
We study the inference of latent intrinsic variables of dynamical systems from output signal
measurements. The primary focus is the construction of an intrinsic distance between signal
measurements, which is independent of the measurement device. This distance enables us
to infer the latent intrinsic variables through the solution of an eigenvector problem with a
Laplace operator based on a kernel. The signal geometry and its dynamics are represented
with nonlinear observers. An analysis of the properties of the observers that allow for
accurate recovery of the latent variables is given, and a way to test whether these properties
are satisfied from the measurements is proposed. Scattering and window Fourier transform
observers are compared. Applications are shown on simulated data, and on real intracranial
Electroencephalography (EEG) signals of epileptic patients recorded prior to seizures.
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1 Introduction

Given signal measurements z(t), our goal is to identify latent variables θ(t). These latent
variables may correspond to physical and natural variables, such as the state of a patient
in medical diagnostic, brain activity in Electroencephalography (EEG) signal analysis, or
the operational state (failure or success) of a machine, and hence, push forward our under-
standing of real recorded signals.

In this paper, we focus on signals without definitive ground truth for the latent variables.
Thus, applying regression techniques is not possible and unsupervised analysis is required.
For instance, EEG recordings translate processes that represent brain activity into sequences
of electrical impulses. The significance of revealing the latent variables in EEG recordings
will be demonstrated in epilepsy research [1, 2]. In this application, appropriate modeling of
the brain activity may enable us to describe the measurements in their true physical intrinsic
coordinates, and this, in turn, may allow for the detection and prediction of seizures.

Estimating latent variables from measurements has been heavily investigated in signal
processing and statistics studies, e.g. using Bayesian learning [3], and graphical and topic
models [4, 5, 6, 7, 8, 9, 10]. In the present work, we use manifold learning methods [11,
12, 13, 14, 15, 16]. These methods often analyze the signal samples “as is” by relying
on the assumption that the measured signal samples z(t) do not fill the ambient space
uniformly but rather lie on a low-dimensional manifold induced by physical and natural
constraints. However, real recorded measurements typically have many sources of variability
and do not belong to low-dimensional manifolds. Most such sources of variability usually
do not provide crucial information on the latent variables and can thus be removed by
an appropriate invariant observation operator Φ. Applying such an operator to the signal
samples yields observables Φz(t), which may then belong to a low-dimensional manifold.
Finding a parameterization of this manifold allows for the computation of a coordinate
system of the latent variables.

The dynamical system point of view is used for the problem formulation and signal
analysis. We note that the notions of manifold and observers are central in dynamical
systems research [17]. From the standpoint of dynamical systems, the problem of estimating
hidden variables from measurements can be reformulated. The latent variables θ(t) can
be viewed as the hidden intrinsic state of a dynamical system, the measurements z(t)
can be viewed as the system output signal, and then, the estimation of the hidden state
variables from the output signal is at the core of dynamical systems theory. By revisiting the
differential geometric approach [18, 19, 20], we give the necessary conditions for observability
and stability, which allow for inferring the parameterization of the manifold of observations
and computing the coordinate system of the latent intrinsic state variables.

We consider slowly varying state variables θ(t) [21, 22]. As a consequence, the measured
signal z(t) can be considered as locally stationary, and hence, we can restrict the scope to
the problem of representing locally stationary processes. Often marginal statistics (such as
histograms) are too poor to characterize complex processes. On the other hand, polynomial
moments estimators of order larger than two are not precise because they have a large
variance. Standard representations thus usually rely on second order moments, which are
characterized by the Fourier power spectrum for stationary processes. Unfortunately, it
suffers from few significant shortcomings. First, second order moments still have a relatively
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large variance. Second, it merely encodes the Gaussian properties, without characterizing
intermittent behavior which is often very informative. Third, the Fourier power spectrum
is not stable to deformations which often occur. In most nonlinear dynamical systems, the
evolution of the system induces deformations or the creation of intermittent behavior in the
signal. To overcome the shortcomings of the Fourier power spectrum, we propose to use
the scattering transform to observe locally stationary processes. The scattering transform
has a low variance because it is based on first order moments of contractive operators, it
linearizes deformations, and it can represent effectively intermittent behavior [23, 24].

The main contribution of the paper is the introduction of an unsupervised data-driven
method to infer slowly varying latent variables of locally stationary signals using nonlinear
observers. An analysis of the properties of the observers is given, and a way to test whether
they hold from the measurements is proposed. In particular, two observers are used: the
common power spectrum based on the short time Fourier analysis, and the recently in-
troduced scattering transform based on wavelet analysis. We will show that applying our
method based on the latter observer to both simulation and real data enables to accurately
estimate the latent intrinsic variables. Furthermore, for the real signal, we will show that
the recovered latent variables have a true physical meaning, which is a remarkable result,
since it is obtained implicitly by merely analyzing the measured signal, and may give rise to
significant advancements in the field. In particular, we will show that the intrinsic variables
recovered from intracranial EEG signals of epileptic patients, recorded just prior to seizures,
exhibit a distinct trend related to the time to seizure onset.

The remainder of the paper is organized as follows. Section 2 presents the proposed
manifold learning method. Section 3 addresses nonlinear observers. The observers’ prop-
erties are presented, their estimation is described, and a test to empirically evaluate the
validity/soundness of the properties from the measurements is given. In Section 4, the par-
ticular problem of deformations is addressed, which further motivates the introduction of
the scattering transform that follows. Finally, in Section 5, experimental results are given
on both simulated and real signals, which illustrate the power of the proposed method and
its potential benefits.

2 The Proposed Manifold Learning Method

2.1 Problem Setting

Let z(t) ∈ Rn denote a measured output signal of a dynamical system at time index t.
Suppose the measurements are locally stationary and depend upon hidden variables θ(t) ∈
Rd, which have slow variations in time. The dynamics of the underlying variables θ(t)
drive the dynamical system, and hence, θ(t) is viewed as the natural/intrinsic state of the
system. We emphasize that this state will be implicitly determined by the method (e.g.
finding an adequate representation of brain activity in the EEG application), whereas in
classical analysis, it is often predefined (e.g. as the position, velocity, and acceleration in
tracking maneuvering targets problems).

