

2y
Transforms, and it is of complexity O(N log(N)). If the points (z,y) are not
equispaced in terms of arclength, then one should “resample” the curve, that is,
find a new set of points giving the same curve, which are equispaced in terms
of arclength. This can be done in several ways, and depending on the way it is
done, it might involve Fast Fourier Transforms, interpolation, and solving some

non-linear equations (by Newton’s method). All these are “fast” (i.e. of order

O(N log(N)) or less), can be made highly accurate, and they are stable. We will
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T e

not discuss this further. Let us just note that in the process of resampling one
obtains z’, ', =", y”, so there would be no need of computing them separately.

Step 1.2: This is the non-trivial part of this algorithm. In order to emphasize
this non-triviality let us describe shortly how a naively constructed algorithm
would look like. First, one would compute the entries of matrix A. This in itself
is a computation of order O(N?) since the matrix is of size 2N x 2N. Then, most
methods for solving the system (D + A)o = g are of order O(N?) (or worse), but
as we shall see shortly, a conjugate residual type method (to be outlined later)
is of order O(N?). Our aim is to make this step of order O(N).

For the sake of completeness we will give a short description of conjugate
residual type methods for solving linear equations numerically. More details can
be found in (8] for example.

Conjugate residual type methods: Let B be a non-singular n X n matrix.
Recall that the condition number « of B is k = ||B||-||B~!||. Let b € R" be a
given vector. The problem we are looking at is: find z € R™ satisfying Bz = b.
Let (* - %) be a positive definite bilinear form on R". A conjugate residual type
method is a method of constructing iteratively a sequence z; of elements in R"
with the following property: choose zo and compute the residual ro = Bxo — b.
The vector z; will be chosen so that the residual r; = Bz; — b is minimized over
the subspace of R* generated by the vectors ro, Bro, B?rg, ... , Birg with respect
to the norm given by (x - *).

There are various conjugate residual methods depending on the choice of
the positive definite bilinear form (* - *). If zy, ... , z; and ro, 71, ... , T
have been computed, then computing z;4; and r;4; can be done by a number of
operations independent of ¢, which, besides some elementary operations, involve
only multiplications of B with some vectors in R". If = represents the solution

of the given equation Bz = b then

—1\¢
lz; —z| < ¢ ~ |zo — ]
k+1

where ¢ is'a constant independent of B and z¢, and | * | is the norm given by

(*-*). Mathematically speaking one might have to go n steps in order for z; to be
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equal to z. Numerically however, one reaches z; = z within machine precision,
or within the desired accuracy, after a certain number of iterations.

In typical numerical problems (like the one we are looking at) one has to solve
the system Bz = b several times, with increasing values of n (in our problem we
will have to increase N = the number of points on the boundary, and recompute
the values of the function u, to make sure that we achieve a ‘good enough approx-
imation of the solution of the partial differential equation). In many problems,
the condition number of B increases with n, but in the problem we are looking
at, the condition number of B (which is D + A) is asymptotically constant.

Let us continue the discussion of Step 1.2. We conclude that the number of
steps in a conjugate residual type method, and therefore the number of matrix-
vector multiplications needed to solve (D + A)o = g is Bounded independently of
N. Therefore the complexity of solving (D + A)o = ¢ is bounded by a constant
(depending on the desired accuracy) times the complexity of performing the
multiplication of (D + A) with a given vector v. Computing the entries of A and
performing a multiplication of A with a vector, has complexity O(IV?), so the
complexity of this approach is O(N?).

By itself, this is an improvement over other methods of solving problem (C),
since other standard methods are at best of complexity O(N?) (on regions of
very particular shape). But it does not achieve our aim of solving problem (C)
in O(N) or O(N log(N)) operations. We will point now to a method of solving
(D + A)o = g in order O(N) operations. We will use the idea of the method
developed in [27] (see also [10]).

