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Foundations of Knowledge for Distributed Systems

1 Introduction

Knowledge and common knowledge are intuitive concepts that help us reason about ordinary
everyday situations in which we have only partial information. They become more complicated
when other agents in the situation are intelligent and have reasoning power, for then our state
of knowledge contains not only facts about the world but also facts about the state of knowledge
of others, and how these states change over time depends on the agents’ reasoning ability as
well as on the occurrence of external events. (Cf. the “muddy children’s problem” in [HM84].)
It is appealing to use these concepts to reason about distributed protocols, for processors of
a distributed system can be thought of as independent agents with only partial information
about the global state of the system. To be sure our reasoning is correct, it is necessary to
have rigorous and precise definitions of the intuitive concepts underlying such terms as “global
state”, “time”, “knowledge”, “message”, etc. Only then can we be sure to avoid the circularities
and inconsistencies that are all too common in informal reasoning.

Halpern and Moses informally define various notions of “knowledge” and “common knowl-
edge” in the context of a particular model of distributed systems in which every processor has
a clock and stores in its state the entire history of messages sent to it [HM84]. They argue
that while common knowledge is desirable, it is unattainable in many realistic settings. They
suggest a hierarchy of weakened versions of common knowledge and discuss conditions under
which these can be achieved.

We find the assertion that “common knowledge is not attainable in real world systems™! to
be at variance with our intuition, for it seems clear that “common knowledge” in the intuitive
sense 3 attained in the real world. To understand this disparity between the formal model and

our intuition, we examine, simplify, and make more precise the informal definitions given in
[HM84].

We first give quite general and simple definitions of distributed protocol, knowledge and
common knowledge. Under these simplified definitions, the arguments of [HM84], suitably
formalized, still apply to show the impossibility of attaining common knowledge in systems
without globally simultaneous transitions. We then show that it is not necessary to discard the
notions of knowledge and common knowledge in favor of weaker ones in order to obtain realistic
and useful definitions; rather, one can discard the assumption that formulas be interpretable at
every global state and instead interpret them only at a subset of “safe” states. This is analogous
to notions of database consistency in which the database is only required to be consistent at
times when no transaction is in the middle of execution. Using the same definitions as before
but restricted to safe states, we get a new and different notion of common knowledge which can
be attained in situations where Halpern-Moses common knowledge cannot.

We conclude that formalizing these concepts is subtle, and seemingly innocuous assumptions
can lead to unexpected results. Our desire is to formalize concepts of knowledge so that they
may aid the design of distributed algorithms and clear proofs of their properties. We believe
we have provided a solid base for future work in this area.

- ![HM84], Conclusions.
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2 Distibuted Protocols

2.1 A General Model
Definition 2.1 A distributed protocol,
P = (n’Q)IST)’

consists of a number n of participants, e set Q of local states, a set I C Q" of initial global
states, and @ nezt move relation r C Q" X Q" on global states.

For any protocol P, let Rp be the 7-reachable global states of P, that is, the set of all global
states we can reach by starting in I and taking any number of 7 steps. By definition, only
the reachable global states can occur in 2 run of P. In general it may be a complex task to
tell if a given element of Q" is in Rp; however, in this paper we will only be concerned with
the reachable global states. For P € Q" a global state and i a participant, we write (p); to

denote the i*" component of p. We will also use the notation p ~ ¢ to mean that p, g € Rp

~and (p); = (g)i, i.e. they are indistinguishable from i’s point of view. Obviously each < is an
equivalence relation.?

Our definition of protocol is certainly simple and precise. Let us argue that it is also
sufficiently general. Anything we would be willing to call a distributed system can be broken
up into a finite number of logical entities which we call “participants”. A participant may be
any component of a system: a processor, a buffer, a clock, etc.3 Each participant has some total
configuration that we are calling its (local) state. Furthermore, the states of all the participants
combined should determine the entire state of the system and thus which global states can next
be entered.

It is easy to see for example that our model of distributed system is a generalization of the
shared variable model of Lynch and Fischer [LF81]. In that model, the participants consist
of shared variables and processors. Each action involves exactly one processor and one shared
variable.

