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Towards a Theory of Data Entanglement

James Aspnes ∗ Joan Feigenbaum † Aleksandr Yampolskiy ‡ Sheng Zhong §

Abstract

We propose a formal model for data entanglement as used in storage systems like Dagster [25]
and Tangler [26]. These systems split data into blocks in such a way that a single block becomes
a part of several documents; these documents are said to be entangled. Dagster and Tangler
use entanglement in conjunction with other techniques to deter a censor from tampering with
unpopular data. In this paper, we assume that entanglement is a goal in itself. We measure
the strength of a system by how thoroughly documents are entangled with one another and
how attempting to remove a document affects the other documents in the system. We argue
that while Dagster and Tangler achieve their stated goals, they do not achieve ours. In partic-
ular, we prove that deleting a typical document in Dagster affects, on average, only a constant
number of other documents; in Tangler, it affects virtually no other documents. This motivates
us to propose two stronger notions of entanglement, called dependency and all-or-nothing
integrity. All-or-nothing integrity binds the users’ data so that it is hard to delete or modify
the data of any one user without damaging the data of all users. We study these notions in six
submodels, differentiated by the choice of users’ recovery algorithms and restrictions placed on
the adversary. In each of these models, we not only provide mechanisms for limiting the damage
done by the adversary, but also argue, under reasonable cryptographic assumptions, that no
stronger mechanisms are possible.

1 Introduction

Suppose that I provide you with remote storage for your most valuable information. I may advertise
various desirable properties of my service: underground disk farms protected from nuclear attack,
daily backups to chiseled granite monuments, replication to thousands of sites scattered across the
globe. But what assurance do you have that I will not maliciously delete your data as soon as your
subscription check clears?

To convince you that you will not lose your data at my random whim, I might offer stronger
technical guarantees. Two storage systems proposed linking the fate of your data to the data of
other users: Dagster [25] and Tangler [26]. The intuition behind these systems is that data are
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partitioned into blocks in a way that every block can be used to reconstruct several documents. New
documents are represented using some number of existing blocks, chosen randomly from the pool,
combined with new blocks created using exclusive-or (Dagster) or 3-out-of-4 secret sharing [22]
(Tangler). Two documents that share a server block are said to be entangled.

Entangling new documents with old ones provides an incentive to retain blocks, as the loss
of a particular block might render many important documents inaccessible. Dagster and Tangler
use entanglement as one of many mechanisms to discourage negligent or malicious destruction of
data; others involve disguising the ownership and contents of documents and (in Tangler) storing
documents redundantly. The present work is motivated in part by the question of whether these ad-
ditional mechanisms are necessary, or whether entanglement by itself can act as an insurmountable
barrier to malicious censorship.

We begin by analyzing the use of entanglement in Dagster and Tangler in Section 2. We
argue that the notion of entanglement provided by Dagster and Tangler is not by itself sufficiently
strong to discourage censorship by punishing data loss, as not enough documents get deleted on
average if an adversary destroys a block for some targeted document. In particular, we show in
Section 2.3 that destroying a typical document in Dagster requires destroying only a constant
number of additional documents on average, even if the adversary is restricted to the very limited
attack of deleting a single block chosen uniformly at random from the blocks that make up the
document. The situation with Tangler is worse: because Tangler uses 3-out-of-4 secret sharing [22]
to store blocks, deleting two blocks from a particular document destroys the document without
destroying any others (which lose at most one block each) in the typical case.

These properties of Dagster and Tangler arise from the particular strategies used to partition
documents among blocks, which are determined partly by other goals not related to entanglement:
the desire to maintain scalability by using only a constant number of existing blocks in both systems
and the desire to protect documents against non-targeted faults in Tangler. We can easily imagine
modified systems that increase the level of entanglement by sacrificing these goals. However, it
will still be the case that such systems are vulnerable to more sophisticated attacks than simply
deleting individual blocks (we describe some of these attacks later). Furthermore, the simple block-
sharing notion of entanglement used in these systems creates only a tenuous connection between
the survival of individual documents. Although it is often the case that destroying one document
will destroy some others, there are no specific other documents that will necessarily be destroyed.
Thus Dagster and Tangler must rely on additional mechanisms to discourage deletions.

Our objective in the present work is to examine the possibility of obtaining stronger notions of
entanglement, in which the fates of specific documents are directly tied together. These stronger
notions might be enough by themselves to deter censorship, in that destroying a particular docu-
ment, even if done by a very sophisticated adversary, could require destroying most or all of the
other documents in the system. A system that provides such tight binding between documents
gives a weak form of censorship resistance; though we cannot guarantee that no documents will be
lost, we can guarantee that no documents will be lost unless the adversary burns down the library.
Under the assumption that the adversary can destroy data at will, this may be the best guarantee
we can hope to offer.

In Section 3, we define our model for a document-storage system in which the adversary is
allowed to modify the common data store after all documents have been stored. Such modifications
may include the block-deletion attacks that Dagster and Tangler are designed to resist, but they
may also include more sophisticated attacks such as replacing parts of the store with modified data,
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or superencrypting all or part of the store.
In addition to modifying the data store, in some variants of the model the adversary is permitted

to carry out what we call an upgrade attack (see Section 3.2), in which the adversary offers all
interested users the choice of adopting a new algorithm to recover their data from the common
store if they find that the old one no longer works. Allowing such upgrade attacks is motivated
by the observation that a selfish user will jump at the chance to get his data back (especially if he
has the ability to distinguish genuine from false data) if the alternative is losing the data. Upgrade
attacks also exclude dependency mechanisms that rely on excessive fastidiousness in the recovery
algorithm, as one might see in a recovery algorithm that politely declines to return its user’s data
if it detects that some other user’s data has been lost.

In Section 4, we propose two stronger notions of entanglement in the context of our model:
document dependency and all-or-nothing integrity. If a document of user A depends on
a document of user B, then A can recover her document only if B can. Unlike entanglement,
document dependency is an externally-visible property of a system; it does not require knowing
how the system stores its data, but only observing which documents can still be recovered after an
attack. All-or-nothing integrity is the ultimate form of document dependency, in which every user’s
document depends on every other user’s, so that either every user gets his data back or no user
does. Our stronger notions imply Dagster’s and Tangler’s notion of entanglement but also ensure
that an adversary cannot delete a document without much more serious costs.

The main part of the present work examines what security guarantees can be provided de-
pending on the assumptions made in the model. In Section 5, we consider how the possibility
or impossibility of providing document dependency depends on the choice of permitted adversary
attacks. Section 5.1 shows the property, hinted at above, that detecting tampering using a MAC
suffices for obtaining all-or-nothing integrity if all users use a standard “polite” recovery algorithm.
Section 5.2 shows that all-or-nothing integrity can no longer be achieved for an unrestricted ad-
versary if we allow upgrade attacks. In Section 5.3, we show how to obtain a weaker guarantee
that we call symmetric recovery even with the most powerful adversary; here, each document
is equally likely to be destroyed by any attack on the data store. This approach models systems
that attempt to prevent censorship by disguising where documents are stored. In Section 5.4, we
show that it is possible to achieve all-or-nothing integrity despite upgrade attacks if the adversary
can only modify the common data store in a way that destroys entropy, a generalization of the
block-deleting attacks considered in Dagster and Tangler.

In Section 6, we discuss some related work on untrusted storage systems.
Finally, in Section 7, we discuss the strengths and limitations of our approach, and offer sug-

gestions for future work in this area.

