Experience with Linda

Robert Bjornson*, Nicholas Carriero**, David Gelernter**, Tim
Mattson*, David Kaminsky** and Andrew Sherman*

*Scientific Computing Associates
New Haven, Connecticut

**Yale University
Department of Computer Science
New Haven, Connecticut

Abstract. Claims about Linda’s effectiveness as a parallel programming
tool were once based on abstract arguments and small experiments; they are
now based on wide-ranging experience with production applications. We discuss
the implications, and the new direction of ongoing Linda research.

1 Introduction

For most of the last decade, parallel programming has been a far more important
topic for software researchers than it has for production programmers. But over
the last year or so, this situation has changed dramatically. Parallelism sees
active, production use at an increasing number of sites; even more significant,
parallel programming is now a high-priority topic for investigation at a wide
spectrum of U.S. companies—including aerospace, pharmaceutical, automobile,
financial services, oil production and even insurance companies. Relatively few
of these sites make use of parallelism today, but a surprisingly large number are
actively researching the possibility.

The most important spurs to this surge of interest in parallelism have been
(a) the emergence of local area networks as huge power reserves and good hosts
for parallel applications, and (b) the considerable clarification that has occurred
in the historically turbid world of parallel programming systems: a small number
of solid contenders has emerged from a large pack. We’ll discuss both of these
factors below.

Linda! is a high-level coordination language (a language with operators to
support process creation and inter-process communication [CG91]). In prin-
ciple, Linda can be mated with any “computation language” (a conventional
sequential programming language) to produce a complete parallel programming
environment. In practice, the applications discussed below all use C-Linda—
although in many cases, the bulk of the application consists of Fortran code,
invoked from C. A prototype Fortran-Linda exists, and SCA will distribute a
production version in the near future. Many other research groups have pro-
duced experimental matings of Linda and a large spectrum of other computing
languages, including Scheme, Prolog, Modula-2, ML, SETL and others.

Here is the main result to be discussed in this article: a wide variety of
production parallel applications can be coded in Linda and executed efficiently
on shared- and distributed-memory parallel machines, and on local area net-
works. This “wide variety” includes applications in computational fluid dynam-
ics, molecular dynamics, seismic simulation, financial portfolio modeling, graph-
ics, realtime data fusion, database search, and various numerical scientific codes.
All Linda programs can be ported transparently between all of these platforms.
In some cases, they require post-portum tuning for good efficiency (obviously,
Linda can’t abolish basic hardware distinctions among the platforms on which
it runs, and the distinction between fast and slow communication systems is
important to parallel program performance); this kind of tuning is usually ac-
complished by changing a single value in the program (namely, the value that
determines the granularity of a task). But Linda can and does guarantee that a
program developed on any of these platforms will run on all of them, and that
an identical coordination language environment is available on all of them.

Bully for Linda, but do these results have broader implications for software
systems generally? Clearly they do.

Some researchers have contended that explicitly-parallel programming was
simply too difficult for non-experts to master. Working programmers would not
be able to harness it effectively; they would need to rely on parallelizing com-
pilers or on “implicitly parallel” languages (functional languages, for example).
We (and many others) have long believed that this contention was false. We
now know that it’s false. Some of the production Linda applications referred to
above were developed with expert assistance; many were not.

Many researchers have contended that Linda was too high-level to be sup-
ported efficiently. They believed that only low-level, nose-to-the-dirt program-
ming models like message passing (see below) would deliver good performance.
This contention was plausible in the abstract, but we have now demonstrated
that it is wrong. We believe that the whole field of higher-level coordination
languages gains as a result. Research into these systems is no mere theoretical

1a registered trademark of Scientific Computing Associates (SCA).

exercise. High-level coordination models can and have been turned into efficient
tools for production programming.

Many researchers continue to treat portability of parallel applications as a
long-term research goal, not yet within reach. In fact, portability across a broad
range of asynchronous platforms, including all species of commercial environ-
ments, is a reality today.

These results aren’t offered in a spirit of complacency. Linda implementa-
tions continue to improve in efficiency, and considerable further improvement is
desirable and possible. Linda programming tools and methods need further im-
provement. The Linda model itself is changing and gaining power as first-class
multiple tuple spaces are more widely understood and supported. There’s more
work do be done. But on the other hand, a great deal has been accomplished,
and further progress is jeopardized unless we can succeed in taking stock of how
far we’ve come.

In this paper, we’ll discuss Linda in the context of alternative or competing
systems (section 2), performance results on a number of significant applications
(3), and current research directions (4).

2 Linda in Context (Revisited)

We discussed Linda in context in a paper several years ago [CG89], but the
context has changed somewhat in the meantime. We briefly take up the same
topic here. Two separate, largely independent contexts have emerged: parallel
programming systems under study by computer science researchers, and parallel
programming systems that are used in practice by applications developers. The
first bunch of systems are designed to pose problems or offer opportunities
for systems research. The systems that appear in the second bunch may be
arbitrarily boring in technical terms, but they must be robust and efficient
enough to be valuable in real programming.

There now exists a bona fide research context of which Linda is a part—
Linda can be understood as one member of this group, and not merely (as had
generally been the case in the past) as an interloper. We discuss this particular
group in the next section. In the section following, dealing with the “practical”
as opposed to the “research” context, we examine the distinctions between Linda
and other contenders in this class.

In Theory: High-Level Coordination Languages

Two significant classes have emerged since 1989: the general class of high-level
coordination languages, and more specifically the class of Linda-like languages.

We’ve defined “coordination language” [Gel89, CG89b, CG90, CG91] as a
language for expressing process creation and inter-process communication. Such
languages may be mated with “computation languages” to produce complete
programming environments. We’ve argued that coordination and computation
ought to be treated as the two orthogonal base axes of software building, with
each element supported by a compiler. (Coordination, traditionally the province
of the operating system via runtime library calls, is ordinarily a classical second-
class citizen in the general scheme of things.)