Similarly our model includes synchronous protocols in which every processor sends a message
to every other during each round. One way to model this is to specify that the set of possible
states is of the form Q = M™, i.e. each processor’s total configuration consists of an n-tuple.
We can specify that the sth entry of j’s state is the value of the message sent from ¢ to 5 during
the previous round. This can be done as follows: for all processors ¢ » J, and for all global states

20ur definition of knowledge given in Section 3 will be that of inherent knowledge—those facts that a par-
ticipant could deduce given arbitrary computational power. Thus, in a global state P € Rp, a participant i will
know that we are in some ¢ € Rp with ¢ ~ p, and its knowledge will consist exactly of those facts true in all
such q. The problem of determining membership in Rp is not relevant to the notions considered in this paper.
It certainly is relevant, however, when considering knowledge in cryptographic protocols when an explicit bound
is given on the computational resources of the participants.

3This approach is different from most of the other formal specifications of protocols of which we are aware,
e.g. [CMss5], [FMss], [HF8s5), [PR85]. The more usual approach is to say that after a message is sent it may
sometime later be received by the addressee, but a message in transit is not explicitly modeled.
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P, ¢, 7, 8, if (p,q) and (r,s) are in 7 and if processor i has the same state in p as in r, then the
#*h component of processor J’s state is the same in q as in s.

The sense in which our model could be too general is that we allow any transition relation 7.
Of course, for certain applications we can make appropriate restrictions. We have already seen
that we can restrict our attention to processors which communicate with shared variables, or to
synchronous message passing protocols. Similarly, instead of letting each processor’s transitions
be perfectly general, we can restrict our attention to processors with specified computing power,
e.g. finite automata, polynomial time Turing machines, etc.

- One interesting kind of restriction to place on the transition relation 7 is locality.

Definition 2.2 Let T = {i1,...,1x} be a set of participants, and let Er(p,q) hold if (p)i = (q):
JorallieT.

e We say that (p,q) affects only participants in T if E=(p,q) holds, where T is the set of
participants not in T.

e We say that (p,q) € 7 is enabled by T if for all p’ such that Er(p,p), then (p',¢') € 7 for
the (unique) ¢’ such that E(q',q) and Ex(d', 7).

o We say (p,q) € 7 is local to T if it affects only participants in T and s enabled by T.

o We say that a protocol is pairwise local if every transition in 7 is local to some set T of
size two.

Thus, a transition is local to T if only coordinates belonging to T are changed during the
transition and if the local states of the participants not in T have no effect on whether or not
this transition can occur. Note that a transition local to T does not necessarily affect all of the
members of T'. Note also that the same transition can be local to two sets T, and T, but not
be local to their intersection. Consider for example the transition a = ((0,1,1,1),(1,1,1,1)),
and suppose 7 contains every transition of the form ((0,z2,23,24), (1,22, 23,24)) ezcept for
{(0,0,0,0),(1,0,0,0)). Let T; = {1,4}, i = 2,3,4. Then o affects only T; (since only the first
component changes), and « is enabled by T; (since no matter how the components outside of
T; are changed, participant 1 can still make the transition from state 0 to 1). Thus, « is local
to T; for each ¢, but clearly « is not local to M; T; = {1}.

2.2 Comparison with Other Models

The shared variable model [LF81] is pairwise local: each transition is local to one processor
and one shared variable. On the other hand the synchronous protocol described above is not
pairwise local: each transition in general affects all n participants. We believe that if one models
a distributed system at a sufficiently fine level then it will be pairwise local simply because it is
difficult to insure that distant events occur simultaneously. However it is sometimes convenient
to discuss synchronous protocols when the finer analysis would only obscure what is going on.

