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Abstract

This paper describes a family of feature-based control algorithms for performing relative
positioning using stereo vision. The vision and control algorithms have the following properties:
they are simple and can be implemented in realtime on using no specialized hardware, they
make minimal modifications to or assumptions about the existing robot control system, and
they are task-independent.

These methods operate by tracking both the robot end-effector and visual features used to
define goal positions. Error signals based on the visual distance between the end-effector and its
target are defined and control laws that move the robot to drive this error to zero are derived.
These control laws have been integrated into a system that performs tracking and stereo control
on a single processor with no special purpose hardware at real-time rates. Experiments with
the system have shown that the controller is so robust to calibration error that the cameras can
be moved several centimeters and rotated several degrees while the system is running with no
adverse effects.

In Preparation for Submission to IEEE Transactions on Robotics and Automation.




1 Introduction

Over the last several years, a great deal of research has been devoted to using vision to guide robotic
systems. Despite these efforts vision-based robotic systems are still considered to be slow, unreli-
able, difficult to calibrate, expensive, and time consuming to build. One reason is the difficulty of
the vision problem. Enormous quantities of visual data must be processed quickly and accurately
enough to be incorporated into a servo-loop that must execute at millisecond rates. This perfor-
mance can usually only be achieved by using specialized, task-specific algorithms and or specialized
vision processing hardware. A related problem is that such solutions usually do not readily gener-
alize to other problems, so each visual servoing problem must be engineered from scratch. Another
difficulty arises from the fact that the accuracy of many visual servoing systems depends on the
accuracy to which the transformation from visual coordinates to robot coordinates—the hand-eye
transformation—is known. Due to the complexity and nonlinearity of the hand-eye transform pa-
rameterization, its computation can be computationally intensive, time-consuming and error prone.

An effective, commercially viable visual servoing system must be portable, inexpensive and
accurate. Furthermore, it must be constructed so that a large variety of tasks can be solved by
composing a small set of basic operations. We have begun the construction of such a set of op-
erations, which we term hand-eye skills. A hand-eye skill can be thought of as a vision-based
control loop that performs a specific type of geometric motion or maintains a geometric constraint.
Example skills would be positioning, alignment, straight-line motion between two reference points,
guarded motion between two visual reference features, and so forth. As noted above, it is particu-
larly important that hand-eye skills be:

Robust to hand-eye calibration error, system time delays, and other disturbances;
Task Independent so that they can be reused in many different situations without change; and

Accurate enough to perform high-precision operations that are difficult to perform using an open-
loop system.

In order to be generic and easy to support, hand-eye skills must also require only modest, easily
acquired types of visual information. Ideally, hand-eye skills should be simple to combine with
position and/or force control to form hybrid control systems.

In order to further illustrate the difference between vision-based positioning and the closed-loop
visual control inherent in hand-eye skills, consider building a tower of blocks using the system shown
in Figure 1(a). The major components of the system are two video cameras on pan-tilt units, a
robot arm, and computers that perform image-processing, low-level control operations, and other
interface-related functions.

Since stereo cameras are available, it is possible to estimate the geometry of a scene from
its stereo projection. Given this geometric information, building the tower of blocks could be pro-
grammed in the usual way—that is, by explicitly commanding the robot to move to the appropriate
geometric positions and opening and closing its gripper. However, the accuracy of the reconstructed
positions depends on the above-mentioned hand-eye transformation. In this system, the hand-eye
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Figure 1. The figure on the left shows a visual servoing system consisting of two cameras on pan-tilt heads
connected via a vision-based controller to a robot arm. The middle and right figure demonstrate positioning
by reducing visual disparity to zero.

transformation includes the intrinsic parameters (scale factors, distortion coefficients, lens centers
and camera constants) and extrinsic (positional) parameters for both cameras. It also includes pa-
rameters describing the kinematics of the pan-tilt heads and the kinematics of the robot arm itself.
Because of the large number of calibration parameters, modeling errors, and mechanical backlash,
even the most careful and intensive calibration process is unlikely to produce an extremely accu-
rate hand-eye transformation. Consequently, it is difficult to predict the accuracy of reconstructed
workspace positions or to guarantee the reliability of the system.

The hand-eye skills described in this article control the robot based on observations of both
the manipulator and a target position during motion. With this information, it is possible to
perform extremely accurate vision-based positioning despite calibration errors. Figures 1(b) and
1(c) illustrate the basic principle. In (b), the cameras observe the angles #; and 6, between a point
on the gripper and the corner of a block. If both #; and 6, were zero, the manipulator and the
target would be at the same point in space. This statement is true independent of the locations of
the cameras as long as the target point and the camera centers are not collinear. Thus, if the robot
can be reliably controlled so that #; = 6, = 0, positioning precision depends only on how accurately
the task-relevant features of the block and the manipulator can be observed. If that positioning
precision is enough to guarantee the block will be grasped, then the system is reliable. Likewise,
placing one block on top of the other could be expressed as a motion to a position above the stack,
alignment of the visible faces of a held block and a block on the stack, and a motion downward while
maintaining that constraint. If these operations can also be performed using closed-loop control,
similar statements about accuracy and reliability follow. Thus, it seems that if the geometric
motions for a task can be described in terms of coordinated motions of features in both camera
images, the task can be performed more reliably than by using image-based reconstruction and
open-loop positioning.

This article describes a family of methods for relative positioning and alignment based on
stereo visual feedback. The input to these control algorithms are generic features—the projections
of points and contours—that can be easily and efficiently acquired using window-based visual




tracking [10]. It is believed that this approach provides a promising basis for general-purpose
vision-based manipulation for the following reasons:

e Since the system uses closed-loop feedback, the accuracy of the system is independent of
calibration. In practice, it has never been necessary to perform an accurate calibration of the
system.

e The use of stereo makes it possible to position and orient in three dimensions without using
prior geometric structure about objects or features involved.

o Target positions for the manipulator are defined using the same visual tracking mechanism
used for the manipulator itself. Consequently, task specifications are immune to changes in
position or attitude of the target station during execution.

e Since visual feedback is implemented in the servo loop, it is possible to implement hybrid
control modes that combine vision with force or position feedback.

o It appears that adaptive feedback controllers that tune the calibration while the system runs
can be developed.

The remainder of this paper is organized as follows. The next section discusses some of the
relevant literature visual servoing literature, and defines two vision-based relative positioning prob-
lems. Section 3 describes the solutions to these problems. Section 4 examines the sensitivity of
these algorithms to calibration error and projection singularities. Section 5 describes an imple-
mented system and presents several experiments devoted to determine the accuracy and stability
of the servoing algorithms. The final section describes work currently in progress on the system.

2 Background and Problem Definition

Visual servoing has been an active area of research over the last 30 years with the result that a
large variety of experimental systems have been built (see [4] for an extensive review and [9, 13]
for a recent collection of articles). Nearly all systems employ what is referred to as a “look-and-
move” approach [27]. This means that the internal robot joint encoders are used to stabilize the
mechanism itself, while visual servoing supplies velocities of position offsets expressed in terms
Cartesian or joint positions. All of the systems referenced below as well as those presented in this
paper are of this type.