As we discussed, the complexity of solving (D + A)o = ¢ is proportional
to the complexity of multiplying A with a vector. Therefore, we want to be
able to compute efficiently the matrix-vector multiplications corresponding to

the following four integrations

op — [Ki(P,Q)o1(Q)ds(Q)
oy — [ Ky(P,Q)o2(Q)ds(Q)
g = f(j(l)up(P’Q)al(Q)ds(Q)
oz > [(K2)up(P,Q)02(Q)ds(Q).



In [27] (see also [10]) it is explained how the matrix-vector multiplication corre-
sponding to
o [ K(P,Q)o(Q)ds(Q)

corresponds to evaluating the field created by a set of dipoles distributed along
the curve 8D at a set of points on the curve 8D, for the case when K represents
the kernel appearing in the integral equation used to solve the Dirichlet problem
for the harmonic equation Aw = 0. In the same papers the authors develop a
method for evaluating the field in order O(N) operations. That method can be
used in our problem with the only change that some expansions in Taylor and
Laurent series will be different, and some local evaluations will be different. This
does not change the computational complexity of the algorithm, and therefore
provides an order O(N) algorithm for solving (D + A)o = g. We will not go into
further details here.

There is one thing left to be discussed in Step 1.2. In computing

[ K(P.Q)o(@)ds(@)

using the fast algorithm (where K is any of kernels we are considering and o is
a given function), we still have to perform a direct computation around every

point P. This amounts to computing

/U K(P,Q)o(Q)ds(Q),

where U is a neighborhood of P in D. Therefore, we need to compute KX (P, P)
at P € 8D. This is done by a simple interpolation. We point out this minor
detail because it plays an important role in the discussion of the convergence rate
of the algorithm.

Step 2: There is little to be discussed in this step now since it amounts to
computing another integral which can be done efficiently by the method we just
described.

Characteristics of the algorithm: The computational complexity and the

memory requirements for this algorithm are clearly of order O(NN). Let us note
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though that in most practical situations, the data would have to be resampled.
Strictly speaking this is not part of the algorithm, but it would make the solution
of the problem of order O(N log(V)).

The convergence rate of the algorithm is determined by the smoothness of
the curve dD and by the convergence rate of the interpolation formula used
in computing K(P, P). Indeed, the fast algorithm for evaluating the integrals
corresponds to using the trapezoidal rule for computing the integrals. It is a
well known classical fact that the convergence rate of the quadrature by the
trapezoidal rule for periodic functions of class C™ is m+1. If the boundary 8D is
of class C*, then the kernels are of class C*~2. Interpolation with convergence rate
p, corresponds to the fact that the smoothness of the function K is not more than
p—1. Therefore the convergence rate of the algorithm will be min(k—2,p—1)+1.
This means that in practice one can easily achieve a (very appealing) convergeﬁce
rate of about 7 if the boundary is smooth enough.

A last remark to be made regarding this algorithm is its stability. Indeed the
integral equation leads to a linear system of (asymptotically) constant condition
number (in fact the condition number is typically very reasonable; for “reason-
able” curves it tends to be in the range 100.0), and all the steps of the algorithm
are stable. That means that for small errors in the data, the errors in the result
will be small.

The fluid dynamics problem (F): We will now discuss shortly the nu-
merical details of problem (F). The general setup is very similar to the one for
problem (C). There is one difference though, which was already pointed out in
remark 4.11 and the discussion following it.