The models described in [CM85], [HM85], [HF85), [PR8S] are all asynchronous message
passing systems and thus are pairwise local when translated to our protocols. For readers more.
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familiar with these other models, we will now consider one of them in more detail. Chandy
and Misra [CM85] consider systems of n processors in which there are three disjoint sets of
transitions: sends, receives, and local events. The relation between sends and receives is that
each receive must correspond to a unique earlier send. The Chandy and Misra model forces
the processors to remember their entire local history. Furthermore, the ability to perform a
transition depends only on the local history of the affected processor except in the case of a
receive, which also requires that the message to be received has already been sent. We can
characterize the Chandy and Misra model in terms of our protocol model as follows:

Proposition 2.8 The Chandy and Misra model [CM85] is isomorphic to the protocol model
P = (n+ l’Q’I,T):

1. Participants 1 to n are the processors and participant n + 1 is the message buffer.

2. There are sets E of local events and M of messages. A message triple (i,7,m) is a send
Jrom i and a receive by j of message m. The local state of processor i is a list of local
events and message triples, each of which is a send from i or a receive by ¢. The local
states of the buffer consist of any multiset of message triples.

8. The set of initial global states is the singleton I = (A,...,),0) in which all processors
have the empty list X as their local history and the buffer s empty.

4. Each transition is of one of the following three forms. Transition (a) only involves par-
ticipant ¢, and transitions (b) and (c) only involve participants ¢ and n + 1.

(a) Local event e € E at processor i: e s appended to i’s local state.

(b) Send of m € M from processor i to processor j: the message triple (i,7,m) is ap-
pended to i’s local state and added to n + 1’s local state.

(¢) Receive by processor i of the message m € M sent by processor k: a message triple
(k,i,m) is deleted from n + 1’s local state and appended to i’s local state.

2.3 Two Examples

“We conclude this section with two nontrivial examples of protocols, one asynchronous and the
other synchronous. These protocols will be frequently referred to in the remainder of the paper.

Both protocols model the situation of a completely connected network of n processors which
operate in rounds. On each round, every processor i sends a message m;,; to each other processor
J. After receiving all of the messages sent to it on the given round, processor ¢ changes state
and chooses a new set of messages to send out on the next round. The new state and message
set depend on the old state and on the messages received during the round.

In protocol 4, the messages are sent asynchronously, one at a time, via message buffers. A
buffer either contains a message or is empty. A message can only be sent to an empty buffer
and only received from a non-empty buffer. Sending a message makes the buffer non-empty,

and receiving a message makes the buffer empty again. Thus, the execution of each round takes
many steps.
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In protocol B, all messages are sent and received in one big synchronous step, that is, one
step of B corresponds to an entire round of 4.

2.3.1 Protocol 4

Let A = (n?,Qu,I4,74) be an asynchronous message passing protocol defined as follows: The
first n participants of 4 are the processors a1,...,0n; the remaining (n — 1)n participants are
buffers. For a global state p, we abuse our previous notation slightly and write (p)a; to denote
the component corresponding to a; and (p)b‘.d. to denote the component corresponding to buffer
bi ;.

The set of possible local states of a buffer bij,i# 7, is Q'} = M U {)}, where M is a set
of possible messages and ) is a special symbol denoting the null message. (p)b,,.’. =meM

indicates that the single message m was sent by 7 but not yet delivered to j in global state P,
and (p)s,; = X indicates that no message is waiting.

The set of possible local states of a processor q; is Q% = (D x (MuU{A})*1 x N). State
(d,mi,...,mi_1,mis1,...,myn,7) indicates that the processor is in internal state d at round
l7/2] with pending messages m,..., Mi—1,Mi41,...,My. If r is even, then the processor is in
a ‘send’ state, waiting to place each m;j # X into buffer b; ;. If r is odd, then the processor is in
a ‘receive’ state waiting to fetch a message from b;; for each j such that m; = A

Thus, the complete set of local states Q4 is Q% U Q4.
The transitions making up 74 are of four kinds:

1. (p,q) € Send;; if

eplgforalceg {ai,biz};

o (P)o;; = A

o (@b, =mi#XN

® (p)a; = (d,... y M1, My, Mgy, ..., 2k);

® (9)a; = (d,...,mj_1, A, mjqy,... ,2k).
2. (p,q) € End_send; if

PS pnf,qforallc#aﬁ
* (po; = (dyX, ..., A, 2k);
d (Q)a.' = (d’)\,--~’}‘v2k+ 1).
3. (p,q) € Receive; ; if
e s q for all ¢ ¢ {aiabj.i};
4 (P)b,',.' =m; # A
. (q)b,',n‘ = )‘;
P (P)a.‘ = (d,...,mj_l,A,mj+!,. ..,2k + 1>;
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® (@a; ={d,...,mj1,mj,mjyy,...,2k + 1).
4. (p,q) € End_receive; if

° pvf'qfora.llc#a,-;
® (p)a; = (d,my,...,mp, 2k + 1), where m; # A for all 5 # ¢

® (¢)a; = (d'\m},...,m,,2k + 2), where m # X for all § # ¢, and d’ and m}; are
functions of (p)a;.