Our goal in this work is to empirically discover the hidden intrinsic state of the system
θ(t) and its dynamics based on a sequence of measurements z(t), without prior knowledge
on the system parameters or the description of the state. This will be done by applying a
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manifold learning methodology, and the intrinsic variables θ(t) will be recovered through
the eigenvectors of a graph Laplacian built from the measurements. The key component in
manifold learning is to define a distance between the measurements, which in turn is used
to construct the graph Laplacian. Consequently, the primary focus of the present work is to
build a pairwise distance d(z(t), z(τ)) between measurements, which satisfies the following
property:

d(z(t), z(τ)) ≈ ‖θ(t)− θ(τ)‖2. (1)

In this paper, we show how to construct a distance d(z(t), z(τ)), which satisfies (1). Once we
obtain such a distance, which properly compares the measurements in terms of the intrinsic
state variables, we apply a standard manifold learning method.

In [25], we considered a different dimensionality reduction problem in the domain of
probability distributions of z(t). The assumption there is that the time varying sample
distribution of z(t), rather than the samples themselves, is driven by an intrinsic state
θ(t), yielding a low dimensional regular manifold. We showed that this domain of distribu-
tions exhibits a powerful property: nonlinear complex interferences are translated to linear
operations in the domain of distributions. This property suggests that the time-varying dis-
tribution of the measurements may be of interest, especially in adverse conditions. In [25],
for example, histograms were used as estimators. However, estimating the time-varying pdf
from the measured signal is practically impossible because of the curse of dimensionality,
i.e. there are usually not enough samples to densely cover the space, and hence, to estimate
local probability densities. Although the probability density function of the measurements
cannot be estimated, estimating inner products/projections of the densities with another
function may be attainable. In addition, these projections maintain the linear behavior of
the densities with respect to interferences. Computing estimators to such expected values,
or “generalized moments”, is therefore essential for the analysis of the signal.

Thus, in this paper, we present signal transforms as generalized moments that, on one
hand, describe the densities well and convey sufficient information on the intrinsic state,
and, on the other hand, can be accurately and efficiently estimated from measurements.

2.2 Local Analysis and the Mahalanobis Distance

Let Φz(t) ∈ Rm be a (possibly nonlinear) observer, which is an operator that associates an
m-dimensional vector, which varies in time, to a signal z(t). Once the observables Φz(t) are
computed from the available signal z(t), the ultimate goal is to empirically invert the obser-
vation operator and recover the intrinsic state θ(t). For example, given EEG measurements,
it will enable us to recover the hidden variables representing the brain activity, allowing for
a more accurate processing, and in particular, better understanding of the brain. Under
the manifold learning setting, this goal can be relaxed, and it is sufficient to approximate
the Euclidean distances between the hidden variables (1).

Several remarks on the statistical setting are due at this point. The intrinsic state θ(t) is
regarded as a realization of an unknown locally stationary random process, which is assumed
to vary slowly compared to z(t). Since the hidden variables comprising the intrinsic state
θ are unknown, we further assume that locally, i.e. in a short time window, the intrinsic
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state at a fixed point in time t has a unit empirical variance

1

Lo

∑
τ∈It

(
θ(τ)− θt

) (
θ(τ)− θt

)T
= I, (2)

where θt = 1
Lo

∑
τ∈It θ(τ), I is an identity matrix, and It is a sampling grid of size Lo in

[t−Lo/2, t+Lo/2]. This assumption might not be respected in real signals. However, since
the intrinsic state θ(t) is unknown a-priori and will be empirically inferred, our method will
approximate state that satisfies (2) in a way that best explains and fits the measurements.
This assumption is made in many statistical and geometric methods, including Principal
Component Analysis (PCA) where the search is for low dimensional uncorrelated variables
[26]. The difference is that here it is made locally, and the mean of θ(t) may vary with
time.

The measured signal z(t) is a locally stationary random process with an unknown distri-
bution. The observation operator Φ is applied to the random process z(t), which depends
upon θ(t). The result is thus a random process Φz(t), whose values for a fixed t, are random
vectors of size m. The key property is to use a local linearization of the observation operator
at each time sample t in a short window, given θ(t) according to

Φz(τ) = E[Φz(t)] + K(t) (θ(τ)− θ(t)) + ε(t, τ), ∀τ ∈ It (3)

where K(t) is a linear operator, ε(t, τ) is a random error containing higher order terms and
random fluctuations. We will later show in more detail that K(t) entails the linearization
of the dependency of the observables Φz(t) in θ, i.e., K(t) = Jθ(E[Φz(t)]), where Jθ denotes
the Jacobian matrix with respect to θ.

The observables Φz(t) will be computed by averaging in short time windows over nearly
decorrelated random variables, since z(t) is assumed locally stationary (due to the slow
variation of θ(t)). Thus, by the Central Limit Theorem, Φz(t) may be approximately
modeled by a Gaussian random process. As a result, from (2) and (3), the empirical local
mean µ̂(t) and covariance Ĉ(t) of the observables in a window of Lo observables centered
at time t are approximately given by

µ̂(t) =
1

Lo

∑
τ∈It

Φz(τ) = E[Φz(t)]−K(t)θ(t) +
1

L

∑
τ∈It

(K(t)θ(τ) + ε(t, τ))

' E[Φz(t)]−K(t)
(
θ(t)− θ(t)

)
(4)

Ĉ(t) =
1

Lo

∑
τ∈It

(Φz(τ)− µ̂(t))(Φz(τ)− µ̂(t))T

' K(t)K(t)T + σ2
ε (t) (5)

where σ2
ε (t) is a matrix comprising the residual terms. We remark that the two main

sources that determine the “size” of ε(t, τ) are the accuracy of the representation of the
expected values of observables E[Φz(t)] as a deterministic function of merely θ(t) (i.e., ε(t, τ)
comprises the affects of other nuisance factors), and the accuracy of the local linearization
(3). Thus, we seek for observers that reduce σ2

ε (t) in light of these two aspects.
Since the measurements z(t) are governed by a latent state θ(t) ∈ Rd, the manifold of

the observables Φz(t) ∈ Rm is merely of dimension d. Indeed, the dimensions of the linear
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Figure 1: The black point illustrates an observable Φz(t) ∈ R3 for fixed t on a 2-dimensional
manifold of observables. The trajectory of observables in a short time window around t,
(Φz(τ), τ ∈ It), spans the tangent plane to the manifold at Φz(t) (illustrated in gray).
Therefore, the empirical covariance of the observables Ĉ(t) of this trajectory captures the
shape of the tangent plane, and its principal components Vd are its principal directions.