In Step 1, let us write the linear equation arising from the integral equation
44 as (D + A)o = -g. We know that the matrix D + A is rank one deficient
(in fact both D and A have the vectors (2«,1) and (0,1) as generators for the
kernels and the kernels of their transposes). If the boundary data satisfies the
necessary condition for the problem to have a solution, then the right hand side

g is in the image of D + A (viewed as an operator). Therefore the system will
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have solutions, and any solution is suitable for computing u in Step 2. Therefore
we are facing the problem of finding one solution of a singular system (out of
several). There are several ways of dealing with this problem; for example, one
can reduce the size of the system, or one can add some terms which would make
the system non-singular but would not alter the solution (see remark 4.11). But
as we pointed out before, we propose a different method. We summarize its

essence in the following proposition:

Proposition 5.1 Let R be the set

R = {(g1,92) € [*(0D) x L*(0D) so that [ _gads =0}

(in other words, in the notation of remark 4.11, R is the orthogonal of w). Let
T be a linear operator which has the property that (d/ds)(Z(f)) = f for any
f:0D — R with [ f =0. Let us consider then E to be the operator

2 4xT
b= ( 0 21 )
We have the following:

a) DE =1 on R, where I is the identity operator.

b) The system (I + AE)a = g has a solution, which is unique, for every g.

¢) If g € R and « is a solution of ([ + AE)a = g then o = Ea is a solution
of((D+ Ao =g.

Proof: a) It is clear that DE = I on all elements ¢ = (g1,92) for which
(d/ds)(Zg2) = g2. This is true exactly when g € R.

b) According to the Fredholm theory, it is enough to check that the system
(I + AE)a = 0 has only the trivial solution. Since A takes values in R and
a = —AFEa we see that o € R. It follows that DEa = «, so if we denote
o = Ea then o satisfies (D + A)oc = 0. It follows from theorem 4.10 that
o = cv, where c is a constant and v = (2«,1). It follows that a = 0 because
a = DEa = Do and on the other hand Do = D(cv) = 0.

c) Since A takes values in R and « = —AEa+g we see that a € R. It follows

that DEa = «, and the statement is clear.
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Note that Z is an “indefinite integral operator” along the curve dD. Such
an operator can be constructed explicitly by taking for any given f the Fourier
transform of f, multiplying each term by an appropriate coeflicient depending on
its index, and taking a backward Fourier transform. In terms of the discretization
of the curve, all this can be done by using Fast Fourier Transforms. This means
that in terms of the discretization we can construct very easily and “cheaply”

the linear operator corresponding to Z. Therefore, the equation
(D+A)o=yg

can be replaced by
(I+AE)a=g

o= Fa.

It is clear now that the algorithm for solving problem (F) has the same struc-
ture as the one for solving problem (C), except that before each matrix applica-
tion corresponding to the integrals with the kernels, one has to apply the matrix
E, and that one has to apply E one more time to the solution obtained in this
way. The remarks about the condition number of the system of linear equations,
and the computational complexity, the rate of convergence and the stability of
the algorithm made for the preceding problem apply here as well.

The supported plate problem (S): The algorithm for problem (S0) is
completely analogous to the one for problem (C). There is one thing which needs

"to be pointed out though. One of the integrals to be computed has the kernel
G, = (1/87)(v-v)(log(v-v)+1). As we pointed out in the theorem in Section 3.3,
this is a function of class C!, which has a second derivative which is integrable,
but not continuous. It follows then that if we use the trapezoidal rule in the
local computation of the fast algorithm of the type described in [27] and {10],
then the rate of convergence is going to be 2. We can easily increase the rate
of convergence by using the end point corrected trapezoidal rule for computing
integrals as described in [28]. As it is described in {28], the reasonable weights

to use are those which yield an order of convergence a little over 3. It can be
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Figure 1: The Crescent (C)

We want the solution of the problem to be of the type

v(z,y) = - [(z = 20)* + (v — v0)*]  log[(z = z0)* + (¥ — y0)*]

with some explicit values for a, zo and yo, with the point (zo,yo) being outside
the domain. We compute the boundary values g; and g, for the partial differential
equation analytically. '

7 For each domain we consider a finite set of points in the interior of the do-
main. Specificly, we take a set of 15 poirits spread in the subdomain which is the
contraction by 1/2, centered at the origin, of the given domain. The purpose of
the computer program is to corripute the solution u at the given points. Then
we compare the computed solution u to the exact solution v, by computing the

relative L? norm of the difference, i. e. by computing

_lu=ol |
=TT &1

the norm being the discrete L? norm on the set where u has been computed.