2 Dagster and Tangler

We review how Dagster [25] and Tangler [26] work in Sections 2.1 and 2.2, respectively. We
describe these systems at the block level and omit details of how they break a document into
blocks and assemble blocks back into a document. In Section 2.3, we analyze the intuitive notion of
entanglement provided by these systems, pointing out some of this notion’s shortcomings if (unlike
in Dagster and Tangler) it is the only mechanism provided to deter censorship. This motivates us
to search for stronger notions of entanglement in Section 4.
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2.1 Dagster

The Dagster storage system may run on a single server or on a P2P overlay network. Each Dagster
server enumerates the blocks in a Merkle hash tree [17], which makes it easy for the users to verify
integrity of any server block. The tree stores the actual data at its leaves, and each internal node
contains a hash of its children. Each document in Dagster consists of c+1 server blocks: c blocks of
older documents and one new block, which is an exclusive-or of previous blocks with the encrypted
document. The storage protocol proceeds as follows:

Initialization Upon startup, the server creates approximately 1, 000 random server blocks and
adds them to the system.

Entanglement To publish document di, user i generates a random key ki. He then chooses c
random server blocks Ci1 , . . . , Cic and computes a new block

Ci = Eki
(di)⊕

⊕
j=1...c

Cij ,

where E is a plaintext-aware encryption function1 and ⊕ is bitwise exclusive-or.

The user periodically queries the hash tree until he is convinced that block Ci was selected
by other users. He then releases instructions on recovering di, which come in the form of a
Dagster Resource Locator (DRL), which is a list of hashes of blocks needed to reconstruct
di: (

ki, π [H(Ci),H(Ci1),H(Ci2), . . . ,H(Cic)]
)

.

Here H(·) is a cryptographic hash function and π is a random permutation.

Recovery To recover di, the user asks the server for blocks with hashes listed in the DRL of di. If
the hashes of the blocks returned by the server match the ones in the DRL, the user computes:

Dki

Ci ⊕
⊕

j=1...c

Cij

 ,

where D represents a decryption function. Otherwise, the user exits.

2.2 Tangler

The Tangler storage system employs a network of servers. It derives its name from the use of (3,
4) Shamir secret sharing (see [22] for details) to entangle the data. Each document is represented
by four server blocks, any three of which are sufficient to reconstruct the original document. The
blocks are replicated across a subset of Tangler servers, which is uniquely determined from blocks’
cryptographic hashes. A data structure similar to Dagster Resource Locator, called an inode, is
used to record the hashes of the blocks needed to reconstruct the document. Here is the storage
protocol:

Initialization As in Dagster, the server is jump-started with a bunch of random blocks.
1A plaintext-aware encryption function is one for which it is computationally infeasible to generate a valid cipher-

text without knowing the corresponding plaintext. See [3] for a formal definition.
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Entanglement The server blocks in Tangler play the role of Shamir shares. Each block is a pair
(x, y), where x is used as an argument to a polynomial over GF (216) and y is the value of
the polynomial at x. The polynomial is uniquely determined by any three blocks, and it is
constructed in a way that evaluating it at zero yields the actual data.

To publish document di, user i downloads two random server blocks: Ci1 = (x1, y1) and Ci2 =
(x2, y2). He interpolates these blocks together with (0, di) to form a quadratic polynomial
f(·). Evaluating f(·) at two different nonzero integers produces new server blocks: C ′

i1
and

C ′
i2

. The user uploads the new blocks to the server. Finally, he adds the hashes of the blocks
needed to reconstruct di (viz., the old blocks Ci1 , Ci2 and the new blocks C ′

i1
, C ′

i2
) to di’s

inode.

Recovery To recover his document, user i sends a request for blocks listed in di’s inode to a
subset of Tangler servers. Upon receiving three of di’s blocks, the user can reconstruct f(·)
and compute di = f(0).

...

d1

dn

d2

C

C

C

1

2

m

Figure 1: An entanglement graph is a bipartite graph from the set of documents to the set of server
blocks. An edge (dj , Ck) is in the graph if server block Ck can be used to reconstruct document dj .

2.3 Analysis of entanglement

Let us take a “snapshot” of the contents of a Dagster or Tangler server. The server contains a set
of blocks {C1, . . . , Cm} that comprise documents {d1, . . . , dn} of a group of users. (Here m,n ∈ N
and m ≥ n.)

Data are partitioned in a way that each block becomes a part of several documents. We can
depict this documents-blocks relationship using an entanglement graph (see Figure 1). The
graph contains an edge (dj , Ck) if block Ck can be used to reconstruct document dj . Note that
even if the graph contains (dj , Ck), it may still be possible to reconstruct dj from other blocks
excluding Ck. Document nodes in Dagster’s entanglement graph have an out-degree c + 1, and
those in Tangler’s have out-degree four. Entangled documents share one or more server blocks.
In Figure 1, documents d1 and dn are entangled because they share server block C1; meanwhile,
documents d1 and d2 are not entangled.

This notion of entanglement, provided by Dagster and Tangler, has several drawbacks. Even if
document dj is entangled with a specific document, it may still be possible to delete dj from the
server without affecting that particular document. For example, knowing that dn is entangled with
d1, owned by some Very Important Person, may give solace to the owner of dn (refer to Figure 1),
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who might assume that no adversary would dare incur the wrath of the VIP merely to destroy
dn. However, as depicted in the figure, the adversary can still delete server blocks C2 and Cm and
corrupt dn but not d1.

Moreover, the user does not get to choose the documents to be entangled with his document;
these documents are chosen randomly. While destroying a user’s document is likely to destroy
some others, there are no specific other documents that will necessarily be destroyed. If few
other documents get destroyed on average, the small risk of accidentally corrupting an important
document will be unlikely to deter the adversary from tampering with data.

We now derive an upper bound on how many documents get destroyed if we delete a random
document from a Dagster or Tangler server. Intuitively, the earlier the document was uploaded
onto the server, the more documents it is entangled with and the more other documents will get
destroyed. Without loss of generality, we can assume that documents are numbered in the order
in which they were uploaded; namely, for all 1 ≤ j < n, document dj was uploaded to the server
before dj+1. We consider a restricted adversary, who randomly chooses several blocks of dj (one
block in Dagster; two in Tangler) and overwrites them with zeroes.

2.3.1 Deleting a targeted document

First, we show the expected side-effects of deleting the j-th document; in the following section we
use this to calculate the effects of deleting a document chosen uniformly at random.

Theorem 1 In a Dagster server with n0 = O(1) initial blocks and n documents, where each doc-
ument is linked with c pre-existing blocks, deleting a random block of document dj (1 ≤ j ≤ n)
destroys

O

(
c log

(
n

j

))
other documents.

Proof: There are altogether m = n0 + n blocks stored on the server: n0 initial blocks and n
data blocks. We label the data blocks C1, . . . , Cn. The initial blocks exist on the server before any
data blocks have been added. We label them C−n0+1, . . . , C0.

Every document dj consists of c pre-existing blocks2 and a data block Cj that is computed
during the entanglement stage. Consider an adversary who destroys a random block Ci of dj . This
will destroy dj , but it will also destroy any documents with edges outgoing to Ci in the entanglement
graph. We would like to compute the number of such documents, Ni.

If Ci is a data block (i.e., i ≥ 1), then
2These may be either initial blocks or data blocks of documents added earlier than dj (i.e., dk with k < j).
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E[Ni] =
n∑

k=i

Pr[dk has an edge to Ci]

= 1 +
n∑

k=i+1

(
1−

(
k − 2 + n0

c

)
/

(
k − 1 + n0

c

))

< 1 + c

n+n0−1∑
j=i+n0

1
j

= 1 + c(Hn+n0−1 −Hi+n0−1)

= 1 + Θ
(

c log
n + n0 − 1
i + n0 − 1

)
= O

(
c log

(n

i

))
under the assumption that n0 is a constant.