A majority of the recently constructed visual servoing systems employ a single camera, typically
mounted on the arm itself e.g. [5, 18, 23, 24, 25]. Mounting the camera on the arm has two
main advantages. First, since the camera is rigidly fixed near the manipulator, the hand-eye
transformation is relatively simple to calculate with high accuracy. Second, many operations can
be programmed using a ego-centric motions. For example, an object might be grasped by moving
“toward” it until contact and then closing the hand. Because it is not possible to recover the three-
dimensional structure of a point or line feature from a single image, nearly all of these systems either
restrict the degrees of freedom of the manipulator, restrict the location of setpoints to a subspace
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of the workspace, or use prior knowledge about the two or three-dimensional geometry of a set of
features. Systems are also differentiated based on whether they are position-based or image-based.
The former define servoing error in a Cartesian reference frame (using vision-based pose estimation)
while the latter compute feedback directly from errors measured in the camera image. Generally,
image-based algorithms have been found to be superior to position-based algorithms. They are less
expensive computationally [5] and they do not subject the control system to estimator dynamics as
do position-based systems. The major disadvantage of an image-based system is that the control
problem is nonlinear.

A few systems employ arm-mounted stereo cameras, e.g. [13], to overcome the difficulties asso-
ciated with monocular projection. The major disadvantages of arm-mounted cameras are the extra
weight they add to the arm, the fact that mechanical modifications are often required to mount
them, the fact that the camera is subject to vibration and danger of collision, and the problems
associated with the arm occluding the camera field of view. Most authors who have investigated
stereo vision do not mount them on the arm. For example, Allen et.al. [1], Rizzi [26], and Anderson
[2] describe real-time stereo-vision-based systems. Stereo vision has the obvious advantage that it
can provide accurate three-dimensional information about features in an image. For this reason,
stereo-based systems are typically constructed as position-based rather than image-based systems—
the vision component provides the Cartesian trajectory of a moving object in robot coordinates.
These positions are used as a reference trajectory for a separate robot control system.

Most visual servoing systems are only as accurate as their hand-eye calibration. This is easily
seen for the stereo systems mentioned above—an error in the estimated hand-eye calibration will
cause the generated reference trajectory to be incorrect. It is also true for most arm-mounted
systems because most such systems do not mount the camera in the manipulator, but near it.
Achieving a particular image-plane feature configuration places the camera at a specific point in
space; the position of the manipulator is only indirectly governed through its kinematic relationship
with the camera. Thus, minor changes in the camera position relative to the manipulator or
alterations in the relationship of the features to the object lead directly manipulator positioning
error.

The example given in the introduction was based on the idea that both the manipulator and
the target were observed. Such systems will be referred as “endpoint-closed-loop” (ECL) systems
indicating that the control error is based on direct observation of the manipulator. Conversely, the
systems described will be referred to as “endpoint-open-loop” (EOL) systems. As described in the
introduction, the major advantage of ECL systems is that they can define a positioning error that
is independent of the hand-eye calibration and thus perform with an accuracy that is independent
of hand-eye calibration error.

Few ECL systems have been reported in the literature. Wijesoma et.al. [29] describe an ECL
monocular hand-eye system for planar positioning using image feedback. In earlier work (8] we
described a similar monocular visual servoing system and examined the use of adaptive control to
compensate for calibration error. Hollinghurst and Cipolla [16] describe an ECL stereo visual servo-
ing system. The system is based on using an affine approximation to the perspective transformation
to reconstruct the position and orientation of planes on an object and on a robot manipulator. This
allows them to define a position-based servo algorithm for aligning and positioning the gripper rel-
ative to the object. They note that the use of the affine model means that their system calibration
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is only locally valid which in turn restricts the operating range of their system. A similar system
was recently described by Chen et.al. [3]. In contrast, the work presented here describes a family
of stereo, image-based, look-and-move algorithms for relative positioning problems. No approxi-
mations to the perspective model are employed. Furthermore, the methods use generic features
and do not require any prior knowledge of object structure or feature positions in order to define
a manipulator setpoint.

2.1 Problem Definitions

The following nomenclature is used throughout the remainder of this article. All positions, orien-
tations and feature coordinates are expressed relative to an arbitrary base coordinate system W.
A coordinate frame is represented by a pair (¢, R), t € R(3), R € SO(3). Camera positions are
represented by the frames C; = (c1, R1) and C; = (c2, R2). It is assumed that ¢; # c;. A rotation
matrix, R;, is composed of three rows represented by the unit vectors Z;, 7;, and Z;. The infinite line
containing both camera positions is referred to as the baseline of the system. ! A plane containing
the baseline is referred to as an epipolar plane, and the intersection of an epipolar plane with the
camera imaging plane is referred to as an epipolar line.

It is assumed that estimates of camera intrinsic parameters (parameters describe the mapping
from camera pixel coordinates to metric units) and camera extrinsic parameters (the spatial posi-
tion of the cameras relative to the manipulator coordinate system) are available. To simplify the
exposition, all observed values are scaled to metric units for a camera lens with unit focal length
(details of computing observed values are given in Appendix A). The units for linear and angular
quantities are millimeters or degrees, respectively, unless otherwise specified. Finally, when dealing
with vector or matrix quantities, the notation (a;b) denotes column concatenation of the vectors a
and b and (a | b) denotes row concatenation of a and b.

Points in R(3) will be written in capital letters. The projection of a point P = ( Py, Py, P)T to
a homogeneous vector p; = (u, v, 1)T in camera image i is given by

P = R(P-c)
Pl

P = (uav’l)T'_'_ﬁ}" (1)

In vector form, this is written p; = g;( P).

An arbitrary line, L, is parameterized by a six-tuple (Lg; L,) where Ly € R(3) is fixed point
on the line and L, € R(3) is a unit vector representing the direction of the line. The vector /;
parameterizing the projection of L in camera image ¢ is

L' = Ri(L,X(Lq-ci)) (2)

!
o= (3)

In vector form, this is written l; = h;(L).

'This differs somewhat from use in e.g. [17] where the baseline is the line segment defined by the two center points.




Figure 2. The geometry of line projection

Geometrically, L’ is normal to the plane passing through the center of projection of the camera
containing the point Ly and the vector L,. The projection of L in a camera image is the intersec-
tion of this plane with the imaging plane. By normalizing the projection as shown, the first two
components of /; encode the normal to the projection of the line, and the final component is the
distance from the line to the image origin. This geometry is illustrated in Figure 2.

For any homogeneous vector p; in the image, it is easy to show that p;-/; is the distance between
the point and the projection of the line in the image plane. It follows that a homogeneous vector
p; in camera image ¢ lies on the line projection /; if and only if p; - /; = 0. Note that line projection
is not defined when L, is parallel to the viewing direction (Lq — ¢;).

The position of a robot to be controlled is represented by a coordinate frame F = (a,Q).
Suppose the point P and the line L = (Lg; L,) are rigidly attached to this frame. If F is moving
with translational velocity u and rotational velocity w expressed in world coordinates, the motions
of P and L are given by:

P = wx(P-a)+u (4)
Ly = wX (Lg—a)+u (5)
Lv = wXLU (6)

In the sequel, the instantaneous motion of the robot is represented by the vector ¢ = (u;w).

A relative positioning skillis a control system or strategy that adjusts the position of a robot so
that a particular geometric relationship between features in the world and features rigidly attached
to a robot is attained. Although there is a potentially large set of such skills, most can be defined
as combinations of or variations on the following two problems:

Problem Definition 1 (Relative Position): Given a reference point P fixed with
respect to W and a reference point .S rigidly attached to F, develop a regulator that
positions F so that P = S using p; and s;, ¢ = 1,2.