For each problem we start by discréfizing the boundary of the domain. First,

we take n = 16 equispaced points on the boundary of the domain. Then, we take
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seen in practice that the rate of convergence with those weights is closer to 4.
In any case this is quite a satisfactory rate of convergence in practical problems.
The other characteristics of the algorithm are very similar to the characteristics
of the previous algorithms, and we will not repeat the discussion.

For problem (Su) there are a few additional computational details. The com-
putation of the derivative &’ of the curvature can be done efficiently by using
Fast Fourier Transforms. They can also be used to express the second derivative
operator d?/ds® as a linear operator. The computation of the Hilbert transform
entails the computation of an integral in the principal value sense. If this is done
by using the trapezoidal formula, it would decrease the rate of convergence to
1. One can keep a high rate of convergence by recalling the well known fact
that if one uses a higher order interpolation formula to compute the value of the
integrand at the singular point, then one obtains correspondingly higher order

convergence for the quadrature.

5.2 Numerical Examples

In this section we will present some numerical experiments. We will state some
explicit problems, which we solve numerically using the algorithms described in
the previous section. Qur purpose is to illustrate that the condition number and
the order of convergence are the ones predicted by the theory.

For each problem we consider three domains:
D is the disk of radius 1 (centered at the origin)

E is the bounded domain inside the ellipse of axes 2 and 1 (along the coordinate
axes)

C is the crescent given by the equations

z(t) = cost + 0.15 - sin® ¢
y(t) = 0.5 -sint + 0.4 - cos® ¢

(see figure 1).
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n =32, n = 64, n = 128, and in some cases n = 256. For each value of n we
compute the values of u at the given points inside the domain, and we compute
the relative L? error e(n) defined by (5.1). For each problem and each value of
n we compute the condition number ¢(n) of the linear system corresponding to
the integral equation, as explained in the previous section. We put in the third
column of each table the number g(n) = e(n)/e(n — 1). The tables 1, 2 and 3

show the numerical results obtained from the computer programs.

Table 1: Problem (C) on Domain D

n e(n) e(n) g(n)
16 | 0.141D+02 | 0.272D-03

32 | 0.139D4-02 | 0.104D-06 | 2620.783
64 | 0.140D++02 | 0.795D-09 | 130.331
128 | 0.141D+02 | 0.796D-11 |  99.926

Table 2: Problem (C) on Domain £

n c(n) e(n) g(n)
16 | 0.778D+02 | 0.115D+00

32 | 0.747D+02 | 0.835D-03 | 137.380
64 | 0.767D+02 | 0.102D-04 | 81.747
128 | 0.776D+02 | 0.110D-06 | 92.750

Table 3: Problem (C) on Domain C

n c(n) e(n) g(n)
16 | 0.140D+03 | 0.173D+00

32 | 0.253D+03 | 0.232D-02 | 74.366
64 | 0.310D+03 | 0.149D-03 | 15.560
128 | 0.359D+03 | 0.423D-05 | 35.314
256 | 0.359D+03 | 0.544D-07 | 77.802

The resampling of the boundary was done to an accuracy of 0.1D-6, and
the interpolation formula used for computing the values of the kernels in the

integral equation at points (P, P) was seventh order convergent. Therefore, the
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expected values for q(n) are around 128. The results for ¢(n) obtained from the
computation are slightly different because the problem is solved to the desired
accuracy before we even get into the region of asymptotic behaviour.

Tables 4, 5 and 6 give the similar results for problem (F). The comments made
for problem (C) apply here as well. The only difference is that because of the
way the program was written, the expected values for g(n) are g(n) = 8 for these
problems. Also note that since the solution to problem (F) is not unique, the

functions u and v were replaced by u — u(0,0) and v — v(0,0) in the computation

of the error e(n).

