
Yale University
Department of Computer Science

Relating Two Formal Models of Path-Vector Routing

Aaron D. Jaggard Vijay Ramachandran

YALEU/DCS/TR-1301
July 2004

This work was partially supported by the U.S. Department of Defense (DoD) University Research Initiative
(URI) program administered by the Office of Naval Research (ONR). A revised version of this work will
appear in Proceedings of IEEE INFOCOM 2005.

1

Relating Two Formal Models
of Path-Vector Routing

Aaron D. Jaggard, Vijay Ramachandran

Abstract— This paper unifies two independently devel-
oped formalisms for path-vector routing protocols such as
the Border Gateway Protocol (BGP), the standard inter-
domain routing protocol for the Internet. The works of
Griffin, Jaggard, and Ramachandran [4] and Sobrinho [8]
proved conditions for guaranteed protocol convergence,
but as they operate at different levels of abstraction in
modeling the protocols, the relationship between them
is not obvious. Here we provide a rigorous translation
between the two frameworks and use it to connect the
convergence results, yielding a more complete set of
analysis tools than in either paper alone. We motivate
our discussion by presenting an example of applying both
frameworks to analyze a set of protocols; in doing so,
we show how the models, in conjunction, give important
guidelines for protocol design.

Index Terms— Graph theory, Routing

I. INTRODUCTION

The Border Gateway Protocol (BGP) is a path-vector
protocol used for inter-domain routing on the Inter-
net [7]. Because the domains, or autonomous systems
(ASes), are independently administered, routing is cal-
culated on a hop-by-hop basis: Each AS learns infor-
mation about reachable destinations from its neighbors,
determines best routes based on its routing policies,
and shares its choice with its neighbors who, in turn,
determine their best routes using their policies. The
languages and techniques used to write policies are
not part of the BGP specification, however. Routers
are usually configured using vendor-developed languages
that have evolved from the needs of router operators but
in an environment lacking vendor-independent standards.
Configurations can be quite expressive, allowing network
engineers to encode complex policies that deal with
various scenarios and interests.

This work is partially supported by the U.S. Department of
Defense (DoD) University Research Initiative (URI) program ad-
ministered by the Office of Naval Research (ONR). A. D. Jaggard
is at Dept. of Mathematics, Tulane Univ., New Orleans, LA, USA,
adj@math.tulane.edu; he is partially supported by ONR Grant
N00014-01-1-0795. V. Ramachandran is at Dept. of Computer Sci-
ence, Yale Univ., New Haven, CT, USA, vijayr@cs.yale.edu;
he is partially supported by a 2001–2004 DoD NDSEG Fellowship
and by ONR Grant N00014-01-1-0795.

This expressiveness comes with a cost: Interaction be-
tween locally defined routing policies can lead to global
routing anomalies, such as protocol divergence [1], [6],
[9]. Unfortunately, in the general case, it is NP-hard to
check all policies to prevent such interactions before they
happen [5], and the protocol is not built to detect such
interactions even when they happen. This motivates the
study of path-vector protocols from a design perspective.
Ideally, we want a balance of expressiveness and robust-
ness1; however, this is not possible with today’s BGP-
configuration methods. To achieve this, we must under-
stand the effect of policy elements on protocol behavior
so that appropriate policy-configuration techniques and
languages can be designed.

Recently, papers by Sobrinho [8] and Griffin, Jaggard,
and Ramachandran [4] presented independently devel-
oped formal models for path-vector routing. Both are
frameworks for protocol design, rigorously defining de-
sirable protocol properties and identifying the conditions
needed to achieve them. Both papers establish abstract
formalisms with which to discuss protocol semantics
separate from specific networks or implementation de-
tails. Furthermore, both papers provide protocol-design
guidelines that provably guarantee protocol convergence
on any network. Although the results are similar, the
relationship between these two models is unclear.

This paper establishes this relationship and provides a
context for understanding the process of protocol design
from abstract specification to implementation. We not
only prove that many results from the two papers above
are indeed equivalent, but we also show how to translate
a protocol-design specification and framework-specific
design properties from one model into the other. This
is beneficial because, as we show, each model has its
particular strengths in discussing different parts of the
protocol-design puzzle. The models focus on different
levels of abstraction of protocol design; being able to use
the complementary machinery of these two frameworks
allows a more complete analysis of a protocol. Finally,
we summarize what is known about achieving robustness
and other design goals, using our equivalence results.

1These properties are discussed in the next section.

2

A. Related Work

A series of papers apply theoretical methods to ana-
lyze the convergence of BGP and related protocols. Gao
and Rexford in [3] showed that obeying constraints on
local configuration can guarantee global BGP conver-
gence. Griffin, Shepherd, and Wilfong [5] introduced the
Stable Paths Problem (SPP) to model the static semantics
of path-vector routing and introduced a rigorous model
for analyzing robustness, giving hardness results for the
underlying problem that inter-domain routing protocols
are trying to solve. Gao, Griffin, and Rexford [2] com-
bined the results of these two papers and showed how
to use the previous results to design a safe protocol
allowing back-up routes. All of these papers recognize
the various routing anomalies in BGP [1], [6], [9] and
attempt to constrain the protocol so that the interaction of
autonomously defined policies do not result in protocol
divergence.

Griffin, Jaggard, and Ramachandran [4] and So-
brinho [8] extended the work of these papers to complete
frameworks that model path-vector routing protocols in
general. The former proves that inherent trade-offs exist
in the design space of path-vector protocols; in particular,
that reaching a combination of desirable design goals
(including protocol convergence) is impossible without
non-trivial global constraints. The latter gives a simple
model for analyzing protocol convergence. Both of these
prove sufficient conditions that guarantee convergence,
and here we answer the natural question of how these
conditions relate.

II. TWO ROUTING FORMALISMS

We begin with a discussion of two existing formal
models for the design of path-vector protocols. Both
frameworks model the static semantics of path-vector
protocols so that properties can be analyzed without
being tied to the specifics of certain networks or im-
plementations. Before we review each framework in
detail, we discuss some general concepts for path-
vector routing—basic design properties and the intended
routing dynamics—because they motivate the definitions
of the models’ components. For each model, we then
examine the framework components, the relationship of
those components to routing dynamics, and any relevant,
framework-specific properties.

A. Path-Vector Routing

Design Properties The work in [4] identifies several
dimensions of the protocol design space and the trade-
offs inherent in this space. The framework in [8] is more
abstract, thus it does not model all of these dimensions.

In this paper we focus on properties regarding protocol
convergence, which is modeled by both frameworks and
is arguably the most important protocol-design goal.
Below we give definitions for these properties of interest;
they are compatible with the formal definitions in [4]
and [8].

EXPRESSIVENESS The expressiveness of a protocol
is essentially the number of routing configurations that
can be captured by the protocol, i.e., how can route
information be set by a router, and how many ways can
paths be ranked at a node?