The “high-level” part of the definition is somewhat slippery, as usual. But
two requirements are important. The models in this category must reflect a
particular approach to building software, not a particular machine architecture.
In this sense they must be top-down and not bottom-up models, and portability
over a fairly wide range of machines is implicit, at least in principle. Second,
high-level coordination languages models should come equipped with a program-
building methodology. They shouldn’t represent merely a set of operations; there
ought to be some well-defined method for using these operations to develop
parallel programs.

An INRIA-sponsored workshop on “Research Directions in High-Level Paral-
lel Programming Languages” [LeM91] in June 1991 represents one of the field’s
first attempt to come to grips with this new area. The workshop covered Linda,
Unity [CM88], Gamma [BCLM88], and a number of projects dealing with more
than one of these systems. The workshop highlighted some conceptual similar-
ities between Linda and Unity; both are top-down parallel programming mod-
els, and both are supported by complete program-development methodologies
(Unity’s presented in [CM88], Linda’s in [CG90]). Unity’s model is formal and
supported by techniques for mathematical reasoning about programs; Linda’s
model is informal, and supported by program-building tools that guide the
development of Linda applications [ACG90]. The differences in approach are
clear, but there are clear similarities as well. There are analogous resemblances
between Linda and Gamma.

The high-level coordination language group clearly includes a number of
other systems as well; Strand [FT89], a coordination language based on the
concurrent logic programming model of Parlog [R88], is one likely nominee.

Within the general high-level coordination language field, research on Linda-
like languages is thriving. At a recent workshop on Linda-like languages spon-
sored by the Parallel Computing Center at the University of Edinburgh, pa-
pers were presented about the formal semantics of Linda, Linda embeddings
in a variety of languages, and Linda implementations in a variety of settings
[Wil91]. Other noteworthy recent Linda projects include work on multiple first-
class tuple spaces and fine-grained programming in Linda [J91, J91b), persistent
Linda [AS91), reliability ([Xu88, KW90, BS91]), Linda and Prolog [e.g. ACD90,
HM91], Linda strategies for scientific computing [PS90], operating systems [e.g.

Lel90] and many others. Today, our own work at Yale is merely one piece in an
increasingly productive and multi-faceted research effort.

In Practice: Linda vs. Message Passing

It’s our observation that the three most widely-used approaches to building
real parallel applications at the moment are message-passing systems of various
sorts, loop-parallel Fortrans, and Linda. This statements needs qualification,
though, in terms of the three major environments for parallelism: distributed-
and shared-memory parallel computers, and local areas networks.

We’d guess that on distributed-memory parallel computers, message-passing
systems are the most popular approach right now, by a fairly wide margin; on
shared-memory parallel machines, loop-parallel Fortrans are most popular, by
a comparable margin.

Local area networks have always been capable in principle of serving as hosts
for parallel applications. But they’ve emerged only recently as widely-used par-
allel platforms—only recently has the aggregate power of interconnected work-
stations emerged as a formidable computing resource. Today, a modest-sized
LAN of fast modern workstations easily challenges a supercomputer on certain
applications. As the power of the typical “fast modern workstation” continues
to increase, LANs grow ever more formidable. They are in effect the newest
platform for parallelism, but by far the most widely available; which makes
them (we believe) the most important platform for the immediate future. (Be-
yond the near term, high-speed LANs connecting parallel workstations become
the most important environment for parallelism.) For parallel programming on
local area networks, message-passing and Linda appear to be neck-and-neck.

In this section, we compare Linda briefly to loop-parallel Fortrans and to
message passing. Message passing is the more significant competitor, as we’ll
explain.

Loop-parallel Fortrans are important and widely used, but they are designed
for a fairly narrow range of parallel programming methods, and a fairly narrow
range of platforms. They don’t seem appropriate for loosely-coupled environ-
ments like local area networks; nor are they suitable for expressing any kind
of coordination but parallelism specifically. In situations where concurrency is
important for reasons besides running a compute-intensive application fast—
to accomodate heterogeneity of machines or languages, to manage physically-
dispersed resources (as in distributed operating system or databases) and so
on—these systems are out of their element. Clearly they are powerful tools;
clearly they are not general-purpose coordination tools, in the sense of message
passing or of Linda.

Message passing, like Linda, is appropriate for fine-, medium- and coarse-

grained applications and architectures. It accommodates a wide range of parallel
program structure, and it can be used to build (say) a distributed operating sys-
tem as well as a parallel equation solver. But message passing is the machine
language of ensemble computers: in order to move bits from one computer to
another over a network, you must (in fact) send a message. And as the machine
language of parallelism, message passing is the problem, not the solution. Some
of the fancier message-passing systems on the market today are in effect assem-
blers for a message-passing machine language; assembler languages represent a
nice step forward, but hardly the culmination of a serious effort at programming
language design.

Proponents of message-passing don’t deny (in our experience, at any rate)
that Linda is the higher-level and more expressive programming model. The
argument here is simple: to achieve message-passing-style point-to-point com-
munication in Linda is trivial. To achieve a Linda-style shared associative ob-
ject memory (a “tuple space”) in message-passing systems, on the other hand,
requires that you build (in effect) a Linda emulator, which is a lot more com-
plicated.

Linda’s tuple space is important for a number of reasons. Here is a whirlwind
tour. (The topic is discussed at great length elsewhere; for example, in [CG89].)
The shared associative object memory is important in supporting—

(1) Dynamic tasking. Dynamic tasking is a robust, simple way to achieve
good load balance and transparent program structure. Simply toss a bunch of
tasks into the shared object memory (in an unordered bag, an ordered queue or
any other appropriate arrangement—we can build arbitrary data structures in
tuple space); idle workers withdraw them as needed.