operator K(t) are m× d. Thus, by (5), assuming the elements of σ2
ε (t) are small, the rank

of the m×m empirical covariance matrix Ĉ(t) is approximately d. In order to exploit this
information, we apply the singular value decomposition (SVD) to K(t) and obtain its d
non-zero singular values ηj and left and right singular vectors vj and uj , respectively. From
(5), by assuming that the local linearization (3) is accurate, the eigenvalue decomposition
(EVD) of Ĉ(t) consists of the eigenvalues η2j and eigenvectors vj . We use the d principal
components to “filter” the covariance matrix (in a local PCA manner – by reconstructing
the matrix from its principal components)

C̃(t) = VdΛdV
T
d (6)

where Vd is an m×d matrix whose columns are the d principal eigenvectors vj , and Λd is a
d×d diagonal matrix, whose diagonal entries are the corresponding principal eigenvalues η2j .
For simplicity, the time index is omitted from the eigenvalues and eigenvectors. Geometri-
cally, the eigenvectors in Vd span the tangent plane to the manifold of the observations at
Φz(t). In addition, the different “lengths” of the principal directions, as conveyed by the
eigenvalues η2j of the local covariance matrix Ĉ(t), stem solely from the translation of the
intrinsic state to the observation domain (depending on the measurement modality), since
we assume in (2) that the intrinsic state is of unit variance. See Fig. 1 for a geometric
illustration of the problem. In order to invert the effect of the observation, we apply a
whitening procedure and build Ĉ†(t) as follows:

Ĉ†(t) = VdΛ
−1
d VT

d (7)

We remark that in light of the last two steps, Ĉ†(t) can be defined as the pseudo-inverse of
the local empirical covariance matrix Ĉ(t). In addition, the filtering through the EVD of
the covariance matrix can be viewed as applying a local PCA procedure.

To construct a distance that satisfies (1), we use the Mahalanobis distance, as proposed
by Singer and Coifman to define affinities that locally invert the observation [27]. The
Mahalanobis distance often appears in the context of metric learning and leads to good
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performance in a broad range of applications [28, 29, 30]. Since the Mahalanobis distance
compares two Gaussian, or nearly Gaussian, random vectors, it is an appropriate distance,
given two realizations Φz(t) and Φz(τ), which are assumed to be samples from nearly Gaus-
sian distributions (due to the observation operator) and whose means are related through
(3). The Mahalanobis distance is given by

d(z(t), z(τ)) =
1

2
((Φz(t)− µ̂(t))− (Φz(τ)− µ̂(τ)))T

×
(
Ĉ†(t) + Ĉ†(τ)

)
((Φz(t)− µ̂(t))− (Φz(τ)− µ̂(τ))) . (8)

The local linearization of the observation operator that relates the means (3) allows to
further justify the usage of the Mahalanobis distance. By assuming that the local lineariza-
tion is accurate, i.e., σ2

ε (t) is negligible, substituting (3) and (7) into (8) and using the
SVD of K(t) yields (1), thereby satisfying the main goal. For the approximation order and
more details, we refer the readers to [27, 31]. We remark that minimizing the size of σ2

ε(t)
encapsulates a tradeoff in setting Lo. Small values of Lo yield an accurate linearization
and a small “model mismatch” error at the expense of fewer samples and large estimation
variance.

By further assuming the following local Gaussian model at time t, for τ ∈ It
1:

θ(τ) ∼ N(E[θ(t)], Id) (9)

Φz(τ)|θ(τ) ∼ N(E[Φz(t)] + K(t)θ(τ), σ2ε (t)Im) (10)

Tipping and Bishop [26] showed that (4) is the maximum likelihood (ML) estimate of
E[Φz(t)],

σ̂2ε (t) =
1

m− d

m∑
i=d+1

η2i (11)

is the ML estimate of σ2ε (t), and

K̂(t) = Vd

(
Λd − σ̂2ε Id

)1/2
(12)

is the ML estimate of K(t). Tipping and Bishop further showed that

E[θ(τ)|Φz(τ)] =
(
Λd − σ̂2εId

)1/2
Λ−1d VT

d (Φz(τ)− µ̂(t)) . (13)

It implies that under these local Gaussian models, the Mahalanobis distance (8) between
two samples Φz(τ) and Φz(τ ′) in the same local neighborhood around time t, i.e., τ, τ ′ ∈ It,
corresponds to the Euclidean distance between the posterior expectations

d(z(τ), z(τ ′)) =
∥∥E[θ(τ)|Φz(τ)]− E[θ(τ ′)|Φz(τ ′)]

∥∥2 , (14)

when assuming small error terms, i.e. σ2ε � 1. In addition to the statistical justification,
this interpretation further supports the search for local near Gaussian observables. We
remark that, on one hand, (13) includes a “denoising” procedure applied by subtracting the
ML estimate of the variance of the error term σ2ε (t). On the other hand, it assumes that
the error terms in (3) are independent among the coordinates of the observables, and it is
restricted to the local neighborhood.

1(9) implies that the state is locally Gaussian, and (10) implies that ε(t, τ) in (3) is a Gaussian random
vector of independent variables.
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2.3 Manifold Learning

Suppose a finite sequence of T messurements z(t), t = 1, . . . , T , is available. Let W be a
pairwise T ×T affinity matrix (kernel) between the measurements based on a Gaussian and
the Mahalanobis distance (8), whose (t, τ)-th element is given by

Wt,τ = exp

{
−d(z(t), z(τ))

ε

}
, (15)

where ε is the kernel scale, which can be set according to Hein and Audibert [32] and
Coifman et al. [33]. Based on the kernel, we form a weighted graph, where the measurements
z(t) are the graph nodes and the weight of the edge connecting node z(t) to node z(τ) is
Wt,τ . In particular, such a Gaussian kernel exhibits a notion of locality by defining a
neighborhood around each measurement z(t) of radius ε, i.e., measurements z(τ) such that
d(z(t), z(τ)) > ε are weakly connected to z(t). In the current implementation, we set ε to
be the median of the pairwise distances. According to the graph interpretation, this implies
a well-connected graph because each measurement is effectively connected to half of the
other measurements.

Let D be a diagonal matrix whose elements are the row sums of W, and let Wnorm =
D−1/2WD−1/2 be a normalized kernel that shares its eigenvectors with the normalized
graph-Laplacian, defined by I −Wnorm [34]. The eigenvectors of Wnorm, denoted by
ϕj , provide a new coordinate system for the measurements, which reveal their underlying
structure [15]. The eigenvalues are ordered such that |λ0| ≥ |λ1| ≥ · · · ≥ |λT−1|, where λj
is the eigenvalue associated with eigenvector ϕj . Because Wnorm is similar to D−1W, and

D−1W is row-stochastic, λ0 = 1 and ϕ0 is the diagonal of D1/2. The next few eigenvectors
are traditionally referred to as a parameterization (description of the geometry) of the
underlying manifold [15]. In particular, based on the d principal eigenvectors (without the
trivial one), a d-dimensional embedding of the signal z(t) is constructed as

z(t) 7→ (ϕ1(t), ϕ2(t), . . . , ϕd(t))
T . (16)

This embedding defines an “inverse map” between the measurements and the intrinsic state,
such that (without loss of generality) the t-th coordinate of the j-th eigenvector, i.e., ϕj(t),
represents the j-th coordinate of θ(t).