Now we let 74 consist of all the above transitions:

T4 = U Send; ; U End_send; U Receive; 5 U End_receive;.
)

Finally let Is be some nonempty set of global states in which the state of every processor
a; has the form (d,m,,...,mp,0) with mj # A for all § # 4, and all the buffers are empty.

2.3.2 Protocol B
Our second example of a protocol is a synchronous version of 4. Let 8 = (n?,Qs,Iz,78), where

Q: = DxM"!x{2r|reN},
Q3 {*},
Qs = Q3uQ.

Let @5 = (Q%)" x (@4)"("~1), Let the transitions 7p consist of all pairs (p,q) € 73N (Qp x T3)
such that no 74 path in A from p to ¢ goes through intermediate global states in Q. Finally
let Ig = I4.

We see that the reachable global states of 8 all belong to Q5. Thus, all buffers are always
empty and the local states of the a;’s are the corresponding states from A at the beginning of

a round. It is not hard to see that B is a synchronous version of 4 such that in each round all
processors send n — 1 messages and then receive n — 1 messages.

3 Definitions of Knowledge and Common Knowledge

It is convenient to picture a protocol P as a graph with nodes consisting of all the elements of
Rp. There is a directed edge labelled 7 from p to q just if (p,q) € 7. Furthermore there is an

- undirected edge labelled ‘i’ between p and ¢ just if p~gt

“The reader familiar with Kripke models will observe that an alternate description of a protocol P is as a
Kripke model K = (Rp,7, »5,. . ,.':,) where the ~’s are equivalence relations; and furthermore for all worlds

w,w' € Rp if w w' for all § then w = w'. See [FI85] where this characterization of protocols is used to obtain
a simple proof that propositional logic of knowledge and branching time is EXPTIME complete.
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Let E be an equivalence relation on the reachable global states Rp with equivalence classes
[)E, p € Rp. Corresponding to E is a modal operator O(E). For any sentence «,’ it is natural
to make the following definition of O(E) , which we read as “box E o”:

(P,p)EOE)e = VYgelpe((P,q) k a).
Thus, O(F) a holds just if « is true in all the worlds E-equivalent to the current world.

Several equivalence relations will be of interest. »\ia, the indistinguishability relation for
participant ¢, has already been defined. We denote D(L) by K;, which we read “ knows.”

Thus, ¢ knows « just if « is true in all worlds which are indistinguishable by ¢ from the current
world.

We generalize to a group of participants G C {1,.. ., n}. Let

that is, the transitive closure of the union of the A relations for 1 € G. Thus, we have
G . . s .. .'
PRg® (3r20)(3i,...,ir €G)(3pr,een,pr-1)lp R P R py. ..oy 2 g,
G .
We denote D(w) by Cg, which we read “it is common knowledge among the members of G”.

i e
Note that ~ =+, s0 also C(iy = K;. We write » for ~ and C for Cg in the special case that G
includes all participants.
The next result shows that Co coincides with the definition current in the literature. (See
for example [HM84].)

Theorem 3.1 The following two statements are equivalent:

1. (P,p) E Cga.
2. (Vr 2 0)(Viy,...,ir € G)((P,p) = Kiy Kiy .. . K ).

Proof

G
(1 = 2): For any 8, we have CeB — B since p ~ p. Thus, it suffices to show that for any g,
G .
if (P,p) = CaB, then for all i € G, (P,p) = CeK;B. This is clear because if g~pandg ~gq

G
then ¢' ~ p; hence (P, q) |= K;8. Since K;8 holds for all q € [p)e, it is common knowledge in G
[
at p, as desired.

