Abstract.

The most significant impact on research in Scientific Computation, and Numerical Linear
Algebra in particular, seems to have been brought about by the advent of vector and parallel
computation. This paper presents a short survey of recent work on parallel implementations of Nu-
merical Linear Algebra algorithms with emphasis on those relating to the solution of the symmetric
eigenvalue problem on loosely coupled multiprocessor architectures.

A simple model will be given to analyse the complexity of parallel algorithms on several repre-
sentative multiprocessor systems : a linear processor array (or ring), a two-dimensional processor
grid and the hypercube. The vital operations in the formulation of most eigenvalue algorithms
are matrix vector multiplication, matrix transposition, and linear system solution. Their imple-
mentations on the above architectures will be described, as well as parallel implementations of the
following classes of eigenvalue methods : QR, bisection, divide-and-conquer, and Lanczos algorithm.
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1. Introduction

Undoubtedly the most significant impact on research in Scientific Computation, and Numerical
Linear Algebra in particular, has come about with the advent of vector and parallel computation.
This paper presents a short survey of recent work on parallel implementations of Numerical Linear
Algebra algorithms with emphasis on those relating to the solution of the symmetric eigenvalue
problem on loosely coupled multiprocessor architectures.

Although the concept of parallel computation was well understood in the early years of elec-
tronic computing (already Babbage recognised it as a powerful means for speeding up the mul-
tiplication of two numbers [4]), it intermittently had to give way to the largely sequential von
Neuman Computer. The recent turn to parallel computer architectures is motivated by the serious
limitations inherent in the von Neuman model, the most important one being its limits to minia-
turisation, imposed by physical constraints, which put a bound on the maximum speed of a logical
circuit. Consequently, the only means for increasing computing speed by orders of magnitude is
brought about by the use of parallel machines.

In a parallel computing device (also called ‘multiprocessor’) different processors share the com-
putations involved in the solution of a problem. To this end, the computation must be decomposed
and broken up into tasks, which can be performed simultaneously by the different processors; and
organised co-operation among the processors must be established by means of synchronisation and
data exchange. The selection of an algorithm, its decomposition into separate computational tasks
and their subsequent assignment to particular processors, as well as the physical channels and
protocols by means of which the processors communicate are among the many factors leading to a
multitude of parallel implementations for any one problem.

The above decisions are aggravated by the need (or perhaps absence) of adequate performance
measures. Even if a certain multiprocessor machine is already specified, one still faces the problem
of having to decompose a particular algorithm into tasks with the objective of gaining maximal
speed-up and a balanced work-load for all processors. Before that, however, reliable criteria for
evaluating and comparing the performance of different implementations of an algorithm on that
machine are indispensable. It is also necessary, of course, to be able to compare implementations of
different algorithms on one machine, as well as implementations of different algorithms on dzfferent
machines. These issues are far from being resolved. One of the reasons is that a fair assessment
of two architectures must be based on the availability of adequate hardware as well as software.
Yet, due to the absence of systematic design techniques the development of software is and will
undoubtedly continue to lag behind hardware development.

Section 2 presents a brief characterisation of popular parallel architectures and justifies our
preference for a loosely coupled multiprocessor architecture. The choice of machine model in turn
influences the choice of a parallel algorithm for solving a particular problem. Extensive surveys
of parallel algorithms can be found in the articles by Heller [35], Sameh [69, 70, 71], and Ortega
and Voigt [60]. Unlike in the single processor case the performance of a parallel algorithm is
not only judged by its arithmetic speed but, equally, by the time required to exchange data and
coordinate co-operation among processors; understanding of this aspect has only started [29, 30,
61]. Accordingly, we present a collection of parallel algorithms for basic Linear Algebra tasks in
Section 3 and their application to the parallel solution of eigenvalue problems in Section 4. To
conclude, the last section casts a glance at some novel techniques which promise to alleviate the
complex problem of parallel algorithm development. -

2. Architectures

There exist quite a few classifications of multiprocessor architectures, and we will employ two
of them. The first one distinguishes architectures by the way processors relate their instructions to
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the data while the second one groups machines according to the structure of their communication
environment.

The two most important categories of parallel architectures are Single Instruction Stream Mul-
tiple Data Stream (SIMD) and Multiple Instruction Stream Multiple Data Stream
(MIMD) machines [23]. SIMD machines initiate a single stream of vector instructions, which
may be realised by pipelining in one processor or operating arrays of processors [38]. Examples
include the CRAY-1, the ICL-DAP [22] and the ILLIAC IV [80]. MIMD machines simultaneously
initiate different instructions on (necessarily) different data streams, essentially all multiprocessor
configurations are included in this class [38].