Table 4: Problem (F) on Domain D

n

¢(n)

e(n)

q(n)

16
32
64
128

0.262D+01
0.263D+01
0.263D+-01
0.264D4-01

0.344D-02
0.426D-03
0.531D-04
0.662D-05

8.066
8.022
8.017

Table 5: Problem (F) on Domain E

n ¢(n) e(n) q(n)
16 | 0.896D+01 | 0.298D—01

32 | 0.835D+401 | 0.747D-03 | 39.880
64 | 0.842D+01 | 0.544D-04 | 13.732
128 | 0.842D+01 | 0.712D-05 | 7.645
256 | 0.842D+01 | 0.915D-06 | 7.775

Table 6: Problem (F) on Domain C

n

¢(n)

e(n)

q(n)

16
32
64
128
256

0.926D+01
0.217D+02
0.179D+02
0.168D+02
0.169D+02

0.499D-01
0.104D-01
0.102D-02
0.112D-04
0.844D-06

4.782
10.252
90.805
13.295
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Tables 7, 8 and 9 describe the numerical results for problem (S0). For this
problem we used the end point corrected trapezoidal rule for computing the inte-

- gral of functions involving log. The proven rate of convergence is > 3. Therefore

the expected values for g(n) are at least 8 (asymptotically).

Table 7: Problem (S0) on Domain D

n ¢(n) e(n) g(n)
16 | 0.115D+02 | 0.465D-04

32 | 0.115D+02 | 0.213D-07 | 2187.196
64 | 0.115D+02 | 0.723D-09 |  29.424
128 | 0.115D402 | 0.653D~10 |  11.070

Table 8: Problem (S0) on Domain £

n

c(n)

e(n)

q(n)

16
32
64
128

0.192D+02
0.187D+-02
0.187D+02
0.187D4-02

0.231D-01
0.732D-04
0.217D-06
0.200D-08

316.212
337.192
108.667

Table 9: Problem (S0) on Domain C

n ¢(n) e(n) q(n)
16 | 0.234D+02 | 0.397D-01

32| 0.251D+02 | 0.162D-03 | 244.651
64 | 0.266D+02 | 0.220D-05 | 73.723
128 | 0.270D+02 | 0.502D-07 | 43.840

Finally, we illustrate on two examples, that problem (Su) can be solved in
principle, but the condition number increases very fast. We take 4 = 1, and we

solve problem (Si) on C and E. Tables 10 and 11 illustrate the results. In these
tables we add a column for ¢.(n) = q(n)/q(n —1).
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Table 10: Problem (Sg) on Domain C
n c(n) g:(n) e(n) q(n)
16 | 0.112D+05 0.608D-03
32| 0.200D+06 | 17.783 | 0.244D-05 | 249.215
64 | 0.332D+07 | 16.581 | 0.113D-05 2.165
128 | 0.547D+08 | 16.472 | 0.809D-07 | 13.913

Table 11: Problem (Sg) on Domain £
n c(n) gc(r) e(n) q(n)
16 | 0.331D+05 0.104D+00
321 0.570D+06 | 17.230 | 0.683D-03 | 152.628
64 | 0.948D+07 | 16.634 | 0.637D-05 | 107.067
128 | 0.155D+09 | 16.369 | 0.249D-06 | 25.644

5.3 Further Problems

This section contains some problems which can be solved using the techniques
of this dissertation, as well as some problems not dealt with here which are
interesting.

A) The first problem we mention is the problem of finding a better solution
to problem (Sy). This is related to the next problem mentioned here, since one
approach would be to reduce problem (Su) to other boundary value problems.

Indeed it is easy to see that problem (Su) can be reduced to

Au=0 on D
u=h on 0D
Au + puku, = hy on 98D

where & is the curvature of 0D.