Problem Definition 2 (Relative Position and Orientation): Given three
non-collinear, reference points P, S and T rigidly attached to W and two non-parallel
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Figure 3. The geometry of the positioning and alignment problem. The lines L and M define a coordinate
system as do the points P, S and T. The conditions P € L, S € L and T € M fully constrain the relationship
between those coordinates systems.

reference lines L and M rigidly attached to F, develop a regulator that positions F so
that Pe L, S € L, and T € M using p;, $i, ti, li, and m;, i = 1,2 (see Figure 3).

Clearly, the first problem constrains only three degrees of freedom and so the natural approach is
to fix the orientation of the robot and control only position. The second problem constrains exactly
six degrees of freedom. To see this, note that positioning the points P and S on L requires two
degrees of rotational freedom and two degrees of translational freedom. When Pe L and S € L,
satisfying T € M can be accomplished by first rotating about the line L until ((T = Mq)x M,)-L, =
0. L, is now parallel to the plane defined by M and T, so it is possible to translate along L until
TeM.

3 Solutions

As noted in Section 2, there are two possibilities for constructing a control algorithm for these
problems. One possibility is to develop a position-based system. This involves reconstructing
the positions of points and lines in the robot coordinate frame, and then defining a positioning
error in terms of reconstructed positions. The main advantage of this approach is that the control
problem is simplified (it is often linear). However, the disadvantage is that the dynamics of the
estimation system affect the dynamics of the control system. In order to avoid the latter problem,
the control systems described here are all image-based—control errors are defined directly in terms




of feature observations. Since projection of both lines and points is nonlinear, any image-based
control formulation is also nonlinear. Consequently, it would be difficult to design an optimal
closed-loop regulator for either problem. A practical alternative is to employ position-integral-
derivative (PID) control formulations [6]. For the problems described above, the theory underlying
feedback control algorithms of this type can be summarized as follows.

The robot is modeled as a Cartesian positioning device with negligible dynamics. The control
inputs are translational velocities u and rotational velocities w expressed relative to W and applied
about the point a. With no dynamics the robot appears as an integrator to the control system. As
noted above, this assumption is generally reasonable for a look-and-move system since the arm is
stabilized by internal encoder feedback.

Suppose that y = f(z), is a nonlinear mapping from a robot configuration space to an output
(sensor) space, both of dimension n. Given a desired setpoint y*, define e, = y — y and introduce
a new variable z such that z = e,. Taking time derivatives of the error yields the system:

€, = Js(z)z
z = ey (7)

where J; is the Jacobian of f. Because f is nonlinear Jy is a function of the system state, z. If the
system state is not directly available, it must be estimated from sensor data.

Define u = # to be the control input to the system. Provided J; is full rank, u is computed as
u= —Jf(z)"l(kley + koz), k1 >0, k>0 (8)

where k; and k, are constants set by the designer based on desired system performance and other
practical considerations. If the system setpoint y* is static, and the motion system is of the look-
and-move type, then it is possible to set k; = 0. This version of the control system is sometimes
referred to as a resolved rate system [28]. When k; # 0, the presence of the integrator, z, ensures
convergence in the presence of external disturbances, in particular when the system setpoint is a
linear function of time. Although not done here, it is common to add a derivative term to increase
stability of the system and offset the tendency to oscillate under the influence of the integrator.

3.1 Solutions

The construction of a visual servoing system for a problem depends on the definition of an ap-
propriate error term, derivation of the system Jacobian, construction of estimators for unknown
quantities in the Jacobian, and finally a tuning process for choosing k; and kK, and any other pa-
rameters of the system. Applying this process to the problems defined above yields the following
solutions.

Problem 1 The following well-known property formalizes the example in the introduction:

Lemma 3.1 Any arbitrary points P and S not on the camera baseline are coincident
in space if and only if s; = p; and s3 = pa.




Thus, define the joint projection function g(z) = (g1(z);g2(z)), the setpoint y* = g(P), the
error a = g(5)— g(P), and consider the robot configuration space to be only translation. Defining
D; = (S - ¢) - Z;, we have
[ 2T Dy =] ((S—c1)-71) ]|
Dy

9T D1 =2 ((S=c1)-§1)
D}
0

Ja(5) = | #1p,-(5-cr) ) (9)
2

93 D2—2 ((S=¢2)-%2)
D3
0

L

There is a slight difficulty due to the fact that g maps three values—the Cartesian position of a
point—into six values—the homogeneous camera image locations of the projections of the point.
The two constant values can be ignored, but one of the remaining four nonconstant values is
redundant. Expression (8) can be modified to accommodate overdetermined systems as follows:

u= —(Jo( )T Ja(8)) (S (k1o + k22), k1 >0, k2 >0 (10)

Since the error vector has four components and the control vector only three, this control law
only guarantees convergence of a projection of the error term. The complete error vector will be
driven to zero only if the errors inhabit a specific three-dimensional manifold in $(4). This is not
a problem since the geometry of camera projection ensures that the observed error values do lie on
this manifold. In fact, the redundancy will tend to suppress random observation errors.

In many cases the final redundant error can be easily removed. For example, if the cameras are
arranged so that the y axes are approximately parallel, then one of the y components of the camera
observations be discarded. More generally, it is possible to use the camera calibration to define
the epipolar plane through the goal [17]. The observation components can be decomposed into
components parallel to and perpendicular to this plane, and one of the components perpendicular
to it can be discarded.

Problem 2 The error term for problem two is based on the following observation:

Lemma 3.2 Given an arbitrary line L that does not lie in an epipolar plane and a
point P not on the baseline, ly -p; = I3 -p2 = 0 if and only if P € L.

Proof: From (1) and (3), under the stated assumptions it follows by substitution that
the conditions above are equivalent to:

[Ri(P = ci)] - [Ri((La — i) X Ly)]
(P =c)TRTRi((La - ¢i) X Ly)
(P—=ci)-((La—ci) x Ly)

0, i=1,2.




This expression indicates that point P lies in the plane defined by the viewing direction
L4 — ¢; and the direction vector L,. In order to satisfy this constraint for both cameras
simultaneously P must lie at the intersection of the two viewing planes. But unless the
planes for both cameras are identical, in which case the plane is an epipolar plane, this
intersection is exactly the line L and hence P € L. |

Define a positioning error § € £(6) as follows:

(Bl [ pi-h ]
B2 P2l
B3 s1-0
= = 11
p Ba sy -1y ( )
Bs ty - my
L B L t2-m2 |

Based on Lemma 3.2, it follows that, modulo a set of singular configurations, 3 = 0 if and only if
PeL, SeL,andT e M.

In computing the time derivative of 3, recall that the expression a x b can be written as
sk(a)b = sk(—b)a where the skew symmetric matrix is:

0 -z vy
sk((z,y,2T)=| z 0 -2
-y z 0

The time derivative of the first component of the error, 0y, is composed of two terms: the
Jacobian of the normalization operation, and the time derivatives of unnormalized projection,
m = Ry(L, X (Lg — ¢1)). The Jacobian of the normalization operation is:

! mi  —mgym, 0
N((mg,my,m:)T) = -mgm,  m? 0

2 213/2
(mZ + my) —mymg —mymg (mi+ mz)

The full derivative is then

B = p{h =p] N(m)in (12)
m = Ry[sk(Ly)u+ (sk(Ly)sk(a — Lg) + sk(La — c1)sk(Ly)) w]
= Ry[sk(L,) | (sk(Ly)sk(a — Lg) + sk(Lq — c1)sk(Ly))] ¢ (13)

If the origin of F is at Lg (13) simplifies to
m = Ry [sk(Ly) | sk(Lq — c1)sk(Ly)] g

The expressions for the remaining error terms can be computed analogously. The collection of these
row vectors defines the system Jacobian Jg(P, S, T, L, M). Applying (8) using 8 and Jg leads to a
regulator for position and orientation.
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3.2 Parameter Estimation

All of the Jacobian matrices defined above depend on estimates of the Cartesian position and
orientation of features used to define positioning error. This section examines the problem of
estimating the direction of lines and the positions of points as well as the center of rotation, a, of
the robot.