(2) Distributed data structures. As noted, tuple space can be used to store
arbitrary shared data objects and structures. Data objects in tuple space can
be shared safely by concurrent processes, because they’re immutable; to change
an object, a process must withdraw and then re-insert it. Thus, tuple space
provides universal direct access to shared data objects and structures, in shared-
or distributed-memory environments.

(3) Uncoupled programming. Because tuple space holds persistent objects (a
message on the other hand is a transient event), Linda supports inter-process
communication across time as well as across space. Processes don’t care when
the information they produce will be used; they don’t care when the information
they consume was produced. Two processes whose lifetimes are in fact wholly
disjoint may communicate via tuple space.

(4) Anonymous communication. Processes deal only with tuple space, not
with each other. Thus, no process has any direct dependence on the number
or identity of the other processes in the ensemble, and it’s trivial to build ap-
plication in which the number or job description of processes in the ensemble

changes transparently while the program runs.

(5) A dynamically-varying processor pool. The properties listed above make
it easy to build Linda applications that may gain and lose processes transpar-
ently at runtime. This is a crucial property in supporting what we call “Piranha
parallelism” —a network computing model in which workstation join an ongoing
parallel computation when they become available, and leave when their users
need them. :

What message-passing proponents do claim (true to their heritage as machine-
language defenders) is not that message passing is more expressive but that it
is more efficient than Linda. Granted, machine languages are usually more ef-
ficient than programming languages. But in a systematic study that compares
the efficiency of Linda and of message passing on distributed-memory machines
[B91], the cost of using Linda versus native message-passing ranges, on realistic
problems, from small to negligible. We’ll discuss some of this data in the fol-
lowing section. The advantages of using a higher-level programming model that
is marginally less efficient than a low-level alternative are so well known that it
would be ludicrous to repeat them.

3 Experience with Real Applications

Our intent here isn’t to describe the structure of the applications in detail.
We’ve discussed methods for constructing Linda programs at length elsewhere
[CG90]. Our goal is rather to convey some feel for the range of production
applications coded using Linda, and for their performance. Our emphasis is
performance on local area networks, but we will discuss other environments as
well.

Numerical routines. Figure 1 shows speedups on LAN-connected Sun Sparc-
stations for two programs, block matrix multiply and LU factorization with
partial pivoting. The matrix problem is a multiplication of two 600x600 real
single-precision matrices; the factorization is an 800 row problem. In this and
subsequent cases, we show speedup relative to a C (not C-Linda) program run-
ning on a single node. These programs and all subsequent ones are master-
worker applications; the program structures involved in these particular cases
are discussed in [CG88].

Figures 2 and 3 present comparison data for Linda versus message passing
on a distributed-memory machine (the Intel iPSC/2) for matrix multiplica-
tion and LU decomposition. Matrix multiplication in this case uses the Dekel
algorithm [DNS81], which was developed for dense matrix multiplication on
two-dimensional mesh architectures. The problem in figure 2 is a multiplica-
tion of two 240x240 matrices. We wrote the message-passing version—which

10
8
S
: 4 7
Perfect Linear Speedup .* /

S . /

6 //
le) '."//
e . ;/ //.
d p —~
- R -

‘ o
p e
N 74
N
7
3 7
R4
O 1 1 1 Ll |l 1 T 1 1
0 2 4 6 8 10

Figure 1:

Number of Workstations

LAN speedups: block matrix multiply (@) and LU decomposition (®)

Net Time (sec)

400

Block
']

Mat (240x240) 10 reps.
1 l I

4
g
¢"
.""
x -
d L 4
o %
d 2
/
- %
g
’ 2
g
~ %
’ 7z,
e Ple
~ i
- - rd
"’v ’//
~ 4
. s 7
S
/' P ke
/ Vo4
R
g
l‘.‘ ,//
"'///
i Pd
— s
s
.
Rl
4
Fan 1
\Jl 1
Processors

60

40

20

Speedup

Figure 2: Comparison: Linda vs. native message passing; matrix multiplication

(Dekel algorithm).

Net Time (sec)

150

100

50

LU (400x400)

T I T ' [7
d
7/
7/
/
4
7/
n ’ — 60
e
7/
4
r 7
/
7/
o / ——
4
rd
/7
7/
/
7
L /
7/
, — 40 4
4 ol
= ,/ '8
4 o
L ’ . . a
P message passing B «
4
- /
Id -
S - %
e
- , - o
/ P - - -
R4 L === T . — 20
L , PR Linda
/ /’ P
d PR
| y //,/
2
- //// N
~
¢
- td
4 \‘@: e}
7 Vv
4 1 l 1 l 1 l 0
0 20 40 60
WorKers

Figure 3: Comparison: Linda vs. native message passing; LU decomposition.

10

is fairly straightforward and unproblematic, insofar as the algorithm was devel-
oped specifically for distributed execution on meshes. Performance of Linda and
of the message passing versions are essentially the same. See Bjornson’s thesis
[B91] for a more complete discussion. Figure 3 shows the same comparison for a
400 row LU decomposition problem. The message-passing program uses explicit
broadcast (to distribute the multiplier at the start of each iteration) as well as
point-to-point message sending. This is a relatively fine-grained program by the
standards of the iPSC/2—on average, 6 msec of computation per Linda oper-
ation in the Linda version. Nonetheless, Linda achieves 80% of the efficiency
of the message passing version in the 64 node case (63 identical workers, one
master/manager process). Bjornson’s thesis, again, discusses the case in detail.

Database search. Genetic sequence comparison involves a “closeness” compu-
tation between a target sequence and each sequence in some (often large) sub-set
of a genetic sequence database. The computation is intended to approximate a
geneticist’s sense of the biological similarity between two sequences. Develop-
ment of the master-worker program (sequences are taken from the database and
dumped into tuple space by the master; they are removed by worker processes)
is discussed in detail in [CG90]. Figure 4 shows speedup for this problem and a
related problem discussed below on a network of Sparcstations.