ROBUSTNESS A protocol converges robustly on a
network if a unique routing solution is found, even in
the presence of link or node failures.

OPTIMALITY A protocol converges optimally if
every router is assigned its most preferred path out of
all possible paths (not just those made available to it
while running the protocol).

Routing Dynamics Routes to a network destination d
are established using the following iterative process: the
router most directly associated with d, e.g., the BGP
speaker for d, originates routes to d by notifying its
neighbors that it can reach d; its neighbors then advertise
to their neighbors that they can reach d, etc. A router
may receive multiple advertisements for paths to d; it
must then decide which path is best. Because each AS
is administered autonomously, this choice depends only
on the policies configured locally at that router. What in-
formation about paths is available to the router is part of
the protocol specification: the routing frameworks both
have some path-data-structure component that models
this. Policies, then, are essentially transformations to the
path data structure during an advertisement exchange
between neighbors that affect the choice of best path.
Both frameworks model constraints on these policies as
part of the protocol specification. The model in [4] differ-
entiates policies applied when receiving an advertisment,
an import policy, and those used when sending a route
advertisement, an export policy. Changes in routes can
occur when links or nodes are added or removed from
the network and when changes are made to router config-
urations; routes are then withdrawn or added by sending
the appropriate reachability advertisements. Because all
choices of best path depend on the composition of
policies along advertised routes, changes in best route are
advertised using the above-mentioned iterative process.

B. Path-Vector Algebras

Framework Components A path-vector algebra [8]
describes some basic semantics of a path-vector protocol.
It is a seven-tuple (W, �, L, Σ, φ, ⊕, f) comprising:

3

W a set of weights totally ordered by �;
L a set of labels;
Σ a set of signatures containing the special sig-

nature φ;
⊕ a binary operation ⊕ : L × Σ → Σ; and
f a “weighing function” f : Σ → W .

Signatures model the path data structure; they contain
enough information to determine a path’s weight using
the function f . Weights influence choice of best route;
heavier paths are less preferred. Each directed signaling
edge in a network is associated with a label, which
models the transformation made to a path’s data structure
when advertised along the edge, i.e., labels correspond to
import and export policies along the edge. The operation
⊕ computes the signature for a path advertised to a
neighbor given the label on the signaling edge and the
path’s original signature; this amounts to applying the
edge policy to the path data structure on extension.

Note that instantiating an algebra with particular la-
bels, signatures, etc., produces a protocol; this protocol
may then be instantiated with a specific network and
assignments of weights to edges, etc..

Dynamics Given an algebra, a path-vector protocol
consistent with it would run in accordance with the
following dynamics: a node v knows of path P to d
when it has a signature for P , either s(d) for the empty
path to d (when d is in v’s own AS), or s(P) for a path
extending a neighbor’s path to d; the best path P ′ to d is
the path with lowest weight; to advertise a path P to u,
s(P) is sent along the signaling edge (v, u) with some
associated label l, and s(uP) = l⊕s(P) is the signature
of the imported, extended path at u.

Property Definitions It is assumed that the following
two properties hold for any path-vector algebra.

MAXIMALITY ∀α∈Σ−{φ} f(α) ≺ f(φ)
ABSORPTION ∀l∈L l ⊕ φ = φ

The special signature φ represents an unusable path, and
so these properties mean that an unusable path is always
least preferred and is never extended to a usable path.

The following three properties are relevant to studying
protocol convergence and optimality.

ISOTONICITY ∀l∈L ∀α,β∈Σ (f(α) � f(β))
⇒ (f(l ⊕ α) � f(l ⊕ β))

MONOTONICITY ∀l∈L ∀α∈Σ f(α) � f(l ⊕ α)
STRICT MONOTONICITY ∀l∈L ∀α∈Σ−{φ}
f(α) ≺ f(l ⊕ α)

Isotonicity implies that the relative weights of paths are
preserved when extended along the same edge, i.e., two
paths meeting at a node cannot flip-flop in rank as they
are extended. Monotonicity means that the actual weights
of paths do not decrease as they are extended. Strict

monotonicity is enough to guarantee robust protocol
convergence on any network; monotonicity alone only
guarantees protocol convergence on networks with the
following property (free networks).

FREENESS ∀cycles un···u1u0 ∀w∈W−{f(φ)} ∃0≤i≤n ∀α∈Σ

(f(α) = w) ⇒ (f(l(ui, ui−1) ⊕ α) �= w)
This will be discussed in more detail in Section V.

C. Path-Vector Policy Systems

Framework Components A globally constrained path-
vector policy system (PVPS) [4] is a triple (PV , PL, K)
that models the specification of a path-vector protocol.
The latter two components are not modeled by the
algebraic formalism, so we discuss their roles here only
briefly.

The policy language PL is intended to be a high-
level language for policy writers in which to express
their routing configuration, i.e., how to process path
information on import, export, and origination. A policy
configuration p ∈ PL will essentially be “compiled
down” to a set of transformations on path data structures
that conform to the protocol’s specification of legal
policies. Multiple policy languages can be used for the
same path-vector system PV . The global constraint K

is a predicate on specific networks running the protocol.
It is intended to be an assumption about the network
that cannot be checked by examining nodes’ policy
configurations individually. The constraint can be en-
forced in a number of ways—we will not discuss the
details in this paper—including supplemental protocols
or economic incentives. A non-trivial global constraint
is often necessary to achieve a combination of desirable
protocol design goals [4].

The path-vector system PV describes the underlying
mechanism to store and exchange route information. It,
like the algebra, describes the semantics of the protocol,
but with more attention to some implementation details.
A complete description of path-vector-system compo-
nents can be found in Section 2.2 of [4], but we provide
a brief explanation below.

R is the set of path descriptors, the path data
structure.

ω is the rank map that is used to rank path
descriptors. ω : R → U takes a path descriptor
to a rank in a totally ordered set U .

Lin , Lout are the local constraints on policies.
tin , tout are the protocol transformation functions

that describe how local import and export
policies are applied to path descriptors by the
protocol.

O is the constraint on originated path descriptors.

4

The components of a path descriptor r ∈ R are the
attributes of r. Example attributes are the destination
IP-address block of the path, a preference value, and
the AS-path itself. A descriptor contains enough in-
formation about a path to determine its rank; lower
rank is more preferred. The local constraints are the
primary limitations on the expressiveness of the protocol.
They are the protocol’s specification of legal routing
policies—intuitively, the less strict the constraints, the
more opportunity for policy-generated protocol diver-
gence. Although router operators write policies, it is
important to realize that the router performs the low-level
application of the policies to the path data structures.
The specific way in which this is done is captured by
the protocol transformation functions; e.g., the router
might automatically filter out loops or conditionally
apply policies. O is essentially a data-structure integrity
check on newly originated path descriptors, but could be
used to enforce some additional constraints.