Among the MIMD machines one can in turn differentiate between two types :

e Shared memory models : processors have very little local or ‘private’ memory; they exchange
data and co-operate by accessing a global shared memory.

e Distributed memory models : there is no global memory, but processors possess a significant
amount of local memory (with no access to other processor’s local memory); there are phys-
ical interconnections between certain pairs of processors, and data and control information is
transferred from one processor to another along a path of these interconnections.

2.1. The Shared Memory Model

The shared memory model is frequently implemented by connecting k processors to kK memories
via a large switching network, see Figure 1 (this switching network may be replaced by a global
bus when the number of processors k is small). Thus the memory can be viewed as split into
k ‘banks’, and shared among the k processors. Variations on this scheme are numerous, but
the essential features here are the switching network and the shared memory; examples include
the Ultracomputer developed at NYU [32] which uses an Omega network. Programming is greatly
facilitated due to transparent data access (from the user’s point of view data are stored in one large
memory readily accessible to any processor) and the ability of the switching network to simulate
any interconnection topology. However, memory conflicts can lead to degraded performance and
the shared memory models cannot easily take advantage of proximity of data in problems with local
(data) dependences; these questions are addressed in [25, 79]. Furthermore, the switching network
becomes exceedingly complex as the number of processors and memories increases : the connection
of N processors to N memories in general requires a total of O(NV log, V) identical 2 x 2 switches.

2.2, The Distributed Memory Model

In the distributed memory model, the processors are identical and the processor interconnec-
tions form a regular topology; examples are depicted in Figures 2, 3 and 4. There is no tight
global synchronisation, and the computations are data driven (ie, a computation in a particular
processor is performed only when the needed operands become available). Examples include the
finite element machine [47], tree machines [12], the cosmic cube [78] and systolic arrays [51].

Clearly, one of the most important advantages of the second class of architectures is its ability
to exploit locality of data dependences in order to keep communication costs to a minimum. Thus,
a two-dimensional processor grid as in Figure 3 is perfectly suitable for solving discretised elliptic
partial differential equations (eg, by assigning each grid point to a corresponding processor) because
iterative methods for solving the resulting linear systems require only interaction between adjacent
grid points. Hence, an efficient general purpose multiprocessor must have powerful mapping ca-
pabilities, ie, it must be able to easily emulate many common topologies such as grids or linear
arrays.

2.3. Hypercube-based Architectures
The ‘hypercube’ (boolean cube, n-cube), a distributed memory machine, constitutes an excel-
lent compromise between a linear array and a completely interconnected network of processors. It
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Figure 1: A Tightly Coupled Shared Memory Machine.

offers a rich interconnection structure with large bandwidth, logarithmic diameter, and the ability
to simulate every realistic architecture with small overhead. This explains the growing interest
in hypercube-based parallel machines; commercially available machines at this point (last quar-
ter of 1985) are the 128-processor INTEL iPSC/d7, the 1024-processor NCUBE/Ten, the 64000-
processor (bit-sliced) Connection Machine from Thinking Machines and the soon-to-be-available
256-processor Ametek/System 14 [19)].

The topology of a hypercube is best described by a simple recursion : a hypercube of di-
mension 1 consists of two connected processors and a hypercube of dimension n + 1 is made up
of two identical subcubes of dimension n by connecting processors in corresponding positions; an
illustration is given in Figure 4 which shows a four-dimensional cube constructed from two three-
dimensional cubes. Topological characterisations of the hypercube, in particular with respect to
embeddings of different graphs in the hypercube are investigated in [6, 67, 65]

3. Parallel Algorithms for Basic Linear Algebra Computations

When analysing the complexity of parallel methods in numerical linear algebra, one must
bear in mind that the total time required to run an algorithm on a multiprocessor system does
not only depend on pure arithmetic time but also on the time needed for exchanging data among
processors. This implies a great richness in the class of algorithms, in terms of the assignments
of tasks to processors and the assumed topology of the processor communication network : for a
particular task it is now important

e when its input data become available as results of preceding calculations,
e in which processor they are located, and
e how long it will take to move them to the requesting processor.

In many practical applications the number of processors k will usually be much smaller than the
‘problem size’ N (eg, the order of the matrix), and a large variety of algorithms can be found by
choosing different ways of assigning matrix elements to the processors.

We must take into account that times for data transfer are not negligible and may, in fact,
dominate the times for actual arithmetic. A fairly general and yet simple communication model is
proposed in [43], and the algorithms are characterised and compared with respect to their require-
ments for arithmetic as well as communication.