The simple parallel database search techniques that underlie this application
are the basis of the parallel expert database project described in [FG91], and
will be used in a future project for parallel keyword-based text retrieval.

Figure 4 also shows performance on a network of Sparcstations of a Linda
application that parallelizes the “closeness” computation referred to above. The
closeness algorithm in this case is a matrix computation; all matrix elements
along a given counter-diagonal may be computed simultaneously once the previ-
ous counter-diagonal is known. Thus, the computation proceeds in a wavefront
across the matrix, from upper left to lower right corner—a fairly typical pattern
for a variety of matrix computations. The Linda program; which divides the
matrix into sub-blocks and uses a master-worker structure to compute all blocks
along a counter-diagonal in parallel, is described in [CG90].

Molecular simulation. Distance geometry programs take sets of distances
between the atoms in a molecule and convert them into cartesian coordinates.
DGEOM is one of the best known examples of this type of program and is available
from the Quantum Chemistry Program exchange.

Richard Judson of Sandia National Laboratories built a Linda version of this
program. The program inputs the given distance constraints and completes the
model’s unspecified distances using simple geometry. The distance constraints
are expressed as ranges. The program randomly selects a fixed distance within
each range, and computes a reasonable set of optimized cartesian coordinates.
This process is repeated many times. Since each set of fixed distances are

11

T e 0T N

14-

12- .
‘."Multiple
104. .’ sequence/.)
. A Parallelized
J P 7 comparison
'0 // / p
o” //
8 ".‘ / e
‘o' ,/
| .“' ///
e /
6‘ ‘o' x//
] o ,/
Ry 4
44 o" /
2.' L4
0 1 1 1 1 ¥ 1 1 1 1 T 1 1
0 4 6 8 10 12 14

Number of Workstations

Figure 4: LAN speedups: parallel database search
multiple sequence comparisons (a);
parallelized comparison (®)
(propagating wavefront algorithm).

independent, the parallel version of the program uses a master-worker scheme
and passes each fixed distance set to a separate worker.

The standard DGEOM benchmark is a problem involving 10 cyclosporin A
structures. On a Cray X-MP the sequential DGEOM program required 155.1
seconds. On a 6 node Silicon Graphics computer (with 33 Mhz CPU’s) the
same calculation with the C-Linda version of DGEOM took 392 seconds. Figure
5 shows speedup for a 10-structure problem on a network of DECstation 5000’s,
again for the cyclosporin-A molecule.

Shifman et. al. describe their work on the Lindafication of another molecular
dynamics code in [SWSM91].

Computational fluid dynamics. FREEWAKE was developed by T. Alan Egolf
at United Technologies Research Center (UTRC) for modeling the wake struc-
ture of helicopter rotor blades [E88]. The Linda version was developed by Kevin
Dowd and Harry Dolan of UTRC. The inner kernel is a triply-nested loop; at
the core of the loop, the spatial displacements of each relevant element are
calculated, based on the position and strengths of all other elements. These cal-
culations are mutually independent, and so the kernel is highly parallelizable.
(On the other hand, its inter-process communication requirements aren’t triv-
ial; on each iteration, the master must collect results from everyone and then
re-distribute them to all workers.)

The speedup data (figure 6 a, b and c) are particularly interesting, because
we ran the same program on a shared-memory machine, a network of DECsta-
tion 5000’s, and a 128-node Intel iPSC/860—these platforms define the future of
parallel computing. They represent the environments on which the field will cen-
ter: small shared-memory machines, large distributed-memory supercomputers,
and local area networks. (Note that, although the code is highly parallel,

Portfolio optimization. Professor John Mulvey of Princeton has used Linda
in parallelizing complex financial models that involve stochastic optimization
for portfolio management. Figure 7 shows speedup for a “typical” problem on
a network of Silicon Graphics Personal Iris workstations.

Shallow water equations. SHALLOW [WP86] is an explicit finite difference
solution of the shallow water equations. These equations, important in climate
modeling, consist of three coupled differential equations which depend on time
and two spatial dimensions.

A Yale research group (including Martin Schultz and Ashish Deshpand)
developed a Linda version of the program. The algorithm was based on domain
decomposition and, as is frequently the case with domain decomposition, used
Linda as a flexible message passing system.

In the course of the project, a number of different domain decompositions
were studied. The optimal decomposition was produced by dividing the spatial

13

T EQe T N

A
//
T v
o" Ve
6' “' //
‘o’ //
O‘ ,
o
o’
.7
e
4 &
v"’
YJ’
- ’/
/’
2- /
’/

. X4 2865 seconds
0 1 T 1 T T I T
0 2 4 6 8

Number of Workstations

Figure 5: LAN speedups: DGEOM

164
144 ".' A+
P Ve
i . 7
o 7 273 sec.
121 R
P 7
S T o" //
o //
P 10 R
e 7
e _ "o ///
€ g ,o"///
- 'O /
d H
u o’
p 6' ’o‘;/
o' /s
. o'/
»~7
44 27
2
T .o‘/
) 7
7 R
’F,”
R 1 node 3779 seconds
0 T T T T T T T T T T 1 T T T T 1
0 2 4 6 8 10 12 14 16

Number of Nodes

Figure 6a: shared-memory multiprocessor: FREEWAKE (1k element problem size)

T Eaao 0T N

0 720 sec.
4
4
i L, /‘
4 7/
e /
l‘ //
e 4
RS
6‘ 'o' //
R
P /7
L4 Ve
4 7
4 Ve
4
P Ve
T P Ve
L4 vd
e v/
RV
o 7/
0’ /
. /7
4 R
o
O‘/
o'/
'o//
R
. e /
oy
RS
.7
4
%
e
2] .
X
o
o
o7
174
[4
. ,& 5135 seconds
4
0 T T 1 1 ¥ 1 1 T
0 2 4 6 8