Instances I of the path-vector policy system are pairs
(G,P) of an undirected network G = (V,E) and a
configuration function P : V → PL that maps nodes to
policy configurations expressed in the policy language
PL. A policy configuration determines the import and
export policies at node v for each neighbor u, written
F in

(v,u) and F out
(v,u), respectively.

Dynamics A protocol modeled by a path-vector policy
system would run in accordance with the following
dynamics: nodes originate destinations by creating path
descriptors that satisfy the constraint O; these are then
exported to and imported by neighbors; a best path to a
given destination has lowest rank; once this is done, the
descriptor for the best path is exported to and imported
by neighboring routers to advertise the choice.

If node v advertises descriptors X ⊆ R to node u,
then the descriptors for the extended paths at u will be

f(u,v)(X) = tin
(
v, u,F in

(v,u), t
out(u, v,F out

(u,v), X)
)
.

The function f(u,v) is called the arc-policy function for
signaling edge (u, v). For convenience, we also define
the path descriptor associated with a putative route P =
vnvn−1 · · · v0 from node vn to destination v0 as

r(P) = f(vn−1,vn) ◦ f(vn−1,vn−2) ◦ · · · ◦ f(v0,v1)({r0}),
where r0 is the path descriptor originated by v0 for the
destination of P . If P is not permitted at a node then
assume r(P) = ∅; in particular, for any path P that
contains a filtered subpath, then r(P) = ∅.

Property Definitions We always assume that

∀u,v∈V

∣∣f(u,v)(R)
∣∣ ≤ |R|, (1)

and, in particular, f(u,v)(∅) = ∅, i.e., new path descriptors
cannot be originated by import and export policies. It is
possible that a path descriptor is filtered on import or
export; in this case, one of the nodes or the protocol
has removed the route from consideration, which is
why equality does not always hold in (1). Because of
filtering, a node v might not receive an advertisement
for a destination reachable through one of its neighbors;
the set of path descriptors to the destination at v is then
simply ∅.

The following PVPS property has direct relevance to
protocol convergence.

INCREASING ∀(u,v)∈E ∀paths P=u··· ω(r(P))
< ω(r(vP)) when r(P), r(vP) �= ∅.

A path-vector system that is increasing describes a
protocol that converges robustly for every instance.

III. THREE LEVELS OF ABSTRACTION

Having summarized the algebra and PVPS frame-
works, we now examine the relation between them.
We begin by examining how the two frameworks are
applied to a set of simple protocols. Although these
protocols have a simple route-selection procedure so
that the example is easy to diagram below (see Tables
I–III), the frameworks can just as easily isolate the
important factors for convergence of protocols having
the complexity of BGP itself.

From this example, it becomes clear that modeling
occurs at three levels of abstraction: moving from (1)
properties that describe a set of protocols; to (2) a
specification for one particular protocol with some added
implementation details; finally to (3) the properties of a
given protocol on particular networks. These three levels
of abstraction naturally correspond to: (1) the algebra
framework; (2) the PVPS framework; and (3) instances
of the Stable Paths Problem (SPP).2 We then ask the
natural question of how the two frameworks, and these
levels of abstraction, fit together. In this section, we give
the intuition behind using both frameworks to analyze
protocols at all three levels. Then, in Section IV, we give
a rigorous translation between the two frameworks; this
translation relates the language and notation originally
suited to each framework’s context. Finally, in Section V,
we examine the relationship between the frameworks’
protocol-design guidelines using our translation.

Example Protocols Table I gives a summary of six
example path-vector protocols. In each of these proto-
cols, the path data structure includes a path cost in Z

2SPP was introduced in earlier work by Griffin, Shepherd, and
Wilfong [5]. It is used to describe a metric for expressiveness in [4]
and will be discussed in Section IV, where we incorporate it as a
metric for the algebra framework as well.

5

TABLE I

EXAMPLE PROTOCOLS USING THE PATH DATA STRUCTURE {cost, path length}.

PROTOCOL PRIMARY RANK CRITERION SEC. RANK CRITERION COST CONSTRAINT RANK PROPERTY

(1) cost, prefer lower path length, prefer shorter nondecreasing strict monotone
(2) cost, prefer lower path length, prefer shorter none none
(3) path length, prefer shorter cost, prefer lower none strict monotone
(4) cost, prefer lower none nondecreasing monotone
(5) cost, prefer lower none none none
(6) path length, prefer shorter none none strict monotone

TABLE II

ALGEBRAS FOR PROTOCOLS IN TABLE I.

ALGEBRA WEIGHT LABEL SIGNATURE CNV. PROPERTY

(A) (cost,path length) lexically ordered edge cost ∈ N, +1 path cost and path length strict monotone
(B) (cost,path length) lexically ordered edge cost ∈ Z, +1 path cost and path length cost constraint
(C) (path length, cost) lexically ordered +1, edge cost ∈ Z path length and path cost strict monotone
(D) cost only, prefer lower edge cost ∈ N total path cost monotone
(E) cost only, prefer lower edge cost ∈ Z total path cost cost constraint
(F) path length only, prefer shorter +1 path length strict monotone

and a path length in N; we assume that nodes may
modify path cost on import and export, and that the
protocol automatically updates the path length data as
paths are shared. The protocols differ in which of these
two components they use as the primary determinant
of path rank, whether they use the other component as
a secondary factor, and whether they place additional
restrictions on how the path cost is modified as paths
are extended. As we are primarily interested in relating
these protocols to the algebra and PVPS frameworks,
we do not assume any protocol details at the level of,
e.g., [7].

Protocols (1)–(3) use both cost and path length to
determine the rank of a route while Protocols (4)–(6)
only use one of these components. In Protocols (1)–(2),
the cost of a path is the primary criterion and path length
the secondary criterion for determining rank: paths with
lower cost are always preferred, and paths with shorter
length are preferred among paths with equal cost. In
Protocol (3), the reverse is true, i.e., shorter paths are
preferred most and ties are broken by choosing the path
with lower cost. For Protocols (1) and (4), we require that
path cost does not decrease when a path is extended (this
is indicated in the COST CONSTRAINT column), while
the other protocols allow negative costs to be associated
with edges.

The column RANK PROPERTY abuses notation
slightly; it uses some of the algebra properties discussed
above to describe what happens to path rank in a protocol
(rather than path weight in an algebra) when a path is
extended. In Protocols (1), (3), and (6), the rank of a

path must increase because path length is included in
the calculation of rank and paths only increase in length
as they are extended—thus we say that rank is strict
monotone. Note that in Protocol (2), even though path
length is a component of rank calculation, rank is not
strict monotone or even monotone because the primary
criterion for rank is path cost, which could possibly
decrease (this protocol does not enforce a constraint
on cost values); the lack of a constraint also tells us
nothing about rank in Protocol (5). In Protocol (4), path
cost is constrained to be nondecreasing and is the sole
criterion for determining rank, so we can say the rank is
monotone.