Meanwhile, if Ci is an initial block (i.e., i < 1), it can be linked by any of the documents:

E[Ni] =
n∑

k=1

Pr[dk has an edge to Ci]

= O(c log n).

The number of documents deleted on average when the adversary destroys a random block of
dj is

Navg =
1

j + n0
·

(
j∑

i=−n0

E[Ni]

)

<
1
j
·

(
O(c log n) +

j∑
i=1

O
(
c log

(n

i

)))
.

We can use Stirling’s formula to bound the leading term in (1):

j∑
i=1

O
(
c log

(n

i

))
= O

(
c log

(
j∏

i=1

n

i

))

= O

(
cj log

(
n

j/e

))
= O

(
cj log

(
n

j

))
.

The theorem follows.
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Theorem 2 In a Tangler server with n0 = O(1) initial blocks and n documents, deleting two
random blocks of document dj (1 ≤ j ≤ n) destroys

O

(
1
j

)
other documents.

Proof: The server contains m = n0 +2n blocks, n0 of which are initial and 2n are data blocks.
We label the blocks as in the proof of Theorem 1. The initial blocks are C−n0+1, . . . , C0 and the
data blocks are C1, C2, . . . , C2n−1, C2n.

In Tangler, every document dj consists of two old blocks of pre-existing documents and two new
blocks C2j−1 and C2j , computed during the entanglement stage. Suppose an adversary deletes any
two out of four blocks comprising dj ; call these blocks Ci, Ct. Then any document dk (k 6= j) that
contains both Ci and Ct (viz., has edges outgoing to Ci and Ct in the entanglement graph), will
also get destroyed. We would like to compute the number of such documents, Navg.

In our analysis, we consider whether deleted blocks Ci, Ct are new or old to dj and dk. We
distinguish between five cases:

Case 1: Ci, Ct are old to both dj and dk. Then the number of deleted documents is

j−1∑
k=1

1(
2j−2+n0

2

) +
n∑

k=j+1

1(
2k−2+n0

2

) .
Case 2: Ci, Ct are old to dj . However, only one of them is old to dk, while the other is new to dk.

Note that, in this case, we must have k < j.

j−1∑
k=1

4(
2j−2+n0

2

) .
Case 3: Ci, Ct are old to dj , but new to dk. Note that, in this case, we must also have k < j.

j−1∑
k=1

1(
2j−2+n0

2

) .
Case 4: One of Ci, Ct is old to dj , the other is new to dj . Note that both Ci and Ct must be old

to dk (because otherwise we would have k < j, which implies that the block in Ci, Ct that is
new to dj is not linked to dk, which further implies that dk will not get deleted).

n∑
k=j+1

4(
2k−2+n0

2

) .
Case 5: Ci, Ct are new to dj . In this case, both Ci and Ct must be old to dk (for the same reason

as in Case 4).
n∑

k=j+1

1(
2k−2+n0

2

) .
8



Summing up the five cases, gives us the total number of documents destroyed:

Navg =
6(j − 1)(
2j−2+n0

2

) +
n∑

k=j+1

6(
2k−2+n0

2

)
<

6
2j − 3

+
n∑

k=j+1

3
(k − 3

2)2

<
6

2j − 3
+
∫ n

j

3
(x− 3

2)2
dx

=
12

2j − 3
− 6

2n− 3

= O

(
1
j

)
for large n.

2.3.2 Deleting a random document

Using Theorem 1, we can show that destroying a typical document in Dagster affects few other
documents on average:

Corollary 3 In a Dagster server, deleting a block of a random document destroys on average O(c)
other documents.

Proof: Suppose the server contains n documents, each document linked with c server blocks.
According to Theorem 1, deleting document dj (1 ≤ j ≤ n) affects

O

(
c log

(
n

j

))
other documents.

Therefore, deleting a typical dj will affect

1
n

n∑
j=1

O

(
c log

(
n

j

))
= O

 c

n
log

 n∏
j=1

n

j


= O

(
c

n
log
(

nn

(n/e)n

))
= O(c)

documents.

Intuitively, one might expect the corollary to follow immediately from the fact that each doc-
ument depends on c blocks, which means (when n is large enough that the number of blocks and
documents are proportional) that the average block is used by Θ(c) documents. While such an
argument does tell us what happens if the adversary deletes a block chosen uniformly at random,
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choosing a document uniformly at random and then choosing a block from that document biases
the choice of block toward earlier blocks that are used in more documents; nonetheless, the corollary
shows that this bias provides at most a constant increase in the destructive effect.

Meanwhile, Theorem 2 tells us that destroying a document dj from the Tangler server affects
O(1/j) other documents on average. From this bound it is immediate that:

Corollary 4 In a Tangler server, deleting two blocks of a random document destroys on average
O
(

log n
n

)
other documents.

We illustrate the limited effectiveness of this form of entanglement by itself as a censorship
deterrent with a simple example:

Example: Suppose there are n = 500 documents stored on a Dagster server, where each document
is linked with c = 15 blocks. Further, suppose five of the documents belong to a VIP. From Corol-
lary 3, we know that deleting a block of a typical document destroys roughly 15 other documents.
The probability that one of the destroyed documents will belong to the VIP is

1−
(
495
15

)(
500
15

) ≈ 1
7
.

The adversary has a six in seven chance of deleting a typical document without affecting the VIP’s
data. �

Even a small chance of destroying an important document will deter tampering to some extent,
but some tamperers might be willing to run that risk. Still more troubling is the possibility that
the tamperer might first flood the system with junk documents, so that almost all real documents
were entangled only with junk. Since our bounds show that destruction of a typical document will
on average affect only a handful of others in Dagster and almost none in Tangler, we will need
stronger entanglement mechanisms if entanglement is to deter tampering by itself.

3 Our model

In Section 3.1, we start by giving a basic framework for modeling systems such as Dagster and
Tangler that entangle data. Specializing the general framework gives three specific system models,
differentiated by the choice of recovery algorithms. We discuss these models, along with different
kinds of adversaries that we consider, in Section 3.2.

As we have mentioned, Dagster and Tangler use many worthwhile techniques in conjunction
with entanglement to provide censorship-resistance. Our model abstracts away many such details
of storage and recovery processes. Instead, we concentrate on a single entanglement operation
performed by these systems. An entanglement operation takes documents of a finite group of users
and intertwines these documents to form a common store. The server contents are computed as an
aggregation of common stores from multiple entanglement operations. We number the group’s users
{1, . . . , n} and assume every user i possesses a document di that he wants to publish.3 With the

3In practice, a censorship-resistant system should provide some degree of anonymity to its users. The numbers we
assign to users play the role of pseudonyms. While the adversary may be able to distinguish documents owned by
user i from documents owned by user j, he should not be able to tell who the real people behind the pseudonyms are.
Further, if the adversary becomes biased against user i and decides to delete all his data, our mechanisms will ensure
that the adversary will also destroy the data of many other users. We refer the reader to [21] for further discussion
of anonymizing censorship-resistant systems.
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help of the model, we study the security provided by entanglement operation in and of itself. Our
model can potentially be expanded, albeit at the expense of significantly increased complexity. One
such extension could be a multiround model which would look at multiple entanglement operations
rather than just one operation. We discuss some possible extensions to our model in Section 7.