Number of Workstations

Figure 6b: LAN speedups: FREEWAKE (8k element problem size)

120-
'.‘218 sec
i / //‘
’.' ///
100+ . /
"o ///
o‘. //
S | o"‘ ///
P V4
L4 7/
80" ‘o’ //
p R
€ Rd
o’ //
e Rt
d 60 ,./'/
0"/
u | ‘./’
o
p 5
40 7
v
_) A&
s
20 e
,.(
- 'l
P
¥
0 #‘ 1 node 24308 seconds
0 20 40 60 80 100 120
Number of Nodes

Figure 6¢: distributed-memory multiprocessor: FREEWAKE (8k element problem size)

T s o »n

12-

4
J ,’ /A
P e 43 sec.
o’ //
10- ,‘ /
S 7
o' //
i s’ 7
O‘ //
o’ Ve
" //
8 ,o/ y
S’ 7
0‘ /
7 '0’//
”’ 7
0' //
6 “,/ p
td
v
1 7
s
s
o’ s
4+ Rrd
N/
o /
O'/
o
- ‘;
o
54
)

- 7

2 o

o/
e
7 .X 481 seconds
O T 1 1 1 1 1 1 1 T T 1 1

0 2 4 6 8 10 12

Number of Workstations

Figure 7: LAN speedups: stochastic optimization, portfolio analysis

dimensions into strips with one strip per processor. The algorithm is inherently
message passing, so the program was reimplemented with Intel’s native message
passing environment (NX3.2) for purposes of comparison.

The result of the comparisons between Linda and message passing met the
expectations of experienced Linda users—the Linda version of the program per-
formed about as efficiently as the message passing program. For example, for a
512x512 data set with 200 time steps on a 64 node iPSC/2, the code took 130.8
seconds with Linda and 126.5 seconds with NX3.2—a performance difference of
about 3%.

Ray-tracing. “Rayshade” is a ray-tracing program developed by Craig Kolb
as an undergraduate at Princeton University and a research assistant to Benoit
Mandelbrot at Yale University; the program is typical of the ray-tracing appli-
cations that are in widespread use for rendering color images. Kolb Lindafied
the program using a standard master-worker model. A task is the computation
of a single scan-line; task descriptions are dumped into tuple space; workers
withdraw them, perform the specified computation, dump the result into tuple
space and repeat until the computation is complete (see [BJS91] for a more
complete discussion of parallel Rayshade). The results in figure 8 show a better
than 30-times speedup on a network of 40 Sun Sparcstations.

Computer artist Ken Musgrave of Yale has Lindafied his imaging programs
and used them to produce a series of striking pictures, including images dis-
played at a Spring, 1990 show at the Guggenheim Museum in New York; see
[MM89].

(Related to these ray-tracing applications is INTEGRA, a code that does seis-
mic¢ modeling based on sophisticated ray tracing algorithms. The theory and
the sequential program are the work of Dr. Victor Pereyra of Weidlinger Asso-
ciates. He produced a Linda version of the program with the help of Mathew
Koshy, also of Weidlinger associates. In preliminary tests, the Linda version,
like many ray-tracing applications, displays nearly ideal speedup.)

Others. What we’ve presented is by no means a complete survey of extant
applications. Linda has been used in realtime data fusion [F90], radar cross
section codes, genetic linkage mapping, FFT [B91], neural network simulators,
circuit simulators and many other applications; the list continues to grow.

4 New Directions

We discuss two projects (the Linda Program Builder and the Information Land-
scape) briefly, and a third (“Piranha”) in more detail.

17

T EaAa o N

o
30- L
o
.0
o
o
L4
25 o 557 sec. 4
P 7
o" //
g
o
o
4
'.‘ //
20 . s
. Vd
. Vs
P 7
v /
O. //
o
O‘ //
'.‘ //
15- . s
. . Vd
P //
Pid 7
o7
R //
Pod //
o
10 R
" 7
. 7
O‘ //
i &
”’ 7
o‘ //
O"//
5' ‘,' /
RYYy'¢
’ 7
e/
o’ 7/
" /
& 14006 sec.
0 T l T T 1 I
0 5 10 15 20 25 30

Number of Workstations

Figure 8: LAN speedups: Kolb’s ‘“Rayshade”

The Linda Program Builder

The Linda Program Builder (LPB) [ACG90], which is the work of Shakil Ahmed
of Yale, is a structured editor that builds Linda programs under the program-
mer’s guidance. The user specifies templates (say, a master-worker program,
in which workers are created in some specified way, tasks are stored in a spec-
ified data structure, and so on). The LPB saves keystrokes and memory-work,
and prevents errors, by laying down a significant part of an application’s co-
ordination framework. But its potential significance goes well beyond these
administrative functions.

The LPB “understands” an application it has built at a deeper level than
what a compiler can achieve. The Linda pre-compiler parses and analyzes oper-
ations that create and manipulate tuples; but the LPB knows why those opera-
tions are being carried out—it “understands” that a certain data structure exists
to apportion tasks to workers, another to feed results back to the master, a third
to hold intermediate results that the worker processes will need—even though
the three data structures may be similar or identical. At a slightly lower level,
it “understands” how basic Linda operations are used to create data structure;
it sees these operations not in isolation, but as elements in a bigger picture.

The first kind of information is potentially valuable in program visualization.
Our Tuplescope visualizer [BC90] presents an evolving image of tuple space and
its contents as an application executes; the LPB’s superior knowledge will make
it possible to organize this display in terms of the programmer’s own conception
of his program’s structure.