5We have intentionally left the logical language unspecified from which the sentence « is drawn, for all that we
require is that it be possible to interpret a at the pair (P, p) (and we weaken even that requirement in Section 5).
Of course the strongest such language would have a way to express each possible subset of Rp. The languages
we consider may be taken to be some unspecified subset of this strongest language.
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(2 = 1): Suppose that {P,p) & Cgo. It follows that there is a q € [ple such that (P,q) =
(5]

—a. Let 41,...,1, € G be such that there exists Ply...,Pr-1 With p 23 1 iz P2...Pr=1 f g. It
follows that (P,p) k= -K;,Ki, ... K; a. |

As an example of the above concepts, the next proposition shows that for the synchronous
protocol B described at the end of the last section, whenever a processor is in round r, it is
common knowledge among all the processors that they are in round r. We will see in the next
section that this assertion is false for the asynchronous protocol A.

Proposition 3.2 Let P = {1,...,n} be the set of processors in protocol B (omitting the
buffers). Let i,j € P, let a(i,r) be a formula meaning that processor i is in round r, end
let ¢ € Ry be any reachable global state. Then

(B’Q) # oz(z',r) - CPCY(]', T)'

Proof It is trivial to show by induction that for all p € R, all the processors are in the same
round. Therefore suppose that (B,¢) k= a(i,r). It follows that for all pe lg)r, (B,D) k= (s, 7).
N

4 Common Knowledge in Asynchronous Systems

Informally, an “asynchronous system” has two kinds of participants, “active” and “passive”.
Typically, the active elements are processors and the passive elements are memory cells or
message ports. Every step of such a system consists of an interaction between an active and a

passive element, and whether or not a step can occur depends only on the states of the element
pair involved.

In our more general model, we have only one kind of participant, so we define a protocol to
be asynchronous if it is pairwise local as defined in Section 2. Thus, every interaction “involves”
at most two participants, and two steps involving disjoint sets of participants can occur in either
order with the same effect.

The theorem that follows depends on much less than full asynchrony. Thus, we define a
very weak notion of an asynchronous protocol that we call “nonsimultaneous”.

Definition 4.1 LetG C {1,..., n} be a specified set of participants in a protocol P = (n,Q,I,7).
We will call P nonsimultaneous with respect to G if for all (p,q) € 7, there is a participanti € G

not affected by the transition (p,q). We say that P is nonsimultaneous if it is nonsimultaneous
with respect to the set of all participants.

As an example, note that a message passing protocol such as in [CM8S5] is nonsimultaneous
with respect to its set of processors provided it has at least two processors. Note also that any
asynchronous protocol with at least three participants is nonsimultaneous.
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The following theorem shows that in a nonsimultaneous protocol, no new common knowledge
can be acheived. (Cf. [HM84], Theorem 3.)

Theorem 4.2 Let P be a protocol and G a set of participants. Let p be any global state in Rp
and let py be an intial state from which p is reachable by o sequence of T steps, all of which are
nonsimultaneous with respect to G. Let o be any sentence in a logic for P. Then (P,p) k= Coa

’:ﬁ(PJ’O) # Cea.

G .
Proof It suffices to show that ¢ » r for any step (g,7) € 7 that is nonsimultaneous with respect

G
to G, for then py =~ p follows by considering the path of steps from pp to p, and the theorem
then follows from the definition of common knowledge in G. But if (g, r) € 7 is nonsimultaneous

with respect to G, then there must exist a participant j € G unaffected by the transition, i.e.
; G
such that ¢ £ r. It follows that g, |

Corollary 4.3 Let G be a set of participants in a protocol P that is nonsimultaneous with
respect to G. Then it is impossible to gain new common knowledge among the members of G.

As an example, consider the protocol £ discussed at the end of the last section. It is easy
to check that A is nonsimultaneous with respect to any set of G participants including at least
two processors or at least two buffers. Thus, no new common knowledge among the members
of any such G can arise in 4. This is in sharp contrast to the situation for A’s cousin B (cf.
Proposition 3.2). :

It would seem at first glance that the difficulty in achieving common knowledge has to do
with the problem of reaching an arbitrary depth of K’s with only finitely many messages. We
conclude this section with a look at finite state Protocols where common knowledge is equivalent
to a bounded stack of K’s.