3.1 Basic framework

Our model consists of an initialization phase, in which keys are generated and distributed to
the various participants in the system; an entanglement phase, in which the individual users’
data are combined into a common store; a tampering phase, in which the adversary corrupts the
store; and a recovery phase, in which the users attempt to retrieve their data from the corrupted
store using one or more recovery algorithms.

Figure 2: Initialization, entanglement, and tampering stages.

An encoding scheme consists of three probabilistic Turing machines, (I, E, R), that run in
time polynomial in the size of their inputs and a security parameter s. The first of these, the
initialization algorithm I, hands out the keys used in the encoding and recovery phases. The
second, the encoding algorithm E, combines the users’ data into a common store using the
encoding key. The third, the recovery algorithm R, attempts to recover each user’s data using
the appropriate recovery key.

Acting against the encoding scheme is an adversary (Ǐ , Ť , Ř), which also consists of three prob-
abilistic polynomial-time Turing machines. The first is an adversary-initialization algorithm
Ǐ; like the good initializer I, the evil Ǐ is responsible for generating keys used by other parts of
the adversary during the protocol. The second is a tampering algorithm Ť , which modifies the
common store. The third is a non-standard recovery algorithm Ř, which may be used by some
or all of the users to recover their data from the modified store.
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We assume that Ǐ, Ť and Ř are chosen after I, E, and R are known but that a single fixed Ǐ,
Ť , and Ř are used for arbitrarily large values of s and n. This is necessary for polynomial-time
bounds on Ť and Ř to have any effect. We also assume the security parameter s is chosen large
enough that the number of users is polynomial in s.

Given an encoding scheme (I, E, R) and an adversary (Ǐ , Ť , Ř), the storage protocol proceeds
as follows (see also Figure 2):

1. Initialization. The initializer I generates a combining key kE used by the encoding algorithm
and recovery keys k1, k2, . . . kn, where each key ki is used by the recovery algorithm to recover
the data for user i. At the same time, the adversary initializer Ǐ generates the shared key ǩ
for Ť and Ř.

kE , k1, k2, . . . kn ← I(1s, n),

ǩ ← Ǐ(1s, n).

2. Entanglement. The encoding algorithm E computes the combined store C from the com-
bining key kE and the data di:

C ← E(kE , d1, d2, . . . dn).

3. Tampering. The tamperer Ť alters the combined store C into Č:

Č ← Ť (ǩ, C).

4. Recovery. The users attempt to recover their data. User i applies his recovery algorithm
Ri to ki and the changed store Č. Each Ri could be either the standard recovery algorithm
R, supplied with the encoding scheme, or the non-standard algorithm Ř, supplied by the
adversary, depending on the choice of the model.

d′i ← Ri(ki, Č)

We say that user i recovers his data if the output of Ri equals di.

3.2 Adversary model

We divide our model on two axes: one bounding the ability of the reconstruction algorithms and
the other bounding the ability of the adversary to modify the data store. With respect to recovery
algorithms, we consider three variants on the basic framework (listed in order of increasing power
given to the adversary):

• In the standard-recovery-algorithm model, the users are restricted to a single standard
recovery algorithm R, supplied by the system designer. Formally, this means Ri = R for
all users i; The adversary’s recovery algorithm Ř is not used. This is the model adopted by
Dagster and Tangler.
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• In the public-recovery-algorithm model, the adversary not only modifies the combined
store, but also supplies a single non-standard recovery algorithm Ř to all of the users. For-
mally, we have Ri = Ř for each i. The original recovery algorithm R is not used.4

We call this an upgrade attack by analogy to the real life situation of a company changing
the data format of documents processed by its software and distributing a new version of
the software to read them. We believe such an attack is a realistic possibility, because most
self-interested users will be happy to adopt a new recovery algorithm if it offers new features
or performance, or if the alternative is losing their data.

• In the private-recovery-algorithm model, the adversary may choose to supply the non-
standard recovery algorithm Ř to only a subset of the users. The rest continue to use the
standard algorithm R. Formally, this model is a mix of the previous two models: Ri = R for
some i and Ri = Ř for others.

We also differentiate between two types of tamperers:

• An arbitrary tamperer can freely corrupt the data store and is not restricted in any way.
Most real-life systems fit into this category as they place no restrictions on the tamperer.

• A destructive tamperer can only apply a transformation to the store whose range of
possible outputs is substantially smaller than the set of inputs. The destructive tamperer can
superimpose its own encryption on the common store, transform the store in arbitrary ways,
and even add additional data, provided that the cumulative effect of all these operations is
to decrease the entropy of the data store.

For example, such an adversary might erase parts of the data store without being able to se-
lectively modify the store’s contents, a restriction that could be implemented using write-once
media. Though requiring only destructive tampering may look like an artificial restriction,
we will need it to achieve all-or-nothing integrity in the private-recovery-algorithm model.

Recall that an adversary is a tuple (Ǐ , Ť , Ř), which consists of an initializer Ǐ, a tamperer Ť ,
and a non-standard recovery algorithm Ř. An adversary class specifies what kind of tamperer
Ť is and which users, if any, receive Ř as their recovery algorithm. Altogether, we consider 6 (=
3× 2) adversary classes, each corresponding to a combination of aforementioned constraints on the
tamperer and the recovery algorithms. We shall see that the possibility of achieving all-or-nothing
integrity ultimately depends on the adversary class we consider.

4 Dependency and all-or-nothing integrity

We now give our definition of data dependency for a particular encoding scheme and adversary class.
We first discuss some preliminary notions in Section 4.1. Our stronger notions of entanglement,
called dependency and all-or-nothing integrity, are defined formally in Section 4.2.

4Though it may seem unreasonable to prevent users from choosing the original recovery algorithm R, any R can
be rendered useless in practice by superencrypting the data store and distributing the decryption key only with the
adversary’s Ř. We further discuss this issue in Section 5.2.
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4.1 Preliminaries

Because we consider protocols involving probabilistic Turing machines, we must be careful in talking
about probabilities. Fix an encoding (I, E, R), an adversary A = (Ǐ , Ť , Ř), and the recovery
algorithm Ri for each user i. An execution of the resulting system specifies the inputs ki and
di to E, the output of E, the tamperer’s input ǩ and output Č, and the output of the recovery
algorithm Ri (R(ki, Č) or Ř(ǩ, ki, Č) as appropriate) for each user. The set of possible executions
of the storage system is assigned probabilities in the obvious way: the probability of an execution
is taken over the inputs to the storage system and the coin tosses of the encoding scheme and the
adversary.

It will be convenient to consider multiple adversaries with a fixed encoding scheme. In this case,
we use PrA(Q) to denote the probability that an event Q occurs when A is the adversary.

During an execution of the storage system, the tamperer alters the combined store from C into
Č. As a result, some users end up recovering their documents while others do not. The recovery
vector of an execution specifies which documents were successfully recovered in that execution.
Formally:

Definition 5 The recovery vector of execution α, denoted ~ρ(α), is a bit vector

~ρ(α) = (ρ1, ρ2, . . . , ρn),

where

ρi =
{

1 if Ri(ki, Č) = di,
0 otherwise

To illustrate, suppose the server contains three documents: d1, d2, and d3. If in execution α we
recover only documents d1 and d2, we then have: ~ρ(α) = 110.

When we think of α as a random variable (having fixed a particular encoding algorithm and
adversary), we will use ~r as a shorthand for the random variable ~ρ(α).