Algebras for Protocols Now consider the algebras
in Table II. Recall that weight essentially describes
some part of rank calculation. Lighter paths are always
preferred to heavier ones; so, to be consistent with
an algebra, a protocol must evaluate a path’s weight
first in determining rank. By their definitions of weight,
Algebras (D) and (E) can, in general, describe protocols
whose primary rank criterion is path cost, Algebra (F)
can describe protocols whose primary rank criterion
is path length, and Algebras (A), (B), and (C) can
describe protocols where rank is computed using some
combination of the two in the correct order.

Of the protocols from Table I, Algebra (F) can de-
scribe Protocols (3) and (6), while Algebra (C) can
describe Protocol (3) only (Protocol (6) does not consider
cost at all; thus, it may be the case that Protocol (6)
breaks ties in path length inconsistent with the smaller-
cost preference of Algebra (C)). Both of these algebras

6

TABLE III

EXAMPLE PATH-VECTOR SYSTEMS USING THE PATH DESCRIPTOR {cost, path length}.

PV RANK MAP POLICY CONSTRAINT

(1) ω : (c, n) �→ (c, n), lexically ordered Lin(f), Lout(f) : ((c′, n′) = f(c, n)) ⇒ ((n′ = n) ∧ (c ≤ c′))
(2) ω : (c, n) �→ (c, n), lexically ordered Lin(f), Lout(f) : ((c′, n′) = f(c, n)) ⇒ (n′ = n)
(3) ω : (c, n) �→ (n, c), lexically ordered Lin(f), Lout(f) : ((c′, n′) = f(c, n)) ⇒ (n′ = n)
(4) ω : (c, n) �→ c ∈ N Lin(f), Lout(f) : ((c′, n′) = f(c, n)) ⇒ ((n′ = n) ∧ (c ≤ c′))
(5) ω : (c, n) �→ c ∈ Z Lin(f), Lout(f) : ((c′, n′) = f(c, n)) ⇒ (n′ = n)
(6) ω : (c, n) �→ n ∈ N Lin(f), Lout(f) : ((c′, n′) = f(c, n)) ⇒ (n′ = n)

are strict monotone because path length must increase
when a path is extended, and both these protocols have
strict monotone rank (as discussed above). Thus, they are
indeed consistent with the algebras’ prescribed behavior.
Note that both protocols implement the semantics of
Algebra (F), but Protocol (3) in its specification breaks
ties by cost while Protocol (6) does not. However,
any protocol implementing Algebra (C) or (F) is strict
monotone and thus converges robustly for any network
(see the CONVERGENCE PROPERTY column of Table II);
essentially, the detail of how the protocol then looks at
cost is irrelevant to convergence. So, the algebra can
be used to isolate the semantics that are most useful
for understanding protocol convergence. (In particular, if
Protocol (6) preferred higher path cost as its secondary
rank criterion, it would still converge robustly on any
network.)

Similarly, Algebra (E) can describe Protocols (1), (2),
(4), and (5); Algebra (B) can describe Protocols (1) and
(2); Algebra (D) can describe Protocols (1) and (4); and
Algebra (A) can describe Protocol (1) only. Because
path cost is most important in calculating weight for
these algebras, the convergence of protocols consistent
with these algebras depends on whether the permitted
edge costs give monotonicity or not; this is seen in
the CONVERGENCE PROPERTY column in Table II.
Protocols consistent with Algebra (B) or (E) could permit
negative edge costs, e.g., Protocols (2) and (5), which
do not necessarily converge robustly on any network.
Indeed, this is specifically why we cannot make a general
robustness claim about Algebras (B) and (E), and why
any consistent protocol’s convergence claim depends on
the protocol’s cost constraint.

Protocols (1) and (4) do have the additional constraint
that cost is nondecreasing; they are not only consistent
with Algebra (E) but are also consistent with Alge-
bra (D). Because edge costs in N give monotonicity, we
can say that Algebra (D) is monotone, and any protocol
consistent with it will at least have monotone rank.

Note that Protocol (1), while consistent with a mono-
tone algebra, has the additional property of breaking ties

in path cost by using a strictly monotone data component
(path length); thus, we can say that Protocol (1) has
strict montone rank—this may not be the case for any
protocol described by Algebra (D), even if the cost/label
set is nonnegative, e.g., Protocol (4). However, the
combination of nondecreasing cost and path length in
Algebra (A) ensures strict monotone weights. Of the
example protocols, only Protocol (1) is consistent with
Algebra (A); Protocol (2) is inconsistent because of its
lack of cost constraint, even though both cost and path
length are used in computation of rank, and Protocol (4)
could break ties in cost arbitrarily, as it ignores path
length.

PVPSes for Protocols In Table III, we show six path-
vector systems that correspond by number to the proto-
cols in Table I. In these systems, the path descriptor is the
same data structure {cost,path length} ⊂ Z × N used
by the protocols; the predicate O requires that originated
path descriptors have the form (0, 0); tin(u, v, f,X) =
{f(r) | r ∈ X : r describes an acyclic path}, i.e.,
the import transform applies import policies but filters
routing loops; and tout(u, v, f, X) = {(c, n + 1) |
(c, n) ∈ f(X)}, i.e., the export transform applies export
policies but increments the path length automatically.
The other components—the rank map ω and the local
policy constraints Lin and Lout—are shown in Table III.

Each PVPS describes the corresponding Table I proto-
col because its rank criteria are captured by the definition
of ω and its cost constraint is captured by the definition
of Lin and Lout . Therefore, the consistency relationship
between the Table II algebras and these PVPSes is
exactly the same as that between the algebras and the
Table I protocols. It can be seen that the PVPS directly
models one protocol, and any protocol that satisfies the
PVPS-framework property ‘increasing’ will converge on
any network. The PVPS framework can also be used to
analyze design properties of a given protocol other than
convergence, but this is beyond the scope of this paper.

Levels of Abstraction Using the two frameworks, we
can discuss protocol design in three distinct levels of

7

TABLE IV

INFORMAL TRANSLATION BETWEEN PATH-VECTOR SYSTEMS AND ALGEBRAS.

Algebra Class-Based PVPS General PVPS
W {g} ⊂ N U
� ≤ ≤U
Σ R R
L {f(u,v)} {f(u,v)}

l ⊕ σ f(u,v)(r) f(u,v)(r)
φ ∈ Σ ∅ ∅

f : Σ → W πgω : R → {g} ω : R → U
monotonicity πgω(r) ≤ πgω(f(r)) ω(r) ≤U ω(f(r))
isotonicity essentially, policies act by edge, not by path

iso. & mono. essentially, policies are consistent with a non-negative per-edge cost function
maximality prefer any route to ∅
absorption f(u,v)(∅) = ∅

optimal in-tree a solution which gives all nodes most-preferred path
local-optimal in-tree a path-vector solution

abstraction: the algebra level, the protocol level, and the
network level. A move from one level of abstraction to
another is not uniquely determined, as we explore below.