All point and line estimation is performed first deriving a closed-form solution to provide an ini-
tial estimate, and then using difference equations based on perturbation of a closed form estimation
method. These methods have proved sufficient for the applications described in this paper. How-
ever, more sophisticated techniques, e.g. the extended Kalman Filter [7] could easily be substituted
if more is known about the noise characteristics of the system.

Points For an arbitrary point P, the pro jection equations for C; can be written in the form:
Ai(pi) P = bi(pi)

where p; = (u;,v;,1) is the observation of P in camera 1, A; is:

Ziu; — T
Ai—[%vz‘-ﬁ'] (14)
and b; is
bi = A,‘C,‘. (15)
Let p = (p1;p2), A(p) = (A1(p1); A2(p2)) and b(p) = (b1(p1); b2(p2))- The joint system can now be
written:
A(p)P = b(p).

Define the left inverse operator M# = (MT M )"IMT for any matrix M for which the expression is
well-defined. Then it is possible to solve directly for P as:

~ -1
P=[AmTA®)] A@)THp) = A*(p)b(p). (16)
Given a prior estimate P, let ¢ = A(p)P - b(p). Substituting into (16)yields:
Pt = A*(A(p)P - €) = P - A*(p)e.

If P is rigidly attached to F this expression can be combined with feedforward prediction to
yield the sequential estimation rule:

P=utwx(P-a)-kA*(p)e (17)
where 0 < k3 < 1is tuned based on the noise characteristics of the system. The convergence of this

system requires A to have rank 3. It is straightforward to verify algebraically that it will provided
P does not lie on the baseline.
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Lines For an arbitary line L = (L,; Ly), Ly is chosen to be a fixed point which is observed and
estimated as described above. The direction of the line is given by

L, = RT1; x RY1,. (18)

An incremental update for line direction can be derived by defining §; = h; (L) x1;. Let [; = hi(L)
and note that for small differences I; ~ I; — 6; x I;, i = 1,2. Thus, let &; = &; x I,. Substituting into
(18) yields:

/\+ ~ ~
L, = RI(h+e)xRI(I;+e) (19)
= L,+ RTl; x RTe; + RTe; x RTIy + (RTe; x RIey) (20)

Combining with prediction, this leads to the update equation:

—

L,=wx i:, + k4 {R{il X Rgeg + R?el X Rtlrig + (Rfel X Rgez)] . (21)

An approximate rule can be derived by noting that the final term involves products of small factors.
Dropping this term and rewriting using triple products leads to the simpler form:

Ly =wx Ly + ke [(RT6: - RT6;) RTI - RID + (RT 6 + RI&) x L) . (22)

The result of this estimation rule is then normalized to a unit vector.

These rules must also account for the fact that at observation time the assignment of line normals
is arbitrary, and consequently so is the sign of L.. Let 6; denote the angle that the projection of
L makes with the z axis of camera image i, define the vector b; = [cos(6;).sin(6;),0], and finally
let s; = b; - R;L,. If the direction of the projection of L and its estimate agree, this quantity will
be positive, otherwise it is negative. If s; * s3 < 0, the assignment of line normals to inputs is
inconsistent (there is no line such that the direction of the input agrees with the specified direction
of the line in both images). Otherwise, the correct estimate of line direction is signum(s;)L,. This
forces the estimated direction of the line to agree with the direction assigned in the camera image.

Center of Rotation There are several possibilities for determining a. the origin of the robot
coordinate system. First, estimation of a can be dispensed with if a is fixed to be the origin of
W and an accurate kinematic transformation between W and F is always available. The primary
disadvantages of this approach are: 1) the controller must have direct access to the position of th¢
robot; and 2) rotation and translation become highly coupled which tends to destabilize the system
in practice. If a is a known point on the robot arm, the value of a can computed from the robot
kinematics. The disadvantage of this approach is that any error in the hand-eye calibration will
immediately manifest itself in an incorrect value for a. Furthermore, this method again requires
the robot position to be directly accessible to the controller.

Another approach is to estimate a using camera information. If a is observable by the cameras,
then a can be calculated directly using the point estimation techniques described above. More
generally, given any three non-colinear points Py, P;, and P3 with known coordinates in the robot
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coordinate F, and estimated quantities P;, P;, and Ps in global coordinates, it is possible to directly
compute a by solving the equations: :

P.=a+ QP

for a and Q [12, Chapter 14].

Most robot arms support the definition of a tool frame. Given estimates for @ and Lg, the center
of tool frame can be offset by the vector Lq — a. This will cause rotations to occur about the point
L4 which simplifies the Jacobian computation as noted in Section 3.1.

3.3 Variations

There are several useful variants on Problem 2 that allow for different feature inputs or different
types of motions. The roles of points and lines in the definition of § can be interchanged provided
the Jacobian matrix is adjusted to account for the modified definition. One way of defining L (or M)
is by choosing two reference points, call them X and Y, and computing the line that runs through
them. Since perspective preserves colinearity, the directed lines (z; — y1) and (z2 — ¥2) can be
used to compute /; and I;. The problem formulation is also independent of whether the cameras
are stationary in the environment or mounted on the manipulator itself. The only differences in
the solutions are the placement of feedforward terms in the estimation equations (given below) and
some minor adjustments to the system kinematics.

Other types of regulation can be defined by suppressing or altering parts of 3. Define an error K
to be B without components involving M and T. Since the Jacobian, .J,. is nonsquare in this case,
the control vector is computed as:

u=—JT(JJF) (kK + ka2).

This defines an alignment hand-eye skill. The regulator aligns two points to an axis, but leaves
rotation about the axis and translation along the axis free. Figure 4 illustrates how this positioning
primitive could be used to align a screwdriver with a screw. Tracking the sides of the screwdriver
shaft and the screw define the centerline of both. The centerline of the shaft defines the line L and
the intersection of the centerline of the screw with its head and the surface define the points P and
S. Once the alignment is accomplished, the alignment skill can be combined with a force along the
alignment axis and a rotation about the alignment axis to turn the screw.

Choosing an additional setpoint, z;, along I; in only one of the camera images and adding the
error term ||z; — p;|| to & constrains one more degree of translational freedom leaving only rotations
about the line free. Figure 4 shows how this variation can be used to move a floppy disk to a disk
drive slot. The corners of the disk to define two points P and S. The drive slot defines the line L
and the edge of the drive slot provides a setpoint X along L at which to place P.

The modified error term
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Figure 4. Examples of tasks using visual positioning. Upper left: positioning a floppy disk at a disk drive
opening. Upper right: aligning a screwdriver with a screw. Lower left: setpoints for moving a gripper above
a block and then down onto it. Lower right: similar setpoints for stacking the block.

14




[ B ] [ m-h ]
B p2-la
B3 — B (s1—p1)-h e
= = 23
7 By — B2 (s2—p2) 12 (23)
Bs t1-my
L Bs | L l2-my

defines an error that permits independent control of alignment to the line L (3 and 7v4) and
positioning on L (y; and 7;.) That is, the third and fourth components can be used to define a
regulator that controls two rotations for alignment leaving all other degrees of freedom uncontrolled.
This can be combined with any positioning regulator (e.g. the one defined above based on the error
term «) to provide an alternative formulation for positioning and alignment. The floppy disk
problem could have also been solved using this formulation.