To conclude this section, we summarize the proposed algorithm in Algorithm 1.

3 Nonlinear Observers

3.1 Observer Properties and Estimation

In this subsection we articulate the properties required by the algorithm for a small residual
term ε(t, τ) in the key condition (3), such that (1) is achieved, using a dynamical systems
approach.

Define the following properties:
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Algorithm 1 The Proposed Algorithm

Input: a finite sequence of signal samples z(t) ∈ Rn.
Output: a low dimensional representation of the signal samples θ(t) ∈ Rd through eigen-
vectors of a kernel.

1. Compute the observables Φz(t) by applying an observation operator Φ to the signal
samples z(t).

2. For each observable Φz(t), compute the empirical mean µ̂(t) and empirical covariance
matrix Ĉ(t) in a short window of Lo observables centered at t according to (4) and
(5).

3. Compute the pseudo inverse matrices Ĉ†(t) of Ĉ(t).

4. Build a kernel W that consists of pairwise affinities between the observables Φz(t)
according to (15). The affinity function is based on a distance metric (8), which is
constructed based on the empirical means µ̂(t) and pseudo-inverse covariance matrices
Ĉ†(t).

5. Build a normalized kernel Wnorm = D−1/2WD−1/2, where D is a diagonal matrix
whose elements are the sum of rows of W.

6. Apply eigenvalue decomposition (EVD) to Wnorm and obtain a set of d eigenvectors
ϕj associated with the d largest eigenvalues.

7. View the eigenvectors as a low dimensional representation of the signal samples (16),
i.e., the jth coordinate of θ(t) is represented by ϕj(t).

Observability The intrinsic state θ(t) is observable through the observables Φz(t) if there
exists a constant A > 0 such that for any t and τ

A‖θ(t)− θ(τ)‖2 ≤ ‖E[Φz(t)]− E[Φz(τ)]‖2. (17)

In a geometric context, where we can view the intrinsic state θ(t) and the associated ex-
pected values E[Φz(t)] as points in d- and m-dimensional domains, respectively, this con-
dition implies that small perturbations of the intrinsic state in dimension d are detected in
the observation domain of dimension m.

Stability An observer Φ is stable if there exists a constant B > 0 such that for any t and
τ

‖E[Φz(t)]− E[Φz(τ)]‖2 ≤ B‖θ(t)− θ(τ)‖2. (18)

In a geometric context, this condition implies that small perturbations of the intrinsic state
are not translated to very large (infinite) perturbations in the observation domain.

In other words, an observer is informative and sensitive with respect to the intrinsic state
θ(t) if small variations of the these factors are detectable in the observation domain (i.e.,
discriminability of the states). Similarly, an observer is stable and regular with respect to
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the intrinsic state θ(t) if small variations of these factors are translated to small variations of
the observations. Under this setting, the observability and stability properties are equivalent
to the condition that the observation E[Φz(t)] is bi-Lipschitz with respect to θ. In Section
3.2, we will show that testing whether these properties are satisfied can be done through
the local covariance matrices of the observables, which are estimated and used to define the
pivotal Mahalanobis distance (8).

Invariance to noise and nuisance factors Let ν be a noise or nuisance variable. An
observer Φ is invariant to ν if

‖E[Φz(t)]− E[Φz(τ)]‖2

‖ν(t)− ν(τ)‖2
� 1. (19)

Since, the manifold of observations is determined by the problem, it could be very complex.
Geometrically, due to high levels of noise, small perturbations of the intrinsic state θ(t)
may be considerably stretched and distorted when translated to the observable domain
in directions that do not necessarily respect the shape of the manifold. In addition, the
state of real dynamical systems may not be low dimensional. However, the number of state
dimensions relevant to the task at hand are usually small. Thus, (19) implies that the
observer is resilient to measurement noise and nuisance factors, thereby ensuring that the
shape of the manifold induced by the intrinsic state coordinates θ(t) can be detected by the
observables.

Thus far in this section, the focus was on defining the desirable properties of the expected
values of the observers, taking into account the time variability of the hidden intrinsic
state. Now, we compute estimators calculated from the random signal realizations. These
estimators rely on the local stationarity assumption. Assuming local ergodicity, the expected
values are calculated with time empirical averages in short time windows of samples of length
Ls. The choice of the window and its length Ls, in which the observers are estimated, is of
particular importance and represents the “bias-variance” tradeoff: a longer window yields
a more accurate estimation at the expense of a bias caused by the time variation of the
intrinsic state, which hampers the local stationarity assumption. The length Ls of the
window also introduces the “micro”/“fine” time scale of the proposed method. Namely,
we assume that the estimation variance is smaller than the time variations of the expected
values (originated by the variations of the intrinsic state) in time windows of length Ls.
This assumption enables us to separate the scales of the dynamics and the estimation
and compute the observables without including/discarding the variations/dynamics of the
intrinsic state. On the other hand, the coarser time scale is defined by time windows
of observables Φz(t) of length Lo, in which we estimate their empirical mean µ̂(t) and
covariance matrix Ĉ(t) in (4) and (5), respectively, assuming a near Gaussian distribution
of the observables.

We remark that the estimation variances in the different coordinates of the observer
might not be identical due to the properties of the signal or the properties of the observer
(e.g., a multiscale transform with a different time support in each coordinate). Therefore,
we apply an additional standardization procedure; in each coordinate, the estimator is
normalized/divided by the standard deviation of the empirical average over the samples in
the window.
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The observer at time τ can be rewritten as an estimator

Φz(τ) = E[Φz(τ)] + εest(τ), (20)

where εest(τ) is the observer estimation error. Now, assuming the observer is invariant to ν
(property (c) holds), the first order Taylor expansion of E[Φz(τ)] around θ(t) for all τ ∈ It
yields

E[Φz(τ)] = E[Φz(t)] + (Jθ(E[Φz(t)]))(θ(τ)− θ(t)) + εlin(t, τ) (21)

where Jθ(E[Φz(t)]) denotes the Jacobian of E[Φz(t)] with respect to θ, i.e., (Jθ(E[Φz(t)]))ij =
∂E[Φz(t)]i/∂θj , and εlin(t, τ) consists of residual higher order terms. Finally, (21) gives a
rigorous formulation of the linearization in (3), where Kz(t) = (JθE[Φz(t)]) and ε(t, τ) =
εlin(t, τ) + εset(t, τ).