It is assumed, that any processor is capable of writing to one of its directly connected neigh-
bours while reading from the other. For purposes of estimating the computation time, processors
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Figure 2: A Processor Ring Consisting of Eight Processors.

Figure 3: A 4 x 4 Multiprocessor Grid.

are considered to work in lock step where one step corresponds to the computation time of the
slowest processor, which, in particular, implies that identical tasks will take an equal amount of
time if started simultaneously on different processors. This assumption is by no means restrictive
and its sole purpose is to simplify the complexity analysis and its results. As a matter of fact, most
of the parallel algorithms proposed so far can be viewed as SIMD methods, in the sense that a
typical parallel loop comprises k identical tasks to be executed in parallel.

It is further assumed that communication and arithmetic are not overlapped, which is the
case, for instance, when processors are not equipped with I/O co-processors (ie, processors solely
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Figure 4: A Hypercube of Dimension 4.

devoted to performing input and output). Yet even when this is not true, it is important to have a
realistic measure of what exactly constitutes communication and what computation time, in order
to judge the efficiency of an algorithm. We define communication (or data transfer) time as the
time to execute an algorithm (in lock step mode) under the assumption that arithmetic can be
done in zero time (that is, the arithmetic unit is regarded to be infinitely fast). Arithmetic time
can then be defined analogously. The corresponding computation time is at most double of the one
resulting from overlapped computation and communication [61].

If processor interconnections are capable of transmitting R words per second, then the inverse
is denoted by 7. In general, each transfer of a data packet is associated with a constant start-up
(set-up) time of B, which is independent of the size (the number of words) per packet. Often, the
start-up times are (much) larger than the elemental transfer times, that is, 8 > 7. The time to
send a packet of size NV from a processor to its neighbour is ¢7 = 8+ N7. On a single processor, a
linear combination of two vectors of length IV takes time {4 = v+ Nw, where v is the pipe fill time
(it is zero for non-pipelined machines), w the time for one scalar operation and v > w (again, the
start-up time dominates the elemental operation time). For any algorithm the sum of its transfer
and arithmetic time, {7 + t4, is simply called its computation time.

The following section gives a short overview (with no claims of being complete) over possible
implementations of basic Linear Algebra operations on the three loosely coupled architectures. The
efficiency of parallel eigenvalue methods depends crucially on the implementation of data transfers,
matrix transposition, matrix vector multiplication, and linear system solution.

3.1. Algorithms for the Processor Ring

A multiprocessor ring is one of the simplest interconnection schemes and yet it is one of the most
cost-effective architectures when it comes to bridging the gap between future super computers and
current vector computers. As suggested in [77] a small number of inexpensive off-the-shelf standard
array processors can easily be connected in a ring yielding a machine with the computing power of
a CRAY-1. As mentioned before, rings can be emulated without difficulty by most loosely coupled
architectures.

Time complexities of elementary data transfers and dense matrix vector multiplication on a
processor ring are discussed in [43]. These operations are used to implement various algorithms
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for solution of dense linear systems by Gaussian elimination on a processor ring. Three ways of
assigning matrix elements to particular processors are considered : by rows, by columns and by
diagonals. A summary of the results obtained follows.

The communication times are low order terms compared to the arithmetic operation times
when the number of processors k is small compared to the order of the matrix N. Both the arith-
metic times and the communication times of the triangular system solution methods are low order
terms in comparison with those of Gaussian elimination. Allocating non-adjacent rows or columns
of the matrix to a processor results in better arithmetic performance but worse communication per-
formance. Allocation of non-adjacent diagonals to a processor results in poor overall performance.
The overhead of pivoting is small compared with the cost of Gaussian Elimination; it is however
of the same order of magnitude as that of triangular system solution. Pivoting is less expensive
for the row-oriented schemes. In [61] lower bounds on the communication complexity for dense
Gaussian elimination on bus and ring oriented architecture are shown : the communication time is
of order at least O(IN?), independent of the number of processors.

Gaussian elimination for dense systems on a multiprocessor ring is discussed in [71]. Lawrie
and Sameh [53] present a technique for solving symmetric positive-definite banded systems, which is
a generalisation of a method for tridiagonal system solution on multiprocessors; it takes advantage
of different alignment networks for allocating data to the memories of particular processors.

Implementation of the Cholesky factorisation on a ring is discussed in [34]. New algorithms
and implementations for the solution of symmetric positive-definite systems are given in [16], as
well as minimal time implementations for Toeplitz matrices on linear systolic arrays, which can be
easily adapted to loosely-coupled systems.