Figure 4 shows how these primitives could be combined for the block stacking problem. Using
centerline constructions as discussed above to define L, P, S, and X, the manipulator can be moved
into a grasping position above a block. Using L, M, P, §, and T the manipulator can be moved
onto the block. Similar constructions can be used to move the block above an existing stack, and
then to place the block onto the stack with the proper alignment.

4 Analysis

In the absence of noise, the systems defined above are guaranteed to be stable provided they
do not move through configurations in which the Jacobian matrix is singular. However, since the
control problems are nonlinear, it is extremely difficult to analyze the paths the controllers generate.
Implementations of these algorithms have shown them to be extremely stable, even when exposed
to fairly radical errors in system calibration. These issues are discussed further below.

4.1 Sensitivity to Calibration Error

One of the major concerns in visual servoing is sensitivity of servoing error to errors in the hand-
eye calibration. Although, the nonlinearity of the controller makes it difficult to derive results on
general system stability, a description of the set of the locally stable points in the workspace can be
derived in certain special cases. In general, the behavior of the continuous-time closed-loop control
system follows by substituting (8) into (7) yielding

t
e'y = J;l(Jf(kley + kgz)) = kley + kz/o €y

Or, equivalently
ey = kle'y + k-;ey.

It is well known that solutions to this system of equations are always stable provided the Jacobian
matrix is nonsingular for all points along the path. If the integral gain, k;, is set 0, errors decrease
asymptotically with time regardless of k;. These results assume no parameter (calibration) error.
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Of primary interest in any stereo system is the effect of errors in the relative positions of the
cameras on the servoing system. To this end, consider relative positioning confined to the z — 2
plane with k; = 0. Assume observations are noise-free. The location of two cameras in the plane is
parameterized by the length of the baseline, /, and two angles 6; and 8, describing the orientation
of each camera relative to the baseline. An angle of zero indicates the optical axis of the camera is
perpendicular to the baseline.

The origin of the coordinate system will be chosen as the center of the baseline, so camera 1
is located at (—{/2,0) and camera 2 is located at ({/2,0). Let C* = (I*,60;,03) denote the true
(physical) system configuration, and C = (I,64,6;) = (KI*,60; + 67,602 + 03) be the estimated
system calibration parameters. Under these assumptions, the control value is computed as

S = A7Y(g(8,C"),0)b(g(S,CT),C) (24)
u = =J;Y(8,C) (g(P,C™) - g(5,C)) (25)

where g(-,-), A(+,-), b(+,-) and Jy(+,) are based on the 2-D versions of the quantities described in
expressions (1), (14), (15) and (9) with the calibration parameters represented explicitly.

In this case, the closed-loop behavior of the system is governed by the equation
é=—Jy(S,C*)J;71(5,C)e = M(S,C,C")e. (26)
For a given configuration, C*, and estimated calibration, C, this system will be stable in the

neighborhood of P if Det(M(P,C,C*)) < 0 and Tr(M(P,C,C*)) > 0. Substituting (24) into (26)
and solving the equation Det(M(P,C,C*)) = 0 for P, as a function of P, yields the solutions:

P, = 0 (27)
P, = tan(86,)(P;—1) (28)

P, = —tan(é6y)(P:+1) (29)

(P, — cot(86, — 665))2 + P2 = csc(86; — 86,)? (30)

The first equation reiterates that points on the baseline are always unstable. The next two equations
define a cone-like region that is bounded by lines forming angles 66; and 66, with the baseline.
The final equation defines a circle which is in front of the cameras when the physical cameras point
more toward each other than the calibration parameterization indicates (66; — 662 > 0) and behind
the cameras otherwise. It is easy to show that the center of the circle is stable when it lies in front
of the cameras.

Solving Tr(M(S,C,C~)) = 0 yields a bicubic equation in P, and P,. Although it is possible to
obtain general solutions to this form using computer algebra packages, more insight can be gained
by considering the simpler case where the calibration assumes the cameras point straight ahead
(61 = 62 = 0) and the physical cameras verge in a coordinated fashion (—67 = 63). In this case,
the solutions are:

P,
(P, — cot(661))* + P2

tan(66,) (31)
csc(86,)? (32)
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Figure 5. Stability plots for cameras pointed together 0.3 radians (left) and apart 0.3 radians (right). The
plots above apply to the two degree of problem, the plots below to the six degree of freedom problem.

The first equation defines a line that is in the unstable region already defined above. The second
equation again defines a circle which is in front of the cameras for positive errors in camera vergence
and behind the camera otherwise. However, the the radius of the circle defined above is smaller,
so it defines the boundary of the stable region when §6; > 0. When 66; < 0 the stable region is a
cone bounded by the lines defined by (28) and (29). Hence, for a fixed set of estimated calibration
parameters, the set of stable points shrinks quickly as the physical cameras are rotated toward each
other, but relatively slowly as they are rotated away from each other.

Figure 5 shows the stability regions for §6; = —15 (cameras pointed inward 15 degrees radians)
and the corresponding region for §6; = 15 radians. By way of comparison, the stability region for
the six DOF problem is also shown. It appears that the same qualitative stability results also apply
for that problem.
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Notice that the estimated camera baseline, ! does not appear in any of the stability equations.
In the continuous time case, stability at a point does not depend on baseline errors. This is because
the ratio [/I* appears as a gain in the closed-loop equation. Likewise, errors in any other coefficients
that enter the equations as scale factors (e.g. camera focal length or conversions from pixel to metric
coordinates) do not affect system stability in the continuous time case.

In order to understand the effect of these parameter errors, consider a discrete version of the
system with unit time delay and no calibration parameter error:

€nt1 =€p +1 k en—1

where k is a gain coefficient and t is the sampling time (one over the sampling rate). This system
has characteristic polynomial z2 4+ z + tk = 0 [6]. System is stability is guaranteed when k < 1/t.
The system is overdamped if tk < 1/4 and underdamped if tk > 1/4. So, for example, if t = 0.1,
then k must be less than 2.5 to prevent oscillation.

Since errors in the intrinsic camera calibration parameters and the system baseline appear as
scale factors, their effect can be viewed as modifying the system gain. Calibration errors that
increase the effective gain and tend to destabilize the system, while the opposite errors lower the
effective closed-loop gain and tend to damp the system. Consequently, the effect of incorrect
focal length, scale factors and baseline as well as relative camera orientation can be qualitatively
summarized as follows.

When there are calibration errors, to increase system damping:

Relative Orientation: The physical camera setup should point outward from the calibration
description.

Baseline: The physical camera baseline should be wider than the calibrated system baseline.

Scale Factors: The true camera scale factors (in mm/pixel) should be smaller than the calibrated
scale factors.

Focal Length: The true camera focal length should be smaller than the calibrated camera focal
length.

Of course, the more accurate the system calibration, the better the system performance.

4.2 Singularities

Nonlinear systems typically have singular configurations. These are cases where the system Jaco-
bian looses rank, or equivalently the system looses a degree of freedom and ceases to be controllable.
Setpoints that lie at a singular point are not achievable. For the positioning problem, the set of
singular configurations is quite simple—the Jacobian is singular when the estimated position of
the robot is on the baseline. Any position in the workspace of the robot is attainable provided it
does not lie on this line. Likewise, point position estimation is singular when the point lies on the
baseline.
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The six degree of freedom positioning problem has a more complex set of singularities. These
singularities are most easily described using the error term v defined in (23). Since this is a linear
variation on the original error term f, it has the same set of stable points and the same singularity
structure.