Because algebras do not specify all the implementa-
tion details for a protocol, an algebra can describe a
set of path-vector protocols. The detail most relevant to
protocol convergence is how to decide between equal-
weight routes. Because weight influences path rank but
does not totally determine it, some additional method
must be used to rank paths of the same weight. Any
strict-monotone criterion, such as path length, guarantees
robustness for that protocol. The different methods for
tie-breaking correspond to different protocol instantia-
tions of the algebra.

Just as an algebra describes a set of protocols, a
given protocol might have multiple algebras that describe
it. The definition of weight, labels, and signatures in
an algebra correspond to only some part of the path
data structure; different subsets correspond to different
algebras. Thus, in translating protocols to algebras, a
select part of the protocol behavior can be isolated and
studied; this is a useful tool for analyzing convergence
constraints for a complex protocol an an important role
for the algebra framework.

Although a PVPS does not include the bit-level details
of a full protocol specification (e.g., [7]), it does include
all of the essential details of a protocol; we therefore
identify a PVPS with a single protocol. At this level
of abstraction, protocol designers can study the balance
between enforcing constraints, convergence, and other
properties from [4] using results from the PVPS frame-
work.

Any protocol, whether a PVPS or a protocol instance
of an algebra, may be instantiated further to a particular
network with specific node policies or edge weights and

signatures. Each instance is a permitted routing configu-
ration by that protocol; the sets of routing configurations
is used later in this paper as a metric of expressiveness to
rigorously match algebras and PVPSes. Some protocols
conditionally converge and require specific constraints
on the network; one of these constraints is the freeness
property defined in Section II-B, which is an example of
a network-level design property.

IV. MAPPING BETWEEN FORMALISMS

A. Intuition

It is easy to see that both frameworks model similar
protocol components although different notation is used.
So, before showing the rigorous translation between
formalisms, we outline the intuitive relationship between
framework components. Table IV summarizes this cor-
respondence (in addition to the relationship with ‘class-
based’ PVPSes [4]) and the properties defined for each.

The rows of the table list components as follows.
Paths are preferred based upon their weight in the set
W ordered by � (algebra) or rank in the set U ordered
by ≤U (PVPS). Each framework has a function—f and
ω, respectively—that assigns values from the ranking set
to other objects (the set Σ of signatures in an algebra
or the set R of path descriptors in a PVPS).3 Each
path in the network is assigned one of these objects,
so we want to view the sets Σ and R as containing
the information about paths that is exchanged between
nodes. With this in mind, it is natural to identify a

3Path descriptors in class-based systems, discussed again in
Sec. IV-E, have a level attribute g which is the primary factor
in computing the rank of a path. It is natural to associate this
to the primary determinant of path preference, i.e., weight, in an
algebra; this accounts for the differences between the second and
third columns of Table IV.

8

function l⊕ : Σ → Σ, which modifies signatures passed
over an edge labeled with l, with an arc policy function
f(u,v), which modifies path descriptors exchanged over
the edge (u, v); in particular, we should view the labels
of edges as corresponding to the arc policies on edges.
The final component of an algebra, the special signature
φ ∈ Σ for unusable paths, is most naturally identified
with the empty set, the result of filtering paths.

The informal translation of properties between the
two frameworks shows some of their differences. Con-
vergence properties studied in [8] may be translated
to the language of PVPSes as shown in Table IV.
Many of the properties studied in [4] involved policies
and implementation details not explicitly included in
algebras; we thus do not translate these to the language
of algebras, although they may of course be investigated
for particular protocols derived from algebras.

Note that it is the arc policies (combinations of nodes’
import and export policies and the policy application
functions) of a PVPS that correspond to the edge labels
in an algebra; the abstraction of the algebra framework
does not explicitly include the separate import and export
policies of individual nodes.

B. Algebra-Protocol Consistency

Here we make rigorous the relationship between the
three levels of protocol-design abstraction that naturally
follow from our example; we do this by extending the
notion of expressiveness, defined in [4] for path-vector
systems, to algebras. The semantic domain used for
expressiveness is the Stable Paths Problem (SPP) [5];
we give a condensed definition below. An SPP instance
corresponds to one routing configuration (at the network
level of abstraction).

Definition 4.1: S = (G, v0, P, Λ) is an instance of
the Stable Paths Problem (SPP) if G = (V, E) is a finite
undirected graph, v0 ∈ V (called the origin), P is a set
of simple paths in G terminating at v0, and the mapping
Λ takes nodes v ∈ V to a path ranking function λv =
Λ(v). Each λv is a function that takes a path in Pv =
{P ∈ P | P is a path starting at v} to its rank in N. If
W ⊆ Pv, then define the subset of “best paths” in W
min(λv, W) = {P ∈ W | for every P ′ ∈ W, λv(P) ≤
λv(P ′)}. A path assignment for an SPP-instance S is any
mapping π from V to subsets of P such that π(v) ⊆ Pv.
The set candidates(u, π) consists of all permitted paths
at u that can be formed by extending the paths assigned
to neighbors of u. For u = v0, candidates(u, π) = {(u)},
and for u �= v0, candidates(u, π) = {uQ ∈ Pu |
{v, u} ∈ E and Q = π(v)}. A path assignment π
is a solution for an SPP if for every node u we have
π(u) = min(λu, candidates(u, π)).

Two SPP instances are equivalent iff the set of per-
mitted paths and the ordering of those paths by rank at
each node are the same. Let E(S) be the set of all SPPs
equivalent to the SPP instance S.

The constraints of a protocol specification determine
the set of network configurations possible when running
a protocol. This idea motivates the definitions below for
the protocol and algebra levels of abstraction, in which
expressiveness is defined as the set of permitted routing
configurations.

Definition 4.2: Given a path-vector system PV , let
I(w) be a restriction of a PV -instance I in which the
only destination originated is w. Each restriction maps
to an SPP instance S(I,w) in which the set of permitted
paths is {P | r(P) �= ∅}, and at each node v ∈ V ,
the ranking function is consistent with path-descriptor
rank: λv(P1) < λv(P2) iff ω(r(P1)) < ω(r(P2)) and
λv(P1) = λv(P2) iff ω(r(P1)) = ω(r(P2)). Define the
expressiveness of PV as the set M(PV) = {E(S(I,w)) |
w ∈ V, rw ∈ F orig(w) in some PV -instance I}.