3.2 Observation Quality Empirical Test

The observability and stability properties, designated by the bi-Lipschitz condition applied
to the observation function, suggest that the quality of an observer may be related to
the ratio between the lower and upper bounds, A and B, respectively; as the bounds are
tighter, the observation function is more regular and deforms less the intrinsic state, thereby
allowing for a more accurate inversion of the observation.

Substituting the linearization (21) into (17) and (18) yields that the observability and
stability conditions can be rewritten as

A ≤ ‖Kz(t)‖2 ≤ B. (22)

In addition, the relation between the local covariance matrices and the Jacobians of the
observers in (5) implies that the local covariance matrices of size m×m are of lower rank d.
This implies that Ĉ(t) has approximately d nonzero positive eigenvalues, and each eigenvalue
approximates the square of the corresponding singular value of the Jacobian matrix Kz(t).
Since the lower and upper bounds A and B are given by the smallest and largest singular
values of the Jacobian matrix Kz(t) over all times t, their ratio can be estimated empirically
via

ρ̂(t) =

√
ηd(t)

η1(t)
≈ A

B
(23)

where ηj(t) is the j-th largest eigenvalue of Ĉ(t). The empirical ratio ranges between
0 ≤ ρ̂(t) ≤ 1, where 0 implies distorted observables and 1 implies a well represented signal
(the observation operator as function of the hidden state is close to identity).

We remark that in case d is known, the eigenvalues ηd+1, . . . , ηm indicate the invariance
of the observer to the nuisance factors. In case d is unknown, it can be determined by the
spectral gap of the spectrum of the empirical covariance matrices.

4 Time Deformations and Scattering Moments

Nonlinearities in complex systems usually introduce deformations and an intermittent be-
havior. In the present work, we focus on a special type of such artifacts – time deformations,
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which are widely spread in real-life signals. Although the focus of the analysis in this sec-
tion is on time deformations, many of the results can be extended to deformations and
intermittencies in general [23, 24, 35].

4.1 Fourier Power Spectrum and Instability to Time Deformations

A common observer of (usually 1-dimensional) signals, which is also widely spread in mani-
fold learning techniques [36, 37], is the Fourier power spectral density. Define the observables
ΦF z(t) as the vectors

ΦF z(t) = (ΦF z(t, ξ))ξ , (24)

with

ΦF z(t, ξ) =

∣∣∣∣∫ z(τ)ejξτw(t− τ)dτ

∣∣∣∣2 ∗ φ(t) (25)

where w(t) is the short-time analysis window, t is the time frame index, and ξ is the
frequency band. ΦF z(t) is therefore the Fourier power spectrum estimate of time frame t
obtained by averaging the square amplitudes of the Fourier transform of the signal in time
using a smoothing window φ(t) of length Ls. The Fourier power spectrum itself is defined
as

E[ΦF z(t, ξ)] = E
∣∣∣∣∫ z(τ)ejξτw(t− τ)dτ

∣∣∣∣2 . (26)

Consider a special case in which the output signal x(τ) of a dynamical system undergoes
time deformation, which is given by

z(τ) = x(τ + θ(τ)). (27)

In this special case, for simplicity, we assume that the time deformation is the only hidden
state variable controlling the measured signal, i.e., d = 1.

By applying linear approximation to θ(t) in each short time analysis window w(t) around
t with respect to t, the time deformation can be split into translation and scaling:

z(τ) = x(τ + θ(τ)) ' x(τ + θ(t) + θ′(t)(τ − t)) = x(θ(t)− tθ′(t) + τ(1 + θ′(t)) (28)

where τ is the time index of the measured signal, t is the time frame index of the short time
power spectral density, and θ′(t) is the first derivative of θ(t) with respect to t. Since the
Fourier power spectrum is time shift invariant and by utilizing the smoothness of the short
time analysis window (insensitive to small dilations), we get that

E[ΦF z(t, ξ)] ' E[ΦFx(t, ξ/(1 + θ′(t)))] (29)

Thus, (29) implies that even small time deformations (θ′(t) � 1) are translated to large
distortions in high frequencies (ξ � 1). As a result, we need to look for a better observer
which is stable with respect to the deformation.

Next, we provide an empirical test to identify time deformations. Differentiating (29)
with respect to the time frame index yields

∂E[ΦF z(t, ξ)]

∂t
= ξ

θ′′(t)

(1 + θ′(t))2
(E[ΦFx(t, ξ/(1 + θ′(t)))])′ (30)
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where θ′′(t) denotes the second derivate of θ(t) with respect to t, and (E[ΦFx(t, ξ)])′ denotes
the first derivative of E[ΦFx(t, ξ)] with respect to the frequency band variable. Differenti-
ating with respect to the frequency yields

∂E[ΦF z(t, ξ)]

∂ξ
=

1

1 + θ′(t)
(E[ΦFx(t, ξ/(1 + θ′(t)))])′. (31)

Let γ(t, ξ) denote the ratio of the partial derivatives, which is given by

γ(t, ξ) =
∂E[ΦF z(t, ξ)]

∂t
/
∂E[ΦF z(t, ξ)]

∂ξ
= ξ

θ′′(t)

1 + θ′(t)
(32)

and its logarithm separates the dependencies on time and frequency and can be expressed
as

log γ(t, ξ) = log ξ + α(t) (33)

where α(t) = θ′′(t)/(1 + θ′(t)). Finally, averaging over time yields∫
log γ(t, ξ)dt = log ξ +

∫
α(t)dt. (34)

Thus, to test time deformation presence, we propose to empirically compute the aver-
age log ratio

∫
log γ̂(t, ξ)dt over the signal samples in the available time interval for each

frequency, where

γ̂(t, ξ) =
∂ΦF z(t, ξ)

∂t
/
∂ΦF z(t, ξ)

∂ξ
, (35)

and test whether it is a linear function (the curve of the function is a line) of the frequency
bin with slope 1.

We remark, that under our assumptions, the time deformation is the main source of
variability and the other “nuisance” factors change slowly. Without time deformations,
only slow “nuisance” factors remain to drive the dynamics of the system, and hence, the
time derivative of the Fourier power spectrum should be close to zero.