As described in Section 3.2, there are two consistent assignments of direction to the observation
of a line in both cameras. Two of the four possible sign combinations are inconsistent. The choice
of the remaining combinations is arbitrary. To see this, suppose the system is at any nonsingular
point in the space, observes l; and I3, and computes line direction L,. Changing the sign of /; and
I, causes line direction, L, to computed as L) = —L,. Since L, appears in every term of (13),
changing the sign of L, changes the sign of every row in which it appears. Likewise, changing the
sign of /; changes the sign of every error term in which it appears. The two sign changes cancel each
other out and hence the two assignments are equivalent. This property also holds for assignment
of direction to M.

The fact that line direction is arbitrary also suggests that the system may not have a unique
final configuration. In fact, it is guaranteed to have four possible final configurations which are
stable and have zero error. Any path between these stable configurations must pass through at
least one singular configuration.

Consider a single line L = (L,; Ly). Line observation is undefined when L, is parallel to L; —
¢;, 1 = 1,2. In this case, the cross product in (3) yields the zero vector and the division operation is
not well-defined. Physically, this corresponds an orientation where L is parallel to the line of sight
and cannot be observed. This means that part of the error term becomes undefined any time that
L or M become parallel to the line of sight of either camera.

In addition, there are two other important cases to consider:

1. When L, lies in the epipolar plane defined by Ly, ¢; and ¢z, it is easily seen from (3) that
rotations about the normal to the plane do not change the line projection, and hence cannot
be observed. Note that the poses for which the projection of L is undefined are all positions
within an epipolar plane.

2. The error term I;-(s;—p;) reaches its maximum value when the projection of L is perpendicular
to the line through s; and p; in the image. Consequently, the Jacobian vanishes at that point.
For a stable system this singularity never arises since the magnitude of the components of
the error term are bounded by their initial value.

From item 1, it follows that line estimation cannot be performed for lines lying in an epipolar
plane. This can also be seen from the estimation equation (18). When the line is in an epipolar
plane, the observed normals are parallel and the cross product disappears. Likewise, the system is
not fully controllable when either L or M move into the epipolar plane. Hence, final configurations
that place L or M in an epipolar plane, or configurations in which any one of P, S, or T lie on the
baseline are not attainable.

One issue that remains to be resolved is the problem of determining the final configuration
of the system based on its starting configuration. Again, due to the nonlinearity of the system,
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these predictions can be difficult to make. One way of avoiding these problems is to use open-loop
positioning to first place the manipulator in an approximately correct orientation and position, and
then to use feedback to correct for small positioning errors. Appendix B describes how to perform
a Cartesian motion to get the system near its goal configuration from visual inputs.

5 Experiments

Our visual servoing system consists of a Zebra Zero robot arm with PC controller, a Zebra pan-tilt
head, a Directed Perceptions pan-tilt head, a Sony XC-77 camera with 12.5 mm lens, a Cohu camera
with an 8 mm lens, and two Imaging Technologies digitizers attached to a Sun Sparc II computer
via a Solflower SBus-VME adapter. The workstation and PC are connected by an ethernet link.
The cameras are placed 80 to 100 centimeters from the robot along the z axis, 20 to 30 centimeters
apart along the y axis, and are oriented to point back along the z axis of the robot. During the trials
described below, both pan-tilt heads are inactive. Although not often employed, system calibration
can be performed by tracking the manipulator as it moves to a series of positions, and applying a
least-squares minimization to generate the calibration parameters. This is an automatic procedure
that takes 10 to 15 seconds.

All image processing and visual control calculations are performed on the Sun workstation.
Robot control is implemented using both static and dynamic servo systems. In the dynamic case,
Cartesian velocities are continually sent to the PC which converts them into coordinated joint
motions using a resolved-rate controller. There is no return communication from the PC to the
Sun. However, as the system runs, it logs 5 minutes of joint motion information at 20 Hz which can
be used to examine the dynamic behavior of the system. In the static case, the robot is commanded
to move from point to point and each motion is allowed to finish before the next is sent. In this
case, visual control is also a resolved-rate system in which the control velocities are multipled by a
user-controlled “time granularity” parameter to construct positional offsets. In all trials below the
time granularity was chosen to be 0.3 seconds. Before each motion, the robot position is stored for
later analysis.

A custom tracking system written in C++ provides visual input for the controller. The system,
more fully described in [11], provides extremely fast feature detection on a memory-mapped frame-
buffer. In addition, it supports simultaneous tracking of multiple segments, and can also enforce
constraints among segments. The experiments described here are based on tracking corners formed
by the intersection of two line segments. The segment length was set to be 20 pixels, and the
search area around a segment is 10 pixels. Specifics of the tracking setup for each application
are described below. Details on the conversion from pixel coordinates to the metric inputs to the
control and estimation algorithms are briefly described in Appendix A.

Stereo images from the experimental setup are shown in Figure 7. The top set of images shows
the system in a goal configuration where it is attempting to touch the corners of two 3.5 inch floppy
disks. The disks are used as a convenient testing tool since their narrow width (approximately 2.5
mm) makes them easy to track and at the same time makes it simple to observe positioning and
orientation precision. It is important to note that no specific geometric information about the disks
is used other than the fact that the three corners are not colinear.
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5.1 Simulation

A simulation system was constructed to test the stability and noise sensitivity of the system. In all
cases, the noise is Gaussian with a variance of (.005mm)?2. This corresponds to a unit variance of
about one pixel in a CCD camera. The focal length of the lenses is taken to be 8.0mm. The camera
calibration assumes the cameras are aligned to be parallel, perpendicular to the baseline, 30cm
apart, about 80 centimeters from the target. The differential equations are applied as difference
equations with a time granularity of 0.1 seconds. All other control and estimation constants are set
to 1.0. Calibration errors are introduced by changing the position of the cameras along the baseline,
and rotating the cameras about their y axes as was discussed in the analytical section above.

The following table shows the root-mean-square (RMS) positioning error for 3-D position over
1000 time steps for a variety of different camera positioning errors relative to the given calibration:

Offset RMS Position Error
Baseline Rotation | (0, 0, 800) (100, 0, 800) (0, 100, 800)
0 0 0.628 0.695 0.555
10 0 0.514 0.407 0.516
-10 0 0.7 0.779 0.709
0 5 1.337 1.265 1.17
0 -5 0.337 0.365 0.258

As expected, moving the cameras toward each or rotating them toward each other increases the ef-
fective closed-loop gain and hence increases noise sensitivity. The oppose motions have the opposite
effect. Note that the maximum RMS error is extremely small in any case—about 1.4 millimeters
in the worst case.

The accuracy of six DOF control was also simulated for the three configurations of lines and
points. In all cases, the lines were intersecting with the parameters given below:

Label | Ly and My L, M, P S T
A (0, 0,800) | (1,1,0) | (-1,1,0) | (0,0, 800) | (100, 100, 800) | (-100, 100, 800)
B (0,0,800) | (1,1,0)| (0,1,0) | (0,0,800) | (100, 100, 800) (0, 100, 800)
C (0,0,800) |(1,1,1) | (-1, 1,-1){ (0, 0, 800) | (100, 100, 900) | (-100, 100, 700)

The geometry of these configurations has been arranged so that the lines will be positioned
so that the intersection point is placed at P. Consequently, positioning error was measured as the
distance from the intersection of the two lines to P. Rotation error was measured as the angle
between L and the line through P and S and the angle between M and the line through P and
T. The following table shows the RMS positioning error for 1000 time steps for the same camera
configurations as above:
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Figure 6. Left, a diagram showing how the positioning visual trajectory was defined. and right, a diagram

Relative Setpoint &

showing how positioning and alignment setpoint was defined.