Definition 4.3: Given an algebra A, let GA be the set
of all networks whose edges are assigned labels from
A. For each G ∈ GA, let T (G,w) be the restriction of
G where only one destination w is originated with the
signature s(w). Each T (G,w) maps to an SPP instance
SA(T (G,w)) in which the set of permitted paths is {P |
s(P) �= φ} and the ranking functions are consistent with
weights in the following manner:

(i) if λ(P) < λ(P ′) then f(s(P)) � f(s(P ′)),
(ii) if λ(P) = λ(P ′) then f(s(P)) = f(s(P ′)), and

(iii) if f(s(P)) ≺ f(s(P ′)) then λ(P) < λ(P ′).
Define the expressiveness of an al-
gebra A to be the set X (A) ={E(S) | S = SA(T (G,w)) for some G ∈ GA, w ∈ V

}
.

Definition 4.4: A path-vector system PV and an al-
gebra A are consistent iff M(PV) ⊆ X (A).
If A and PV are consistent, we may be able to relate
the properties of each. Because consistency is defined
in terms of equivalence classes of SPPs, we will use
properties which hold for some SPP in each of the
equivalence classes that defines the expressiveness of an
algebra or PVPS. We start with the following definition.

Definition 4.5: Let P be an algebra or PV property.
We say that P can be defined in terms of SPP instances if
there is an equivalent property P̂ that holds for network
instances of the algebra or PV. Formally, the algebra
algebra A has property P iff for every E ∈ X (A), there
is an SPP S ∈ E such that S has property P̂ ; the PVPS
PV has property P iff for every E ∈ M(PV), there is
an SPP S ∈ E such that S has property P̂ .

Example 4.6: Monotonicity is a property that can be
defined in terms of SPP instances because every network

9

instance of a monotone algebra is equivalent to an SPP
with rank functions λ nondecreasing on path extension.

Proposition 4.7: If an algebra A has a property P that
can be defined in terms of SPP instances, then every
PVPS PV consistent with A also has property P .

Proof: If PV is consistent with A, then M(PV) ⊆
X (A); the result follows.

C. Mapping an Algebra to a General Path-Vector Policy
System

Here we show how to use the path-vector-system
framework to describe a protocol whose design speci-
fication is consistent with a given algebra. At its higher
level of abstraction, an algebra describes the behavior
of protocols on just a select part of the protocol’s path
data structure. This part of the data structure is modeled
by the algebra’s signature, which is used to determine
weight; the actual rank of paths with the same weight is
determined individually by nodes and is not modeled by
the algebra.

To instantiate an algebra, we create a protocol whose
data structure—the path descriptor—includes the compo-
nents of the signature and an opaque4 local-preference
attribute that can be set at a node to differentiate paths
of equal weight. The ranking function ω is defined to
first weigh the signature components using the algebra
function f : Σ → W and then consider local preference.

Transformations to signatures are modeled by ap-
plying labels from L using the operator ⊕. As noted
above, these transformations correspond to arc policy
functions. Here we use one possible combination of
node policies that yield arc policies that are consistent
with the label transformations of the given algebra—
we constrain export policies to be the identity function
on path descriptors and constrain import policies to be
those policy functions that correspond to labels. This
choice does affect the implementation of the protocol
and the individual expressiveness of import and export
policies; in specific cases, it may be wise to change these
constraints so that arc-policy functions still correspond to
labels in L without artificially limiting the expressiveness
of export of import policies (but we do not go into details
here). This construction yields the following theorem.

Theorem 4.8: If A = (W,�,L,Σ, φ,⊕, f) is an
algebra, the path-vector system PV with the following
components is consistent with it (in particular, X (A) =

4An opaque attribute is essentially one that is replaced by a null
value when a descriptor is advertised to a neighbor so that the
information in it is kept private.

M(PV)):

R = Σ × N

U = W × Z

≤U = � × ≤
ω = (σ ∈ Σ, n ∈ N) �→ (f(σ),−n)

Lin(F) = [((σ′, n′) = F ((σ, n)))
⇒ (∃ l ∈ L : σ′ = l ⊕ σ)]

Lout(F) = TRUE

tin(v, u, F,X) = {(σ′, n′) | ((σ′, n′) ∈ F (X))
∧ (σ′ �= φ)}

tout(u, v, F,X) = {(σ, 0) | (σ, n) ∈ X is a loopless
path when extended to v}

O(X) = [((σ, n) ∈ X) ⇒ (σ ∈ Σ)]
Proof: Note that by construction, PV allows ex-

actly the same paths as A.
Suppose E ∈ M(PV). Then for all SPP S ∈ E: (I)

λ(P) = λ(P ′) iff ω(r(P)) = ω(r(P ′)) and (II) λ(P) <
λ(P ′) iff ω(r(P)) < ω(r(P ′)). We use these properties
and the definition of ω to show that E(S) ∈ X (A).

For one of these SPPs S, by the definition of ω,
ω(r(P)) = ω(r(P ′)) ⇒ f(s(P)) = f(s(P ′)). Thus,
by (I), λ(P) = λ(P ′) ⇒ ω(r(P)) = ω(r(P ′)) and
so f(s(P)) = f(s(P)) = f(s(P ′)). ω is such that
ω(r(P)) < ω(r(P)) ⇒ f(s(P)) � f(s(P ′)). Thus,
by (II), λ(P) < λ(P ′) ⇒ ω(r(P)) < ω(r(P ′)) and
hence f(s(P)) � f(s(P ′)). By the definition of ω,
f(s(P)) ≺ f(s(P ′)) ⇒ ω(r(P)) < ω(r(P ′)), so by (II)
we have λ(P) < λ(P ′). Conditions (i)–(iii) of Def. 4.3
are thus satisfied and E(S) ∈ X (A).

D. Describing a General Path-Vector Policy System with
an Algebra

The path-vector-system specification contains a defi-
nition of the path data structure, the elements involved
in ranking, and constraints on policies. We can easily
construct an algebra that has the same specification
components.

To do this, let the sets Σ and W of signatures and
weights be the set R of path descriptors and the ranking
set U , respectively. A natural way to construct labels that
correspond to arc policy functions f(u,v)(r) is simply
to list the arguments other than r—the node names u
and v and the policy functions F in

(v,u) and F out
(u,v)—to

the policy application functions from the definition of
f(u,v)(r). Labels then contain sufficient information so
that ⊕ may used to recover f(u,v)(r) as l ⊕ r, with φ
used in place of filtered routes (f(u,v)(r) = ∅).