4.2 Our notions of entanglement

In Section 2, we observed that the block-sharing notion of entanglement provided by Dagster and
Tangler does not by itself provide strong security guarantees. Two documents may be entangled
together in this sense even though it is still possible to delete one of them without affecting the other.
Block-sharing entanglement also makes sense only in the context of a system that uses block-sharing
and requires observing the internal workings of the system. We would like a definition that applies
to a much wider class of potential systems, which requires considering only externally-observable
properties.

This motivates us to propose the notion of document dependency. Document dependency
formalizes the idea that “if my data depends on yours, I can’t get my data back if you can’t.”
In this way, the fates of specific documents become linked together: specifically, if document di

depends on document dj , then whenever dj cannot be recovered neither can di.
Given just one execution, either users i and j each get their data back or they don’t. So how

can we say that the particular outcome for i depends on the outcome for j? Essentially, we are
saying that we are happy with executions in which either j recovers its data (whether or not i does)
or in which j does not recover its data and i does not ether. Executions in which j does not recover
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its data but i does are bad executions in this sense. We will try to exclude these bad executions
by saying that they either never occur or occur only with very low probability.

Formally, in terms of a recovery vector, this becomes:

Definition 6 We say that di depends on dj, with respect to a class of adversaries A, denoted

di
A
↪→ dj, if, for all adversaries A ∈ A,

Pr
A

[ri = 0 ∨ rj = 1] ≥ 1− ε.

Remark: Hereafter, ε refers to a negligible function in the security parameter s.5

The ultimate form of dependency is all-or-nothing integrity. Intuitively, a storage system is
all-or-nothing if either every user i recovers his data or no user does:

Definition 7 A storage system is all-or-nothing with respect to a class of adversaries A if, for
all A ∈ A,

Pr
A

[~r = 0n ∨ ~r = 1n] ≥ 1− ε.

It is perhaps not surprising that we have the all-or-nothing property if and only if all documents
depend on each other:

Lemma 8 A storage system is all-or-nothing with respect to a class of adversaries A if and only

if, for all users i, j, di
A
↪→ dj.

Proof: Fix an adversary in A. Let E be the event that an execution of the storage system is
not all-or-nothing, and Fij the event that document di was recovered in an execution and dj was
not. Then E = {~r 6= 0n ∧ ~r 6= 1n} and Fij = {ri = 1 ∧ rj = 0}.

(⇒) : If the system is all-or-nothing, then Pr[E] < ε. Clearly, for all i, j, we have Fij ⊆ E, which

means Pr[Fij ] ≤ Pr[E] < ε. This in turn implies di
A
↪→ dj .

(⇐) : If for all i, j, di
A
↪→ dj , then Pr[Fij ] < ε. We can choose ε < ε′/n2 for a negligible ε′.

Notice that E ⊆
⋃

i,j Fij . Therefore, Pr[E] ≤
∑

i,j Pr[Fij ] < n2ε < ε′. Hence, Pr[Ec] ≥ 1− ε′

and so the storage system is all-or-nothing.

All-or-nothing integrity is a very strong property. In some models, we may not be able to
achieve it, and we will accept a weaker property called symmetric recovery. Symmetric recovery
requires that all users recover their documents with equal probability:

Definition 9 A storage system has symmetric recovery with respect to a class of adversaries A
if, for all A ∈ A and all users i and j,

Pr
A

[ri = 1] = Pr
A

[rj = 1].

Symmetric recovery says nothing about what happens in particular executions. For example, it
is consistent with the definition for exactly one of the data items to be recovered in every execution,
as long as the adversary cannot affect which data item is recovered. This is not as strong a property
as all-or-nothing integrity, but it is the best that can be done in some cases.

5A function ε : N 7→ (0, 1) is negligible if for every c > 0, for all sufficiently large s, ε(s) < 1/sc. See any standard
reference, such as [11], for details.
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5 Possibility and impossibility results

The possibility of achieving all-or-nothing integrity (abbreviated AONI) depends on the class
of adversaries we consider.

In Sections 5.1 through 5.3, we consider adversaries with an arbitrary tamperer. We show
that

• In the standard-recovery-algorithm model, a simple application of Message Authentica-
tion Codes (MACs) achieves all-or-nothing integrity.

• In the public-recovery-algorithm model, all-or-nothing integrity is no longer possible.
The best that can be done is to prevent the adversary from targeting specific users by hiding
the location of each user’s data within the store.

• In the private-recovery-algorithm model, even the weak guarantees of the public-recovery-
algorithm model are no longer possible, because the adversary can superencrypt the data
store and refuse to distribute the decryption key to users he doesn’t like.

In Section 5.4, we look at adversaries with a destructive tamperer. We give a simple interpo-
lation scheme that achieves all-or-nothing integrity for a destructive tamperer in all three recovery
models.

5.1 Possibility of AONI for standard-recovery-algorithm model

In the standard-recovery-algorithm model, all users use the standard recovery algorithm R; that is
Ri = R for all users i. Both Dagster and Tangler assume this model.

This model allows a very simple mechanism for all-or-nothing integrity based on Message Au-
thentication Codes (MACs). The intuition behind this mechanism is that the encoding algorithm
E simply tags the data store with a MAC using a key known to all the users, and the recovery
algorithm R returns an individual user’s data only if the MAC on the entire database is valid.

We begin by recalling some standard definitions [12]:

Definition 10 A MAC consists of three algorithms (GEN,TAG, V ER) such that:

1. A key generator GEN : 1s 7→ kMAC , generates an s-bit key on input a security parameter
s (encoded in unary);

2. A tagging algorithm TAG : kMAC ,m 7→ σ computes a MAC σ for any message m with
|m| ≤ sc for some fixed c; and

3. A verification algorithm V ER : kMAC ,m, σ 7→ {accept, reject}, with the property that
V ER(kMAC ,m, TAG(kMAC ,m)) = accept for all m.

Definition 11 A MAC scheme is said to be existentially unforgeable against chosen message
attacks if there is no polynomial-time forger F that generates a new message-MAC pair (m′, σ′)
that is accepted by V ER with probability exceeding O(s−c) for any c > 0, even if F is given a
sample of valid message-signature pairs (mi, σi), where mi is chosen by the adversary. Here the
requirement that (m′, σ′) is “new” means simply that m′ is not equal to any of the supplied mi.
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We now show that MACs that are existentially unforgeable against chosen message attacks give
all-or-nothing integrity with standard recovery algorithms. The encoding scheme is as follows:

Initialization The initialization algorithm I computes kMAC = GEN(1s). It then returns an
encoding key kE = kMAC and recovery keys ki = (i, kMAC).

Entanglement The encoding algorithm E generates an n-tuple
m = (d1, d2, . . . , dn) and returns C = (m,σ) where σ = TAG(kMAC ,m).

Recovery The standard recovery algorithm R takes as input a key ki = (i, kMAC) and the (possibly
modified) store Č = (m̌, σ̌). It returns m̌i if V ER(kMAC , m̌, σ̌) = accept and returns a default
value ⊥ otherwise.

The following theorem states that this encoding scheme is all-or-nothing:

Theorem 12 Let (GEN, TAG, V ER) be a MAC scheme that is existentially unforgeable against
chosen message attacks, and let (I, E, R) be an encoding scheme based on this MAC scheme as
above. Let A be the class of adversaries that does not provide non-standard recovery algorithms Ř.
Then there exists some minimum s0 such that for any security parameter s ≥ s0 and any inputs
d1, . . . , dn with

∑
|di| ≤ s, (I, E, R) is all-or-nothing with respect to A.

Proof: Fix some c > 0. Recall that the adversary changes the combined store from C = (m,σ)
to Č = (m̌, σ̌). We consider two cases, depending on whether or not m̌ = m.