4.2 Scattering Moments

Scattering moments are computed based on a cascade of wavelet transforms and modulus
operators, and can be viewed as expected values of a transformation of the random signal
[23, 24]. In this section, we briefly review their construction procedure. For simplicity, we
will merely show here the construction of the first and second order scattering moments. In
addition, we show it for 1-d signals, i.e. z(t) ∈ R. For high dimensional signals, the same
procedure is applied to each coordinate independently.

Let ψ(t) be a complex wavelet, whose real and imaginary parts are orthogonal and have
the same L2 norm. Let ψj(t) denote the dilated wavelet, defined as

ψj(t) = 2−jψ(2−jt), ∀j ∈ Z. (36)

Define the first and second order scattering transforms of z(t) as

ΦSz(t, j1) = |z(t) ∗ ψj1(t)| ∗ φ(t) (37)

ΦSz(t, j1, j2) = ||z(t) ∗ ψj1(t)| ∗ ψj2(t)| ∗ φ(t), (38)
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where φ(t) is the wavelet scaling (analysis) window of length Ls.
The first and second order scattering moments of z(t) are defined as the expected values

of the modulus of the wavelet transform of z(t) and are given by

E[ΦSz(t, j1)] = E [|z(t) ∗ ψj1(t)|] , (39)

E[ΦSz(t, j1, j2)] = E [||z(t) ∗ ψj1(t)| ∗ ψj2(t)|] (40)

Let ΦSz(t) denote the observables computed from the signal samples z(t) based on the
estimates of the first and second scattering moments:

ΦSz(t) = (||z(t) ∗ ψj1(t)| ∗ ψj2(t)| ∗ φ(t) : ∀(j1, j2) ∈ Zm,m ∈ {1, 2})j1,j2 . (41)

Scattering moments have been shown to be an observer that is especially suitable for
deformations and intermittencies [23, 24]. In particular, it was shown that the scattering
moments are stable (Lipschitz) with respect to time deformations. Therefore, we claim that
the application of the scattering transform as an observer prior to the application of the
manifold learning methodology is natural and useful. First, scattering moments have the
properties of “good” observers as described in Section 3.1. Second, they can be accurately
estimated from a single realization of the signal with a low estimation variance. Third,
we will show in Section 5 that, indeed, for simulated and real signals, scattering moments
outperform the commonly used Fourier power spectrum.

5 Experimental Results

5.1 Test Case - Autoregressive Process

In this section we examine a particular case of a linear system that is mathematically trace-
able and present the results on this synthetic example to illustrate our proposed methodol-
ogy.

Consider a case in which we measure the output of a first order time variant autoregres-
sive (AR) system with time deformation. Let z(t) denote the output signal of the system,
whose time evolution (in discrete time) is given by

x(t) = ν(t) ∗ u(t) + θ1(t)x(t− 1)

z(t) = x(t− θ2(t)) (42)

where θ(t) = (θ1(t), θ2(t)) is the hidden state that controls both the system temporal
dynamics and time deformation, ν(t) is a nuisance factor, and u(t) is a white Gaussian
driving/excitation noise. Such an AR process is used in a broad range of applications to
model signals. For example, it is widely used for modeling the human vocal tract in speech
recognition tasks and for modeling financial time series [38, 39].

We remark that in [40], a similar task was presented, but merely one hidden variable
(controlling the dynamics or the deformation) was recovered using model-based compressive
sensing [41], given the other hidden variable. In this work, we will recover both variables
simultaneously.
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The Fourier power spectrum of z(t) at time t can be written explicitly as the follows
(assuming the slow varying nuisance factor ν(t) is unaffected by the time deformation)

E[ΦF z(t, ξ)] = σ2uσ
2
ν(t)

∣∣∣∣ 1

1− θ1(t)e−jξ/(1−θ
′
2(t))

∣∣∣∣2
=

σ2uσ
2
ν(t)

1 + θ21(t)− 2θ1(t) cos(ξ/(1− θ′2(t)))
. (43)

If the autoregressive process is stable, i.e., the pole is in the unit circle θ1(t) < 1− ε for
ε > 0, then, a straight forward derivation yields that there exist a frequency ξ and constants
A and B such that

A ≤ |(Jθ1E[ΦF z(t))ξ| ≤ B. (44)

It implies that the Fourier power spectrum of the signal satisfies (at least in one frequency
bin) the observability and stability conditions with respect to the hidden variable θ1(t) that
control the dynamics of the system. Indeed, in [42], we showed that in the special case, in
which there is no time deformation (θ2 = 0), and the only controlling factor is the pole of
the system (ν = 0), the hidden variable θ1 can be recovered effectively using the Fourier
power spectrum.

On the other hand, the derivative of the Fourier power spectrum with respect to the
derivative of the hidden variable θ′2 is proportional to ξ, i.e., (Jθ′2E[ΦF z(t)])ξ ∝ ξ. This
implies that the Fourier power spectrum is not a stable observation operator with respect
to θ′2(t).

To demonstrate our statements, we simulate z(t), t = 1, . . . , T , where T = 216 is the
number of simulated samples, according to (42). The hidden variables are simulated ac-
cording to

θ1(t) = 0.1 + 0.3 sin(πt/T ) + 0.02w1(t)

θ2(t) = 0.1 + 0.4(t/T )4 + 0.05w2(t)

where w1(t) and w2(t) are white Gaussian noise processes with standard normal distribution,
and the slowly varying nuisance factor ν(t) is simulated according to

ν(t) = 0.95 + 0.1 sin(2πt/T ). (45)

First, we empirically test the existence of time deformation in the simulated signal
using the empirical test from Section 4.1. Figure 2 plots

∫
log γ̂(t, ξ)dt as a function of the

frequency logarithm log ξ. Indeed, as expected in (34), we obtain a line, whose slope is
approximately 1. We remark that repeating the simulation with θ2(t) ≡ 0 yields a roughly
constant line.

Figure 3 shows the obtained results of the application of Algorithm 1 to the simulated
signal using the Fourier power spectrum as an observer. Figure 3(a) depicts the eigenvalues
of the kernel λi. As seen, there is one dominant eigenvalue and the rest are much smaller. It
implies that merely one hidden variable is identified. Figure 3(b) shows a scatter plot of the
T coordinates of the obtained principal eigenvector ϕ1 as a function of the corresponding
T samples of the hidden variable θ1(t), which controls the evolution of the AR system. We
observe a strong correspondence (high correlation) between the values, suggesting that the
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Figure 2: Empirical test for time deformation. A plot of
∫

log γ̂(t, ξ)dt as a function of the
frequency logarithm log ξ.

hidden variable is discovered and well represented by ϕ1. Figure 3(c) shows a scatter plot of
the T coordinates of ϕ2 as a function of the corresponding T samples of the hidden variable
θ2(t), which governs the time deformation. As seen in the figure, the correspondence is
weak, implying that ϕ2 does not represent well θ2(t). Indeed, Figure 3(a) indicates that
only a single variable is recovered in this experiment. This demonstrates the analysis in
Section 4.1 that shows that Fourier power spectrums are unstable observers in presence of
time deformations.