Theorem 4.9: Given a path-vector system PV =
(D, R, U , ≤U , Lin , Lout , O, tin , tout), let

L(u, v, f1, f2) = X �→ tin(v, u, f1, t
out(u, v, f2, X)),

10

i.e., L(l) is the arc-policy function determined by the
tuple l = (u, v, f1, f2), where u, v ∈ N represent node
identifiers defining a signaling edge (u, v) and f1, f2 ∈
2R are the import and export policies along that edge.
(These tuples are members of the constructed label set L
below.) Then the algebra with the following components
is consistent with PV :

W = U
� = ≤U
Σ = R
φ = signature for filtered routes
L = N × N × {F ∈ 2R | Lin(F)}

×{F ∈ 2R | Lout(F)}
⊕ = l ⊕ (r ∈ R) �→

{
L(l)(r), L(l)(r) �= ∅
φ, L(l)(r) = ∅

f = ω
Proof: (Sketch) By definition, this algebra allows

exactly the same paths as PV . Suppose E ∈ M(PV).
Then for every SPP S ∈ E we have (I) and (II) from the
proof of Thm. 4.8. Using the definitions of f , ⊕, and L
we may show that E(S) ∈ X (A), so PV is consistent
with the algebra A constructed this way.

Although we omit the details here, it is clear that
an algebra constructed in this way for an increasing
path-vector system will be strict monotone, because the
weighing function is just the increasing rank function ω.

This construction errs on the side of being too specific.
The algebra here is defined such that it models protocol
components that are consistent with only minor tweaks
of the original path-vector system. The algebra is meant
to model a subset of path-data-structure components so
that their role can be analyzed; here, we include all
the components in the signature. By doing so, we can
always construct an algebra that is consistent with the
protocol, but not necessarily one that yields generally
applicable results. Depending on the protocol, we note
that it may be more useful to construct an algebra
restricted to some subset of the rank criteria (rather than
the entire path descriptor), because the properties of that
algebra would apply to a greater number of protocol
implementations than those of the construction above.
The intuition used behind mapping the components, i.e.,
the informal correspondence the first and third columns
of Table IV, would still apply.

E. Algebras and Class-Based Systems

An application of the path-vector-system framework
is the class-based path-vector system (Section 8 of [4]).
These systems describe protocols that separate rank
criteria encoded into two attributes: (1) the level attribute,
a shared, nondecreasing integer, which takes precedence

in ranking; and (2) the local-preference attribute, an
opaque integer. The level attribute naturally corresponds
to the shared component of a path data structure used
as the primary rank criterion, modeled by signature
and weight in an algebra, while the local preference
naturally corresponds to the local settings used to break
ties among paths with the same weight. The class-based
systems also have another mechanism for constraining
the ranking order on paths: directed edges in the network
signaling graph have class assignments that identify
the relationship between two nodes; these assignments
naturally correspond to labels.

The translation from algebra to class-based systems is
not straightforward, however. Because the level attribute
is nondecreasing, all protcols described by class-based
systems must be monotonic (thus, we cannot trans-
late non-monotonic algebras). Furthermore, the encoding
from signature components to the level-attribute integer
is only clear if the weight set is countable and the
weighing function f is invertible. In this case, there
is a natural bijection ψ from weights to the natural
numbers, and then σ = f−1(ψ−1(g)) is the signature
σ corresponding to the level value g; the level-attribute
g can be used to encode the signature σ in a path
descriptor. Labels then correspond to increments in level-
attribute values: If l ⊕ σ = σ′, then l corresponds to
the increment ψ(f(σ′)) − ψ(f(σ)). However, the class
structure may provide a better way of describing the
constraints on the system than this encoding does, and
there is no known general way to generate a set of classes
for an algebra.

In the other direction, we note that a consistent
algebra can be constructed to describe a class-based
system where there is a total relative-preference order
among the classes: The weights are (level attribute, class)
pairs; the weighing function ranks paths based on level
attribute first, then on the class assignment for the next-
hop edge; labels are increments to level-attribute values
and class assignments for the edge; and the operator
⊕ changes the signature of paths using the labels in
accordance with the relative-preference and scoping rules
of the class-based system. This mapping will not work,
however, if the classes are not totally ordered in relative-
preference. An example of a total order among classes
is the structure motivated by [2], in which neighbors
are assigned one of three business relationship labels—
‘customer’, ‘provider’, or ‘peer’—and routes are chosen
such that customer routes are most preferred, then peer
routes, then provider routes.

If the class-structure design principles are ignored,
the following algebra is consistent with any path-vector
system because it models only the level attribute. The

11

integers below correspond to level-attribute values (label
integers correspond to level-attribute increments). The
algebra is monotonic because the level attribute is the
primary rank criterion and nondecreasing.

Theorem 4.10: Any class-based path-vector system is
consistent with the following monotonic algebra:

W = N

� = ≤
Σ = N

φ = signature for filtered routes
L = N ∪ {φ}
⊕ = n1 ⊕ n2 �→

{
n1 + n2, n1, n2 �= φ

φ, n1 or n2 = φ

f = identity
Proof: (Sketch) Use (I) and (II) from the proof of

Thm. 4.8 and other arguments as above to show that
E ∈ X (A) for every E ∈ M(PV).

V. EQUIVALENCE OF DESIGN GUIDELINES

The two design properties modeled by both frame-
works are robustness and optimality, and we discuss
these below. As optimality was not considered in the
original work on PVPSes, Sect. V-B illustrates the utility
of our translations in expressing properties in different
frameworks and in obtaining results in one framework
using analysis in the other.

A. Monotonicity and Robustness

The main result from both frameworks is that if paths
increase in absolute rank when they are extended from
router to router, the protocol is guaranteed to converge
on any network. Here we show that these results are
compatible. We start with the following, a composition
of results in [4]:

Theorem 5.1: An increasing PVPS is robust.
This result is meaningful at the protocol level of abstrac-
tion, and it is consistent with the following extension of
Proposition 4 in [8]:

Theorem 5.2: Any protocol consistent with either a
strict-monotone algebra or a monotone algebra with
shortest-paths tie-breaking is robust.
If either one of these theorems is combined with the
translation between models given in Section IV, the other
theorem directly follows. (The equivalence proofs are
omitted due to lack of space.) This shows that these
results are equivalent; this is intuitively clear because any
instance of a strict-monotone algebra can be described
by an increasing path-vector system.

We now address some other results.
Theorem 5.3: Any protocol consistent with a mono-

tone algebra will converge robustly on free networks.

The constraint in Sect. 8 of [4] regarding level-equality
cycles for class-based systems is a specialized version
of this theorem, which is a restatement of Prop. 3
in [8]. In addition, because freeness can be checked
in time proportional to a polynomial in the number of
labels, signatures, and edges of a graph [8], freeness is a
feasible network-level global constraint guaranteeing the
robustness of any protocol consistent with a monotone
algebra. The above theorem can be proven (omitted due
to lack of space) in the path-vector-system framework
using techniques similar to the proofs of Lem. 8.5 and
8.6 in [4]. These proofs can be used directly if the
translation guidelines in Sect. IV-E are used to instantiate
a monotonic algebra as a class-based system.

The theorem below captures one direction of Prop. 5
in [8]; however, it uses our translation between levels of
abstraction to state and prove the result more precisely.