Theorem 4.4 Let P = (n,Q, I, 7) be a finite state protocol, i.e. |Q| < co. For each i, let
Qi={(g)i | ¢ € Rp}.

Thus, each processor is a |Qi|-state automaton. Let r = min{|Q;i| | 1 < i < n}. Let p be any
global state and let o be any formula. Then the following are equivalent:

1. {P,p) = Ca.
2. For allidy,iy,... i1, ((P,p) EKiy ... Ki,, @),

Proof
(1 = 2): By definition of C.

10
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(2 = 1): Suppose that (P,p) j& Co. Then there must exist g € [p], such that (P,q) = —e.
Consider a minimum length ~ chain from p to ¢:

i V2 ie
P=P0o~DP1NDP2...Peml NPy =g

No nonconsecutive pair p;, px of global states agree on any component because if they did the
chain could be shortened. It follows that in any given component, each state appears at most
twice. Therefore s < 2r — 1. It follows that

(P,p) l= ‘-lK.'1 K,'2 o K.-,,,,a.

Example 4.5 Consider the protocol P, = (2, {1,...,7+ 1}, {(1,1)},7.) where,

T={({HE+1,4) | 1Si<r}U{(G+ L4, (i+1,i+1)) | 1<i<r).

This protocol has the unique computation chain:
(1,1), (2,1), (2,2), (3,2),...,(r,r = 1), (r,7), (r+1,7).

Furthermore, for all reachable global states p and g, we have p~ q. Thus, for any o,
(Prsp) = Ca & for allqg€ Rp,(Pryq) = .

Let a say that processor 1 is not in state 1. Then (P, (1,1)) b a, so (Pry(r + 1,1)) b Ca.
On the other hand, it is easily seen that

(Pr,(f-l- 1’7')) *= Ki !(2K1K2K1 - K2K1la.

2r-2

1t follows that for all4y,4s,... 12,5 € {1,2},
’ (Prs{r+ 1,7)) EKi, ... Ky, _,a,

showing that the bound in Theorem 4.4 cannot be improved.

5 Alternate Definitions of Knowledge

Halpern and Moses argue that, “If Cp is to be attained, all processors must start supporting it
simultaneously.”® Their conclusion is that in the absence of perfect global clocks and guaranteed
exact message delivery times, one must settle for weaker notions than common knowledge. They
suggest alternative notions and discuss when these can be acheived.

$[HM384], Lemma 2.

11
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We draw a differenct conclusion from the same problem, namely we believe that there is not
a best or most desirable common knowledge which one would acheive if one could; but rather
that different notions of knowledge and common knowledge may be appropriate for different
protocols.

It is useful to consider our example protocols 4 and B. We hope the reader will agree that
they are realistic instances of an asynchronous and a synchronous message passing protocol,
respectively. Recall that new common knowledge among the n processors is attainable in 8 but
not in 4. This is confusing because in a very strong sense £ and B are isomorphic protocols
(cf. [CMS85)).7

The difference between protocols 4 and 8 concerns the granularity at which processors in
the two protocols may introspect. In B, processors are only allowed to think about what they
know at the start of each round. The fact that two structures whose observable behaviors are
equivalent should differ so dramatically in terms of their knowledge gives us cause to reexamine
our definitions of knowledge and common knowledge.

Let' P be any protocol and let S C Rp be any subset of reachable global states. For each
i, let ~g be the restriction of & to § x S. As before, let G C {1,...,n} be a group of the

participants in a protocol. Let
*
G .
g = U ':"S ’
i€G

that is, the transitive closure of the union of the i's relations for ¢ € G. Thus, we have

G .
PNsqg & p,g€S and

(Fr20)(3i1,...,ir € G)Ep1,-.. 0r-1 € 8)p B p1 25 py. .. ppey s q.
We generalize our previous definitions of knowledge by letting K? denote the modal operator

. G
D(A-s) and by letting Cg denote the modal operator D(kss) . As before, we omit mention of
G when G includes all participants.