The second kind of knowledge is valuable to the compiler. The LPB can
tell the compiler what a series of Linda operations is intended to achieve; the
compiler may be able to accomplish a semantically-identical effect in a more
efficient way. Instead of carrying out a series of Linda operations as discrete
events, fusing the whole sequence into a single operation at runtime may result
in more efficient code. For example: to remove an element from the head of a
multi-sink queue of tuples, a process will execute three Linda operations. First,
it will remove the head-index tuple; second, it will put this tuple back, after
incrementing the field that designates the current head element in the queue;
finally, it will remove the queue tuple whose index field matches the original
value in the head-index. The LPB can inform the compiler: I put these three
Linda operations into the program in order to remove an element from a multi-
sink queue. Instead of carrying out the three operations separately, the compiler
can fuse them together and execute them more efficiently, while preserving the
semantics of the original.

Now, the obvious question is: if the programmer thinks “I’m removing an
element from a queue,” and the compiler is told “the program is removing
an element from a queue”—why do we need the Linda operations themselves?

19

Wouldn’t it be a good idea simply to add the higher-level “multi-sink queue”
structure directly to the language?

In fact it would be a rotten idea, for several important reasons.

First, the Linda operations, which are powerful but simple, are a concise way
to define—to specify the semantics of—an arbitrarily rich set of distributed data
structures and their associated operations. We can’t allow the basic Linda oper-
ations to be superseded by higher-level structures because these basic operations
are a lingua franca of asynchronous parallelism: they allow us to build and to
understand new structures when the existing very-high-level ones don’t quite
work. And all working programmers understand that, whatever your built-in,
very-high-level operations may be, they won’t always do what you want; you
will sometimes be forced to build new ones of your own.

The second reason why the basic Linda operations must play a role, even in
an LPB world of very-high-level tuple space structures, has to do with language
design. As we learn more about programming methods and idioms, there’s
a natural tendency to capture this new understanding in very-high-level lan-
guages. But this tendency is best resisted; the LPB allows us to achieve the
same effect in a better way—to have our cake and eat it too.

Languages in which very-high-level operators have been incorporated suffer
from two problems. First, they tend either to be narrow in applicability or
unacceptably complezr in the range of operators they provide, or both. Very-
high-level operations are in most cases intrinsically specialized in what they
can accomplish. (A cogent example is Ada’s accept statement, which provides
a very-high-level communication service that is well matched to a particular
species of client-server transaction, but completely inappropriate to many other
purposes—for example, to the communication needs of most parallel applica-
tions [GP90].) Second, a language is by nature a fairly static object. Revising
and re-implementing a language is an operation not lightly undertaken, to say
the least. Very-high-level operations, on the other hand, tend to reflect ongo-
ing advances in programming methodology, which may be continual in a young
field like parallel programming; and because they are often quite specialized,
they may be fairly site-specific—the right ones to have depend on the kind of
applications you build.

In short, it would be nice to be able revise a language whenever your under-
standing of programming methodology advances, to customize it to the needs of
your particular site, and to learn (and support) only those parts of the language
you really need—without losing compatibility with the rest of the language’s
user community. These ends are evidently impossible within the programming
language framework. But the LPB readily accomodates them. The LPB frame-
work can be evolved, customized, sub-setted or refined easily and at whim: the
software product that emerges is still Linda, no matter what the vagaries of

20

your particular LPB. And Linda itself is sufficiently high-level to be portable
and transparent: the LPB framework is useful, but by no means essential. This
language-hierarchy model—a portable, high-level and powerful language, with
a specialized very-high-level program builder superimposed—seems to us to be
a promising approach to a wide variety of programming language questions.
(We will be pursuing it beyond, not merely within, the coordination language
framework. For example, we are investigating an object-based Linda based on
an LPB generating C-Linda code: class and object structure is provided by the
program builder, not by the computing language, which remains plain old C.)

Information Landscapes

This project centers on the use of multiple, persistent tuple spaces in building
distributed databases and information systems. The goal is to provide a “walk in
database” —browsers within a database partition temporarily become part of it;
they may converse with other browsers and leave daemons behind to represent
them. The one element of the project that is relevant to a discussion of systems
issues is the interface, which provides a graphics-based interpreter for Linda.
The interpreter allows users to read or remove tuples by mousing on them, and
to insert tuples directly from an editor via appropriate mouse manipulations.

Piranha

At most sites, LAN-connected workstations are often idle; it’s long been re-
garded as natural and desirable to allow these idle workstations to pitch in and
help out with ongoing parallel computations, returning to their owners at a
moment’s notice when they are needed. These observations go back at least
to the Worm project at Xerox PARC in the 1970’s. Fast workstations have
made this recycling idea particularly important: mere wasted power in a typical
modern LAN (let alone total LAN power in the aggregate) often amounts to
supercomputer-equivalents on appropriate problems. The argument in favor of
recyling has shifted accordingly. At many sites, it’s no longer “is it worth taking
a shot at recyling idle nodes?” Instead, it’s “how can we possibly justify not
taking a shot at recycling? We’re supposed to take all this bought-and-paid-for
computing power and simply dump it unceremoniously down the drain? Get
outta here!” (All right, maybe they don’t always use these words precisely, but
you get the idea.)

Linda and Node Recycling are a particularly close fit. Linda supports un-
coupled, anonymous communication. Processes in a Linda ensemble make no
assumptions about their fellow processes: who they are, where they are, what
they’re doing, when they lived (or will live). Idle-node recyling requires, for
its part, that nodes be free to join or to leave an ongoing computation as the

21

spirit moves. Recyling demands a programming model that can accomodate dy-
namic process ensembles; Linda’s anonymous, uncoupled communication model
provides exactly that.