In the first case, m̌ = m. Suppose R(ki, Č) = di but R(kj , Č) 6= dj . Then R(kj , Č) = ⊥,
which implies that V (kMAC ,m, σ̌) 6= accept when computed by R(kj , Č) and thus that σ̌ 6= σ. But
R(ki, Č) = di only if V (kMAC ,m, σ̌) = accept when computed by R(ki, Č). It follows that (m, σ̌)
is a message-MAC pair not equal to (m,σ) that V accepts in the execution of R(ki, Č); by the
security assumption this occurs for a particular execution of V only with probability O(s−c′) for
any fixed c′. If we choose c′ and s0 so that the O(s−c′) term is smaller than 1

2ns−c for s ≥ s0, then
the probability that any of the n executions of V in the recovery stage accepts (m, σ̌) in some case
where m = m̌, is bounded by 1

2s−c.
In the second case, m 6= m̌. Now (m̌, σ̌) is a message-MAC pair not equal to (m,σ). If every

execution of V rejects (m̌, σ̌), then all R(di, Č) return ⊥ and the execution has a recovery vector 0n.
The only bad case is when at least one execution of V erroneously accepts (m̌, σ̌). But using the
security assumption and choosing c′, s0 as in the previous case, we again have that the probability
that V accepts (m̌, σ̌) in any of the n executions of R is at most 1

2s−c.
Summing the probabilities of the two bad cases gives us the desired bound: PrA[~r = 0n ∨ ~r =

1n] > 1− s−c.

5.2 Impossibility of AONI for public and private-recovery-algorithm models

In both these models, the adversary modifies the common store and distributes a non-standard
recovery algorithm Ř to the users. In the public-recovery-algorithm model, all users get the new
Ř, whereas in the private-recovery-algorithm model, Ř is given only to a few select adversary’s
buddies. Let us begin by showing that all-or-nothing integrity cannot be achieved consistently in
either case:
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Theorem 13 For any encoding scheme (I, E, R), if A is the class of adversaries providing non-
standard recovery algorithms Ř, then (I, E, R) is not all-or-nothing with respect to A.

Proof: Let the adversary initializer Ǐ be a no-op and let the tamperer Ť be the identity
transformation. We will rely entirely on the non-standard recovery algorithm to destroy all-or-
nothing integrity.

Let Ř flip a biased coin that comes up tails with probability 1/n, and return the result of
running R on its input if the coin comes up heads and ⊥ if the coin comes up tails. Then exactly
one document is not returned with probability n · (1/n) · (1 − 1/n)n−1, which converges to 1/e in
the limit. Because this document is equally likely to be any of the n documents by symmetry, we
get each of the recovery vectors described in the theorem with (non-negligible) probability 1/en.

The outcome is all-or-nothing only if all instances of Ř flip the same way, which occurs with
probability PrA[~r = 0n ∨ ~r = 1n] < 1− 1/en.

The proof of Theorem 13 is rather trivial, which suggests that letting the adversary substitute
an error-prone recovery algorithm in place of the standard one gives the adversary far too much
power. But it is not at all clear how to restrict the model to allow the adversary to provide an
improved recovery algorithm without allowing for this particular attack.

One possibility would be to allow users to choose between applying the original recovery al-
gorithm and the adversary’s new and improved version; but in practice this approach is easily
defeated by a tamperer Ť that encrypts C (which renders Č unusable as input to R) coupled with
an error-prone Ř that reverses the encryption (when its coin comes up heads) before applying R.

A more sophisticated approach would be to allow R to analyze Ř to attempt to undo whatever
superencryption may have been performed and extract a recovery algorithm that works all the
time. Unfortunately, this approach depends on being able to extract useful information about the
workings of an arbitrary Turing machine. While it has been shown that program obfuscation is
impossible in general [2], even in a specialized form this operation is likely to be very difficult,
especially if the random choice to decrypt incorrectly is not a single if-then test but is the result of
accumulating error distributed throughout the computation of Ř.

On the other hand, we do not know of any general mechanism to ensure that no useful in-
formation can be gleaned from Ř, and it is not out of the question that there is an encoding so
transparent that no superencryption can disguise it for sufficiently large inputs, given that both Ř
and the adversary’s key ǩ are public.

5.3 Possibility of symmetric recovery for public-recovery-algorithm model

As we have seen, if we place no restrictions on the tamperer, it becomes impossible to achieve
all-or-nothing integrity in the public-recovery-algorithm model. We now show that we can still
achieve symmetric recovery.

Because we cannot prevent mass destruction of data, we will settle for preventing targeted
destruction. The basic intuition is that if the encoding process is symmetric with respect to permu-
tations of the data, then neither the adversary nor its partner, the non-standard recovery algorithm,
can distinguish between different inputs. Symmetry in the encoding algorithm is not difficult to
achieve and basically requires not including any positional information in the keys or the represen-
tation of data in the common store. One example of symmetric encodings is a trivial mechanism
that tags each input di with a random ki and then stores a sequence of (di, ki) pairs in random
order.
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Symmetry in the data is a stronger requirement. For the moment, we assume that users’
documents di are independent and identically distributed (i.i.d.) random variables. If documents
are not i.i.d (in particular, if they are fixed), we can use a simple trick to make them i.i.d.: Each
user i picks a small number ri independently and uniformly at random, remembers the number,
and computes d′i = di⊕G(ri), where G is a pseudorandom generator. The new d′i are also uniform
and independent (and thus computationally indistinguishable from i.i.d.). The users can then store
documents d′i (1 ≤ i ≤ n) instead of the original documents di. To recover di, user i would retrieve
d′i from the server and compute di = d′i ⊕G(ri).

We shall need a formal definition of symmetric encodings:

Definition 14 An encoding scheme (I, E, R) is symmetric if, for any s and n, any inputs
d1, d2, . . . dn, and any permutation π of the indices 1 through n, if the joint distribution of k1, k2, . . . , kn

and C in executions with user inputs d1, d2, . . . dn is equal to the joint distribution of kπ1 , kπ2 , . . . , kπn

and C in executions with user inputs dπ1 , dπ2 , . . . dπn.

Using this definition, it is easy to show that any symmetric encoding gives symmetric recovery:

Theorem 15 Let (I, E, R) be a symmetric encoding scheme. Let A be a class of adversaries as
in Theorem 13. Fix s and n, and let d1, . . . , dn be random variables that are independent and
identically distributed. Then (I, E, R) has symmetric recovery with respect to A.

Proof: Fix i and j. From Definition 14 we have that the joint distribution of the ki and C is
symmetric with respect to permutation of the user indices; in particular, for any fixed d, S and x,

Pr[C = S, ki = x | di = d] = Pr[C = S, kj = x | dj = d]. (1)

We also have, from the assumption that the di are i.i.d.,

Pr[di = d] = Pr[dj = d]. (2)

Using (1) and (2), we get

Pr[Ř(ǩ, ki, Ť (C)) = di]

=
∑
x,S,d

Pr[Ř(ǩ, x, Ť (S)) = d] Pr[C = S, ki = x, di = d]

=
∑
x,S,d

Pr[Ř(ǩ, x, Ť (S)) = d] Pr[C = S, ki = x | di = d] Pr[di = d]

=
∑
x,S,d

Pr[Ř(ǩ, x, Ť (S)) = d] Pr[C = S, kj = x | dj = d] Pr[dj = d]

= Pr[Ř(ǩ, kj , Č) = dj ].