Figure 4 is similar to Fig. 3 and shows the obtained results of the application of Al-
gorithm 1 to the simulated signal using the scattering transform as an observer. Figure
3(a) depicts the eigenvalues of the kernel λi. As seen, compare to Fig 3(a), the spectrum
decay is slower, indicating there are several dominant components. It implies that more
than one hidden variable is identified. Figure 4(b) shows a scatter plot of the T coordinates
of the obtained principal component ϕ1 as a function of the corresponding T samples of
the hidden variable θ1(t). We observe a strong correspondence (high correlation) between
the values (similar to Fig. 3(b)), suggesting that the hidden variable is discovered and well
represented by the principal component in this case as well. Figure 4(c) shows a scatter
plot of the T coordinates of ϕ2 as a function of the corresponding T samples of the hidden
variable θ2(t). Here, unlike in Fig. 3(c), the correspondence is strong, implying that θ2(t)
is recovered and represented well by ϕ2. These results correspond to the slower decay of
the spectrum shown in Fig. 4(a) compared to Fig. 3(a) and to the fact that the scattering
transform is a bi-Lipschitz observer with respect to time deformations.

5.2 Intracranial EEG Signal Analysis

In this section, we apply our method to intracranial EEG (icEEG) signals collected from
a single epilepsy patient at the Yale-New Haven Hospital. The problem of identifying pre-
seizure states in epilepsy patients has become a major focus of research during the last
few decades [43, 1, 44]. Still, the question whether such states exist, and in particular,
whether they can be detected in icEEG signals, is a controversy in the research community
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Figure 3: The obtained results of the application of Algorithm 1 to the simulated signal
using the Fourier power spectrum as an observer. (a) The eigenvalues (spectrum) of the
kernel λi. Only one dominant eigenvalue exists, which implies that merely one hidden
variable is identified. (b) A scatter plot of the T coordinates of ϕ1 as a function of the
corresponding T samples of the hidden variable θ1(t), which controls the evolution of the
AR system. We observe a strong correspondence, suggesting that the hidden variable is
discovered and well represented by ϕ1. (c) A scatter plot of the T coordinates of ϕ2 as
a function of the corresponding T samples of the hidden variable θ2(t), which governs the
time deformation. Since the correspondence is weak, ϕ2 does not represent well θ2(t).

[45]. Thus, extracting in an unsupervised manner hidden variables from icEEG signals
recorded prior to seizures, as well as showing that the extracted variables correspond to
seizure indicators, are of great importance.

We process 3 contacts implanted in the right occipital lobe of the patient: Contact 1
and Contact 2 are located at the seizure onset area, and Contact 3 is located remotely
from seizure onset area. We study recordings that immediately precede six epilepsy seizure
episodes (excluding the seizures themselves), each 35-minutes long. The seizures were iden-
tified according to the analysis of a human expert, who marked the seizure time onset of
each of the 6 seizures. The signals are sampled at rate of 256 Hz. A detailed description of
the collected dataset can be found in [46]. We present the results obtained based on Seizure
1 and report that similar results are obtained for all six seizures.

Figure 5 presents the measured signal in Contact 1, which is located close to the seizure
initiation location, that immediately precedes Seizure 1 . The figure depicts both (bottom)
the signal in time and (top) its Fourier power spectrum. We observe no visible trend in
both the signal or the power spectrum. In particular, it is difficult by observation to notice
differences between the recording parts that immediately precede the seizure and parts that
are located several minutes before the seizure.

We apply two observation operators to the signal. The first is the Fourier power spec-
trum, as described in Section 4.1, using Hamming analysis windows of length 1024 samples
and 50% overlap. The second is the scattering transform, described in Section 4.2, with
Morlet wavelet of length 1024 samples and 50% overlap.

In Fig. 6, we examine the quality of the computed observables according to the empirical
test proposed in Section 3.2. The figure shows the log ratio between the largest and the k-th
eigenvalues of the local covariance matrix as a function of time to seizure onset obtained
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Figure 4: The obtained results of the application of Algorithm 1 to the simulated signal
using the scattering transform as an observer. (a) The eigenvalues (spectrum) of the kernel
λi. The spectrum decay is slower, indicating that more than one hidden variable is identified.
(b) A scatter plot of the T coordinates of ϕ1 as a function of the corresponding T samples of
the hidden variable θ1(t). The strong correspondence suggests that the hidden variable θ1(t)
is discovered and well represented by ϕ1. (c) A scatter plot of the T coordinates of ϕ2 as a
function of the corresponding T samples of the hidden variable θ2(t). The correspondence
is strong, indicating that θ2(t) is recovered and represented well by ϕ2.

based on (a) the Fourier power spectrum and (b) the scattering transform. The presented
ratios are based on the signal recorded in Contact 1 before Seizure 1. Similar results are
obtained for all six seizures and three contacts. According to our analysis, as the ratio
ρ(t) (23) is closer to 1 (and stable over time), the Lipschitz bounds of the observation
(and transform) are better. We observe that the ratios based on the scattering transform
are closer to 1 and more stable over time compared to the ratios based on the Fourier
power spectrum, thereby implying that the scattering moments are indeed better in terms
of observability and stability for this signal.

Figure 7 presents the scatter plots of the 3 dimensional embedding (16) of the observ-
ables, setting d = 3. Figures 7 (a), (c), and (e) are based on the Fourier power spectrum
and Figures 7 (b), (d), and (f) are based on the scattering moments. Figures 7 (a) and
(b) depict the embedding of the 35 minutes prior to the seizure collected in Contact 1, (c)
and (d) in Contact 2, and (e) and (f) in Contact 3. The color of the embedded samples
represents the time to seizure onset (blue – 35 minutes prior to the seizure, red – at the
seizure onset).