In our Piranha model, a program is structured as a cloud of tasks (either an
ordered collection or an unordered bag); computational “piranhas” attack the
task cloud. The more piranhas attack, the faster the cloud is consumed and the
program completes. The part of The Piranhas is played by workstations on the
network: at any time they may join an ongoing feeding frenzy (grab and execute
a task from an existing task collection), or withdraw from a feeding frenzy (stop
consuming tasks, despite the fact that there are still tasks remaining and the
computation is incomplete). In practice, workstations join when they become
idle; they leave when their users need them, or when a more attractive task
collection appears. The meaning of idle reflects the owner’s wishes; the current
default on our system defines it conservatively as 10 minutes of keyboard idle
time, a 1-minute load average below 0.7 and a 10-minute load average below 0.3.
The user may customize the definition in a variety of ways. “Their owners need
them” means that a key has been struck, the mouse has moved, or a special
seize-node command has been issued (usually via modem). The meaning of a
“more attractive” task collection depends on the system’s distributed scheduling
algorithm: on what basis, in other words, available Piranhas should apportion
themselves among contending jobs. The system itself is compatible with a wide
variety of strategies, and experiments are underway.

A Piranha program is a specialized form of Linda program (the LPB sup-
ports the construction of Piranha programs). The coordination framework of a
Piranha program consists of three functions, named feeder, piranha and retreat.
Where a Linda program uses the eval operation to create processes explicitly, a
Piranha program does no explicit process creation. Instead, the system creates
a varying pool of worker processes automatically, each executing the piranha
function. Initially, one piranha process is created for each workstation that is
idle and willing to participate in the computation. When new workstations join,
new instances of piranha are created automatically. When the user needs his
workstation back, the retreat function is invoked by the system; retreat makes
a note in tuple space of any unfinished business. The feeder serves the role of
master—initializing, coordinating and finalizing the computation as need be.

Our prototype system seems to be delivering on the abstract promise of the
model. Figure 9 shows the execution histogram of a program developed by
researchers in the Electrical Engineering department at Yale. In the histogram,
each workstation is represented by a single horizontal line; when the line is
white, the corresponding node is attending to its user; when the line is black, it
is participating in an ongoing Piranha computation.

The application involves the biomagnetic imaging problem. Srinivas Rao, a
graduate student in the Electrical Engineering department, supplies the follow-

22

ing description:

Given a set of magnetic field measurements from a discrete array of
sensors with a known geometry, find the positions and magnitudes
of N test dipoles such that the squared error between the magnetic
field produced by these test dipoles and the given magnetic field
measurements is minimized. This amounts to minimizing an objec-
tive function (the squared error) in a 3-N dimensional search space...
We decided to do a thorough investigation of the energy surface, fo-
cusing specifically on the local minima: where they are located, and
their width and depth (relative to the global minima).

The histogram shows that, within an elapsed wall-clock interval of about 50
minutes, the Linda program running under Piranha delivered more than 25
hours of computing time.

Figure 10 shows another example. The program involves an application in
theoretical physics. Martin White, a graduate student in the Physics Depart-
ment, describes it as follows:

For the last 20 years there has existed in physics and astronomy
a conflict between theory and experiment known as the solar neu-
trino problem... A most promising approach to the problem assumes
that neutrinos have properties beyond those required by the current
standard model of particle physics... We assume a set of param-
eters (mass differences, mixing angles and magnetic moments) for
the neutrinos and solve numerically the quantum mechanical equa-
tions for the propagation of the neutrinos from their point of origin,
through the Sun, to the Earth. We use a two-flavor model (includ-
ing the anti-particles), since this is expected to capture the essential
physics that may be operating such as resonant flavor changing or
the Mikheyev-Smirnov-Wolfenstein effect which predicts that in cer-
tain circumstances the amount one flavor ‘rotates’ into another in
the interior of the Sun could be enhanced...

During an elapsed time of about 13 hours, the Linda program running under
Piranha delivered almost 559 hours, more than 23 days, of aggregate computing
time.

These applications have run many times under Piranha—as have others, in-
cluding the ray-tracing, linkage mapping and “Freewake” codes discussed above.

23

CEINIARLOO

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
- 33:
34:
35:
36:
37:
38:
39:
run time = 3108 secs
run time = 0.86 hours
node time = 25.79 hours
burst = 50
ave number of nodes = 29.88
ave burst len = 1857.20
full nodes = 19

Figure 9: Piranha: biomagnetic imaging problem.

24

NSO RWOEO

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29: ||
30:
31:
32: I
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
run time = 46731 secs

run time = 12.98 hours

node time = 558.50 hours

burst = 996 ave number of nodes = 43.03 ave burst len = 2018.68 full nodes = 9

Figure 10: Piranha: solar neutrino problem.

5 Conclusions

We doubt whether any single approach to parallel programming will dominate
the field any time soon. We believe that a fairly small number of alternatives will
hold sway over the next several years; we don’t know the precise composition of
the list, but we do know that Linda will be on it. New work will change Linda,
making it more suitable for fine-grained parallelism, integrating multiple, first-
class, persistent tuple spaces, adding a strategy for network reliability borrowed
from one of the several groups now attacking this problem. The system will
change; but not unrecognizably. We are betting that building on experience
will continue to be a prudent and profitable approach to parallel programming.

References

[ACD90] V. Ambriola, P. Ciancarini and M. Danelutto, “Design and dis-
tributed implementation of the parallel logic language Shared Pro-
log,” in Proc. 2nd ACM SIGPLAN Symp. Princ. and Pract. Parallel
Programming (Seattle: 1990):40-49.

[ACG90] S. Ahmed, N. Carriero and D. Gelernter, “The Linda Program
Builder.” Proc. Third Workshop Languages and Compilers for Par-
allelism (Irvine, 1990).

[AS91] B.G. Anderson and D. Shasha, “Persistent Linda: Linda + Transac-
tions + Query Processing,” in [LeM91], 129-142.

[B91] Robert D. Bjornson, Linda on Distributed Memory Multiprocessors.
Yale Univ. Dept Comp. Sci. PhD. Diss. (1991).