B) Other boundary value problems. The heuristic reasoning explained in
Section 3.5 can be used to find the potential formulae and the diagonal terms for
other boundary value problems as well. For example, the problem of finding u

which satisfies
A?u =0 on D

Ou/dv =g on 9D
0*uf/Ov? =g, on 9D
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for given ¢, and g2, can be solved by looking for u as

u(P)= [ [(Gu +3G:)(P,Q)n(Q) + GulP,Q):(Qlds(@),
for which the matrix of diagonal terms is

(4 1)

Numerical evidence suggests that when D is simply connected, the integral oper-

v =

wlco
wi= O

K

ator giving the integral equation has a kernel of dimension one, and the solution
of this problem goes very much along the lines of the solution of problem (F).
This problem was not included in this dissertation, since it appears to have no
particular physical significance.

C) Another class of problems worth mentioning is the adjoint problems. We
will explain the adjoint problem on an example. We take as a starting point
the integral equation we deduced in order to solve problem (C). Let us consider
the adjoint of the operator giving the integral equation, and let us consider the

integral equation given by this adjoint. We obtain

% —£(Q) 1 (Q)

( 0 3 ) ( (Q) ) ¥ (5:2)
Guuu + 3GV1—7- (GV,,V + 3GVTT)VP al(P) _

~/3D ( —G,,,, + Gr‘r (_Guu + G‘r‘r)up ) (P’Q) ( QQ(P) ) d.S(P) -

- ( 7(Q) )
92(Q)
(in the notation of theorem 4.8). We will call this the adjoint integral equation.
Now we will write down a boundary value problem whose solution along the lines

described in Section 2.2 leads to the integral equation (5.2). An obvious choice

for the potential formula is

w(Q) = [ [G(P,Q)er(P) + Gup (P, @)ac(P)lds(P)

and for the boundary value problem is

A% =0 on RZ\D
Uyyy + 3ul/;l"r =g on aD
—Uy, +U;r =gs on OD.
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One has to check that the diagonal terms coming from the potential formula
correspond to the ones in the adjoint integral equation (this is the reason for
considering the exterior problem instead of the interior one). Part of the numer-
ical and theoretical solution of this problem comes almost for free because we
have a full understanding of the integral equation. One has to determine to what
extent the solution of the boundary value problem is not unique though. Some
of the adjoint problems turn out to have physical significance.

D) Connected to the adjoint problems, and as a class in themselves, we men-
tion the exterior problems. Before doing that, let us briefly discuss the bihar-
monicity at infinity. It is clear what the analytic condition should be: the function
u(z) is biharmonic at oo if the function u(1/2) extends as a biharmonic function
across the origin. It would be interesting to give the condition of biharmonicity
at oo in terms of some growth conditions on the function and on some of its
derivatives.

As for the exterior problems, one can use the same potential formulas as for
the interior ones, and the integral equations differ from the corresponding ones
from the interior problems by a change of sign in front of the integral. One has
to redo the study of the integral equations. The results might be quite different
from the ones obtained in the case of the integral equations corresponding to the
interior problerﬁs. For example the dimension of the zero space of the integral
equation is 4 for the exterior problems corresponding to (C) and (F). The bound-
ary value problems themselves have to be studied as well, since there might be
necessary conditions to be imposed on the boundary data, while for some prob-
lems, some part of the biharmonicity at infinity might be automatically satisfied.

E) It would be interesting to understand completely what happens when D
is not simply connected. To some extent this problem is related to the preceding
one, as it is suggested by theorem 4.8.

F) Other problems worth mentioning are three dimensional problems. There
have been successful attempts to solve the biharmonic, and even higher order

equations, in three or even higher dimensional spaces, by reducing them to second
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kind integral equations (see [18, 20, 24, 32]). But none of them seems to be of
much use when it comes to numerical computations. Therefore, it is legitimate
to search for a method which would lead to effective numerical algorithms. The
approach presented here can be generalized in principle to three (and higher)

dimensional problems, but this is clearly a non-trivial task.
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