Offset RMS Position Error RMS Angle Error
Baseline Rotation | A B C A B C
0 0 1.135 1.629 1.823 | 0.073,0.847 0.759, 0.815 0.555, 0.536
10 0 0.931 1.123 1.335 0.804,0.782 0.906, 0.816 0.504, 0.551
-10 0 1.571 2.009 2.202 | 0.821,0.889 0.763,0.893 0.515, 0.558
0 5 5.604 7.918 5.149 | 1.189,1.187 1.249,1.216 0.654, 0.604
0 -5 0.590 0.687 0.819| 0.573,0.511 0.477,0.659 0.472, 0.485

Note that the positioning error is larger than the previous trial by about a factor of two. In
all trials, the qualitative stability results of the previous section are apparent. For trials where
the cameras farther apart than given in the calibration, the system response is damped. Likewise,
pointing the cameras away from each other tends to damp the system.

5.2 Real System — Positioning

To test positioning accuracy and repeatability, the robot is guided along a square trajectory defined
by the sides and top of a target disk. The robot manipulator begins by moving the left corner of its
disk to touch the right corner of the target disk. Next, it moves to a position where the left corner
of its disk is 1/2 disk length (approximately 1.75 inches) above the right corner of the target disk.
It then moves the right corner of its disk to the corresponding stationing point above the left corner
of the target disk. Finally, it descends to touch the right corner of its disk to the left corner of the
target disk. The complete procedure is then reversed, and the entire cycle executed repeatedly.

This trajectory is described visually as follows. A tracker for two corners of a floppy disk is
defined. The tracker has a state variable that depends on two constants, d; and dy as well as the
positions of the two corners which are denoted ¢; and ¢;. Let p denote a vector of length [|cz — 1|
perpendicular to the line joining ¢; and c;—that is, p- (¢ — ¢;) = 0. Then position of the setpoint,
s, is given by

s =c1 4 dy(cz — ¢1) + dup.

(see Figure 6). A pair of these trackers are used to track the bottom of the floppy disk held by the
robot in each image. This provides observations of robot visual position. A second pair tracks the
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Figure 7. Example stereo images from two stages of a feature-based trajectory. The top shows the system
touching the corners of two floppy disks. The bottom shows the visual cues used to define a position directly
above a corner.

target floppy in the stand, providing a setpoint. Thus, this trial involves tracking a total of sixteen
primitive features (four corners composed of two contours in two images). Executing the test
trajectory requires changing the setpoint values of both the robot disk tracker and the target disk
tracker though eight different motion segments. The velocity along the trajectory is constant—no
attempt is made to incorporate acceleration constraints. '

The entire visual control system (including tracking and control signal computation) runs at a
rate of up to 20 Hz, however due to the computational and architectural limitations of the PC-based
control system, velocities are only sent to the PC at a maximum rate of 10 Hz. At 20 Hz, the robot
can be tracked at velocities covering up to 200 pixels/sec. which, with a 12.5 mm lens, converts
to maximum velocities of approximately 12 cm/sec. perpendicular to the camera optical axis at 1
meter. For these trials robot velocities were limited to a maximum of 5 cm/sec. The total time
lag in the system (from images to robot motion) is estimated as follows: the maximum frame lag
(1/30 sec.) plus processing time (1/20 sec.) plus send time (estimated send time 1/100 sec.) plus
maximum wait on the PC side (1/20 sec.) yielding a maximum of 0.14 sec. worst case delay time.
The best case is 0.06 seconds. This suggests that one time step delay model (a delay of 0.1 sec.) is
a reasonable model for the system.

The gain values k; and k; are set as described below. The system is insensitive to values the
choice of estimation coefficients. In all trials these coefficients are set to 1.0, yielding a deadbeat
estimation system.

The expected positioning accuracy of the system depends on the error in edge localization. One
camera pixel has a width of approximately 0.0lmm. At 80 cm. with 12.5 mm focal length lenses
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on both cameras, the expected vertical and horizontal positioning accuracy is £0.32 mm, and the
expected accuracy in depth is £1.75 mm. Consequently, the system should be able to reliably
position the corners of the disks so that they nearly touch one another.

Several trials were performed under varying conditions and with various control gains. In
nearly all cases, the system was able to position the disks so that the corners touched. Occasionally
the system failed due to systematic aliasing problems in the edge tracking system. These aliasing
problems arise due to “blooming” effects in the CCD cameras. These only appear when the contrast
across an edge becomes excessive. The following details the experimental results:

Stability: The major destabilizing factors in the system are time lag, discretization effects, unmod-
eled robot dynamics and calibration error. Unmodeled dynamics of the robot and calibration
error do not appear to play a major role. When k; = 0, empirical tests have shown that
k; < 2 leads to critically-damped response at endpoint velocities of 5.0 cm/sec. Higher values
lead to oscillations. This is approximately in accord with the discrete time model which would
predict underdamped response at k; = 2.5.

Setting k2 < 0.05 maintains acceptable performance with less than 2mm overshoot at each
setpoint. Higher values lead to oscillation and large overshoot.

Accuracy: As noted above, if the edge detection is accurate to one pixel, we expect the manipu-
lator to position the disks so that they overlap. Within the operating range described above
we have found this to always be the case. While at the station, the manipulator continues to
perform small corrective motions of about 1mm due to noise in the edge tracker. However,
in spite of these motions the manipulator maintains it’s position within the expected 2.5mm
error interval. Measurements indicate a maximum error of about £1mm. Figure 8 shows the
robot motions while at a setpoint position. Note that the maximum range of error is less and
1mm in all coordinate directions.

Tracking Trajectories Because the target disk is nearly parallel to both camera imaging planes,
the stereo trajectory defined above should cause the robot to move nearly in the plane of
the target disk from side to side. Figure 9 shows the manipulator motion when executing
one cycle of the corner-to-corner trajectory. The slight deviation in front of and behind the
target disk occurs due to the distance between the setpoint delivered from tracking and the
position of the robot. Increasing the integral gain improves tracking performance slightly, but
causes overshoot at both endpoints (Figure 9). This is not unexpected since the trajectory
as parameterized would require infinite acceleration.

Calibration Sensitivity: In practice, the system insensitive to calibration as expected. During
operation it is possible to reorient the cameras and/or move them about without seriously ef-
fecting the performance of the system. The system is often run without prior calibration. The
most noticeable effect is that positioning errors due to tracking lag are magnified. Naturally,
if the cameras are moved sufficiently far, the system becomes unstable.

5.3 Real System—Position and Orientation
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Figure 8. Above the x/y and y/z projections at stable point with unit feedback and no integrator. Below
the same test with integral gain of 0.1.
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Figure 9. Above the x/y and y/z projections of path tracking with no integration. Below the same test with
integral gain of 0.1.