This is simply another way of writing PrA[ri = 1] = PrA[rj = 1].
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5.4 Possibility of AONI for destructive adversaries

Unfortunately, neither all-or-nothing integrity nor symmetric recovery can be achieved in the
private-recovery-algorithm model for an arbitrary tamperer. The adversary can always superen-
crypt the data store and distribute a useless recovery algorithm that refuses to return the data.
We need to place some additional restrictions on the adversary.

Definition 16 A tampering algorithm Ť is destructive if the range of Ť when applied to an input
domain of m distinct possible data stores has size less than m.

Remark: The amount of destructiveness is measured in bits: if the range of Ť when applied to
a domain of size m has size r, then Ť destroys lg m − lg r bits of entropy. Note that it is not
necessarily the case that the outputs of Ť are smaller than its inputs; it is enough that there be
fewer of them.

Below, we describe a particular encoding, based on polynomial interpolation, with the property
that after a sufficiently destructive tampering, the probability that any recovery algorithm can
reconstruct a particular di is small. While this is trivially true for an unrestrained tamperer that
destroys all lg m bits of the common store, our scheme requires only that with n documents the
tamperer destroy slightly more than n lg(n/ε) bits before the probability that any of the data can
be recovered drops below ε (a detailed statement of this result is found in Corollary 18). Since
n counts only the number of users and not the size of the data, for a fixed population of users
the number of bits that can be destroyed before all users lose their data is effectively a constant
independent of the size of the store being tampered with.

The encoding scheme is as follows. It assumes that each data item can be encoded as an element
of Zp, where p is a prime of roughly s bits.

Initialization The initialization algorithm I chooses k1, k2, . . . kn independently and uniformly
at random without replacement from Zp. It sets kE = (k1, k2, . . . , kn) and then returns
kE , k1, . . . kn.

Entanglement The encoding algorithm E computes, using Lagrange interpolation, the coefficients
cn−1, cn−2, . . . c0 of the unique degree (n − 1) polynomial f over Zp with the property that
f(ki) = di for each i. It returns C = (cn−1, cn−2, . . . c0).

Recovery The standard recovery algorithm R returns f(ki), where f is the polynomial whose
coefficients are given by C.

Intuitively, the reason the tamperer cannot remove too much entropy without destroying all
data is that it cannot identify which points d = f(k) correspond to actual user keys. When it
maps two polynomials f1 and f2 to the same corrupted store Č, the best that the non-standard
recovery algorithm can do is return one of f1(ki) or f2(ki) given a particular key ki. But if too
many polynomials are mapped to the same Č, the odds that Ř returns the value of the correct
polynomial will be small.

A complication is that a particularly clever adversary could look for polynomials whose values
overlap; if f1(k) = f2(k), it doesn’t matter which f the recovery algorithm picks. But here we can
use that fact that two degree (n−1) polynomials can’t overlap in more than (n−1) places without
being equal. This limits how much packing the adversary can do.
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As in Theorem 15, we assume that the user inputs d1, . . . , dn are chosen independently and have
identical distributions. We make a further assumption that each di is chosen uniformly from Zp.
This is necessary to ensure that the resulting polynomials span the full pn possibilities. Recall that,
in Section 5.2, we argued how to get rid of the assumption that the dis are i.i.d. That argument
can also be used here to get rid of the assumption that each di is independent and uniform.

Under these conditions, sufficiently destructive tampering prevents recovery of any information
with high probability. We will show an accurate but inconvenient bound on this probability in
Theorem 17 and give a cruder but more useful statement of the bound in Corollary 18.

Theorem 17 Let (I, E, R) be defined as above. Let A = (Ǐ , Ť , Ř) be an adversary where Ť is
destructive: for a fixed input size and security parameter, there is a constant M such that for each
key ǩ,

|{Ť (ǩ, f)}| ≤M,

where f ranges over the possible store values, i.e. over all degree-(n − 1) polynomials over Zp. If
the di are drawn independently and uniformly from Zp, then the probability that at least one user i
recovers di using Ř is

Pr
A

[~r 6= 0n] <
2n2 + nM1/n

p
, (3)

even if all users use Ř as their recovery algorithm.

Proof: Condition on ǩ and the outcome of all coin-flips used by Ť and Ř. Then, there are
exactly pn

(
p
n

)
possible executions, each of equal probability, determined by the pn choices for the

di and the
(

p
n

)
choices for the ki. For each i, we will show that the number of these executions in

which Ř(ǩ, ki, Č) = di is small.
For each degree-(n − 1) polynomial f , define f∗ to be the function mapping each k in Zp to

Ř(ǩ, k, Ť (ǩ, f)). Note that f∗ is deterministic given that we are conditioning on ǩ and all coin-flips
in Ť and Ř. Define Cf , the correct inputs for f , to be the set of keys k for which f(k) = f∗(k).

The adversary produces a correct output only if at least one of the n user keys appears in Cf .
For a given f , the probability that none of the keys appear in Cf is(

p−|Cf |
n

)(
p
n

) >
(p− |Cf | − n)n

pn

=
(

1−
|Cf |+ n

p

)n

> 1−
n(|Cf |+ n)

p
,

and so the probability that at least one key appears in Cf is at most n
p |Cf | + n2

p . Averaging over
all f then gives

Pr [f∗(ki) = di for at least one i] <
n2

p
+

n

pn+1

∑
f

|Cf |. (4)

We will now use the bound on the number of distinct f∗ to show that
∑

f |Cf | is small.
Consider the set of all polynomials f1, f2, . . . fm that map to a single function f∗, and their

corresponding sets of correct keys Cf1 , Cf2 , . . . Cfm . Because any two degree (n − 1) polynomials
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are equal if they are equal on any n elements of Zp, each n-element subset of Zp can be contained
in at most one of the Cfi

. On the other hand, each Cfi
contains exactly

(|Cfi
|

n

)
subsets of size n.

Since there only
(

p
n

)
subsets of size n to partition between the Cfi

, we have∑
i

(
|Cfi
|

n

)
≤
(

p

n

)
,

and summing over all M choices of f∗ then gives∑
f

(
|Cf |
n

)
≤M

(
p

n

)
.

We now wish to bound the maximum possible value of
∑

f |Cf | given this constraint.

Observe that
(|Cf |

n

)
>

(|Cf |−n)n

n! when |Cf | ≥ n, from which it follows that∑
f :|Cf |≥n

(|Cf | − n)n < n!
∑

f

(
|Cf |
n

)
< n!M

(
p

n

)
. (5)

Now, (|Cf |−n)n is a convex function of |Cf |, so the left-hand side is minimized for fixed
∑

f |Cf |
by setting all |Cf | equal. It follows that

∑
f |Cf | is maximized for fixed

∑
f :|Cf |≥n when all |Cf | are

equal.
Setting each |Cf | = c and summing over all pn values of f , we get

pn(c− n)n < n!M
(

p

n

)
from which it follows that

c <
1
p

(
n!M

(
p

n

))1/n

+ n,

and thus that ∑
f

|Cf | ≤ pnc < pn−1

(
n!M

(
p

n

))1/n

+ npn.

Plugging this bound back into (4) then gives

Pr
A

[~r 6= 0n] = Pr [f∗(ki) = di for at least one i]

<
2n2

p
+

n

p2

(
n!M

(
p

n

))1/n

<
2n2

p
+

n

p2
(Mpn)1/n

=
2n2 + nM1/n

p
.

Using Theorem 17, it is not hard to compute a limit on how much information the tamperer
can remove before recovering any of the data becomes impossible:
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Corollary 18 Let (I, E, R) and (Ǐ , Ť , Ř) be as in Theorem 17. Let ε > 0 and let p > 4n3

ε . If for
any fixed ǩ, Ť destroys at least n lg(n/ε) + 1 bits of entropy, then

Pr
A

[~r = 0n] ≥ 1− ε.