Remarkably, we observe that the embeddings of the observables of Contact 1 and Contact
2 based on the scattering moments follow the gradient of the color. On the other hand, the
embedding of the observables of Contact 3 does not show correspondence to the time to
seizure. This implies that our unsupervised data-driven method reveals a hidden state of
the data, which corresponds to a true natural/physical variable that is closely related to the
seizure. In this regard, we emphasize that the obtained correspondence between the time
to seizure and the embeddings based on Contact 1 and 2, which are located near the seizure
onset, and the lack of correspondence based on Contact 3, which is located remotely from
the seizure onset, support the latter statement; it is reasonable to assume that the hidden
states of the signals from Contact 1 and 2 bear more information on the seizure compared
to the hidden state of the signal from Contact 3. We observe that when the contacts are
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Figure 5: 35 minutes of the recorded signal in Contact 1 that precedes Seizure 1. Top: the
signal Fourier power spectrum. Bottom: the signal in time.
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Figure 6: The log ratio between the largest and the k-th eigenvalues of the local covariance
matrix as a function of time to seizure onset obtained based on (a) the Fourier power
spectrum and (b) the scattering transform. The presented ratios are based on the signal
recorded in Contact 1 before Seizure 1. The ratios based on the scattering transform are
closer to 1 and more stable over time compared to the ratios based on the Fourier power
spectrum, thereby implying that the scattering moments are indeed better in terms of
observability and stability for this signal.

near the seizure onset, the method picks up the trend, and when it is located remotely from
the seizure, the method does not recover it.

In addition, we observe that the embeddings of the observables based on the Fourier
power spectrums does not exhibit any trend related to the time to seizure. Thus, the
advantage of the scattering moments as observers for these signals over the Fourier power
spectrums, as identified by the empirical test in Fig. 6, is respected is embedding results.
Without knowing the ground truth in advance, namely, which trend will be recovers and to
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Figure 7: The scatter plots of the 3 dimensional embedding of the observables. Left column:
the embedding computed from the Fourier power spectrum. Right column: the embedding
computed from the scattering moments. Top row: the embedding of the 35 minutes prior
to the seizure collected in Contact 1. Middle row: the embedding of the 35 minutes prior
to the seizure collected in Contact 2. Bottom row: the embedding the 35 minutes prior to
the seizure collected in Contact 3. The color of the embedded samples represents the time
to seizure onset (blue – 35 minutes prior to the seizure, red – just at the seizure onset).

which physical variables it will correspond, we are able to choose the scattering moments
over the Fourier power spectrum as observers for this signal.

To further explain the advantage of the scattering moments over the Fourier spectrum,
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Figure 8: Empirical test for time deformation in the EEG signal. A plot of
∫

log γ̂(t, ξ)dt
as a function of the frequency logarithm log ξ.

we apply the proposed empirical test for time deformation. Figure 8 presents a plot of∫
log γ̂(t, ξ)dt as a function of the frequency logarithm log ξ. We observe a line whose slope

is approximately 1, which suggests according to Section 4.1 the presence of time deformation
in the EEG signal. Since the Fourier spectrum is not stable to deformations, it is not an
appropriate observer. On the other hand, the scattering moments may be more adequate
since they are stable to time deformations.

We note that seizure indication does not necessarily have to be linear in time. However,
we used this assumption since there is no ground truth for the seizure indication, especially
based on EEG signals.

In order to objectively evaluate the embedding, we apply two simple regression tech-
niques. Several remarks are due at this point. First, we use the time to seizure as a ground
truth although, as noted above, it might not be. This assumption helps to evaluate the em-
bedding, however, further research is required. Second, we use standard regression methods
to show that the trend is clearly evident in the embedding. If the time to seizure were to be
estimated from the embedding, the design of regression techniques which further exploit the
dynamics of the signal would have been required in order to obtain optimal performance.

For both regression methods, we randomly select 75% of the samples and use them
for training, and then, we test the regression on the rest 25%. The first method is based
on k-nearest neighbors (KNN). For each test sample, we find the k = 5 nearest training
samples in the embedding and estimate the time to seizure at the test sample as a weighted
interpolation of the time to seizure of the neighbors, using the Euclidean distance in the
embedding as the weight. The second regression method is the Ridge linear regression.
In order to account for the fluctuations observed in the embedding, the time to seizure
of each sample is estimated as a linear combination of the current and 4 preceding (in
time) embedded samples (15 samples in total). These two regression procedures are cross
validated over 1000 repetitions.

Figure 9 presents the root mean square error and the estimation standard deviation
obtained by the Ridge regression. We observe that the regression results respect the trend
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Figure 9: The root mean square error (bars) and the estimation standard deviation (vertical
back lines) obtained by the Ridge regression. The regression results respect the trend
identified in the embeddings. The embeddings of the observables based on the scattering
moments of Contact 1 and Contact 2 indeed show simple correspondence to the time to
seizure. On the other hand, the embeddings based on the Fourier power spectrums or based
on Contact 3 show almost no correspondence.

identified in the embeddings. The embeddings of the observables based on the scattering
moments of Contact 1 and Contact 2 indeed show simple correspondence to the time to
seizure. On the other hand, the embeddings based on the Fourier power spectrums or
based on Contact 3 show almost no correspondence and yield estimation error close to
the degenerate constant estimator (using the mean time to seizure – 17.5 minutes as an
estimator). We note that using the KNN regression, slightly inferior results were obtained.
In addition, applying the two regression methods directly to the observables (rather than
to the embeddings) does not show correspondence to the time to seizure as well.

The results show that there is a prior indication to a seizure in six epilepsy episodes
collected from the same subject. To clinically establish our findings, we intend to test our
method on multiple subjects. In addition, future work will include extensions to scalp EEG,
which are more common and does not require surgery.

6 Conclusions

In this paper, we introduced an unsupervised data-driven method to infer slowly varying
intrinsic latent variables of locally stationary signals. From a dynamical systems standpoint,
the signals are viewed as the output of an unknown dynamical system, and the latent
variables are viewed as the intrinsic state, which drives the system. The primary focus is on
the construction of a distance metric between the available observables of the signal, which
approximates the Euclidean distance between the corresponding samples of the unknown
latent variables. For this construction, both the geometry of the observables and their
dynamics are explicitly exploited. In addition, an analysis of the used observers of the
signal is given, and an empirical test to evaluate their ability to properly recover the hidden
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variables is proposed.
The proposed inference method is unsupervised. Thus, unlike supervised regression and

classification techniques, it allows for the recovery of intrinsic complex states of dynam-
ical systems, and is not restricted to learning “labels”. Indeed, experimental results on
real biomedical signals show that the recovered variables have true physiological meaning,
implying that some of the natural complexity of the signals was accurately captured.
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