Theorem 5.4: If an algebra is not monotone, there
exists a network instance on which some protocol con-
sistent with the algebra does not converge; i.e., there
exists some path-vector system consistent with every
non-monotone algebra that is not robust.

Proof: (Sketch) Sect. 6.2 in [8] essentially proves
this result by constructing a permitted SPP instance
(DISAGREE from [5]) on which some consistent protocol
would diverge (a non-robust SPP instance). This proof
method applies directly to the path-vector-system frame-
work: Given the algebra, construct a consistent protocol
PV using Thm. 4.8; the same SPP instance used in the
original proof is contained in one of the equivalence
classes in M(PV). Because the SPP instance is not
robust, PV is, by definition, not robust.

In summary, both the algebra and PVPS models can
isolate properties to analyze convergence, and the suffi-
cient conditions are equivalent. The properties translate
by Prop. 4.7.

B. Isotonicity and Optimality

Sobrinho [8] effectively shows that while convergence
depends on monotonicity, optimal convergence depends
on isotonicity. Formally, we have the following result
that combines Prop. 1, 2, and 5 from [8].

Proposition 5.5: A protocol that converges robustly
and optimally is consistent with some monotone and
isotone algebra. Furthermore, there is some protocol
consistent with any monotone and isotone algebra that
converges robustly and optimally.

Optimality is not considered in [4], so we define
the following additional properties for the path-vector-
system framework to translate the results from [8].

PV-ISOTONICITY ∀(u,v)∈E ∀r1,r2∈R ω(r1) ≤ ω(r2)
⇒ ω(f(u,v)(r1)) ≤ ω(f(u,v)(r2))

12

COHERENCE ∀P, loop Q ω(r(P)) ≤ ω(r(QP))
Coherence is an instance property because it depends
on the graph structure, and that PV-isotonicity is both a
property of a PVPS and of a network (in this case, the
condition holds for all edges in the network rather than
all possible arc-policy functions). A PVPS that is PV-
isotone has only isotone instances and is consistent with
an isotone algebra; a PVPS that is not PV-isotone has at
least one instance where arc policy functions violate the
PV-isotonicity condition (instantiation by Prop. 4.7.)

The following propositions about PVPSes are then
analogous to Prop. 1 and 2 in [8]. As noted above, their
statements and proofs (omitted due to lack of space)
follow from applying our translation between algebras
and PVPSes to the corresponding results for algebras [8].

Proposition 5.6: If a PVPS is PV-isotone, then for a
network with coherent policies, there exists an optimal
path from any node u to a destination d such that any
subpath with destination d is optimal on its own.

Proposition 5.7: If a PVPS is PV-isotone, then any
coherent instance has an optimal solution.

Proposition 5.8: If a PVPS is not PV-isotone, then:
1) there exists an instance with no optimal solution;
2) for any non-isotone instance I , there exists an-

other instance I ′ generated by filtering a subset of
permitted routes in I such that I ′ has no optimal
solution.

In summary, the optimality results from [8] can be
stated using the PVPS framework, again allowing anal-
ysis for this property using either level of abstraction
during the protocol-design process.

VI. CONCLUSIONS AND FUTURE WORK

We have established the relationship between the two
recently published formal models for path-vector routing,
the algebra framework [8] and the PVPS framework [4].
In doing so, we provided several theorems that construc-
tively translate between design specifications in the al-
gebra framework and protocol specification in the PVPS
framework. Our translation preserves several important
properties, e.g., (strict) monotonicity (or increasing sys-
tems), isotonicity, and coherence, that are relevant to
studying protocol convergence in both frameworks. This
translation thus aids the design process by giving the
protocol designer the ability to study protocol properties
at several levels of abstraction using languages naturally
suited to these different levels. The combination of
results from the two frameworks, translated and summa-
rized here, and the intuitive relationship between these
frameworks that we have provided allows for a more
complete analysis of path-vector protocol design and
configuration.

There are remaining open questions related to apply-
ing these frameworks. We believe that our equivalence
results further motivate studying routing protocols from
the design perspective in order to find a good balance
between local constraints and global constraints and
between expressiveness and robustness. This may lead
to insight in considering configuration languages for the
PVPS framework.

In addition, the frameworks can be applied to more
interesting examples of protocols than simplified ver-
sions of BGP. The convergence results may prove use-
ful in analyzing path-vector protocols used for intra-
domain routing (e.g., IGRPs) and the interaction between
intra-domain and inter-domain routing. The frameworks
should be equipped to deal with the additional complex-
ity of these scenarios, but, as we have discussed in this
paper, meaningful results may depend on the selection
of an appropriate subset of the path data (or protocol
behavior) to analyze. We give general constructions for
framework design specifications given a particular proto-
col, but this approach may be more general than needed;
application of the theory developed here to additional
specific examples would be interesting and helpful.

Finally, this work models only eBGP. While the guide-
lines do apply to iBGP signaling correctness inside one
AS, the question of using these frameworks to model the
interaction between eBGP and iBGP remains open.

REFERENCES

[1] Cisco Field Note. Endless BGP Convergence Prob-
lem in Cisco IOS Software Releases. October 2001.
http://www.cisco.com/warp/public/770/fn12942.html

[2] L. Gao, T. G. Griffin, and J. Rexford. Inherently Safe Backup
Routing with BGP. In Proc. IEEE INFOCOM 2001, 1:547–556,
April 2001.

[3] L. Gao and J. Rexford. Stable Internet Routing without Global
Coordination. In Proc. ACM SIGMETRICS, pp. 307–317, June
2000.

[4] T. G. Griffin, A. D. Jaggard, and V. Ramachandran.
Design Principles of Policy Languages for Path-
Vector Protocols. Originally published in Proc. ACM
SIGCOMM’03, pp. 61–72, August 2003. Full version
available as Yale Tech. Report YALEU/DCS/TR-1250.
ftp://ftp.cs.yale.edu/pub/TR/tr1250.{ps,pdf}

[5] T. G. Griffin, F. B. Shepherd, and G. Wilfong. The Stable Paths
Problem and Interdomain Routing. IEEE/ACM Transactions on
Networking, 10(2):232–243, April 2002.

[6] D. McPherson, V. Gill, D. Walton, and A. Retana. BGP Persistent
Route Oscillation Condition. Manuscript, 2002.

[7] Y. Rekhter and T. Li. A Border Gateway Protocol. RFC 1771
(BGP version 4), 1995.

[8] J. Sobrinho. Network Routing with Path Vector Protocols:
Theory and Applications. In Proc. ACM SIGCOMM’03, pp. 49–
60, August 2003.

[9] K. Varadhan, R. Govindan, and D. Estrin. Persistent Route
Oscillations in Inter-domain Routing. Computer Networks, 32:1–
16, 2000.