The literature on solution of linear systems arising from partial differential equations is ex-
tensive, the reader is referred to the survey by Ortega and Voight [60]. Iterative methods on rings
or linear arrays have been considered by Saad and Sameh [62], Saad, Sameh, and Saylor [63] and
more recently by Johnsson, Saad and Schultz [46, 68]. In [68] it was shown that a speed-up of up
to O(\/N ) can be achieved when the system arises from an elliptic partial differential equation.
Although implementations of direct sparse matrix techniques on vector and parallel computers
have been considered by Duff [21], there is very little work dealing with parallel implementations
of sparse direct solutions; parallel nested dissection for finite element problems is discussed in [28].

3.2. Algorithms for the Two-Dimensional Processor Grid

A lower bound for the complexity of communication in dense Gaussian Elimination on a two-
dimensional grid of processors is O(N?%/\k) + O(N+/k) [61] when no overlapping of successive
steps in Gaussian elimination takes place and O(N?/v/k) + O(\/k) for pipelined algorithms. In the
spirit of the ‘wavefront concept’ made popular by S.Y. Kung [50] data flow algorithms for dense
Cholesky factorisation are developed in [59]. Six different implementations of the dense Cholesky
factorisation, depending on the arrangement of the three loop indices, on a processor grid are
discussed and compared in [26, 34]. The preferred variant turns out to be a computation of the
Cholesky factor by columns, whereby previously computed columns are accessed columnwise.

The idea for transposing dense and banded matrices on two-dimensional architectures was
first developed for systolic arrays in [13, 40] and carries over right away to multiprocessor systems;
similar ideas can be found in [58].

3.3. Algorithms for the Hypercube

The hypercube topology has been the focus of much recent research in parallel computation;
since it can easily emulate many other architectures, the first task is the assignment of data to
the processors so as to optimise processor utilisation. Saad and Schultz [65] establish general
properties of the hypercube, while Bhatt and Ipsen [6] present algorithms for efficient embeddings
of trees onto hypercubes for potential employment in adaptive numerical computations. Chan and

6




Saad [14] propose a mapping of the grid points onto the hypercube so as to minimise processor
communication in Multigrid methods.

Saad and Schultz [66] discuss the problem of solving banded linear systems on ring, mesh
and hypercube architectures. It is concluded that the concept of one best algorithm for a given
architecture is no longer valid. For instance, consider a simple banded linear system of half-
bandwidth v and order N. It is not realistic to assume, as often done, that the half-bandwidth
v matches exactly the number of processors k, ie, that v = k or that v? = k. In reality the
total number of available processors k is fixed, and one has to determine the best way of solving
the system for different values of » and N. In the extreme case of a tridiagonal matrix, where
v = 1, Gaussian elimination is not parallelisable, and therefore should be excluded, while the cyclic
reduction algorithm [44] which is not advantageous for sequential machines is highly parallel and
should be selected. At the other extreme, when the half-bandwidth v is very large with respect to
k, simple banded Gaussian elimination with the rows of the matrix uniformly distributed over the
processors performs best [66]. Similar observations can be made for ADI methods [46, 64]. Thus,
it appears that in the standard software packages of tomorrow one will find several different codes
for solving the same problem : according to parameters like size of the problem, number of floating
point operations per second and communication bandwidth the program would dynamically choose
the best alternative.

4. Eigenvalue Algorithms

So far, most of the work on parallel computation of eigenvalues for (symmetric) matrices has
seemed to concentrate on the development of systolic array algorithms and hardware — mainly with
signal processing applications in mind.

4.1. Methods for (Small) Dense Matrices

There is a variety of systolic array implementations for the symmetric eigenvalue problem
based on the shifted QR algorithm with Givens’ rotations (the exception is [45] which makes use
of Householder transformations). One can use either the arrays for orthogonal factorisations |1,
7, 81, 36, 37, 54] (see [5, 41] for the implementation of ‘Fast’ rotations) or the ones constructed
specifically for the solution of the tridiagonal [36, 57], positive-definite tridiagonal [27] or banded
[75] eigenvalue problem; however no satisfactory way for an efficient shift computation has been
found. Other designs for symmetric tridiagonal eigenvalue computations include a doubling version
of the QR method [3], methods based on isospectral flows [2], and Newton’s method or bisection
[75]. Often a second, different set of arrays is required to reduce by similarity transformations the
original matrix to tridiagonal or banded form [36, 74, 75]. Earlier papers for the solution of the
tridiagonal eigenvalue problem on more general parallel architectures suggest the use of multiple
Sturm sequences and bisection [49], and computation of the QR iteration via recurrence equations
72].
2l Parallel implementations of Jacobi’s method to compute the eigenvalues of dense symmetric
matrices have been considered in [49, 52| as early as 1971. Implementations for the ICL DAP [22]
can be found in [56] and improved versions for systolic array implementations [9] seem to be most
promising in terms of actual physical realisation since no shift computations are necessary and the
architectures are simple; a modified algorithm is presented in [76] to deal with problems whose size
does not match the number of available processors.