The intuitive meaning of “Kfa” is, “Participant ¢ knows that o holds, assuming we are in
S,” and the intuitive meaning of “CZa” is, “It is common knowledge among the members of G
that o holds, assuming we are in S.» The following theorem makes this intuition precise.

Theorem 5.1 Let S C Rp, let P ES, and let 0 mean, “We are in S.” Let G c {1,...,n}.
Then

L (P, EKfa & (P,p) = Ki(e — a)
2. (P,p)ECéa & (Vr> 0)(Vi1,...,i, € G)({P,p) = K$ KS ...K,.S'oz).

1

"We will call a pair of protocols such as 4 and 8, all of whose interactions are accomplished by a series of
messages, isomorphic if the set of messages sequences they generate is identical up to permutations which do not

switch the order of a send and a receive by the same participant, nor the order of a send and its corresponding
receive. :
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Proof (1) is immediate from the definition of K¥. The proof of (2) is similar to the proof of
Theorem 3.1. |

For any protocol P and any nonempty S C Rp, the operators KS and CS seem to satisfy all
requirements stated in [HM84] for such knowledge operators. In particular we note that they
satisfy Kripke’s S5 axioms (cf. [La77]).

Proposition 5.2 For any protocol P, any nonempty S C Rp, and G C {1,...,n}, the opera-
tors K;-g and Cg satisfy the S5 azioms for modal operators.

. G
Proof This is immediate from the fact that each g and Rg is an equivalence relation. I

Let us now consider the protocol 4 with S = Rz. The following proposition relates knowl-
edge in B to knowledge with respect to S in 4.

Proposition 5.3 Let S = Rp and p € S. Let o be any knowledge formula all of whose K’s
and C’s have the superscript S. Let o be the Jormula resulting from o when we remove all of

the superscripts S.8 Then
(D) Ea« (B,p) o

Proof This is an easy induction on the length of @. The most interesting case is when
o= Kfp. In this case

(4,0) E Kip

& (forallge[pl; N4q) e
© (forallg e [Pl )8, 0) = ¢
Aad (8,p) }= Kig'

It follows from Propositions 5.2 and 5.3 that if we consider the protocol 4 with $ = Rjp,
‘then we get a quite reasonable definition of knowledge and common knowledge. Furthermore,
with these definitions new common knowledge is attained in an asynchronous protocol.

Joe Halpern [Ha85)] points out that we are in a sense cheating because when we consider
K¥, we evaluate formulas only at the global states in S. This form of ‘cheating’ may however
be useful and appropriate. An example of a useful restriction of attention to a set of safe
states occurs in databases. A database must maintain some integrity constraints which can be
violated in the middle of certain transactions. It is useful to assert that the constraints are
always satisfied and to evaluate such assertions only at the safe states in which no transactions
are incomplete. Note that during a typical run of the database system, no such safe states need
occur. :

8Recall that we haven’t specified the syntax of the knowledge-free formulas. Any such knowledge-free subfor-
mula 7 of o specifies a certain subset T € R;z. We assume that « is changed to 7' in o' where 4 specifies the
same subset restricted to Rs, i.e. T/ = T N Rs.
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6 Conclusions

We have given precise formulations of distributed protocols. For any subset S of the reachable
states, we have given a precise definition of knowledge and common knowledge with respect
to S. We have presented theorems outlining some cases where new common knowledge can
be attained and some cases where it cannot. Most strikingly, we have shown that in certain
situations two plausible choices for S can give completely different results.

One can now ask the question, “For which sets of protocols is there a ‘best’ choice for S?”
and thus a ‘best’ definition for knowledge and common knowledge. We suspect that in at least
certain situations there may be such a best S, and that in this case knowledge and common
knowledge with respect to S may be valuable tools.

Many arguments in distributed systems are first formulated at the intuitive level of what
certain processors ‘know’ at certain points in the computation. With precise definitions for these
concepts, it may be easier to formulate clear and correct proofs. We believe that considerable
work is needed in order to develop logical tools and demonstrate their usefulness on problems
of interest in distributed systems. '
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