[BC90] P. Bercovitz and N. Carriero, “TupleScope: A graphical monitor and
debuffer for Linda-based parallel programs.” Yale Univ. Dept. CS
RR-782 (April 1990).

[BCLM88] Jean-Pierre Banatre, Anne Coutant and Daniel Le Métayer, “Par-
allel machines for multiset transformation and their programming
style.” Informationstechnik 30(2, 1988):99-109.

[BKS91] R. Bjornson, C. Kolb and A. Sherman, “Ray Tracing with Network
Linda.” SIAM News, 24,1(Jan. 1991).

[BS91] David E. Bakken and Richard D. Schlichting, “Tolerating Failures in
the Bag-of-Tasks Programming Paradigm,” in Proc. of the 21st Int.
Symp. Fault-Tolerant Computing, Montreal, Canada (June 1991):
248-255. :

26

[CG88]
[CG89]
[CG89b]
[CG90]
[CG91]
[CM8g]
[DBC91]
[DNS81]

[E88]

[F90]

[FG91)

[FT89)]

[Gel89)]

[GP90]

[AM91]

N. Carriero and D. Gelernter, “Applications experience with Linda,”
in Proc. ACM Symp. Parallel Programming,” July 1988:173-187.

N. Carriero and D. Gelernter, “Linda in Context,” Comm. ACM,
April 1989(32,4):444-458.

Technical correspondence re “Linda in context.” Comm. ACM, Oct.
1989(32.10):1244-1258.

How to Write Parallel Programs: A First Course. (Cambridge: MIT
Press, 1990).

N. Carriero and D. Gelernter, “Coordination languages and their
significance.” Comm. ACM (to appear).

K.M. Chandy and J. Misra, Parallel Program Design: A Foundation.
Addison-Wesley (Reading, Mass: 1988).

H. Dolan, R. Bjornson and L. Cagan, “A Parallel CFD Study on
Unix Networks and Multiprocessors.”

E. Dekel, D. Nassimi and S. Sahni, “Parallel matrix and graph algo-
rithms.” SIAM J. Computation 10(1981):657-673.

Egolf, T. A., “Helicopter Free Wake Prediction of Complex Wake
Structures Under Blade-Vortex Interaction Operating Conditions,”
Proceedings of the 44th Annual Forum of the American Helicopter
Society, June 16-18, 1988.

M. Factor, The Process Trellis Software Architecture for Parallel,
Real-Time Monitors. Yale Univ. Dept. Comp. Sci. PhD. Dissertation
(July 1990)

S. Fertig and D. Gelernter, “A Software Architecture for Acquiring
Knowledge from Cases,” in Proc. of the International Joint Confer-
ence on Artificial Intelligence, August 1991.

I. Foster and S. Taylor, Strand: New Concepts in Parallel Program-
ming. Prentice-Hall (Englewood Cliffs, NJ: 1989).

D. Gelernter, “Beyond parallelism to coordination,” in J.Dongarra,
ed., Proc. Fourth SIAM Conf. on Parallel Processing for Scientific
Computing (Dec. 1989.)

D. Gelernter and J. Philbin, “Ada Lite: Motivation, informal de-
scription and examples.” Yale Univ. Dept CS TR (Jan. 1990).

S. Hiroyuki and S. Masaaki, “Communication in Linda/Q: Datatypes
and Unification,” in Proc. Int. Conf. Parallel Processing (Aug. 1991).

27

[391)

[391b)

[Lel90]
[KW90]

[LeM91]
[MM89)

[M+91]

[R88]

[P$90]

S. Jagannathan, “Customization of first-class tuple spaces in a higher
order language,” in Proc. PARLE ’91 (Eindhoven, June 1991): 254-
276.

S. Jagannathan, “Expressing fine-grained parallelism using dis-
tributed data structures,” in [LeM91], 83-100.

. Leler, “Linda meets Unix.” IEEE Computer 23,2(Feb. 1990):43-55.

Srikanth Kambhatla and Jonathan Walpole, “Recovery with limited
replay: Fault-tolerant processes in Linda.” Oregon Grad. Inst. Dept.
CSE TR CS/E 90-019 (Sept. 1990).

Daniel LeMetayer, ed.. Research Directions in High-Level Parallel
Languages (Mont Saint-Michel: IRISA-INRIA, June 1991): Springer
Verlag (forthcoming).

F.K. Musgrave and B.B. Mandelbrot, “Natura ex machina”, IEEE
Computer Graphics and Applications, 9,1(Jan. 1989):4-7.

Perry L. Miller, Prakash Nadkarni, Joel E. Gelernter, Nicholas Car-
riero, Andrew J. Pakstis and Kenneth K. Kidd, “Parallelizing genetic
linkage analysis: A case study for applying parallel computation in
molecular biology.” Comp. Biomedical Res. 24(1991):234-248.

G.A. Ringwood, “Parlog86 and the dining logicians,” Comm. ACM
31,1 (Jan. 1988):10-25.

Richard Peskin and Edward Segall, “Linda Strategies for Scientific
Computing Environments”, CAIP-TR-137, Computer Aids for In-
dustrial Productivity Center, Rutgers University, Piscatway, NJ,
1990.

[SWSM91] M.A. Shifman, A. Windemuth, K. Shulten and P.L. Miller, “Molec-

(W91
[WP86]

[Xu8g]

ular Dynamics Simulation on a Network of Workstations Using a
Machine-Independent Parallel Programming Language.” Technical
Report, Yale Univ. Center for Medical Informatics (1991).

Greg Wilson, ed., Linda-Like Systems and Their Implementations
(Edinburgh: June 1991) (forthcoming).

Warren M. Washington, Claire L. Parkinson. Mill Valley, Calif. Uni-
versity Science Books; New York Oxford University Press, 1986

A.S. Xu, “A Fault Tolerant Network Kernel for Linda.” MIT LCS
Master’s Thesis (1988).

28