Proof: Let ε′ = ε /
(

1
2n + 2−1/n

)
. If Ť destroys at least n lg(n/ε′) + 1 bits of entropy, then we

have
M ≤ pn · 2−(n lg(n/ε′)+1) =

1
2
pn(n/ε′)−n =

1
2
(
pε′/n

)n
. (6)

Plug this into (3) to get:

Pr[some di is recovered] ≤ 2n2 + nM1/n

p

≤
2n2 + n

(
1
2(pε′/n)n

)1/n

p

=
2n2

p
+ 2−1/nε′

<
2n2

4n3/ε′
+ 2−1/nε′

= ε′
(

1
2n

+ 2−1/n

)
= ε.

We thus have:
Pr
A

[~r = 0n] = 1− Pr[some di is recovered] ≥ 1− ε.

6 Related work

The problem of building reliable storage using untrusted servers has been studied for a long time.
Previous work has offered several interpretations of what this means. We distinguish between
three basic approaches: replication, tamper detection, and entanglement. We also discuss the
all-or-nothing transform, an unkeyed cryptographic tool that provides guarantees similar to all-or-
nothing integrity in a restricted version of the destructive tampering model.

6.1 Systems based on replication

Anderson, in his seminal paper describing an “Eternity Service” [1], was among the first to propose
building a network of tamper-resistant servers, spread around the world. Stored documents would
be redundantly replicated across the network, thereby making them censorship-resistant: diffi-
cult to delete without the cooperation of all servers. Many subsequent storage systems [5, 10, 18]
followed in Anderson’s footsteps and relied on replication to protect the stored data. One such
system, Free Haven [6], uses Rabin’s information dispersal algorithm (IDA) [19] to break the doc-
ument into n shares, any k of which are sufficient to reconstruct the document, which are then
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distributed to a community of servers. Publius [27] uses a similar idea and splits the key used to
encrypt documents into shares that are distributed to different servers. BFS [5] (an abbreviation of
“Byzantine File System”) also uses replication to develop a storage system that tolerates Byzantine
faults of up to 1/3 of the servers.

All these systems solve a problem that is different from, and complementary to, the one consid-
ered in this report. We assume that the users treat the storage service as a monolithic entity and
cannot distinguish between good and bad servers within a larger unified service. Our reasons for
making this assumption are two-fold. First, in most of the systems described above, new servers
can join freely, which allows a resourceful and committed adversary to seize control by sending in a
few thousand of his best and closest friends. Second, we are interested in guarantees to individual
users from the system as a whole, without regard to the underlying implementation. Our definition
of all-or-nothing integrity applies just as well to distributed storage mechanisms as to centralized
ones and reflects the concerns of users who care more about whether they will get their data back
than how. Thus, even in a system that promises data availability through replication, all-or-nothing
integrity provides additional assurance to the users by guaranteeing that any failure to fulfill this
promise will carry a very high cost.

6.2 Systems based on tamper detection

A second approach to providing secure storage is based on detecting tampering. As long as trusted
users can detect invalid modifications made to their data, the stored data is considered safe. Two
common tools used for tamper detection are digital signatures and Merkle hash trees [17]. Merkle
tree stores the actual data at the leaves of the tree, and at each intermediate node is the hash of the
concatenation of the data at the previous level. TDB [13], for example, leverages a small amount of
trusted memory to store a collision-resistant hash of the entire database. Another storage system,
SUNDR [14,15] uses Merkle trees to ensure that all users have a consistent view of the shared data
— if the server delays one user from seeing a change by another, the two users would never again
see each other’s changes. Other storage systems, such as BFS [5], NASD [8], S4 [24], SiRiUS [9],
and SFSRO [7], have also relied on hash trees and signatures for tamper detection.

The guarantee provided by these systems is rather weak. A user whose data is lost is likely to
notice with or without being notified by the system. However, as we saw in Section 5.1, tamper
detection can be leveraged in to give all-or-nothing integrity if all users run standard recovery
algorithms by the simple expedient of having all users politely refuse to recover their data if the
store is tampered with. That some users might insist on recovering their uncorrupted data anyway
points out a fundamental limitation of both the standard-recovery-algorithm model and the tamper
detection approach.

6.3 Systems based on entanglement

To prevent impolite users from recovering their own data even if other users’ data have been lost,
two storage systems have been proposed that create dependencies between blocks of data belonging
to different users: Dagster [25] and Tangler [16]. Because of their close connection to our work, we
described these systems and gave rigorous analysis of their security properties in Section 2.
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Destructive Tamperer Arbitrary Tamperer
Standard Recovery all-or-nothing all-or-nothing
Public Recovery all-or-nothing symmetric recovery
Private Recovery all-or-nothing —

Table 1: Summary of results. “All-or-nothing” means that all-or-nothing integrity can be achieved
in this model; “symmetric recovery” means that all-nothing integrity cannot be achieved, but
symmetric recovery can; “—” means that no guarantees are possible.

6.4 All-or-nothing transforms

Motivated by security problems in block ciphers, Rivest [20] proposed a cryptographic primitive
called all-or-nothing transform (AONT). An l-AONT is an efficiently computable transforma-
tion that satisfies two conditions:

• Its inverse transformation is also efficiently computable.

• If l bits of an image are lost, then it is infeasible to obtain any information about the preimage.

Papers such as [4, 23] further examined Rivest’s AONT. AONT is similar to our notion of all-
or-nothing integrity in the sense that either all bits of the preimage can be recovered (if the image
is available) or none can be (if l bits of the image are lost). However, AONT is radically different
from all-or-nothing integrity because it does not involve multiple users, who possess individual keys.
Moreover, AONT does not consider the possibility that the image may be corrupted in other ways
than some bits being deleted, such as the adversary superencrypting the entire data store.

7 Conclusion and future work

Entangling documents of different users is a promising idea for strengthening the integrity of indi-
vidual users’ data. However, existing systems such as Dagster and Tangler only have an intuitive
notion of entanglement that is insufficient by itself to provide the supposedly increased security. In
this paper, we rigorously analyze the probability of destroying one document without affecting any
other documents in these systems. Our analysis shows that the security they provide is not strong,
even if we limit the class of attacks permitted against the entangled data.

Motivated by the desire to improve the security provided by entanglement, we defined the
stronger notion of document dependency, in which destroying some document is guaranteed to
destroy specific other documents, and all-or-nothing integrity, in which destroying some document
is guaranteed to destroy all other documents. We considered a variety of potential attacks and
showed for each what level of security was possible. These results are summarized in Table 7; they
show that it is possible in principle to achieve all-or-nothing integrity with only limited restrictions
on the adversary.

Whether it is possible in practice is a different question. Our model abstracts away most of the
details of the storage and recovery processes, which hides undesirable features of our algorithms
such as the need to process all data being stored simultaneously or the need to read every bit of
the data store to recover any data item. Some of these undesirable features could be removed
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with a more sophisticated model, such as a round-based model that treats data as arriving over
time, allowing combining algorithms that require using less of the data store for each storage or
retrieval operation at the cost of making fewer documents depend on each other. The resulting
system might look like a variant of Dagster or Tangler with stronger mechanisms for entanglement.
But such a model might permit more dangerous attacks if the adversary is allowed to tamper with
data during storage. Finding the right balance between providing useful guarantees and modeling
realistic attacks will be necessary. We believe that we have made a first step towards this goal in
the present work, but much still remains to be done.
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