26




Velocity Magnitude

Magnitude

9.00
8.00
7.00
6.00
5.00
4.00
3.00
2.00
1.00
0.00

Positions

100.00

50.00

0.00

-50.00

_—
P ——
"]
—
L

0.00 50

Robot

.00 100.00

Position

N

g™

0.00 50

.00 100.00

Time

Time

Rotation Magnitude

Magnitude
2.00
1.50
oo UL
0.50 W
0.00 ' ' Time
0.00 50.00 100.00
Robot Orientation
Orientations
10.00 —
8.00 '
6.00
|
e !y n e [
2z i B L . ) ﬂ )
20 e o
WMy W Y
000 H £ % L]
. : Time
0.00 50.00 100.00
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Figure 11. Velocity magnitudes (upper) and the Cartesian positions of the robot (lower) for trial two.
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Position and orientation tests were conducted on the same experimental apparatus using only the
static motion system. The visual setpoint was again defined using corners as described in Figure 6.
The system runs at approximately 10 Hz including all image processing and control calculations.
Because of the static nature of the motion system, no attempt was made to execute trajectories.

Figure 10 shows the steady-state system error vector and time sequence of robot positions while
maintaining a single position. In general, the steady state corrections are small: within one degree
of rotation and two millimeters about a nominal position. The robot encoders are attached to
the motors, so due to backlash and compliance in the mechanism, rotational information includes
some hysteresis effects. This results in the spike near the 60th sample. The manipulator “stuck”
for a few time steps, and suddenly moved a relatively large amount causing a large correction to
be applied. This is also the reason for the periodicity exhibited in the data—several time steps of
motion must be applied before the mechanism actually moves. Consequently, the motions of the
actual mechanism are smaller than are indicated by the data. Also, due to calibration errors in the
tool frame center of rotation, rotations always induce a slight translation. These coupling effects
can be seen in the graphs. Note that observation error significantly affects the y component of the
system orientation. This is to be expected since the y component is most heavily dependent on
stereo information.

Figure 11 shows the same data for two point-to-point motions. The behavior at each station
is roughly similar. It takes between 6 and 10 time steps to move between the stations. This
corresponds to 2 to 3 seconds of time for this point to point motion.

6 Discussion

We believe the visual servoing paradigm we have presented has great potential for use in commercial
and scientific applications. It is simple, inexpensive, robust, portable and task-independent. The
current vision processing and control computation system uses no special hardware (other than a
standard framegrabber) and could be run on off-the-shelf PC’s. The total control system, exclusive
of the robot and pan-tilt heads could be constructed on hardware costing no more than about $3000.
Furthermore, since the entire system, including image processing, runs in software, moving to a
newer or more powerful system is largely a matter of recompiling. At the current rate of progress,
frame-rate (60 Hz) servoing will be easily feasible in a year or two. The system is extremely
accurate. As reported, the current system can easily position the end-effector to within a few
millimeters relative to a target. This positioning accuracy could easily be improved by changing
the camera configuration to a wider baseline, improving the image-processing to be more accurate,
or increasing the focal length of the cameras.

Because the methods are insensitive to calibration errors, the methods are extremely robust and
quick to reconfigure with a new camera configuration. In addition, two different methods of online
calibration for positioning are currently being tested. One method uses a switching controller [21]
to recover the estimate of the system Jacobian. Initial simulation tests indicate that it is stable,
and rapidly calibrates the system as it moves. The second assumes an orthographic projection
calibrated offline, and performs online adaptation of scale. This method has the advantage of
allowing linear control techniques to be used. Such adaptive systems will make it simple to use
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mobile or reconfigurable camera systems.

Work is proceeding on occlusion detection and compensation. In particular, the design of motion
strategies that plan an occlusion-free path offline or online are of interest. Offline vision planning
using visibility models and a prior world model information is already being investigated [19].
Online motion compensation based on occlusion detection does not appear to have been considered
to date.

Work is also proceeding on developing a framework for task representation and planning in the
visual space. In recent work [10], it was noted that projective invariants [22] provide a basis for
specifying robot positions and motion independent of geometric reconstructions, and consequently
independent of camera calibration. Development of these concepts is currently underway, including
both the visual tracking methods needed to compute projective invariants, and the design and
implementation of vision-based motion strategies that employ invariants.

Acknowledgements The work in this paper could not have been done without the help of Sidd
Puri on implementing an initial version of the tracking system, A.S. Morse for suggesting the design
for the positioning feedback controller, and C.J. Taylor for suggesting the line representation used
throughout the article. This research was supported by DARPA grants N00014-91-J-1577 and
N00014-93-1-1235, and by National Science Foundation grants IRI-9109116 and DDM-9112458.

A System Input Conversion

Input to the estimation and control algorithms is computed from image features as follows. For
points, the location of the corner in pixel coordinates is converted to a metric value in millimeters
and divided by the camera focal length to arrive at a unit focal length equivalent value. For
lines, the direction of the project contour, call it 8, is first extracted. At this point, there are two
possible normal directions; the direction 6 + 7/2 is chosen and the components n = (nz,ny) =
(cos(8 + 7/2),sin(# + 7/2)) are computed. Given a visual reference point with image coordinates
p on the contour (converted to unit focal length metric values), the line observation vector is
l = (ng,ny,n-p).

B Computing Final System Configurations

The section discusses the problem of positioning a manipulator using open-loop motions based on
the estimated positions of visual setpoints. To simplify the exposition, it is assumed that the origin
of the manipulator tool frame is at Lg.

The computation of setpoint position from visual inputs is relatively simple when the lines L
and M intersect one another. The orientation of the coordinate system defined by L and M is
given by the matrix:
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R{M = [Lv | Ly x My | Ly X (Lv X Alv)] (33)

where the bar indicates normalization to a unit vector. The equivalent system for the stationing
point is:

Rlsr=[S=PIB-PIxT-P)|5- P x (5 - P x (T - P)) (34)
Note that there are four possible orientations depending on the choice of sign of the quantities

(S — P) and (T — P). The rotation to align the two coordinate systems is R = R{MRPST.

This is combined with the translation P — Ly to bring the point P onto the line L. After these
motions, the coordinates of L and M are L’ = (P,RL,) M’ = (R(Mq— L4)+ P, RM,), respectively.
The translation, d, along L’ that places T on M’ is computed as follows:

n o= (T M)~ MYT - M- M, (35)
d = Li(n-n/n-L,). (36)

If L and M do not intersect, the process is more complicated. First, P and R are placed on L
by applying the following rotation:

R = rot(k,6) (37)
k = I,x(S-P) (38)
6 = tan " (|[Ly x (S = P)I/(Ly- (S = P)))- (39)

Note that there are two possibilities for the final system configuration. Following this by a transla-

tion of P — Lq again places Ly at P. Let the result of applying these two transformations to L and
M be denoted L’ and M’ as above.

The next stage is to look for a rotation R’ about the line L’ so that (R'M, x L) - (R'(M; -
L))+ Lqs = §) = 0. Let R be the rotation matrix that aligns L’ with the z axis. This rotation
can be computed using (37) through (39), replacing the vector (R — P) with z = (0,0, 1)T. Define
mv = R,M!,lv=R.L), md = R;M),ld= R.L/, and s = R.S. Defining R’ = rot(z,0), leads to a
quadratic equation which has the following solution:

= mug(ldy + s1) — mvi(s2 + ld2) (49)

b = mu(ldy + s1) + moy(lds + s2) (41)

¢ = (mvy(mdy — ldy) + muvi(ldy — mdy) (42)
ac + bva? + b% — ¢?

T = praT (43)

6 = arccos(z). (44)

Note there are again two choices for §. Applying the rotation R’ = rot(L,6) to M’ yields the line
M" and finally applying (35) and (36) produces the translation to place T on M". The composition
of these four motions places the robot at the desired stationing point.
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