A systolic array that solves the generalized eigenvalue problem for dense matrices via the
QZ algorithm is discussed in [8]. Suggestions for parallel computation of certain instances of the
generalized and the nonsymmetric eigenvalue problem, as well as for Lanczos method, are presented
in [70].




The divide-and-conquer approach to the tridiagonal eigenvalue problem introduced by Cuppen
[15] has been advocated for implementations on tree machines [48], shared-memory architectures
[20] and the hypercube [42].

In signal processing applications, the preferred approach is to design arrays that compute the
singular values of the Cholesky factors of the covariance matrix directly instead of employing arrays
for computing the eigenvalues of the symmetric positive-definite covariance matrix itself. Examples
include arrays based on the Jacobi method [10, 11, 55] and on Givens’ rotations [36, 39, 76]. The
iterative reduction to triangular form of a square matrix by Schur rotations is suggested in [59] for
an architecture similar to the the systolic array in [55].

For general two-dimensional processor grids, a dataflow algorithm similar to the one for
Cholesky factorisation is developed [59] for congruence transformations.

4.2. Methods for Large Sparse Matrices

Generally speaking large sparse eigenvalue problems have rarely been examined from the par-
allel point of view, since the parallel algorithms are either trivial extensions of those for solving
linear systems or obvious adaptations of sequential algorithms. For instance, a good shift-and-invert
technique can be implemented for Lanczos algorithm if the inner loops, which consist of system
solutions, can be efficiently parallelised. As a second example, the Subspace Iteration method is
a perfectly parallelisable method and might actually constitute a reasonable choice in multipro-
cessor environments despite its sluggishness on sequential machines. Although actual comparisons
between parallel implementations of this technique and Lanczos method in the symmetric case
are in order, we still expect Lanczos algorithm to be superior. Along different lines Sameh and
Wisniewski [73] and Wisniewski [81] propose an approach based on trace minimisation for solving
the generalised eigenvalue problem Az = ABzx, where the trace of WP AW is minimised over all
N X M matrices W that are B-orthonormal.

An interesting idea by Grimes et al. [33] is the use of Lanczos algorithm, the preferred method
for solution of large sparse symmetric eigenvalue problems, to solve even relatively small and dense
problems. The tests conducted on a Cray-XMP/24 show that Lanczos algorithm performs better
on dense matrices of order 219 to 1496 than the Cray-optimised EISPACK routines. Thus, vector
and parallel machines may result in unexpected changes regarding the range of applicability of
classical algorithms.

Large sparse nonsymmetric eigenvalue problems are crucial in the analysis of complex dynamic
systems. Due to nonlinearities, the numerical nature of these problems is so intractable that
scientists and engineers often abandon them and resort to simplified models. In this situation the
use of massive parallel computing could be a decisive factor as it might enable the solution of
presently intractable problems. Nonsymmetric eigenvalue methods will benefit very strongly from
an increase in computational power and parallelism. It is hoped that these difficult problems will
be tackled once reasonably reliable and user-friendly parallel machines appear on the market.

5. Outlook

For multiprocessor systems with regular communication topologies, such as the ones discussed
here, novel techniques promise ‘automatic’ design of many algorithms. Progress in this area has been
made especially for the implementation of algorithms on systolic arrays (surveys can be found in
[18, 24]). These approaches are easily adaptable to more general multiprocessor architectures with
regular communication topologies. Given sets of recurrence equations (eg, a FORTRAN program
consisting of several sets of nested loops) the design methodology developed in [17, 18] delivers
the description of provably optimal, regular, parallel architectures for their implementation. Upon
specification of certain constraints for the resulting architecture, eg, avoidance of broadcasting or
restriction to nearest-neighbour communication, the methodology generates an optimal mapping
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onto a given architecture. Application of this design methodology will allow the numerical analyst
to concentrate on the algorithm development, particularly on modifications for improved numerical
behaviour or pipelinability, rather than on the mapping or implementation process.
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